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General discussion and future 
perspectives
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Chapter 9

Where are we now?
Ten years ago the immunogenetics field was focused on discovering the 
loci that contribute to the risk of immune-mediated diseases (IMD). This 
search has been very successful, with almost fifty thousand loci so far 
implicated in multiple complex diseases1. For IMD alone, more than 300 loci 
have been described (Table 1) and replicated in various populations using 
different genotyping platforms. Intriguingly, the majority of associated loci 
contain mainly common variants (minor allele frequency (MAF) >10%) that 
each confer only small risk of developing the disease. For example, with 
the exception of the MHC region2, the odds ratios of these IMD-associated 
variants vary from 1.04 to 3.99 (mean = 1.29), explaining only a small 
proportion of the heritability. With this data in hand the question became 
how to explain this missing heritability. I started working on this thesis 
at this point and this is reflected in the second part of my thesis, which 
focuses primarily on identifying additional genetic factors that contribute 
to celiac disease (CeD) heritability. However, over the years of my PhD, 
and after the identification of many loci, the main aim of the field shifted 
toward understanding the effect of the associated loci and pinpointing 
the true causal variants and genes in order to gain insight into the disease 
biology. Thus, in the first part of my thesis I characterized loci associated 
to IMD and focussed on refining the genetic associations of IMD identified 
by genome-wide association studies (GWAS) and Immunochip. 

Although the Immunochip, a single nucleotide polymorphism (SNP) array, 
has proven useful for discovering new IMD loci and reducing the size of 
previously associated regions, pinpointing the true causal variants and 
genes has remained a challenge. As most associated regions contain 
multiple SNPs in high linkage disequilibrium (LD) and multiple genes, it 
was difficult to establish a causal link between IMD-associated SNPs and 
genes. Another challenge was understanding the associations coming 
from GWAS and Immunochip analysis where, as shown in chapter one, 
90% of the associated variants are in the non-coding part of the genome. 



General discussion and future perspectives

227

Table  1.  Immune-mediated  diseases  associated  loci  by  GWAS  and 
Immunochip

Disease Abbreviation GWAS All associated loci*

Atopic dermatitis AD 4 11

Ankylosing spondylitis AS 11 23

Autoimmune thyroid disease ATD
5 (Grave's 
disease)

8

Crohn's disease CD 70 122

Celiac disease CeD 26 41

Immunoglobulin A deficiency IgAD 1 NA

Juvenile idiopathic arthritis JIA 3 23

Multiple sclerosis MS 41 106

Primary biliary cirrhosis PBC 20 31

Psoriasis PS 16 35

Primary sclerosing cholangitis PSCh 6 31

Rheumatoid arthritis RA 28 81

Systemic Lupus erythematosus SLE 21 47

Systemic sclerosis SS 25 6

Type 1 diabetes T1D 38 57

Ulcerative colitis UC 45 102

*As reported by Immunobase

Therefore, to prioritize candidate causal genes and variants for IMD I used 
three different approaches: 

1. In chapter three I used an evolutionary approach that allowed us to 
pinpoint causal SNPs for IMD and gain insight into the pathogenesis 
of CeD. By intersecting SNPs associated to IMD from the 
Immunochip with a set of variants inherited from the Neanderthal 
genome, followed by haplotype analysis, we identified seven IMD 
loci containing variants inherited from Neanderthal that may affect 
the risk of developing eight different IMD. We then showed the 
regulatory potential of the Neanderthal variants within IMD loci. 
First, we evaluated the effect of the SNPs on nearby genes to define 
expression quantitative trait loci (eQTL) and pinpointed potential 
causal genes. Then, we observed that 80.5% of the Neanderthal-
variants altered transcription factor binding motifs and showed 
that the Neanderthal variants in the 14q24.1 locus associated 
to CeD alter the binding of Rad21, which promotes apoptosis an 
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important pathway in CeD pathogenesis. Interestingly, CeD was 
the IMD with the most loci containing Neanderthal variants (3 loci). 
Finally, we were able to perform fine-mapping of the loci because 
the regions covering the Neanderthal-haplotype are 10-50% 
smaller than the locus size. 

2. In chapter four we showed that 40% of IMD-SNPs affect the 
expression of nearby protein-coding genes. However, little was 
then known about long non-coding RNA genes (lncRNAs) and 
their role in IMD pathogenesis. Therefore, in chapter four, we 
evaluated the eQTL effect of IMD using RNA-sequencing (RNA-
seq) transcriptomic data from 629 blood samples. RNA-seq 
data provides quantification of the global transcriptome at high 
resolution, which allowed us to not only increase the power to 
identify eQTL, but also to look at transcripts with low expression 
such as lncRNAs. Using this approach, we prioritized 233 genes 
from 120 IMD-associated loci, including 53 lncRNAs, which 
highlights their importance for IMD. As little was known about 
the function of lncRNAs, we used different layers of genomic 
information and GeneNetwork3, a co-expression based network, 
to predict the function of IMD-associated lncRNAs. By doing so 
we were able to provide more insights into the functional role of 
lncRNAs in autoimmunity.  

3. In chapter eight, by performing haplotype analysis in four different 
populations, followed by functional annotation of the candidate 
variants, we pinpointed one candidate causal variant in the LPP 
(LIM Domain Containing Preferred Translocation Partner In Lipoma) 
locus, one of the strongest-associated CeD loci. After performing 
haplotype analysis, we could refine the loci to a 2.8kb region and 
seven candidate variants. We then annotated these variants 
using data from the 19 cell lines in the ENCODE project. One of 
the variants (rs4686484) overlapped with a regulatory region that 
contains DNase hypersensitive sites (DHSs) and B-cell-specific 
enhancers and interferes with transcription factor binding sites. 
This led us to suggest that this SNP might impact gene expression 
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in B cells. However, in contrast to the data from only 19 cells lines 
from the ENCODE project, we now have data from 129 different 
cell lines from the Roadmap epigenomics project in which our 
prioritized SNP overlaps enhancer histone marks in 39 cell lines, 
including key cell types in CeD pathogenesis such as B cells, T cells, 
duodenum mucosa and smooth muscle. We did not find any eQTL 
effect on LPP by SNP rs4686484 or any other SNP in the locus. 
Only one SNP in moderate LD with rs4686484 had an eQTL effect, 
which was on BCL6 (B Cell CLL/Lymphoma 6) in B cells. 

After looking at 16 different eQTL studies, we did not find any 
eQTL in LPP, but found that three SNPs in high LD (r2 = 0.8-
0.99) with rs4686484 were affecting the expression of BCL6 
in peripheral blood monocytes and one SNP also affected the 
expression of serine dehydratase like gene (SDSL) in the same cell 
line. Nevertheless, little is known about the function of this gene in 
the context of CeD. Hence, further studies using disease-specific 
cell types are needed to understand the function of the prioritized 
variant and the gene. 

Pleiotropy and the importance of looking at disease-specific cell types

In chapter one we observed a large overlap between the loci associated to 
different IMD. However, our understanding of this pleiotropy was limited 
because we only knew the associated region, making it unclear whether 
it was the same genes in these loci affecting different diseases. After our 
prioritization of candidate causal variants and genes in chapter four, we 
observed that, although the same physical regions were associated with 
different diseases, the associated SNPs and affected genes might not 
be the same. This is because the SNPs associated to different diseases 
may be located within the same physical region but are not in LD with 
each other, indicating a role for different haplotypes in different diseases. 
Moreover, the associated SNPs might also affect different genes, and this 
might be caused by cell-type-specificity, as shown in our DHSs analysis 
where SNPs from one disease overlapped DHSs in one cell type, while 
SNPs from other disease overlapped DHSs in a different cell type. This 
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also highlights the importance of investigating disease-specific cell types 
to gain a better understanding of the disease biology. In recent years 
many publicly available resources containing annotations from different 
cell types, such as gene expression data, epigenomic marks and DHSs, 
have become available, and we used these resources for the analysis 
presented in this thesis. However, this data is still limited to a few cell 
types and it has been shown that eQTL vary according to cell type and 
context, such as the state of the cell (activated or not) and different types 
of stimulations. Given the role of wide range of cell types and conditions 
in IMD, it is critical to have eQTL information from disease-relevant cell 
types and conditions.  

Secondly, for some diseases we observed that even though they share 
the same Top-SNP (the most-associated SNP within the LD block), the 
direction of the effect is opposite, which indicates that the same allele can 
be protective for one disease while conferring risk to the other. Therefore, 
the expression of the gene might be increased in one disease, while 
decreased in the other. We should therefore be careful when interpreting 
these eQTL results and future studies should always specify the risk allele. 
Another aspect that has not been explored thus far is the contribution of 
rare variants to the pleiotropy puzzle, as it has been shown that large effect 
size susceptibility loci tend to be phenotype-specific4. It was hypothesized 
that rare variants with stronger effect sizes might contribute to the 
genetics of IMD. However, only a limited number of rare variants have 
been identified thus far (as partially reviewed in chapter one). To identify 
these rare variants will require sequencing large numbers of cases and 
controls. As more sequencing data becomes available, it will be easier to 
identify these variants and evaluate their true contribution to the disease. 
This might allow us to gain more insight into the specific mechanisms for 
each disease beyond just immunity.  
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Family-based  sequencing  studies:  an  alternative  method  to  identify 
rare variants for complex diseases

Another way to identify rare variants that contribute to disease heritability 
is by sequencing families with affected individuals in multiple generations. 
This approach has been successful in many rare diseases, and it has been 
proposed as an economical way to identify rare variants that explain 
heritability of complex diseases5 as some complex diseases, such as CeD, 
present a dominant-like inheritance in multi-generational families. The 
proposed sequencing approach for multi-generational families involves 
initial sequencing of two affected members of the family based on the 
assumption that both will share the same causal variant. To reduce the 
number of overlapping candidate variants, the two individuals must be the 
most distantly related affected family members because more distantly 
related co-affected individuals will share fewer genetic variants reducing 
the list of candidate variants. This should be followed by annotation of 
the candidate variants and examination of their co-segregation with the 
disease in the rest of the family. 

Chapter six describes our efforts to identify rare variants contributing to 
CeD heritability following this approach. In the first stage of this project 
we performed whole-exome sequencing (WES) in two individuals from 
23 multi-generation families. After functional annotation and filtering of 
the variants based on MAF and the functional consequence of the variant 
in coding and regulatory regions, we ended up with a list of 100-120 
candidate variants. We then focused on the variants that were present 
in candidate loci such as case-control associated regions or family-based 
regions from linkage analysis or homozygosity mapping. Although the 
best approach would have been to perform exome-wide analysis, this 
was rather complicated because the resulting list of candidate variants 
was too large to validate all variants and perform Sanger’ sequencing 
to look at the co-segregation in all members of the family. Additionally, 
although causal variants should be present in all affected individuals in 
Mendelian diseases, for complex diseases we cannot exclude variants 
present in healthy controls because the expected causal variants are 
not fully penetrant. In appendix I6, I show the results from our analysis of 
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one of these multigenerational families. However, this study has a few 
limitations, the main being the low coverage of our WES data.

In the second stage of this project we performed a better WES in multiple 
individuals of two large multi-generational families. The large number of 
affected members in the family permitted us to perform linkage analysis, 
which reduced d the number of candidate causal variants. By sequencing 
affected and unaffected individuals (mainly spouses), we were able to look 
at co-segregation directly and reduce the list of potential causal variants 
to be followed-up with Sanger sequencing. Results from the analysis of 
one of the families (CD0605) are presented in the second part of chapter 
six. After filtering and looking at the co-segregation of the candidate 
variants, we identified two potential causal variants, one in the UNC13B 
gene and the second in SPAG8. Interestingly, we identified another family 
segregating IgA-deficiency, CeD and common variable immunodeficiency 
with missense variants in the same two genes, where the variant in 
SPAG8 affects the same amino acid that was affected in family CD0605. 
Unfortunately, we only have DNA from two members of the family, neither 
of whom had CeD, and it was not possible to re-contact the family to look 
at the co-segregation of the variants. At this point both genes remain 
possible causal genes, with further functional studies needed to evaluate 
their role in the disease. Nevertheless, this approach seems to be better 
at identifying rare but potentially causal variants for complex diseases.

As WES only covers the exome, and the majority of variants associated 
to complex diseases are in regulatory regions of the genome, in the third 
stage of the project we performed whole-genome sequencing (WGS) 
of 52 individuals who are members of 5 families. Three of the families 
segregate only CeD, and we aimed to identify rare variants that contribute 
to the disease. The other two families segregate multiple IMD. Due to the 
high pleiotropy in IMD, we hypothesized that we would find some shared 
loci. The major limitation at that time was that most of the non-coding 
part of the genome was not well annotated, thus we focused our analysis 
only on the protein-coding part. However, this data will be re-analyzed 
soon as new data for proper annotation has become available. 
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This project also demonstrated the importance of keeping in contact with 
the families and following-up the disease status of the rest of the family 
members. Many of the DNA samples from our cohort were collected few 
years before our study was initiated, and some of the patients that we 
had labeled as healthy might have since developed the disease. The 
project also highlighted the importance of collecting other types of patient 
material, such as biopsies in the case of CeD, because these samples 
can facilitate the functional studies needed to evaluate the role of the 
candidate variants. 

The closest gene is not always the causal gene

With the initial results from the GWAS, it was speculated that one gene 
was affected per locus and the closest gene to the Top-SNP was reported 
as a candidate gene. However, in chapter four, by integrating different 
layers of genomic information, we show that the closest gene is not 
the causal gene in more than 50% of the loci7. Moreover, we show that 
39% of SNPs affect multiple genes (multi-SNPs), and that these genes 
are expressed in different cell types, suggesting that multiple genes in a 
single locus could contribute to disease through different cell types. We 
also showed that our multi-SNPs were enriched for super-enhancers and 
CTCF binding sites that are important for chromatin looping. Additionally, 
we found that for some loci where the IMD-SNPs are affecting lncRNAs, 
the affected lncRNAs and the promoters of the protein-coding genes are 
organized in the same transcription topological unit mediated by RNA 
Polymerase II. This supports the idea that co-regulation of multiple genes 
in the locus may occur through looping interactions. We also show an 
example in which a SNP that affects a lncRNA also affects multiple genes 
in trans, suggesting that this might be another mechanism of action, 
adding another layer of complexity to the interpretation of results from 
the association analysis. 
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Power  limitations due  to sample size and complications  in collecting 
large cohorts for rare syndromes like TTP
The replication and discovery of new loci via Immunochip has been 
successful for many of the IMD studied, but the results depend strongly on 
the prevalence of the disease, the population under study, the cohort size, 
the relative risk conferred by each of the loci under analysis (the genetic 
architecture of the disease) and the proximity of the causal variant to the 
interrogated SNP markers on the Immunochip array8. In chapter five, we 
show how these factors might influence the power to discover new loci in 
seven diseases with different prevalence and genetic architecture. So far 
only three diseases out of the 15 studied in this thesis have more than 100 
associated loci: inflammatory bowel disease (IBD), multiple sclerosis (MS) 
and rheumatoid arthritis (RA). Not surprisingly, these are also the three 
diseases for which we have the largest sample sizes. So, the bigger the 
sample size, the stronger the study power to discover new and significant 
associations. 

Although attaining a larger sample size is not a limitation for common 
diseases, where many samples are available, it can be a major complication 
for rare immunological syndromes such as thrombotic thrombocytopenic 
purpura (TPP). TTP has a reported incidence between 1 and 13 cases 
per million people, depending on the geographic location9. In chapter 
two, we performed the first study applying high-throughput DNA-chip 
genotyping technology to identify genetic risk factors associated with 
acquired TTP in a cohort of 186 patients and 1,255 controls. Although, 
this is a large cohort compared to other genetic studies in TTP, the power 
to detect new associations was limited. While we identified five loci out 
of the human leukocyte antigen (HLA) region with suggestive P values 
ranging from 1.59 x10-5 to 7.6x10-5, none showed a strong association 
in the independent replication cohort of 88 Italian cases and 456 Italian 
controls. Nevertheless, we were able to confirm the association to the 
HLA region (rs6903608, OR = 2.57, P value = 1x10-19). Our results indicate 
that the HLA class II locus at band 6p21.3 is the main genetic risk factor 
for acquired TTP, at least among the variants included in the Immunochip. 
Additionally, the dense genotyping on the Immunochip allowed us to 
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perform imputation of the classic HLA class I and II genes. Our analysis 
showed that the Top-SNP in the region (rs6903608) and the HLA allele 
HLA-DQB1*05:03 explained most of the HLA association with acquired 
TTP in our discovery population. This finding suggested that rs6903608 
probably tags the effect of other HLA alleles, including the widely 
reported association to HLA-DRB1*11. The independent association 
with DQB1*05:03 was not observed in previous studies. Further studies 
with larger samples are needed for not only to confirm the association to 
DQB1*05:03 but also to identify novel non-HLA loci. 

Epistatic effects contribute to ‘missing’ heritability
Most of the models used to estimate disease heritability are pure 
genetic models that may underestimate the interactions among loci10, 
a phenomenon globally designated as epistasis. The model most often 
used to estimate the heritability explained by GWAS is the additive model, 
which simply adds up the effect of the associated variants. However, it 
can also be that the combination of two or more variants results in a 
stronger amplified effect that would be missed by the additive model. 
If this is the case, even if we identify all the genetic variants, we would 
not be able to explain all the heritability with the additive model, a gap 
referred to as the ‘phantom heritability’. Hence, epistatic components need 
to be integrated into heritability calculations through estimates of the 
contribution of non-genetic factors11. In IBD, for instance, the estimation of 
heritability explained by an additive model that includes all 71 loci known 
from GWAS is 21.5%. However, after considering genetic interactions 
within the heritability model, the phantom heritability is 62.8%, indicating 
that genetic interactions could account for 80% of the currently missing 
heritability in IBD10. 

To test whether some proportion of CeD heritability can be explained by 
epistatic components, we performed a pilot study to look for interactions 
between the Top-SNPs in each non-HLA loci using the CeD cohort 
described in chapter nine. We identify that the locus 2q12.1(rs990171) 
containing the IL18R1 and IL18RAP genes interacts with two loci: one 
at 11q23.1 (rs7104791, P = 4.386x10-05) containing POU2AF1 and 
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C11orf93 and the other at 16p13.13 (rs9673543, P = 5.526x10-05) 
containing CIITA, SOCS1, PRM1 and PRM2. Interestingly, rs990171, the 
Top-SNP in locus 2q12.1, has an eQTL effect on IL18RAP, TMEM182, 
IL18R1 and three ncRNAs (AC007278.2, AC007278.3 and MIR4772). 
These ncRNAs might be affecting the expression of the protein-coding 
genes in the other two loci, but further studies are needed to validate 
this. It is important to perform validation studies using multiple disease 
relevant cell lines, appropriate stimulations and different time points to 
be able capture these interactions either at RNA level and/or at protein 
level. For example, it has been shown that both IL18RAP and POU2AF1 
are strongly expressed only after 1 hour of Th2 cell differentiation, and 
their expression is switched off after 24–48 hours12. Our results from this 
pilot analysis suggest that epistatic effects are present within CeD loci 
and should be systematically investigated at genome-wide level to reveal 
more biologically plausible interactions. 

New loci change our understanding of disease biology 
The identification of new loci associated to CeD, as well as our efforts to 
pinpoint causal variants and genes, have led to the identification of novel 
pathways associated to different IMD.

In chapter four, we identified a strong eQTL-effect on the expression of 
ULK3, which encodes a kinase involved in autophagy. Interestingly, using 
CeD biopsies, we also found an enrichment of autophagy genes being 
differentially expressed compared to a random set of genes (P = 2.2x10-

16). Furthermore, the ULK3-affecting SNP is correlated with the expression 
levels of autophagy genes in CeD biopsies and that its genotype affects 
the levels of IL-6 in response to LPS. ULK3-dependent autophagy might be 
involved in regulation of inflammation, which emphasizes the importance 
of studying non-gluten antigens (e.g. host-microbiome interaction) in the 
context of CeD pathogenesis13. 

In chapter eight, the discovery of new loci followed by functional annotation 
of the SNPs and pathway enrichment analysis on the prioritized genes 
led to the identification of novel CeD pathways including: tumor necrosis 
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factor mediated signaling, response to tumor necrosis factor, regulation 
of I-κB kinase/NF-κB signaling, positive regulation of I-κB kinase/NF-κB 
signaling and apoptotic signaling. Although the NF-κB pathway is a well-
known player in CeD pathogenesis, we were the first to show that the 
dysregulation of this pathway can be one of the causes of CeD rather 
than just a consequence of the disease. 

In chapter three, our evolutionary approach suggested that apoptosis 
plays a role in CeD, as the many of the Neanderthal-inherited variants 
overlapped Rad21, which promotes apoptosis. An increased number of 
apoptotic intestinal epithelial cells in the mucosa of CeD patients has 
been reported 14–16, but apoptosis had not been implicated by genetics 
before. However, apoptosis was another novel pathway identified after 
discovery of new loci in chapter eight, confirming its causal role in CeD 
pathogenesis.  

The discovery of new disease-associated pathways can also change 
our understanding of disease biology. In CeD, for example, it was initially 
thought that the immune response was mainly adaptive. However, the 
Immunochip analysis identified an association to Interleukin 1 Receptor 
Associated Kinase 1 (IRAK1). IRAK1 plays an important role in not only 
initiating but also regulating innate immune response against pathogens, 
which suggests that innate immunity also plays a role in CeD. Do other 
innate immune genes or pathways contribute to CeD? To answer this 
question, we still need to perform large-scale GWAS as the Immunochip 
covered less than 4% of the genome. 

Discovery of new loci allows the identification of new drug targets
The identification of new loci can also help us identify new drug targets. For 
instance, a recent trans-ethnic meta-analysis of RA identified 42 new loci 
and a follow up functional genomics approach led to the identification of 
98 candidate causal genes. Interestingly, 27 of these 98 genes overlapped 
drug-target genes for approved RA drugs17, demonstrating that GWAS 
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findings can identify drug-targets. Our own work in chapter eight shows 
that identifying three novel loci associated to CeD and prioritizing 212 
candidate causal genes using a functional genomics approach led to the 
identification of nineteen genes that overlap known drug-targets. While 
the repositioning of such drugs to CeD may need further investigation, our 
results can help prioritize drugs for further studies.

Perspectives

Exploration of  the entire genome might add to our understanding of 
pleiotropy and discover non-immune pathways
The majority of recent analyses that have identified new loci associated to 
IMD, which included the largest sample sizes, have been performed using 
the Immunochip. The Immunochip contains 196,524 SNPs across 186 
GWAS loci, which still leaves most of the genome unexplored. Although 
we have already seen a high level of pleiotropy for IMD in the results of 
GWAS studies (34% of 199 loci were shared by at least two diseases in 
our analysis from chapter one2), it is necessary to perform more genome-
wide analysis to correctly estimate the pleiotropy of IMD. It has also been 
suggested that the pathway enrichment results coming from the analysis 
of loci discovered by the Immunochip might be biased to immune-related 
pathways because the loci were partially selected for regions harboring 
these genes. Thus, as shown in chapter one of this thesis, further genome-
wide analysis will reveal more disease specific pathways. 

Imputation can help capture most genomic variation and the importance 
of population-specific reference panels

The number of SNPs present on genotyping chips has increased over the 
years, however is still impossible to capture most of the variation in the 
genome using this technology. Although WGS does allow us to capture 
most of the genome variation, it remains expensive to sequence hundreds 
of thousands of samples. Nevertheless, the imputation of genotypes using 
reference panels has greatly facilitated the inference of the genotypes 
of the markers in high LD with the genotyped SNPs. The imputation of 
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genotypes using reference panels not only helps increase the genome 
coverage, it also increases the power to discover new associations and 
allows better fine-mapping of the associated regions.  

It is important to mention that only SNPs present in the reference panel 
can be imputed, thus it is crucial to have appropriate reference panels. In 
recent years the number of reference samples has increased, resulting 
in imputations with high accuracy. For example, the Haplotype reference 
consortium contains a set of 39,235,157 SNPs from 64,976 human 
haplotypes and allows imputation of variants with 0.1% MAF18. In the 
coming years, more reference panels will become available as the price 
of sequencing decreases. The UK biobank, for instance, just finished 
sequencing 100,000 whole genomes from 85,000 individuals and plans to 
expand this project to sequence 5 million genomes in the next five years. 
Furthermore, in 2018 thirteen European countries have come together to 
share one million genomes for research purposes by 2022. 

The technical methods used to perform imputation have also improved 
considerably. This has made it feasible to impute large cohorts with large 
reference panels, which will allow us to re-analyze samples that have been 
already genotyped using GWAS chips or Immunochip. Moreover, SNP-
array-based GWAS data and WGS data on large sample sizes improves 
the power to perform statistical fine-mapping19. In a recent study in IBD, 
for example, imputation of Immunochip genotypes from 33,595 individuals 
with IBD and 34,257 healthy controls allowed the authors to fine-map 94 
loci using a Bayesian approach. This identified 18 associations to a single 
causal variant with >95% certainty and an additional 27 associations to 
a single variant with >50% certainty. Interestingly, 13 of the 45 variants 
were non-synonymous and three of them disrupted the binding of one 
transcription factor. This study also found a variant in the IL2RA gene that 
had been missed in previous studies because it was absent in HaPmap. 
It had not been possible to fine-map this region using a GWAS dataset 
imputed with 1000 genomes project, but the dense genotyping using 
Immunochip, followed by imputation with 1000genomes project made 
it possible20. Similar studies might be performed in the future with even 
bigger cohorts and reference panels to gain more insight into disease 
biology. 
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Dense genotyping followed by imputation using reference panels has 
also proven to be useful for identifying population-specific variants that 
confer risk of disease. In a type 2 diabetes (T2D) study in Mexican and 
other Latin-American populations, the authors obtained genotypes at 
1.38 million SNPs with MAF 0.1% using the Illumina OMNI 2.5 array21, 
followed by imputation using the 1000 Genomes Project Phase I, which 
resulted in 9.2 million SNPs. These genotypes were generated from 3,848 
T2D cases and 4,366 controls of Native American and European ancestry. 
They found a novel genome-wide significant locus associated with T2D 
that contains the solute carriers SLC16A11 and SLC16A13 (P=3.9x10-13; 
OR=1.29). Interestingly, the risk haplotype, containing four amino acid 
substitutions, is rare in European and African samples, but it is present 
at 50% frequency in Native American samples and 10% in East Asians. 
Although this study has a relatively small sample size compared to the 
previous metabochip analysis for T2D in European populations (34,840 
cases and 114,981 controls22), it was possible to identify novel loci. The 
population-specific variant also has a higher OR (1.29) than 64 of the 
65 loci coming out the Metabochip analysis, showing that population-
specific variants might have stronger effect sizes.   

Most of the reference panels that are available or recently announced are 
from European origin, and there are only a limited number of reference 
panels from non-European populations. Fortunately, we are seeing an 
improvement in this respect. The Genome Aggregation Database,  for 
example, contains 125,748 WES and 15,708 WGS from unrelated 
individuals. This data was generated as part of various disease-specific 
and population genetic studies. Of these, 8,128 are African/African-
American, 17,296 are Latino, 5,040 are Ashkenazi Jewish, 9,197 are East 
Asian and 15,308 are South Asian. These numbers will likely improve in 
the future as population-specific reference panels or reference panels 
with a worldwide population are important. As rare variants are, on 
average, younger than common variants, they cluster more often based 
on the geographical distribution and are thus more difficult to impute23. 
An example of how a population-specific reference panel can improve 
imputation was shown in a recent study of the Anabaptist population24 
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(Amish and Mennonite ancestry). Using WGS data from 265 individuals, 
the authors identified >12 M high-confidence single nucleotide variants 
and short indels that were not present in the 1000 genomes project. 
In addition, 43,000 variants that are usually rare in other populations 
showed higher allele frequencies in this population. This study showed 
that combining the Anabaptist reference panel and the 1000 genomes 
data provided better imputation accuracy than either of the panels 
alone24. Consistent with this, a similar study in Ashkenazi Jews using WES 
data of 5,685 individuals showed that 34% of the protein-coding alleles 
were more frequent in this population compared with other reference 
panels25. It also showed that some of these variants might explain the 
higher prevalence of Crohn’s disease in this population.

Another limitation coming from the lack of population-specific reference 
panels is the absence of correct estimation of allele frequencies in these 
populations and the correct LD blocks. The difference in allele frequencies 
of population-specific reference panels compared to publicly available 
reference panels, such as the 1000 genomes project or the Exome 
Aggregation Consortium26 (ExAC), presents a problem for the analysis of 
high-throughput sequencing data in these populations. In our case, for 
example, although we sequenced 18 Saharawi families, analysis of this 
data was not possible because we did not have an adequate reference 
panel to assess the MAF in the population.

As mentioned above, there are still technical limitations to working with 
non-European populations. One is that the genotyping chips are usually 
designed only for European populations, leaving out most of the population-
specific variation. The Immunochip, for example, was designed using the 
variants present in the CEU population of the 1000 genome project phase 
1, while the last version of the 1000 genomes project now contains variants 
from 26 populations (2,504 individuals), including five populations with 
south Asian ancestry, four with mixed American ancestry, seven with 
African ancestry, five with East Asian ancestry and five with European 
ancestry. Thus, the creation of population-specific reference panels will 
allow us to precisely calculate the LD present in the population in order to 
create appropriate genotyping chips for these populations.
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WGS is better than WES, but still difficult to interpret
Most of the high-throughput sequencing data generated at the beginning 
of this thesis was WES, which captures almost all the variation affecting 
proteins but misses most of the variants in regulatory regions. As we 
have seen from the results of GWAS, most of the disease-associated 
variants identified so far are located in regulatory regions and alter gene 
expression. However, with advances in sequencing technology and the 
fall in sequencing costs, a large amount of WGS data has been generated 
and the number of full genomes is increasing exponentially. Nevertheless, 
technical challenges to interpreting the non-coding part of the genome 
remain. Yet understanding it and establishing its mechanisms of action is 
crucial not only for interpretation of WGS data, but for interpretation of the 
results from association studies. As discussed above, exploration of the 
non-coding part of the genome by WGS will facilitate the identification 
of rare disease variants in regulatory regions such as enhancer regions 
or regions promoting chromatin looping interactions. These discoveries 
might lead to a better understanding of disease pathology and the genetic 
architecture of IMD. 

Family-based sequencing studies using WGS will also reveal the 
contribution of non-coding variants to disease susceptibility. Although 
the interpretation of non-coding variants is still difficult because there 
are millions of them, it is now becoming possible to prioritize non-coding 
variants using genomic and epigenomic information available from 
multiple cell lines. For example, a recent study on pancreatic agenesis27 
applied homozygosity mapping in three consanguineous families and 
identified a locus on chromosome 10 that contained PTF1A gene. However, 
by using Sanger sequencing they could exclude mutations in coding and 
promoter sequences of PTF1A and 24 other genes in the region. In order to 
identify rare or novel homozygous variants and indels within this region, 
WGS was performed in two affected members of different families. After 
filtering out all the variants present in 81 controls, they ended up with a 
list of 2,868 and 3,188 variants in each individual. Of these variants, 8 and 
19 were affecting the protein (missense, nonsense, frameshift or essential 
splice site) but they failed to co-segregate with the disease or the function 
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of the genes was not related to pancreas development. The authors then 
looked for mutations that mapped to active regulatory regions from 
pancreatic endoderm cells derived from human embryonic stem cell. 
Interestingly, they found a shared variant within the homozygosity region 
that was ~25kb downstream of PTF1A. Additionally, the authors found 
that six unrelated patients also shared the same mutation and three more 
had mutations in the same regulatory region. Finally, using chromatin 
conformation capture experiments in human pancreatic progenitor cells, 
they showed that this region is an enhancer and it interacts with the 
promoter of PTF1A, confirming its involvement in the disease.  

This study shows that, although it is now easier to prioritize variants 
using annotations from regulatory regions, the resulting list of candidate 
variants is huge, which makes methods that allow the identification of 
candidate loci, such as linkage analysis and homozygosity mapping, 
essential. The collection of large multi-generational families with multiple 
affected members thus remains important. Additionally, as the annotation 
of the non-coding part of the genomes improves and we gain a better 
understanding of gene-regulation, it will be easier to asses and quantify 
the effect of non-coding variants, allowing their prioritization. Moreover, 
with advances in high-throughput technology in few years we could 
analyze multiple variants at the same time at a low cost.  

Sample  size  is  key,  but  collecting  multiple  phenotypes  is  equally 
important
The amount of genetic data available from genotyping or sequencing 
will increase enormously in the near future, and this will facilitate the 
identification of more loci. For example, a recent GWAS of atrial fibrillation 
included more than one million individuals (60,620 cases and 970,216 
control) and resulted in the identification of 111 disease-associated loci, 
80 of them novel. The challenge for studying common complex diseases 
is no longer generating the data, but rather collecting as much phenotypic 
information as possible in order to link the genetic variants with the 
phenotypes. The creation of Biobanks has allowed the collection of not only 
more genotypic data, but also environmental and phenotypic data that 
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can allow us to perform more specialized genetic analysis. For example, 
for CeD it will be possible to perform association studies stratified based 
on HLA haplotype, which will allowing the identification of genetic factors 
associated with a high risk of developing the disease versus low risk of 
developing the disease in CeD patients. We can also stratify individuals 
with high risk based on the age of onset, comorbidities with other IMD or 
start of gluten intake, leading to discovery of new associated loci that can 
improve our understanding of disease pathogenesis. It is also important 
to continue conducting cross-disease meta-analysis because it has 
proven an efficient way of identifying shared loci and new single-disease 
associations.

In some cases, biobanks also collect and store patient biomaterial such as 
biopsies, synovial fluids and stool samples. These stored samples permit 
the generation of other kinds of omics-data. Some biobanks include the 
option to re-contact biobank participants for follow-up functional studies. 
With the collection of stool samples, for instance, it is now possible to 
look at the gut microbiome of cases compared to controls and identify 
microbiome features associated to disease. Dysregulation of the gut 
microbiota has been associated to multiple diseases28, including IMD such 
as IBD29, CeD30,31, MS32 and RA33.

Additionally, the combination of genetic data with longitudinal electronic 
health records has facilitated the linking of genetic variants with multiple 
phenotypes at the same time and allows for the creation of better models 
for predicting the risk of developing the diseases. Better phenotype 
information will also allow the inclusion of the same patient in multiple 
studies, reducing the cost of GWAS. As the amount of genetic data 
continues to increase, these kind of studies will likely increase in the future, 
including larger samples sizes that will have greater power to detect event 
smaller effects.

Finally, as we have seen in this thesis, the combination of multiple layers of 
information, such as genetic and epigenetic data or transcriptomics, allow 
us to prioritize causal variants and genes, a crucial point for interpreting 
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GWAS results and translating them into treatments. It is therefore 
fundamental to continue generating this data in multiple cell types and 
contexts, such as disease stage or stimulations.

Identification  of  gene-environment  interactions  and  epigenetic 
modifications might explain  the missing heritability and  lead  to new 
ways to treat disease
The collection of environmental data will allow us to look at more complex 
gene-environment interactions that might help to explain missing 
heritability. Moreover, understating these interactions might lead to new 
ways to diagnose and treat the disease. The variability in epigenetic and 
environmental conditions results in phenotypic variability that in some 
cases is heritable. Epigenetic changes, such as DNA methylation, can 
affect gene expression in a heritable manner without actually altering 
the underlying DNA sequences. An inheritance model that incorporates 
epigenetic inheritance in addition to genetic effects would help to explain 
the missing heritabilty11. For instance, epigenetic inactivation of some 
height-associated genes has been shown to be functionally equivalent 
to Mendelian physical loss of the corresponding alleles35. Altered DNA-
methylation patterns have also been observed to be transmitted from 
parents who have been exposed to distinct diets36–38, stress39,40, trauma41–43 
or drugs44–47.

Moreover, some epigenetic modifications have been shown to be caused 
by exposure to environmental toxins. Exposure to mercury, Bisphenol 
A, Trichloroethylene and TCDD/AHR ligands, for example, has been 
shown to alter the immune system48. Previous studies in other IMD have 
also demonstrated that epigenetic effects can contribute to disease 
susceptibility. For instance, a disease risk allele can differentially alter 
gene expression depending on its parental origin. This mechanism has 
already been implicated in IgA deficiency49, atopic dermatitis50, MS51 and 
type 1 diabetes mellitus52,53, suggesting that it might play and important 
role in other IMD as well. 
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Interestingly, the advantage of epigenetic modifications as treatment 
targets, compared to genetic changes, is that the epigenetic modifications 
can be reversed using specific inhibitors. For example, a new study in IBD54 
uses histone deacetylase (HDAC) inhibitors (Givinostat and Vorinostat) to 
maintain intestinal homeostasis during inflammation. The HDAC inhibitors 
improved trans-epithelial electrical resistance under inflammatory 
conditions and also blocked the passage of macromolecules across the 
epithelial monolayer.

High-throughput  functional  studies  to  understand  the  function  of 
multiple disease-associated variants at the same time
Another challenge lies in determining the causal variants from association 
studies from those in strong LD, and to identify their underlying mechanism. 
Annotations of the coding and non-coding part of the genome such as 
the ENCODE project, the Roadmap Epigenomics and, more recently, the 
FANTOM5 project have allowed the prioritization of variants, means we 
can now speculate about the potential role of the variants, such as their 
location within transcription factor binding sites, histone modifications 
or DNA methylation sites for a number of transformed and primary cell 
types. These projects performed most of the annotations using cell lines, 
however it is now possible to profile cells at single-cell resolution using 
single-cell sequencing. Taking advantage of this technology, a new project 
called the Human Cell Atlas (HCA)55 aims to create a human cell atlas that 
will not only provide us with transcriptomic data, it will also asses a cell’s 
protein molecules and profile the accessibility of the chromatin in millions 
of individual cells. In the near future, the HCA will allow us to compare 
healthy reference cells to diseased ones in relevant tissues as well as 
prioritize appropriate cell types for functional studies.

In the past few years there have also been some major advances in high-
throughput functional studies that now allow the interrogation of multiple 
variants at the same time. Massively parallel reporter assays (MPRA), for 
example, can screen thousands of potential functional variants in a single 
assay to determine effects on gene expression. For instance, using the 
CRE-seq assay56, the authors performed high-throughput DNA synthesis 
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to generate and test more than 1000 genetic variants of a 52-bp rhodopsin 
promoter. A similar assay57 was also applied to test more than 27,000 
variants of two 87-bp inducible enhancers. Nevertheless, the limitation 
of the reporter assays is that the regulatory function of a variant will be 
tested only in the context of plasmid DNA, but not in the context of native 
genomic DNA in which the variant actually exists. This difference might 
result in spurious results as it does not take into account the interactions 
between different genomic and epigenetic components58.

Until recently, efforts to modify genetic material of an organism or cell 
have been delayed by a lack of specificity and inefficiency, relying on site-
directed mutagenesis or recombination-based methods59. However, there 
has been an enormous improvement in the genome-editing technologies 
in the past few years. The development of engineered nucleases has 
resulted in an efficient and highly targeted approach to modifying the 
genetic architecture of a cell. Three genome-editing techniques have been 
widely used to date: zinc-finger nucleases (ZFNs), transcription activator-
like effector nucleases (TALENs), and clustered regularly interspaced 
short palindromic repeats (CRISPR) with Cas9 nuclease (CRISPR/Cas9)59. 
Genome editing technologies allow the mutation of an individual SNP 
from one allele to the other for further comparison in functional studies. 
In a recent study60, TALENs were used to confirm the functional role of a 
SNP previously reported to influence prostate cancer risk. The authors 
compared edited prostate cancer cell line clones with the three different 
genotypes and unedited cell lines clones and demonstrated that the 
risk allele altered RFX6 expression levels 2-fold. Another study61 used 
CRISPR-Cas9 to demonstrate that the risk allele of a T2D variant in the 
PPARG2 gene showed increased expression of the transcript in a human 
pre-adipocyte cell strain. Similar studies have been performed for other 
diseases and the number will surely continue to grow in coming years.  

Similar to MRPA, it is now possible to use high-throughput CRISPR 
screens. In a recent study62, for example, the authors developed a 
CRISPR/Cas9 system for rapid insertion of TNNT2 gene variants into 
induced pluripotent stem cell-differentiated cardiomyocytes, with the aim 
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of generating all the catalogued coding variants in the cardiomyopathy-
associated locus TNNT2 for further functional studies to annotate the 
function of the variants. Although these authors focused on coding 
variants, it is also possible to elucidate the role of non-coding variants. 
Thus, it is believed that high-throughput genome and epigenome editing 
screens may facilitate the characterization of regulatory function of many 
potential causal variants located within cis-regulatory regions63, helping 
us to understand the associations from GWAS studies. In the near future 
it will be not only possible to interrogate all the variants present in the LD 
block, but also a combination of them, and this might lead to a catalog 
that could allow the annotation and prioritization of variants based on 
these type of studies.

Disease-specific cell types allows us to identify causal genes
Although the discovery of new IMD loci has improved enormously, 
knowledge of how each locus affects the immune system or specific 
disease cell types is still lacking. To gain more insight into these topics, 
it is necessary to identify causal SNPs and genes, and to achieve this 
it is crucial to use disease-relevant cell types because gene expression 
has been shown to be cell-type- and context-specific. In chapter five, for 
example, we showed a locus associated to MS and IBD (11q13.1) where 
the MS-associated SNP affects two protein-coding genes and a lncRNA, 
while the IBD-associated SNP affects a different lncRNA. The MS-SNP 
and its close proxies overlap with DHSs of many immune cells, whereas 
one of the two proxies of the IBD-SNP rs559928 specifically overlaps with 
DHSs in Caco-2 cells (intestinal epithelial cells), suggesting that different 
usage of cell-type-specific enhancers could be one mechanism by which 
different genes could be affected by different IMD-SNPs in a shared 
disease locus7.

However, there is still a lack of information regarding the specific cell 
types involved in each IMD. One approach to overcoming this limitation 
is the prioritization of cell types based on overlapping disease-variants 
with epigenetic and epigenomic features in different cells lines, such as 
histone marks or DHSs. Another approach is to assess the eQTL effect 
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for disease-associated variants in multiple cell types or using single-
cell sequencing to see where the variants are affecting the expression. 
Additionally, we can assess the expression of prioritized genes in multiple 
cell lines. It has been suggested that profiling large cohorts of cases and 
controls with, for example, cell abundance, signaling response and serum 
cytokine levels64, could help us to define immune-phenotypes that can aid 
to the prioritizations of disease-specific cell types. 

Organ-on-a-chip as a model to look at complex interactions
Multiple cell types and tissues might be contributing to the disease 
pathology, making models that can mimic this physiologically relevant 
interaction between cell types very important. Animal models have 
been used to address this problem, but their findings do not always fully 
represent the human scenario because of fundamental differences in 
gene-environment interactions. Recently, a new technology has become 
available that can help to overcome this challenge: organ-on-a-chip. 
Organ-on-a-chip allows the study of multiple human tissues and cell types 
in one system. They are microfluidic cell culture systems that recapitulate 
the structure, function, physiology and pathology of living human organs 
in vitro65. The study of organs-on-a-chip derived from the genetic material 
of patients and controls will help us to gain more insight into disease 
biology. Moreover, creation of organs with different genotypes will help 
us understand the effect of specific variants in the whole organ. We could, 
for example, select individuals at high risk of developing the disease and 
compare them to individuals with low risk under different environmental 
conditions and study their consequences. Organs-on-a-chip are the most 
suitable model so far for performing functional studies because they also 
contain the epistatic effects in their natural state and allow us to also 
study gene-environment interactions.  

Future Directions
The next 5-10 years should see the development of new ways to 
diagnosis CeD without the need of intestinal biopsies based not only on 
the presence of antibodies, but including other kind of biomarkers such as 
microRNAs, urine gluten peptides or the microbiome. Appropriate genetic 
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risk scores, including HLA haplotypes and non-HLA risk variants, will also 
be incorporated into the diagnostic models and will help predict disease 
prognosis in CeD patients. Moreover, new loci will be discovered using 
genome-wide technologies, either by genotyping followed by imputation 
or WGS. The large amount of data that will be generated using multiple 
cell types from both healthy individuals and CeD patients using single-
cell transcriptomics and epigenomics data will lead to the identification 
of multiple causal genes, including a considerable number of non-coding 
genes. These advances will also help improve our understanding of how 
gene regulation works, allowing the interpretation of the effect of those 
genes. Functional studies, such as organ-on-a-chip studies using cells 
derived from CeD patients, will lead to improvements in our understanding 
of disease pathogenesis in multiple contexts. They will include different 
factors such as genetics, microbiome composition or viral stimulus and 
aid in understanding of the adaptive and innate immune response to 
gluten in CeD. Finally, these efforts might lead to the identification and 
development of potential treatments for CeD patients and new ways to 
prevent disease development. 
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