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The hallmark of fibrosis is an excessive accumulation of collagen, ultimately leading to organ
failure. It has become evident that the deposited collagen also exhibits qualitative modifi-
cations. A marked modification is the increased cross-linking, leading to a stabilization of
the collagen network and limiting fibrosis reversibility. Not only the level of cross-linking
is increased, but also the composition of cross-linking is altered: an increase is seen in
hydroxyallysine-derived cross-links at the expense of allysine cross-links. This results in ir-
reversible fibrosis, as collagen cross-linked by hydroxyallysine is more difficult to degrade.
Hydroxyallysine is derived from a hydroxylysine in the telopeptides of collagen. The expres-
sion of lysyl hydroxylase (LH) 2 (LH2), the enzyme responsible for the formation of telopep-
tidyl hydroxylysine, is universally up-regulated in fibrosis. It is expected that inhibition of
this enzyme will lead to reversible fibrosis without interfering with the normal repair process.
In this review, we discuss the molecular basis of collagen modifications and cross-linking,
with an emphasis on LH2-mediated hydroxyallysine cross-links, and their implications for
the pathogenesis and treatment of fibrosis.

Introduction
It is estimated that fibroproliferative diseases are at the heart of more than one third of all deaths in de-
veloped countries [1,2]. So far, there is no effective treatment option that halts or even reverses fibrosis.
Thus, there is an urgent need to develop effective therapies, preferably those that can be used in a variety
of organs. The hallmark of organ fibrosis is an excessive accumulation of extracellular matrix (ECM), with
the fibrillar collagen type I as the most abundant matrix protein. This pathological collagen accumulation
ultimately leads to organ failure and subsequent death. So far, relatively little attention has been paid to
develop drugs that target the matrix itself, which is remarkable, as the matrix is prominently involved in
disease progression [3–7].

Collagen type I is the major constituent of the fibrotic ECM. However, it is not just the quantity of
collagen that defines fibrosis. The quality of the collagen, as determined by its post-translational modi-
fications, actively drives the disease progression. Biosynthesis of collagen is a multistep process [8], re-
sulting in modifications throughout the molecule, such as the conversion of proline into hydroxyproline,
and the conversion of lysine (Lys) into hydroxylysine (Hyl). The precursor procollagen is secreted out
of the cell, its propeptides are cleaved off, and the resulting collagen molecules spontaneously segregate
into well-ordered structures (fibrils) in which they are stabilized by means of intermolecular cross-links
mediated by lysyl oxidase (LOX) transglutaminase (TG).

Pharmacological therapies have focused on compounds that suppress fibrosis by reduction of dis-
ease progression (suppression of inflammation, cell migration, cell proliferation, cell differentiation, vi-
ral/bacterial/parasite infections) and on drugs that suppress collagen accumulation [5]. The latter group
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consists largely of inhibitors of enzymes involved in the post-translational processing of collagen: procollagen
C-proteinase, prolyl 4-hydroxylase, LOX and TG. By inhibiting the action of C-proteinase, procollagens cannot as-
semble into collagen fibrils and the deposition of collagen in tissues is blocked. Inhibition of prolyl 4-hydroxylase
generates unstable collagen that is degraded inside the cell and is not secreted. Inhibition of LOX results in colla-
gen that is less cross-linked, resulting in collagen fibrils that are easier to degrade by proteinases [6]. However, all
aforementioned approaches have their drawbacks, as both inflammation and collagen production are essential for
adequate tissue repair. This means that although inhibiting inflammation and/or blocking the collagen accumula-
tion may limit fibrosis, it will also limit adequate tissue repair, thus causing deleterious side effects. Thus, an ideal
anti-fibrotic drug should not interfere with the repair process, but should selectively prevent abnormal collagen ac-
cumulation by interfering with a process that operates in pro-fibrotic cells but not in normal cells. Over the years,
such a process has been discovered: the conversion of the Lys of the telopeptides into Hyl by means of the enzyme
telopeptide lysyl hydroxylase (LH). This results in a change in cross-link pattern, and in a change of collagen degrad-
ability. In this review, we discuss the molecular basis of collagen biosynthesis and post-translational modifications
that eventually result in intermolecular cross-linking of collagen molecules within fibers. In particular, we emphasize
how LH-mediated cross-linking determines the degradability of the ECM, and what this means for the pathogenesis
and treatment of fibrotic diseases.

Lysyl hydroxylation of collagen
Fibrillar collagens consist of a triple helical domain, flanked by telopeptides at both the N- and C-terminal end of
the molecule (N-telopeptide and C-telopeptide, respectively). Hydroxylation of Lys occurs both in the triple helix
and the telopeptides by the enzyme LH [9]. Only the Lys in the helical sequence Gly-X-Lys is modified; a Lys in the
helical sequence Gly-Lys-Y is not hydroxylated. In the last two decades, it has become clear that separate enzymes
mediate lysyl hydroxylation of the triple helix and the telopeptides, which makes sense, as the primary sequence in
which the hydroxylated telopeptidyl Lys is embedded is entirely different [10]. Three LHs (LH1, lysyl hydroxylase
2 (LH2) and LH3) have been discovered, which are encoded by PLOD1, PLOD2 and PLOD3, respectively. The
abbreviation PLOD is derived from procollagen-lysine, 2-oxoglutarate 5-dioxygenase (which is the systematic name
of LH), while the 1, 2 and 3 indicates the sequence of discovery. LH1 and LH3 exclusively hydroxylate certain Lys
residues in the triple helix (helical LHs), where LH2 exclusively hydroxylates the Lys in the telopeptides (hence the
name telopeptide LH) [9,10]. In addition, LH3 displays hydroxylysyl galactosyltransferase and galactosylhydroxylysyl
glucosyltransferase activities, leading to the formation of glycosylated Hyl residues [9,10].

Collagen cross-linking by lysyl oxidase
Enzymatic collagen cross-linking by means of LOXs is a final step in the biosynthesis of collagen and essential for
the physical and mechanical properties of collagen fibrils [11,12]. The formation of these cross-links starts with the
oxidative deamination of the ε-amino group of specific Lys or Hyl residues within the C- and N-terminal telopeptides
by a family of five LOXs (LOX and LOX-like 1-4 (LOXL1-4)), leading to the formation of the aldehydes allysine (=
α-aminoadipic acid-δ-semialdehyde = Lysald) and hydroxyallysine ( = hydroxy-α-aminoadipic acid-δ-semialdehyde
= Hylald). The reactive aldehyde condensates either with another aldehyde in the same molecule or with Lys, Hyl or
histidine (His) residues in neighboring collagen molecules, in order to form intra- and/or intermolecular cross-links.
Collagen cross-links can be divided into two classes: (i) cross-links formed via the Lysald pathway (i.e. derived from a
Lys in the telopeptide) and (ii) cross-links formed via the Hylald pathway (i.e. derived from a Hyl in the telopeptide)
[13,14]. The relative abundance of the two cross-link pathways varies from tissue to tissue, depending on the hydrox-
ylation state of the telopeptide Lys. For example, collagen deposited in skin and cornea is mainly cross-linked via the
Lysald pathway with almost no Hylald cross-links present in these tissues [15,16]. In bone, cartilage, tendon, dentin
and ligaments, collagen cross-links mainly derive from the Hylald pathway [15]. The Lysald route gives rise to divalent
and tetravalent cross-links (recently, it has been proposed that the reported trivalent cross-link histidinohydroxylysi-
nonorleucine is a laboratory artifact [17]), whereas the Hylald route gives rise to divalent and trivalent cross-links
[13,14] (Figure 1).

The reactive telopeptide Hylald can pair with a helical Lys or a helical Hyl to form divalent cross-links. These di-
valent cross-links further mature either into the respective lysylpyridinoline (LP) or hydroxylysylpyridinoline (HP)
cross-links or into the respective deoxypyrrolic (d-PRL) and pyrrolic (PRL) cross-links. The trivalent pyridinoline
and pyrrolic cross-links differ with respect to the hydroxylation state of the second telopeptide Lys residue. HP and
LP cross-links are derived from two telopeptide Hylald residues and a helical Hyl or Lys residue, respectively, whereas
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Figure 1. Schematic representation of cross-links derived from the allysine (Lysald) and hydroxyallysine (Hylald) pathway

Amino acids from the telopeptide and the triple helix are marked in green and blue, respectively, enzymes are marked in red,

whereas the cross-links are shown in white boxes. The Lys in the telopeptides can be converted into Hyl by lysyl hydroxylase 2

(LH2). The Lys and Hyl in the telopeptides can be converted into the aldehydes Lysald and Hylald by lysyl oxidase (LOX) and/or

LOX-like 1-4 (LOXL). The next step for Lysald is the reaction with another Lysald from the telopeptides to form an aldol condensation

product (ACP), or to react with a Lys or Hyl from the triple helix. The reaction with a Lys or Hyl results in the divalent cross-link

dehydro-lysinonorleucine (deH-LNL) and dehydro-hydroxylysinonorleucine (deH-HLNL), respectively, whereas the ACP reacts with

a His and finally with a Hyl in the triple helix, leading to the tetravalent cross-link dehydro-histidinohydroxy-merodesmosine (de-

H-HHMD). The first step for the Hylald is the reaction with a Lys or a Hyl in the triple helix. The resulting divalent iminium cross-links

deH-HLNL and dehydro-dihydroxylysinonorleucine (deH-DHLNL) undergo a spontaneous Amadori rearrangement, leading to the

more stable divalent keto-imines lysino-5-keto-norleucine (LKNL) and hydroxylysino-5-keto-norleucine (HLKNL), respectively. The

keto-amines finally react with either a Lysald or a Hylald from the telopeptides, resulting in the trivalent pyrollic cross-links (d-PRL =
deoxypyrrole; PRL = pyrrole) or trivalent pyridinoline cross-links (HP, hydroxylysylpyridinoline; LP, lysylpyridinoline).

pyrrolic cross-links are derived from a telopeptide Hylald, a telopeptide Lysald, and a helical Lys or Hyl residue (de-
oxypyrrole or pyrrole, respectively) [13,14].

Fibrotic tissues show increase Hylald cross-link levels
In wound healing of the skin, such as in hypertrophic scarring, large amounts of Hylald cross-links are present [18–23].
A predominance of such cross-links is also found in collagen that is produced in the damaged corneal stroma; the
resulting scar shows markedly increased levels of Hylald derived cross-links at the expense of Lysald cross-links [24].
The pioneering studies on elevated Hylald derived cross-links in abnormal scarring were later confirmed [25–29], fol-
lowed by reports on increased Hylald derived cross-links in other fibrotic disorders, such as various lung diseases (res-
piratory distress syndrome, idiopathic pulmonary fibrosis, hypersensitivity pneumonitis, respiratory bronchiolitis,
silicosis and bleomycin-induced lung fibrosis) [30–39], chronic adriamycin nephropathy (an experimental model re-
sulting in non-immunologic glomerulosclerosis and interstitial fibrosis) [40], infarct scar of the myocardium [41,42],
joint contractures [43], vessel luminal narrowing [44]; lipodermatosclerosis [45,46], annulo-aortic ectasia [47], fi-
brotic lesions of Dupuytren’s disease [48], skin of patients with lipoid proteinosis [49], diabetes [50,51], skin fibrosis
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due to chromoblastomycosis infection [52,53], skeletal muscle abnormalities [54–56], systemic sclerosis [57], uterine
fibroids [58], vein graft disease [59] and various liver diseases such as in alveolar echinococcosis (a dense and irre-
versible fibrosis), hepatocellular carcinoma, alcoholic cirrhosis or cirrhotic livers induced by CCl4, viral hepatitis or
by Schistosoma mansoni [60–69].

The presence or absence of LH2 regulates the abundance of Hylald cross-links. In recent years, it has been suggested
that the relative (and absolute) amount of Hylald cross-links are adequate biomarkers for the accumulation of patho-
logical collagen in lung and liver fibrosis [30,32–35,37–39,61–63]. As the same is observed in other fibrotic tissues
including skin and kidney, it was actually stated that “It is possible that organ fibrosis is a unique process ultimately
associated with a change in cross-linking whereby the proportion of the allysine cross-links decreases in favor of the
hydroxyallysine-derived crosslinks” [45]. Thus, Hylald cross-links are implicated in the pathogenesis of fibrosis.

Telopeptide LH exhibits two splice variants
The abundance of data on elevated Hylald cross-link levels in fibrotic tissues strongly support an up-regulation of
telopeptidyl lysyl hydroxylation in fibrotic lesions, which is indeed the case. PLOD2 encodes two different splice
variants, LH2a and LH2b (LH2b contains an extra insert, encoded by exon 13A). LH2b is expressed in a wide variety
of tissues and organs, including bone, cartilage and skin, whereas LH2a is only present in the frontal lobe, spleen,
kidney, liver and placenta [70–72]. Overexpression of LH2a and LH2b revealed that only LH2b hydroxylates the
telopeptides, as overexpression of LH2a does not induce pyridinoline cross-link formation in vitro [72], a conclusion
that is confirmed by a Bruck syndrome type 2 patient that only expresses LH2a [73]. The inability of LH2a to induce
pyridinoline cross-links together with increased levels of LH2b in fibrotic tissues suggests that LH2b is the likely
culprit in pathogenic collagen cross-linking [74]. Meanwhile, the exact functions of LH2a remain unclear.

TG-mediated cross-links in fibrosis
The other enzymatically mediated cross-link in collagen is catalyzed by TGs. TGs comprise a family of isozymes that
catalyze the formation of covalent bonds between glutamine and Lys in a variety of proteins [75,76]. Increasing the
level of γ-glutamyl-ε-lysine cross-links by adding TG to collagen in vitro, makes collagen more resistant toward pro-
teinases [77–79]. It is widely believed that TG promotes fibrosis by increasing the number of TG cross-links in colla-
gen [79–84]. However, not a single report quantitatively measured the level of TG cross-links per collagen molecule.
Apart from that, TG is far from being specific for collagen, as many other substrates have been identified [85,86].
The only data supporting the hypothesis is the increased staining in fibrotic tissue with an antibody toward TG or
TG-mediated cross-links. Paradoxically, this increase always correlates with increased collagen levels. Hence, it is very
well possible that the number of TG cross-links in normal and fibrotic collagen molecules is the same. That would be
in sharp contrast with Hylald cross-links: there is an abundance of data demonstrating elevated Hylald cross-links in
collagen molecules from fibrotic tissues. Although inhibition of TG can result in an attenuation of fibrosis [76–84],
this cannot automatically be attributed to a higher degradability of collagen, as TG is involved in many other intra-
and extracellular processes, often in a transamidase-independent manner [75,76]. In fact, studies in TG2 knockout
mice showed that TG2 deficiency had no measurable effect on the stability of the fibrotic ECM (e.g. solubility of
collagen toward pepsin) or in reversibility of hepatic fibrosis in vivo in two hepatotoxin-induced models [87]. Thus,
in vivo collagen degradability and irreversibility does not seem to be regulated by TG2. Therefore, the concept that
TG cross-links are elevated in fibrotic collagen molecules probably needs to be revisited [87,88]. In contrast, inhibi-
tion of LOX-mediated collagen cross-linking results in a higher solubility of collagen toward pepsin, and enhances
spontaneous fibrosis reversal [89,90].

Collagen containing Lysald or Hylald cross-links show different
degradation profiles
An important aspect of fibrosis is the problem of irreversibility of collagen deposition. Remarkably, the effects of the
type of cross-links on the susceptibility of collagen to proteolytic enzymes has hardly been investigated, despite the
fact that the presence of Hylald cross-links is indicative for irreversible collagen deposition.

It is generally accepted that an increase in LOX derived collagen cross-links results in a higher resistance toward
collagenases [91]. An increase of ∼0.1 LOX-mediated cross-link per collagen molecule already results in a 2-3-fold
resistance to human collagenase compared with uncross-linked collagen [92]. In fibrosis, we see an increase in the
number of Hylald and Lysald cross-links, due to higher LOX activity. In addition, lysyl hydroxylation levels of the
telopeptides are increased, which automatically means that the ratio of Hylald and Lysald cross-links is changed, in
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Figure 2. Position of the cross-links derived from the allysine and hydroxyallysine pathway in collagen type I

(A) Collagen molecules are packed in a quarter-staggered array in fibrils. Shown are the positions of the cross-links between the

N- and C-terminal telopeptides with the triple helix of collagen. The cleavage site of MMP1 (between residue 775 and 776) is

opposite the position of the cross-links of an adjacent staggered molecule; the presence of Hylald crosslinks inhibits cleavage of

the peptide bond between 775 and 776 by MMP1. The residues involved in cross-linking is as follows: the α1(9N) residue from the

N-telopeptide (or the 5N residue from the α2 chain) reacts with either the α1(930) or the α2(933) residue from the triple helix. The

α1(I) residue 16C from the C-telopeptide reacts with the α1(87) or α2(87) residue from the triple helix; there is no Lys or Hyl present

in the C-telopeptide of the α2 chain. (B) Structure of the deH-HLNL and the HP cross-link; the position shown is the N-telopeptide.

Note that deH-HLNL can be formed between α1(telo) and α1(helix) (shown in the figure), but also between the α1(telo) and α2(helix),

or between α2(telo) and α1(helix) or α2(helix). (C) Structure of the hydroxylysylpyridinole (HP) cross-link; the position shown is the

N-telopeptide. As is the case with figure B, several combinations of α1 and α2 are possible.

favor of Hylald. Thus, in fibrosis, we not only see an increase in cross-links, but also a shift in the type of cross-link. A
variety of profibrotic cytokines up-regulates both collagen and the three LHs. Interestingly, LH2 levels are increased
far more than collagen itself, thus changing the ratio between LH2 and collagen [93,94]. This may explain the increase
of Hylald cross-links at the expense of Lysald cross-links.

Collagen cross-linked through Hylald is much more difficult to degrade by matrix metalloproteinases (MMPs) than
collagen cross-linked by Lysald [95,96]. The same goes for degradation by non-MMPs, such as pepsin [96]. Indeed,
collagen in Bruck syndrome bone lacking Hylald cross-links is easily released by pepsin, and these patients present
highly osteoporotic bone due to high degradation rates in vivo [97]. In long bones with high levels of Hylald cross-links,
osteoclasts use cathepsin K to degrade collagen, whereas in the calvaria, with low Hylald cross-links, osteoclasts use
MMPs to degrade collagen [96]. The most probable reason for this observation is that cathepsin K cleaves Hylald

cross-linked collagen more efficiently than MMPs do, as cathepsin K cleaves collagen at multiple sites [98]. In contrast,
MMP1 cleaves collagen only between amino acids 775 and 776, which is sterically in the vicinity of the cross-link sites
when collagen molecules are packed into fibrils (Figure 2). In cartilage, collagen type II shows the highest Hylald level
seen of all fibrillar collagens, and this collagen is hardly degraded (it has an estimated half-life of >100 years) [99]. The
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pathological degradation of collagen type II in osteoarthritis is mainly caused by MMP13 [100,101], which is, as is the
case with cathepsin K, able to cleave collagen at more than one position [102]. Finally, in HIF prolyl hydroxylase-2
(PHD2)-deficient mice that have a higher Hylald level of collagen type II compared with wild-type mice, the collagen
was less susceptible toward MMPs [103]. Taken together, these findings indicate that collagen containing increased
Hylald cross-links is more difficult to degrade.

Reversibility of fibrosis is hampered by Hylald cross-links
The resistance of Hylald cross-linked collagen toward degradation by proteinases is an important feature of irre-
versible collagen accumulation in fibrosis. In fact, Hylald cross-link levels might be an important criterion in as-
sessing the irreversibility of fibrosis. The validity of this hypothesis is strengthened by cross-link patterns seen in
self-limiting and progressive forms of fibrosis. Collagen produced in response to an injury of skin is initially stabilized
by dehydro-dihydroxylysinonorleucine [18–22], a cross-link derived from Hylald. In the early stages of wound heal-
ing, the collagen of both forms of fibrosis possess dehydro-dihydroxylysinonorleucine as the major cross-link type,
but after a few months there is an approximately equal proportion of Lysald cross-links. Subsequently, self-limiting and
progressive fibrosis follow a different course. In hypertrophic scars, a progressive form of skin fibrosis, the 1:1 ratio of
the two cross-links is retained. In contrast, the cross-link pattern in the self-limiting form of fibrosis gradually reverts
to normal, i.e. there is a virtual disappearance of Hylald cross-links and replacement by Lysald cross-links [20,22,23].

In another set-up, the authors found that osteoarthritis-related fibrosis induced by connective tissue growth factor
(CTGF) did not result in increased Hylald cross-links, and was transient in nature [104,105]. A bleomycin-induced
skin fibrosis model was also transient in nature [95,106], and also this model did not show an increase in Hylald

cross-links [95]. In contrast, transforming growth factor (TGF-β1) induces persistent osteoarthritis-related fibrosis,
which coincides with increased Hylald cross-link levels [104,105]. This is in agreement with the observation that the
tissue level of pyridinoline correlates to the severity and reversibility of the fibrotic process, where the highest level is
found in irreversible fibrosis [53,61–63].

Inhibition of LH 2 to ameliorate fibrosis
The reduced proteolytic turnover of Hylald cross-linked collagen explains, at least in part, the irreversibility of collagen
deposition. This resistance toward proteolytic enzymes is most probably caused by a changed packing of collagen
molecules within the fibrils. Indeed, the type of cross-links dictate the mode of packing of collagen molecules within
the fibrils [107–110]. Altogether, the above mentioned data indicate that the type of cross-links provide a mechanism
for the regulation of the rate of collagen catabolism: collagen with Hylald cross-links are less susceptible to proteolytic
degradation than collagen cross-linked by Lysald residues. Thus, inhibition of LH2 (to enhance the formation of Lysald

cross-links at the expense of Hylald cross-links) is an attractive strategy to attenuate fibrosis. Since the up-regulation of
LH2 is seen in all organs, a drug that specifically inhibits LH2 activity can be used in a wide range of fibrotic disorders.
Furthermore, since LH2 catalyzes only a single reaction downstream in the fibrogenic cascade (namely the formation
of unwanted cross-links in collagen of the fibrotic lesions), little (if any) side-effects are expected, as the deposited
collagen in the wound area is expected to be normally modified, and thus have the properties (e.g. with respect to
tensile strength) required for a normal function of the repaired tissue. In addition, the collagens that normally contain
Hylald cross-links, such as in tendons, ligaments, bone and cartilage, show a half-life of several years to several decades
[111–113]. It is, therefore, unlikely that treatments that even span several months will significantly affect such tissues.

The improved comprehension of the pathogenesis of fibrogenesis in relation to Hylald cross-linking opens the way
to develop novel therapies. Unfortunately, no specific inhibitors for LH2 currently exist. In order to be active, LH2
needs to form homodimers. Remarkably, mutations in the gene FKBP10, encoding the immunophilin FKBP65, gives
rise to Bruck syndrome type 1, which shows the same biochemical defect as Bruck syndrome type 2 (in which LH2
is mutated), namely a lack of Hylald cross-links in bone [114]. Recently, we found that the mutated FKBP65 prevents
the formation of LH2 homodimers [115]. Thus, inhibiting FKBP65 activity is a tool to inhibit LH2 activity, albeit in-
directly. Interestingly, inhibition of FKBP65 results in less fibrosis [116,117]. The availability of a 3D model of human
LH2 [118] based on the crystal structure of human LH3 [119], might accelerate rational drug design. Equally impor-
tant, the recent development of a high-throughput assay to measure LH activity enabled a screen of 65000 compounds,
identifying ∼30 possible LH2 inhibitors [120]. Thus, steps are currently taken to develop specific anti-fibrotic agents
that can slow down or arrest fibrogenesis, or even reverse its progression, by giving matrix-degrading enzymes the
opportunity to break down the scars. Interestingly, it has recently been shown that fibrosis also plays an important
role in regulating the hallmark features of cancer [121]. Thus, inhibiting the formation of Hylald cross-links may also
have potential therapeutic value in the field of cancer biology.
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Summary
• A common denominator of fibrotic collagen is an increased level of Hylald cross-links in favor of Lysald

cross-links, resulting in collagen that show a high resistance toward MMPs, and as a consequence
inhibiting resolution of fibrosis.

• LH2 is responsible for the conversion of Lys into Hyl in the telopeptides of collagen, leading to the
formation of Hylald cross-links by LOXs.

• Normalizing the cross-link pattern by selectively inhibiting LH2 (and thus Hylald cross-linking) alters
the balance of collagen degradation; it is expected that this results in reversible fibrosis.
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