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INTRODUCTION 

Bacterial contamination can lead to serious and costly problems for society 
in many different aspects. Reports on foodborne diseases point out 55,000 
hospitalizations related to transmission and proliferation of foodborne pathogens 
in the USA each year [1]. Water contamination in hydraulic systems can also lead 
to dangerous gastrointestinal illnesses [2]. Other disruptive aspects of bacterial 
contamination are biofilm related. After aggregation and attachment to a surface 
bacteria start growing into sessile communities called biofilms. These biofilms are 
interactive congregates of single or heterogeneous bacterial species embedded in 
extracellular polymeric substances (EPS). EPS contains polysaccharides, lipids, 
proteins and extracellular DNA. These communities are interactive in the sense 
that bacteria communicate with each other through a mechanism called quorum-
sensing (QS) [3–6].  

Different descriptions of the continuous biofilm dynamics are presented in 
literature [4,7,8] most of them comprehends 5 stages: 1) Bacterial reversible 
attachment; 2) Adhesion – irreversible attachment; 3) EPS secretion, QS mechanism 
starts, 3D shaping of the biofilm; 4) Mature biofilm with water channels and QS; 5) 
Detachment of biofilm segments or planktonic cells and spreading to other 
locations. Once a biofilm is mature and enclosed in an EPS matrix, it becomes less 
susceptible to host immune defense, physical stresses, antibiotics or other 
antimicrobial substances [3,4,6]. Aside from sheltering bacteria, biofilm spreads 
resistant bacteria and worsen chances of eradicating the infection [5,9]. 

Dental plaque is a biofilm formed in the oral cavity on soft and hard tissues. 
This kind of biofilm, in the presence of dietary carbohydrates, can cause tooth 
decay by caries cavitation with further pulp injure and in some cases tooth loss. 
When this biofilm occurs in the subgingival region it can trigger gingivitis, 
periodontal disease and bone loss, which if not treated results in tooth loss. World 
Health Organization stated that dental caries and periodontal diseases are public 
health problems affecting developing and developed countries [3,6,10,11].  

In oral biofilms initial adhesion occurs on the acquired pellicle. Pellicle 
adsorbed from saliva consists of mucins, glycoproteins, agglutinins, α-amylase, 
statherin and some other components. Initial colonizers are predominantly Gram-
positive Streptococci and Actinomyces. Biofilm mass enlarges via bacterial growth 
and other species will adhere to the initial colonizers. Usually Gram-negative 
Veillonella and Fusobacterium [10,11] are bridging different species to each other in  

11 

 

dental biofilms. For orthodontic patients, biofilm accumulation is a problem, which 
is exacerbated due to brushing and flossing difficulties caused by fixed appliances. 
Not only the biofilm formation increases but a change among bacterial species 
occurs when the biofilm matures with an increase of the acidogenic ones (e.g. 
Streptococcus mutans) [12]. Besides oral health deterioration, oral biofilms are 
associated to atherosclerosis, rheumatoid arthritis [10], diabetes, adverse 
pregnancy outcomes and infective endocarditis [10,13,14].  

Undoubtedly, bacteria organized into biofilms bring up expensive and 
alarming implications. From industrial point of view, machinery and pipelines can 
be corroded by biofilms byproducts, quality of food products and beverages 
endangered. From medical perspective biofilms can lead to prostheses losses, 
catheter-related blood stream infections, ventilator-associated pneumonia, dental 
and periodontal problems, urinary, pulmonary and cardiovascular infections 
leading to organs impairment, chronic sinusitis, tonsillitis or otitis, non-healing 
wounds and others [15] to which increased hospital stay, morbidity and mortality 
have been associated [8,16]. Together these bacterial infection issues cost billions of 
dollars every year [7,17,18].  

Biofilms can shield bacteria against antimicrobial substances as a result of 
the deficient penetration and spread throughout its depth. Thus, levels of antibiotic 
are constantly below the minimum inhibitory concentration and triggering 
resistance development and spread. New studies already recorded bacteria 
resistant to the latest line of antibiotics for which no other antibiotic line would be 
available [17,19]. In most cases when a mature biofilm is formed on devices or in a 
wound, the most efficient measure remains the surgical replacement of the implant 
or mechanical debridement. Such treatments are not always feasible without risks 
for patients and increased healthcare costs [4].  

Extensive and uncontrolled use of antibiotics has contributed to the 
emergence of multiple drug-resistant microorganisms. Available treatments for 
common infections and injuries are becoming ineffective which is evidenced by 
high rates of resistance registered for Staphylococcus aureus (MRSA), Escherichia coli 
and Klebsiella pneumonia. Infections that are not treatable with 3rd generation 
cephalosporins, rely only on carbapenems which is the last resource and resistant 
bacteria were already reported [17].  There is a constraint over the antibiotic 
demand once there are no new antibiotics entering the market on the same speed 
as resistance is being developed [20]. The urge for new counteracting strategies to 
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tackle bacterial infections is needed. The scientific community is in a collective 
endeavor either to improve mechanisms of action of available antibiotics or to 
develop new materials with inherent antimicrobial properties. To improve 
mechanisms of action of available antibiotics, actions against biofilm buildup are 
taken as e.g.: to interfere in the QS in order to prevent biofilm formation, degrade 
the EPS matrix, stimulate non-pathogenic bacteria as probiotics to compete with 
pathogenic bacteria, facilitate phagocytosis or targeting the bacterial membrane [5]. 
Actions not concerning microorganisms include: development of materials 
containing antimicrobials or chemically modified surfaces which will affect 
bacterial adhesion or bacterial growth [18,21]. 

Depending on the aimed clinical use polymers need to have certain 
physicochemical and mechanical characteristics. It is possible to incorporate into 
polymers mechanical reinforcement, shape memory, semi permeability, 
responsiveness to physical or chemical stimuli and antimicrobials. The most 
common polymers in use for biomedical application are displayed in Table 1 with 
their respective characteristics and applications. Due to the great variety of 
available polymers and also methods to insert antimicrobials or modify the 
surfaces of the polymers the final material can be tuned for a better performance 
for specific applications.  

When polymers with an antimicrobial are not used as bulk materials, they 
can be used as coatings. This is especially appealing if the targeted substrate is 
metallic or if the aimed modification is exclusively related to the surface with bulk 
material properties maintenance. In the dental and medical field polymeric 
coatings appear as an option to bulk materials with antimicrobial properties. 
Coatings used in dentistry and medicine are fluoride and chitosan varnishes, 
surface sealants, carbopol coatings for preventing erosion [22], drug delivery 
coatings and anti-fouling coatings for catheters, valves, stents among others 
[18,23]. 
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Mechanisms that focus on microorganisms’ behavior and characteristics as 
QS are specific and sometimes restricted to one specific strain or species. Materials 
grafted with antimicrobial compounds or modified surfaces have the advantage of 
expanding the antimicrobial effect to a broader spectrum of microorganisms 
[18,26]. Materials containing antimicrobials often refer to releasing systems also 
called leaching materials. Materials with a non-releasing modification on the 
surface are referred as anti-fouling or contact-active materials. These surfaces act 
via physical interference either by making the bacterial adhesion interactions 
weaker or by promoting bacterial membrane damage by contact, as for positively 
charged compounds.  

Quaternary ammonium compounds (QAC) are antimicrobials used since 
1930s as disinfectants [27] and their inclusion in oral care products date from the 
1970s [28]. Their antimicrobial feature is exploited in many products such as soaps, 
contact lens solutions, shampoos, cosmetics and antiseptics in general. QAC 
molecules are characterized by a nitrogen atom (N) with four bonds (N+) creating a 
positively charged molecule. Most common QAC molecules are: benzalkonium 
chloride, cetyltrimethylammonium bromide/chloride, cetylpyridinium chloride 
and quaternary ammonium methacrylates. There is extensive literature on the 
efficacy of these compounds against a wide variety of microorganisms including 
oral bacterial and fungal species (Table 2). The antimicrobial mechanism is based 
on electrostatic interactions with the negatively charged bacterial membrane 
causing its disruption and leakage of cytoplasmic material resulting in cell death 
[29,30]. 
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AIM OF THIS THESIS 

The aim of this thesis is to develop antimicrobial polymers containing 
quaternary ammonium compounds in dental composites or as coatings on metallic 
surfaces and investigate the killing efficiency against oral bacteria. 
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