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Abstract—In this paper, we present an outdoor monocular
camera localization system based on artificial markers and test
its performance in one of the test gardens of the TrimBot2020
project, in Wageningen. We use ArUco markers to construct a
map of the environment and to subsequently localize the camera
position within it. We combine the localization algorithm based on
ArUco with a Kalman filter to smooth the trajectory and improve
the localization stability with respect to fast movements of the
camera, and blurred or noisy images. We recorded two sequences,
with resolution 480p and 1080p respectively, in the TrimBot2020
garden. We compare the localization performance of ArUco with
a keypoint-based approach, namely ORB-SLAM2. We analyze
and discuss the strengths and problems of both marker- and
keypoint-based approaches on the considered sequences. The
performed comparison suggests that the two approaches might
be fused to jointly improve re-localization and reduce the drift
in pose estimation.

I. INTRODUCTION

Camera pose estimation is a common problem in many

applications requiring precise localization in the environ-

ment, such as augmented and virtual reality [1], [2], mobile

robotics [3]–[7] and autonomous driving [8], [9]. Obtaining the

camera pose from images requires finding the correspondences

between known points in the environment and their camera

projections. While some approaches detect and extract natural

features such as key points or textures [10], [11], fiducial mark-

ers are an attractive approach because they are easy to detect

and allow to achieve high speed and precision [12]–[16]. They,

however, require manual installation of artificial landmarks in

the environment. Lately, end-to-end pose learning algorithms

based on Convolutional Neural Networks (CNN) have also

been proposed [17], [18].

Using keypoint-based features requires no intervention in

the environment, but it has several limitations. First, a compu-

tationally intensive processing is required for methods based

on natural features in order to estimate the location. Second,

they suffer in texture-less areas (such as corridors) but also

in environments showing repetitive patterns (such as office-

like buildings) and in environments reach of texture, such as

gardens. In addition, it is well known that they tend to fail

in case of blurring due to fast camera movements. Therefore,

when precision, robustness and speed are a strict requirement,

the use of artificial landmarks placed in the environment is a

good choice.

Squared planar markers are a popular tool for fast, accurate

and robust camera localization. These types of marker are

composed of an external black border and an internal code

(most often binary) to uniquely identify them. Their main

advantage is that the corners of a single marker can be em-

ployed for camera pose estimation [12]. Despite its advantages,

large-scale mapping and localization from planar markers is a

problem scarcely studied in the literature. The main challenge

when dealing with squared planar markers is the ambiguity

problem [19], which states that, although in theory it should be

possible to accurately obtain the pose from the four corners of

one single planar square marker, in practice, due to noise in the

localization of the corners, two solutions appear, and in some

cases, it is impossible to discern the correct one. In [20], the

authors propose an off-line method to create a map of squared

planar markers able to deal with the ambiguity problem. To

build the map, it is only necessary to print markers with a

regular printer, place them in the desired environment so as to

cover the working area, and to take pictures. The only requisite

is that each picture has to contain at least two markers. This is

needed in order to estimate the pairwise spatial relationships

between them. Then, the method computes a map with the

pose of the markers by analyzing the images. The method

can employ an unlimited number of high-resolution images in

order to achieve very high accuracy since no time restrictions

are imposed. Afterward, camera localization can be done, in

the correct scale.

In this work, we apply a localization method based on

ArUco planar markers [12] in a new, outdoor environment,

within the scope of the TrimBot2020 project [21]. The goal

of the project is to prototype a gardening robot, that, among

other things, has to be able to navigate autonomously. Thus,

an accurate system for camera localization is required. Current

approaches are challenged and in many cases fail when dealing

with repetitive or texture-less patterns [22]. Although gardens

are highly textured environments, those textures are highly

repetitive (i.e. grass, pebble stones, fences, and similar), and

thus, difficult to extract meaningful interest features from.

Also, as outdoor environments, they are largely affected by

illumination variations due to changes of light and weather

conditions. In order to overcome this challenges, we placed

artificial markers in the garden, and performed localization

based on them.

We studied the performance of marker- and keypoint-based

approaches for camera localization on two sequences recorded

in the TrimBot2020 test garden. We analyzed their respective



strengths and weaknesses, in order to evaluate and discuss

those cases in which the joint use of keypoints and artificial

markers might contribute to increase of localization accuracy

and to improve re-localization and correct drift.

This paper is structured as follows. In Section II, we explain

in depth the applied method, as well as the building of the

marker map and the localization process. We provide details

on the experiments and evaluation procedure in Section III,

and present and discuss the obtained results in Section IV.

Finally, we draw conclusions in Section V.

II. METHODS

We employ a method for camera localization based on a

map of ArUco fiducial markers [12], [20], which we explain

in the following of the section.

A. ArUco

ArUco is an OpenSource library written in C++ for detect-

ing and identifying squared fiducial markers in images that

works at 500fps in images with a resolution of 640×480 pixels

using a single thread. The main steps for marker detection and

identification are depicted in Figure 1. Given an input image

I (Fig. 1a), the following steps are performed:

• Image segmentation (Fig. 1b). Since the designed markers

have an external black border surrounded by a white

space, the borders can be found by segmentation. In the

original detection approach, a local adaptive method is

employed: the mean intensity value m of each pixel is

computed using a window size wt. The pixel is set to

zero if its intensity is greater than m − c, where c is a

constant value. This method is robust and obtains good

results for a wide range of values of its parameters wt

and c.
• Contour extraction and filtering (Figures 1(c,d)). The

contour following algorithm of Suzuki and Abe [23]

is employed to obtain the set of contours from the

thresholded image. Since most of the contours extracted

correspond to irrelevant background elements, a filtering

step is required. First, contours too small are discarded.

Second, the remaining contours are approximated to its

most similar polygon using the Douglas and Peucker

algorithm [24]. Those that do not approximate well to

a four-corner convex polygon are discarded from further

processing.

• Marker code extraction (Figs. 1(e,f)). The next step

consists in analyzing the inner region of the remaining

contours to determine which of them are valid markers.

Perspective projection is first removed by computing the

homography matrix, and the resulting canonical image

(Fig. 1e) is thresholded using the Otsu’s method [25].

The binarized image (Fig. 1f) is divided into a regular

grid and each element is assigned a binary value accord-

ing to the majority of the pixels in the cell. For each

marker candidate, it is necessary to determine whether it

belongs to the set of valid markers or it is a background

element. Four possible identifiers are obtained for each

Fig. 1: Detection and identification pipeline of ArUco
library. (a) Original image. (b) Contour image thresholded

using an adaptive method. (c) Contours extracted. (d) Filtered

contours that approximate to four-corner polygons. (e) Canon-

ical image computed for one of the squared contours detected.

(f) Binarization after applying Otsu’s method.

candidate, corresponding to the four possible rotations of

the canonical image. If any of the identifiers belongs to

the set of valid markers, then it is accepted.

• Subpixel corner refinement. The last step consists in esti-

mating the location of the corners with subpixel accuracy.

To do so, the method employs a linear regression of the

marker contour pixels. In other words, it estimates the

lines of the marker sides employing all the contour pixels

and computes the intersections. This method, however,

is not reliable for uncalibrated cameras with small focal

lenses (such as fisheye cameras) since they usually exhibit

high distortion.

B. MarkerMap

As previously indicated, a recent work on mapping with

fiducial markers [20] allows extending the use of squared

markers to larger environments. The employd method is named

MarkerMap. While the general approach consists in using a

single marker, or at most, a small set of them for which their

relative pose is known beforehand (e.g., a set of markers in a

printed piece of paper), the method proposed in [20] allows

estimating the 3D relative pose of a set of markers freely

placed in the environment. The user is required to only take a

set of pictures of the markers installed in the environment to

map from several viewpoints.



MarkerMap works as an off-line process. First, all the im-

ages are analyzed in order to create an initial connection quiver

representing the pairwise poses between the observed markers.

Only images in which at least two markers are detected are

used for the construction of the quiver. Between each pair of

markers, we may have more than one possible estimations of

their relative pose (as many as images showing both markers).

Then, the first problem becomes to decide which one of them

is the valid relationship. One has to consider that estimation

of the marker poses is subject to the ambiguity problem [19].

Thus, a method able to disambiguate invalid detections is

employed by a consensus-based method that minimizes the

global reprojection error in the images involved. As a result

of the first phase, a refined graph is obtained representing

the relative pose between the markers. However, this graph

is yet subject to imprecision. So, a pose graph optimization

method is run in order to ensure that all cycles in the graph

are coherent. The resulting graph can be employed to establish

an initial estimation of the relative pose of the markers that is

further refined using a sparse bundle adjustment approach by

minimizing the total reprojection errors.

C. Localization

Localization is treated as a non-linear optimization process

minimizing the reprojection error of the observed markers in

the given frame f t, using the previous pose γt−1 as starting

point.

Let M be the set of available markers, and let us assume

that all markers have the same size s. The four marker corners

can be expressed w.r.t. one of them as:

c1=( 0, 0, 0 ),

c2=( 0, s, 0 ),

c3=( s, s, 0 ),

c4=( s, 0, 0 ).

(1)

We shall denote by

ωt
m = {ut

m,l | u ∈ R
2, l = 1 . . . 4} (2)

the pixel locations in which the four corners of marker m
(Eq. 1) are observed in frame f t.

Then, the localization problem can be enunciated as obtain-

ing the pose γt that makes the reprojection error of the marker

corners minimal. We shall define

etm(γ) =

4∑

l=1

[
Ψ(γ, cl)− ut

m,l

]2
, (3)

as the reprojection error of marker m given the pose γ, where

Ψ is the function that projects a point cl on the camera image.

Then the optimal pose γt is obtained as:

γt = argmin
γ

∑

m∈M(t)

etm(γ · γm), (4)

where M(t) represents the set of markers visible in f t, and

γm the pose of marker m. Finally, the Levenberg-Marquardt’s

(LM) algorithm [26] is used for the minimization of Eq. 4

using γt−1 as initial solution.

Kalman filter The localization algorithm based on fiducial

markers is subject to errors caused by the marker pose ambi-

guity problem or the difficult accurate detection of markers in

blurred images (i.e. due to fast camera movements). Hence,

the traced camera trajectory can be noisy and the localization

not precise.

In order to smooth the computed camera trajectory and im-

prove the robustness of camera localization to noisy detection

over time, we employ a Kalman filter that takes as input the

camera poses estimated by ArUco. The Kalman filters uses a

series of noisy measurements over time and produces estimates

of unknown variables (i.e. the state of the system) that are more

precise than the estimates based on a single measurement. We

use a Kalman filter to reduce the eventual pose estimation error

on the basis of the pose estimated in the previous frames.

III. EXPERIMENTS

A. Test garden

We carried out experiments in the test garden of the

TrimBot2020 project [21] in the campus of Wageningen

University and Research. In Fig. 2, we show some views of

the test environemnt. The garden is of size 18 × 20 meters,

approximately, with a double fence to ensure safety when a

bush cutting robotic arm is operational. The garden contains

different objects, such as boxwoods, rose bushes, trees, and

different terrains, e.g. grass, pebble stone and woodchips.

Some of the topiary bushes are placed on top of a slope

of 10◦. The garden is constantly subjected to modifications

due to plant growing, seasonal changes and varying weather

conditions, making it difficult to find stable landmarks for

localization.

B. Environment mapping

We installed a set of ArUco markers in the test environment,

as shown in Fig. 3, and mapped their position in the garden by

using MarkerMap. The resulting map of markers is metrically

consistent with the environment and allows for camera pose

(a) (b)

(c) (d)

Fig. 2: Test garden of the TrimBot2020 project at the Wa-

geningen University and Research campus (The Netherlands).



(a) (b) (c) (d)

Fig. 3: Pictures of the garden with installed ArUco markers.

Fig. 4: Marker map reconstructed in the Wageningen garden,

which we use as reference for localization of the camera

pose. We used 29 markers to map a garden environment of

approximately 18× 20 meters.

estimation and localization at real-scale. In Fig. 4, we show the

marker map reconstructed in the Wageningen garden, which

includes 29 markers and that we use for the camera localiza-

tion experiments. In order to construct the map of markers, we

took 126 pictures in the garden with a smartphone. Each image

contains at least two markers in order to take into account their

relative positions in the MarkerMap reconstruction algorithm.

The locations from which the pictures were taken are indicated

with the green elements in Fig. 4. It is possible to perform the

mapping using only a smartphone, whose camera is calibrated

and that efficiently runs the reconstruction algorithm on board.

C. Evaluation

We evaluate the performance of the localization in terms

of Absolute Trajectory Error (ATE) [27], and the translational

(T) and rotational (R) errors [8]. The ATE is a measure of

the trajectory estimate error with respect to a ground truth

trajectory. The computation of the ATE first aligns the two

trajectories and then evaluates directly the pose differences.

The translational and rotational errors are a measure of the

percentage of pose difference at one meter steps.

We evaluate the performance of the localization algorithm

based on ArUco markers on two sequences recorded in the

Wageningen garden. The sequences have resolutions 480p

(garden-seq1) and 1080p (garden-seq2), respectively. For each

sequence, we performed two rounds of evaluation using the

camera trajectory computed by ORB-SLAM2 [28] and by

ArUco extended with a Kalman filter as the baseline trajectory,

respectively.

Since the ground truth is not available for the recorded

sequences, in this paper we perform a qualitative evaluation

of the methods by setting, in turn, one of them as baseline

and evaluating the others against it. This study serves as car-

rying out a preliminary analysis of performance and comple-

mentarity of marker- and keypoint-based camera localization

approaches in garden environments.

IV. RESULTS AND DISCUSSION

In Table I and Table II, we report the performance mea-

surements that we recorded on the sequences garden-seq1 and

garden-seq2, respectively.

The use of a Kalman filter contributes to smoothing the

trajectory estimated by the frame-wise localization algorithm

based on ArUco markers. This results in a reduction of the lo-

calization errors, when the estimated trajectories are compared

to the trajectory of ORB-SLAM2 taken as the baseline. The

absolute trajectory error (ATE) is indeed reduced by 14.8% on

the garden-seq1 sequence and by 8.34% on the garden-seq2

video, by using a kalman filter with an averaging window of

50 frame size. In the computation of the results, we take into

account only those trajectory points that are present in both

baseline and test sequence. We report in the last column of

Table I and Table II the percentage of the baseline frames

matching the test sequence and that we take into account

during the computation of results.

We compute the localization accuracy also taking the trajec-

tory computed by ArUco with Kalman filter as the baseline.

This test serves as an evaluation of the complementarity

of keypoint- and marker-based localization approaches. On

one hand, in the garden-seq1, the higher ATE obtained by

ORB-SLAM2 w.r.t. the one of ArUco is mostly due to a

drift of the localization performed by ORB-SLAM2, which

is noticeable in the last part of the trajectory in Fig. 5a. On

the other hand, on garden-seq2 video, ORB-SLAM2 obtained



Results on garden-seq1 (640p)

ATE T R % frames

ORB-SLAM2 Baseline

ArUco 0.133915 2.88699 0.247464 92.3%

ArUco+KF 0.114052 2.72413 0.464687 87.89%

ArUco+KF Baseline

ArUco 0.147281 0.652293 0.356804 100%

ORB-SLAM2 0.468451 0.617638 0.296056 100%

TABLE I: Localization performance obtained on the garden-

seq1 video (of resolution 480p), using the trajectory of ORB-

SLAM2 (upper rows) and of ArUco with Kalman Filter (lower

rows) as the baseline.

Results on garden-seq2 (1080p)

ATE T R % frames

ORB-SLAM2 Baseline

ArUco 0.0460907 3.707031 0.277564 70.07%

ArUco+KF 0.0422443 3.29234 0.278 70.07%

ArUco+KF Baseline

ArUco 0.266403 1.3307 0.561751 100%

ORB-SLAM2 0.206727 0.645569 0.247646 73.36%

TABLE II: Localization performance obtained on the garden-

seq2 video (of resolution 1080p), using the trajectory of ORB-

SLAM2 (upper rows) and of ArUco with Kalman Filter (lower

rows) as the baseline.

higher localization accuracy than ArUco. As it can be seen in

Fig. 5b, the trajectory computed by the ArUco camera local-

ization system is noisy. This is mainly cause by fast camera

movements and large blurring effects, which make accurate

detection of markers difficult. Furthermore, the presence of

only one marker in some frames causes the ambiguity problem

that corrupts the correct localization output. However, the

smoothing performed by the Kalman filter produces a better

trajectory.

The ORB-SLAM2 algorithm necessitates of an initialization

step, usually performed on the initial part of the test sequence,

and subsequently constructs a map of the environment. This

process does not allow the computation of the trajectory for

the whole sequence and reduces the number of frames on

which the evaluation can be performed. ArUco does not need

an initialization algorithm, apart from the map construction

process which is performed off-line. However, ArUco is not

able to localize the camera and estimate its pose if markers are

not appropriately present in the acquired scene and detected.

In order to improve the localization using ArUco markers, a

multi-camera system can be employed, with a calibrated rig of

cameras looking at different directions. In such a case, if no

markers are visible in the scene acquired by one camera, it is

likely to detect markers in other camera views, so not loosing

(a)

(b)

Fig. 5: Trajectories computed by ArUco (yellow line), ArUco

with Kalman filter (red line) and ORB-SLAM2 (blue line) on

(a) garden-seq1 and (b) garden-seq2 videos.

track of the mobile agent position in the environment. The

main advantages of using the proposed method over ORB-

SLAM2 are two. First, our proposed approach is less com-

putationally demanding, requiring a single thread to achieve

real-time processing. Second, the position estimated by our

method is in the correct scale, while the positions estimated by

monocular ORB-SLAM2 are scale agnostic and not consistent

along the sequence. In consequence, ORB-SLAM2 can not

be used in a realistic scenario for tracking using monocular

cameras.

The experiments that we performed suggest that marker-

and a keypoint-based localization can be performed jointly,

in order to gain from the strengths of both approaches. The

marker based approach can be used for initialization and for

reducing the drift while estimating the camera pose with a

keypoint-based approach. Furthermore, re-localization is a dif-

ficult process to be performed with keypoint-based algorithms,

and which can be simplified by the presence of unique land-

marks. A combined keypoint-marker approach would require



to install a lower number of markers in strategic positions of

the environment (e.g. on parts with repetitive patterns) and

can, thus, improve localization and re-localization accuracy.

V. CONCLUSIONS

In this paper we presented an experimental study on camera

localization in an outdoor environment, namely the test garden

of the TrimBot2020 project, for applications of gardening

robotics. We carried out experiments with a localization

method based on fiducial ArUco markers (with and without a

Kalman filter) and with ORB-SLAM2, and analyzed the points

of strength and weakness of the two approaches. The use of

Kalman filter contributes to improvement of the stability of

the trajectory detected by ArUco and to partially overcome

the marker pose ambiguity problem. Marker- and keypoint-

based localization are complementary approaches and their

joint employment for localization would improve the problems

of map initialization, drift of the estimated position and re-

localization.
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