
 

 

 University of Groningen

Noisy Gradient Meshes
Hettinga, Gerben J.; van Beckhoven, Rowan; Kosinka, Jiří

Published in:
Graphical Models

DOI:
10.1016/j.gmod.2019.101024

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hettinga, G. J., van Beckhoven, R., & Kosinka, J. (2019). Noisy Gradient Meshes: Augmenting Gradient
Meshes with Procedural Noise. Graphical Models, 103, [101024].
https://doi.org/10.1016/j.gmod.2019.101024

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-06-2022

https://doi.org/10.1016/j.gmod.2019.101024
https://research.rug.nl/en/publications/31b972ef-d858-44a6-9df4-cb7cf1f1e482
https://doi.org/10.1016/j.gmod.2019.101024


Noisy Gradient Meshes: Augmenting Gradient Meshes with Procedural Noise

Gerben J. Hettinga
g.j.hettinga@rug.nl

Rowan van Beckhoven
rowanvanbeckhoven@gmail.com

Jiřı́ Kosinka
j.kosinka@rug.nl

Bernoulli Institute, University of Grnoningen, Nijenborg 9, 9747 AG, Groningen, the Netherlands

Abstract

We extend the gradient mesh vector graphics prim-
itive with procedural noise functions. Specifically, we
couple Perlin, Worley and Gabor noise to the gradient
mesh. We allow local parameters controlling the noise
functions to be defined at the vertices of the mesh. The
parameters are interpolated along with the geometry
similarly to how colour is interpolated in an ordinary
gradient mesh, allowing for spatially varying noise pat-
terns.

These noisy gradient meshes facilitate a sparse repre-
sentation of high frequency regions along with underly-
ing smooth colour gradients. The meshes are easy to edit
and efficient to evaluate on graphics hardware, making
them a suitable candidate for inclusion in modern vector
graphics authoring tools. We demonstrate the utility of
our method on gradient meshes with added noise func-
tions. Additionally, we show that the approach can be
used in combination with regular surface meshes where
noise functions are used to govern their displacement
mapping.

1. Introduction

Vector graphics is a powerful approach for represent-
ing scalable illustrations [4]. Vector graphics illustrations
can be composed of a multitude of different primitive types
such as lines and colour gradients. Existing high-level
vector graphics primitives are able to model smooth and
sharp colour transitions well and can be used to vectorise
raster images featuring large regions with constant or slowly
changing colour gradients. However, when trying to model
natural images, these methods often result in many small
gradient primitives due to high frequency regions present in
the image and the inability of traditional vector primitives to
model such regions without excessive refinement. Working
with many gradient primitives is a tedious process and thus
a solution has to be found in which high-level detail can be
achieved while keeping the underlying mesh simple.

Procedural noise functions have been used in computer
graphics to create detail on otherwise smoothly shaded sur-
faces through the use of procedural textures, or to displace
the surface with procedural displacement mapping [6]. Pro-
cedural noise functions have been used for texture synthesis
before, but they are rarely used in combination with vec-
tor graphic primitives. The incorporation of noise functions
into vector graphics is an ideal combination. The functions
are very compactly defined, requiring only a few parame-
ters to create a texture of any desired resolution. They can
be evaluated at any arbitrary parameter value and thus are
infinitely scalable.

In this work we combine procedural noise functions with
the gradient mesh vector graphics primitive. The gradient
mesh interpolates colour and colour gradients, and can be
made to model smoothly varying colour transitions over
an image. The combination of the two techniques results
in a vector graphics primitive where the parameters of the
noise function can be varied over the mesh to obtain vari-
able levels of detail and smoothly varying colours. This
greatly broadens the expressiveness of gradient meshes and
the range of objects which they can model, but still makes
use of the simplicity of the traditional gradient mesh.

The general approach is to find parameters which control
the noise and which can be varied such that no artefacts are
present in the end result. To do this, the impact of different
parameters on the final noise field is evaluated. These pa-
rameters can be implemented globally or locally. Global pa-
rameters are not bound to the mesh structure and are there-
fore easy to edit, whereas local parameters are bound to the
vertices of the mesh and thus provide more control as they
are set individually.

The remainder of the paper is organised as follows. In
Section 2, we consider related work where vector graphics
and procedural noise functions have been combined. Then
we briefly describe the essentials of gradient meshes and
procedural noise functions for our primitive in Section 3.
Then, in Section 4, we detail the construction of gradi-
ent meshes with procedural noise functions. We describe
which parameters we use and how they are interpolated. We

1



also provide, in Section 5, several ways of editing the noise
field through post-processing functions. Results of gradi-
ent meshes and also of general displacement mapping on
surfaces are shown in Section 6. In Section 7, we discuss
limitations and applications. Finally, the paper is concluded
in Section 8.

2. Related Work

Gradient meshes have been incorporated in vector graph-
ics authoring applications such as Adobe Illustrator [19],
Coreldraw [5] and Inkscape [1]. Gradient meshes have also
been used for image vectorisation [12, 16]. More recent
developments in gradient meshes include a colour interpo-
lation scheme based on subdivision surfaces [13, 18], and
gradient meshes which allow T-junctions and hierarchical
editing [3]. Nearly all of the research into gradient meshes
has focused on extending the capabilities of the primitive
to arbitrary meshes, or to use the meshes in a vectorisation
process. Their combination with procedural noise functions
has not been investigated so far.

The combination of procedural noise functions with
other vector graphics primitives has been approached be-
fore. Jeschke et al. [9] use the diffusion curve primitive
[14] to diffuse the parameters for Gabor noise kernels over
the image plane. Locally a fragment shader is used to eval-
uate the noise kernel. In this way, the noise pattern varies
smoothly over the image, interrupted only by hard transi-
tions imposed by the defined diffusion curves. Likewise,
Hnaidi et al. [8] use the diffusion curve primitive and pro-
cedural noise functions for procedural terrain generation. In
their approach they make use of fractal noise composed of
octaves of Perlin noise. Along with the height attributes
of the diffusion curves, the persistence value of the fractal
noise is diffused over the parameter plane to obtain varying
levels of details in the generated terrains. Diffusion curves
are a natural way to define features of the image, but do not
give the user much control over the interpolated colour or
noise field away from the curves.

3. Preliminaries

Here we recall some of the key components used in cre-
ating noisy gradient meshes. We review the gradient mesh
primitive and several of the procedural noise functions used
in this work.

3.1. Gradient Meshes

The gradient mesh primitive is a vector graphics primi-
tive which is used to smoothly interpolate colours defined at
the vertices of a regular quadrilateral mesh. Gradient han-
dles defined at vertices can be used to distort the boundary
curves of each of the patches of the mesh into the desired
shape. Since colour is interpolated along with the geome-

v00

v10

v01

Figure 1. A simple 2×2 gradient mesh (without any noise applied
to it) smoothly interpolating colours and gradients defined at the
vertices vij of the mesh. Gradient handles are denoted by line
segments emanating from their corresponding vertices and ending
in circles.

try, the gradient handles dictate the flow of colour inside the
mesh.

Traditionally, a Ferguson patch [7] is the underlying geo-
metric primitive used for a gradient mesh. In this paper, we
choose to represent each (quadrilateral) patch of the prim-
itive as a bicubic Bézier patch instead; see [3] for an in-
depth discussion. The vertices vij are defined as the tuple
(x, y, r, g, b), where the first two components represent po-
sition, and the last three control its (RGB) colour. The edges
of each patch are given by cubic Bézier curves. In the case
of the Bézier patch, the gradient handles and the inner con-
trol points inherit the colour value (r, g, b) of the logically
closest vertex. In this way, colour is interpolated along with
the geometry, and, most importantly, the interpolated colour
values will not traverse out of the gamut. A simple gradi-
ent mesh consisting of 4 patches interpolating colours and
gradients is shown in Figure 1.

3.2. Procedural Noise Functions

We focus on three procedural noise functions in this
work: Perlin, Worley and Gabor noise, but other types of
noise can be just as easily incorporated, too. We choose
these functions because they are mostly standardised, well-
known, basic and easily implemented in the pixel shader
stage of modern graphics pipelines. Figure 2 shows the ba-
sic characteristics of these noise functions.

3.2.1 Perlin Noise

Perlin noise was introduced in 1985 by Ken Perlin [15] as
one of the first true procedural noise functions. This noise is
based on a uniformly spaced grid, or lattice, defined on the



Perlin Worley Gabor
Figure 2. The three different procedural noise functions considered
in this paper. Each gives rise to a distinctive noise pattern.

uv-plane. For a point to be evaluated, its position in the lat-
tice is determined. For each of the four surrounding lattice
points, a pseudo-random gradient vector is computed. The
inner product of this gradient vector and a vector from each
surrounding lattice point to the point is computed. Finally,
these inner products are then in turn used in a biquintic
interpolation function to guarantee smooth transitions be-
tween neighbouring cells; see Figure 2, left.

Note that the underlying lattice structure of Perlin noise
is nicely aligned with that of gradient meshes. This observa-
tion allows us to combine the two, as well as other types of
noise relying on regular lattice structures, as shown below.

3.2.2 Worley Noise

Worley noise [20] is not a traditional noise function, but
rather a texture basis function [10], producing cellular-like
textures similar to Voronoi cells; see Figure 2, middle. Each
cell of the lattice contains a randomly placed feature point.
A function Fk is defined which computes a scalar value
based on the k nearest feature points and a chosen met-
ric. Computing Fk up to k = 4 produces various patterns,
whereas higher values of k give rise to functions that start
to look similar in appearance [20].

Linear or other combinations of Fk result in very inter-
esting patterns, each with its own characteristics; see Fig-
ure 3. Since Fk is based on distance, different metrics can
be used to obtain varying results. Other ways of influenc-
ing the functions is by changing the amount of jitter, or the
placement of the feature points, in the cells of the lattice.

3.2.3 Gabor Noise

Gabor noise is a sparse convolution noise function [11]; see
Figure 2, right. A noise pattern is generated by taking a
weighted sum of arbitrarily placed kernels on a lattice. For
the procedural evaluation, the kernels are placed on the lat-
tice similarly to Worley noise. In this way, the noise in a cell
of the grid is determined by the eight neighbouring cells, in
which the kernels are placed according to a Poisson distri-

F1 F2 F3

F4 F2 − F1 F 2
2 − F 2

1

Figure 3. Worley noise functions and their combinations, produc-
ing distinctive patterns.

bution. The Gabor noise function has several parameters
that greatly influence the noise. The density of the kernels
can be changed as well as the direction of the noise and the
amount of anisotropy.

The Gabor kernel is the Gaussian function multiplied
with a 2D cosine function,

G(u, v) = Ke−πa
2(u2+v2) cos(2πf(u cosω + v sinω)),

where K is the magnitude, a is the inverse width of the
Gaussian function, f is the frequency, and ω is the orienta-
tion of the cosine function.

3.2.4 Fractal Noise

As mentioned above, the mutual lattice structure of gra-
dient meshes and procedural noise functions allows us to
combine them in a natural way. However, sparse gradient
meshes would then hardly benefit from the added noise as
the desired level of detail of a noise function is typically
much higher than that of the gradient mesh itself.

Therefore, in addition to the above-mentioned procedu-
ral noise functions, we also employ fractal Brownian noise,
or fractal noise for short, built on top of them. Fractal noise
evaluates several layers of a noise function, but each time
the frequency of the signal is increased. A parameter p is

Figure 4. Basic Perlin noise (left). Five (middle) and ten (right)
octaves are assigned to the top right vertex of the mesh.



used to regulate the persistence of the different layers or
frequencies of noise. With higher values of p, higher fre-
quency components increase in magnitude and in visibility;
see Figure 4. In the next section we show how to interpolate
this value to locally vary the pronunciation of the different
octaves of noise over a gradient mesh.

4. Noisy Gradient Meshes

The first step in creating a noisy gradient mesh is to set
up the underlying parameter domain on which the procedu-
ral noise functions are generated. The parameter domain is
the uv-plane on which the lattice for the procedural noise
functions is imposed, which coincides with that of the un-
derlying gradient mesh. We assign texture coordinates to
the vertices of the gradient mesh. As the gradient mesh
is regular rectangular, this is straightforward. A (gradi-
ent) mesh of m × n quadrilaterals with (shared) vertices
vi,j , i = 0, . . . ,m and j = 0, . . . , n, corresponds to an
m × n subdivision of the uv-plane. Thus, the texture co-
ordinates of vi,j are simply ui = i and vj = j, creating
a uniform texture space. And internally, each Bézier patch
is parameterised over the unit square. In this manner, the
uv-coordinates can be linearly interpolated on the faces of
the gradient mesh without loss of continuity. Moreover, we
can still globally refine the mesh by also globally subdivid-
ing the parameter plane along u and v parameter lines. In
this manner, the grid turns into a rectilinear grid and linear
interpolation of uv-coordinates maintains continuity.

Having combined the uv-coordinates with the gradient
primitive already gives some control over the generated
noise fields. As the position of the vertices and tangent
handles of the gradient mesh are changed, the underlying
parameterisation follows the flow of the mesh. Naturally,
it is still possible to purposefully model discontinuities by
not enforcing co-linearity or magnitude constraints on the
tangent handles.

Nevertheless, this alone is not enough freedom for the
user to specify the noise field as it is still defined using only
global parameters, showing a similar frequency of noise all
over the mesh; see Figure 2. Therefore, we introduce local
parameters for each vertex of the gradient mesh. These local
parameters are:

• Persistence: As mentioned in Section 3.2.4, the per-
sistence parameter p regulates the prevalence of higher
octaves of noise. By varying this parameter from low
to high, an increasing amount of high frequency noise
becomes apparent; see Figure 4. This parameter was
also varied over the image plane in [8].

• Opacity: The opacity value α simply handles the local
blending of the noise field with the colour field.

• Distortion: In Section 5.1, we introduce several sec-

ondary functions which manipulate the parameter do-
main or alter the noise field. The distortion parameter
d locally regulates the amount of the applied distortion.

The handling of the parameters is done in exactly the
same way as of the colour components of a traditional
gradient mesh. Each vertex vij now becomes the tuple
(x, y, r, g, b, p, α, d); cf. Section 3.1. The values of the
noise parameters and colour components are assigned to the
control points of the bicubic Bézier patch. Once again, the
values of the edge and inner control points inherit the value
of the logically closest vertex. Consequently, the noise pa-
rameters are interpolated with C1 continuity along with the
colour attributes, unless the user explicitly demands lower
continuity to model, for example, sharper transitions or dis-
continuities.

For Gabor noise kernels we include even more param-
eters which can be interpolated. These are the level of
anisotropy and the direction of the kernel; see Section 3.2.3.
This creates interesting opportunities for customisation of
the noise field. As the anisotropy value is decreased, there
is an increase in the general orientation of the kernels. In
this way, the noise direction can be guided on vertex level,
thereby creating interesting patterns reminiscent of vector
field visualisation [17]. Figure 5 shows one such example.
In this simple 2 × 2 noisy gradient mesh, the centre ver-
tex is supplied a higher anisotropy value than the vertices
surrounding it. Additionally, the orientation value of the
kernels assigned to the boundary vertices is angled approx-
imately towards the centre vertex.

By passing the (u, v) coordinates and the interpolated
parameters into one of the three procedural noise functions
introduced in Section 3.2, a noise field is generated. The
noise field varies locally according to the interpolated pa-
rameters specified at individual vertices. The noise field
alone can also be edited by dragging vertices and gradient

Figure 5. A noisy gradient mesh (4 patches) showing the effect of
varying the anisotropy and orientation values for Gabor noise over
the mesh.



Figure 6. Two noisy gradient meshes showing varying Perlin noise
fields. Left: Varying persistence values. Right: Varying distortion
amounts. In both examples, the values/amounts are high in the
middle, and low at the top and bottom.

handles to spatially distort the mesh and thus the associated
noise field.

Additionally, there are global parameters to control the
noise. The number of octaves of noise can be set for the
entire mesh. For Worley noise, different distance metrics
and functions for the Worley kernels can be chosen. Fur-
ther, the global frequency, or scaling value, can be varied
such that the uv-domain is scaled, resulting in smaller lat-
tice cells and a higher frequency of the noise overall. For
Gabor noise, we can vary the global kernel density in each
cell of the lattice and the width of the kernels.

In Figure 6, we show several extreme effects which can
be modelled with the noise-augmented gradient mesh. In
this case, we show a simple gradient mesh, but from ver-
tex to vertex we locally create a large difference between
some of the parameter values. As can be seen in the fig-
ure, the noise smoothly varies from low to high frequency
noise (left), and also from high amounts of distortion to no
distortion at all (right).

5. Editing and Filtering

In this section, we describe several secondary filtering
and manipulation methods we have applied to the noise
fields on the gradient meshes.

5.1. Distortion

A simple value ranging in [0, 1] is used to control the
distortion amount. In this paper, we experimented with
three types of distortion; see Figure 7. We use simple co-
ordinate distortions, where the uv parameterisation is dis-
torted by another (noise) function. We can also distort the
noise values using the sine or another trigonometric func-
tion such that a wave-like characteristic is imposed on the
noise field. In the same vein, we can create a wood-like
texture by multiplying the resulting scalar by some function
value and wrapping the values on a closed range. An ex-

ample of distortion with a secondary noise function, with
varying amount, is shown in Figure 6, right.

5.2. Filtering, Blending & Colour Mapping

We use five basic filtering functions to filter the noise
field: pulse, high-pass, low-pass, band-pass, and normalised
band-pass. Each function uses one or two threshold values
which define the lower and upper cut-off value; see Fig-
ure 8.

The final colour is achieved by combining the noise
colour with the colour of the gradient mesh. The blending
of two colours can be performed in numerous ways, e.g. by
using the traditional colour blending techniques commonly
used in raster-based image editing software. Our tool of-
fers 25 such blending options. This gives the user a lot of
freedom to generate nicely-looking varying noise patterns,
combined with smoothly changing colours.

We also offer the ability to map the value of the noise as
a blending parameter between the two colours.

In Figure 9, we show how the different post-processing
effects offer yet another possibility to increase the expres-
siveness of noisy gradient meshes. In this case, the Per-
lin noise field values are distorted by a sine function, and a
band-pass filter is applied to decrease the width of the mar-
ble texture.

6. Results

We now present results obtained using our experimental
noisy gradient mesh tool. Our tool can be seen in action in
the supplementary video, and a screen-shot of its user inter-
face is shown in Appendix. We also show results obtained
by displacement maps governed by locally controlled noise
linked to spline surfaces.

Figure 7. Three different types of distortion applied to a Perlin
noise field (top left). Distortion by a secondary noise field (top
right), sine distortion (bottom left), and wood-like distortion (bot-
tom right).



pulse
high-pass
low-pass
band-pass
normalised band-pass

0

1

0 0.3 0.7 1
Figure 8. The five filtering functions used in our tool. The low
and/or high cut-off values are, in this example, 0.3 and/or 0.7,
respectively.

6.1. Noisy Gradient Mesh Results

We show several simple gradient meshes which model
various objects in Figure 10. It can be seen from these re-
sults that the added procedural noise functions contribute
an immense level of detail that would not be possible oth-
erwise with ordinary gradient meshes, at least not with this
low number of faces. We also allow for hard transitions in
colour and/or noise fields by assigning different parameters
not only per vertex, but also per patch of the mesh. The
meshes can be scaled to any resolution, which would not
have been possible had the noise patterns been defined us-
ing (high resolution) raster textures and texture mapping.

It is important to notice that, just like the interpolated
colours, the noise field follows the flow of the mesh. This

Figure 9. Different steps in modelling a marble-like texture onto a
gradient mesh of 12 faces using Perlin noise. Top left: The original
colour field of the gradient mesh. Top right: The raw noise field.
Bottom left: The noise field after post-processing. Bottom right:
The final result, a blend of the post-processed noise field and the
colour field.

can be seen especially on the dark green bands of the water-
melon (Figure 10) or on the pattern on the vase (Figure 9).
This flow is the result of the mapping of the parameterisa-
tion domain onto the gradient mesh. In this way, the illusion
of a volumetric object can be created on top of the effects
of colour shading of ordinary gradient meshes. Had the pa-
rameterisation not been linked to the geometry of the mesh
this effect would not have been visible, and an analogous ef-
fect to solid noise [10] on 3D surfaces would have occurred,
which is undesirable. In Figure 11, we explicitly show the
effect of altering the geometry of the gradient mesh (ver-
tices and gradient handles) on the resulting blended noise
and colour field. As can be seen in the figure, the pattern
on the top wings is naturally influenced by the change of
geometry.

Another clearly visible effect is the varying noise pattern
on the banana mesh or on the flower (Figure 10). The results
clearly show that our approach provides smooth transitions
from uniformly shaded regions to regions with noise, and
from regions with low-frequency noise to higher frequen-
cies.

6.2. Displacement Mapping

We applied the same concept of linking a procedural
noise function to geometry, but this time to parametric
spline patches and displacement mapping. In this case, we
use uniform cubic B-splines as the geometry patch, but e.g.
NURBS would work just as well. We convert the B-splines
to the Bézier format so that we can attach the noise parame-
ters to the control points of each Bézier patch in exactly the
same manner as with noisy gradient meshes. In this way,
we are sure that the noise parameters are interpolated rather
than approximated by the B-spline, although the continuity
of the noise parameters is only C1, whereas the geometry
is C2 continuous. If desired, the interpolation property can
be relaxed and the noise parameters can be approximated
by a cubic B-spline, too, resulting in C2 continuity of the
parameters as well, but then without exact interpolation.

Two results can be seen in Figure 12. We vary the persis-
tence of the frequency component along the u and v (para-
metric) directions of the mesh, and the noise is used to dis-
place the geometry along its normal field. As can be seen
from the result, the frequency signal of the displacement
smoothly varies over the entirety of the mesh. The tech-
nique could be applied to generate terrain based on a sparse
representation of the geometry, e.g. a B-spline surface, and
details can be varied locally to model terrains with different
features. In this way, a designer has more control over the
procedural generation of terrains.

Similarly, one could apply the procedural noise with lo-
cal control on parametric geometries to modify their normal
field (normal mapping), but also other characteristics such
as specularity or transparency.



Flower (16 patches) Watermelon (4 patches) Leaf (16 patches) Banana (9 patches)
Figure 10. Simple gradient meshes with different types of noise. Top row: Ordinary gradient meshes (with sharp colour transitions).
Bottom row: Noisy gradient meshes. The flower model makes use of Worley noise, banana and watermelon meshes make use of Perlin
noise, and Gabor noise was used on the leaf mesh.

7. Discussion

We have described only several opportunities to manipu-
late noisy gradient meshes; the possibilities are rather end-
less. In theory, any scalar parameter value of a procedu-
ral noise function can be interpolated. However, this de-
pends on the nature of the different parameters and the pre-
cise evaluation of the procedural noise function on graphics
hardware. An even more elaborate system based on block
shaders [2] could be used to create more complex textures.
It would also be possible to have local weights for each
noise parameter. For instance, different types of procedu-
ral noise functions could be combined by defining a weight
for each type per vertex, and then interpolating these over
the mesh using blending based on the interpolated weights.

Our approach makes extensive use of programmable
shaders. We use tessellation shaders to evaluate the gradi-
ent primitives and thus the interpolation of the noise param-
eters. Fragment shaders handle the evaluation of the proce-
dural noise functions, based on the interpolated parameters.
The use of graphics hardware makes it possible to render
the meshes in real-time such that interactive editing of the
meshes is possible (see the supplementary video).

Even in the case of a full HD pixel-dense rendering of

a mesh with 3600 primitives and Gabor noise with a kernel
density of 20, we are still able to render the noisy gradient
mesh at sub-25 millisecond rates. The same mesh renders
at sub-10 millisecond rates for Perlin and Worley noise with
10 octaves of fractal noise. The performance was evaluated
on an NVIDIA GTX Titan V. It should be noted that by eval-
uating the noise functions in fragment shaders, Gabor noise
is not continuous over the whole lattice as the support of
the Gaussian kernel is truncated for each cell of the lattice.
Visually, this can be expected to be hardly noticeable [11],
as also our results confirm. The other two considered types
of noise, Perlin and Worley, vary smoothly over the mesh.

The approach in this paper works directly only for
quadrilateral meshes with regular topologies. It should be
possible to support T-junctions similarly to locally refinable
gradient meshes [3] as long as the gradient meshes remain
rectangular and enforce C1 continuity. For meshes with ar-
bitrary manifold topology [13], the geometry should have
at least C1 continuity in order to avoid visible discontinu-
ities or unexpected distortions in the generated noise fields.
We have experimented with lowering the condition of C1

parameter functions to G1, but in this way the parameteri-
sation of the noise functions is only C0, showing hard tran-
sitions in the generated noise fields. The same argument



Figure 11. Top: An artistic depiction of a butterfly based on Worley
noise. Bottom: The geometry (i.e., vertex positions and gradients)
has been edited to modify the shape of the wings. Note that the
noise pattern, whose parameters have not been altered, naturally
follows the transformation.

applies to displacement mapping of arbitrary topology sur-
faces. However, if the mesh is sufficiently dense the discon-
tinuities will not be visible.

It can be difficult to reproduce noise patterns by hand
as faithfully as possible using the provided parameters and
post-processing methods. However, the noise functions can
easily model arbitrary patterns like the imperfections on
fruit or blemishes on the skin of a human. This breaks the
clean appearance of gradient meshes and the resulting im-
age has a more natural look. Naively overlaying a noise
field over an image does not produce the same effect as our
approach does as we can guide the noise by changing the
geometry of the mesh, as demonstrated in Figure 11.

8. Conclusion

In this paper, we have presented noisy gradient meshes:
a combination of procedural noise functions with gradient
meshes. There is a direct mapping of lattice-based noise
functions onto gradient meshes as they both rely on a grid-
like structure. The interpolation of local noise parame-
ters and the linking of the parameterisation domain of the
noise functions and the gradient mesh makes it so that the

Figure 12. A B-spline surface composed of 16 patches (top row)
and a B-spline torus composed of 64 patches (bottom row), both
without displacement (left column) and with procedural displace-
ment (right column). The final ‘noisy’ surfaces are colour-coded
according to their normal fields.

noise field is distorted by moving the control points or ad-
justing the gradients of the mesh. The evaluation of the
noise functions is quick and the possibilities are endless,
especially when considering the composition of different
noise functions and post-processing editing functions such
as colour blending modes and different types of distortion.
The method is simple, yet effective as the user can create
highly detailed and scalable images using a small number
of patches.

Future work includes combining our noisy gradient
meshes with vectorisation approaches similar to [9]. Fur-
ther extensions might be to generalise the technique to also
allow for local refinement and T-junctions, in order to be
able to create even sparser noisy gradient meshes.

Acknowledgements

This research is in part based on the second author’s
Bachelor thesis at the Anonymous Institution. We would
like to thank Steven Gustavson for his publicly available im-
plementations of Perlin and Worley noise, and Victor Shep-
ardson for his implementation of Gabor noise.

We gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the Titan V GPU used for this
research.



Figure 13. A screen-shot showing our experimental noisy gradient mesh tool.

References

[1] Mesh gradients - Inkscape. http://wiki.inkscape.
org/wiki/index.php/Mesh_Gradients. Ac-
cessed: 2018-09-21. 2

[2] G. D. Abram and T. Whitted. Building block shaders.
In Proceedings of the 17th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’90,
pages 283–288, New York, NY, USA, 1990. ACM. 7

[3] P. J. Barendrecht, M. Luinstra, J. Hogervorst, and J. Kosinka.
Locally refinable gradient meshes supporting branching and
sharp colour transitions. The Visual Computer, 34(6):949–
960, Jun 2018. 2, 7

[4] P. Barla and A. Bousseau. Gradient art: Creation and vector-
ization. In Image and Video-Based Artistic Stylisation, pages
149–166. Springer, 2013. 1

[5] F. D. Coburn and P. McCormick. CorelDRAW 9: The Official
Guide. Osborne McGraw-Hill, 2017. 2

[6] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and
S. Worley. Texturing & modeling: a procedural approach.
Morgan Kaufmann, 2003. 1

[7] J. Ferguson. Multivariable curve interpolation. Journal of
the ACM (JACM), 11(2):221–228, 1964. 2

[8] H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, and
E. Galin. Feature based terrain generation using diffusion
equation. In Computer Graphics Forum, volume 29, pages
2179–2186, 2010. 2, 4

[9] S. Jeschke, D. Cline, and P. Wonka. Estimating color and
texture parameters for vector graphics. In Computer Graph-
ics Forum, volume 30, pages 523–532, 2011. 2, 8

[10] A. Lagae, S. Lefebvre, R. Cook, T. Derose, G. Drettakis,
D. S. Ebert, J. P. Lewis, K. Perlin, and M. Zwicker. State of

the art in procedural noise functions. In EG 2010-State of the
Art Reports. The Eurographics Association, 2010. 3, 6

[11] A. Lagae, S. Lefebvre, G. Drettakis, and P. Dutré. Procedural
noise using sparse gabor convolution. ACM Transactions on
Graphics (TOG), 28(3):54, 2009. 3, 7

[12] Y.-K. Lai, S.-M. Hu, and R. R. Martin. Automatic and
topology-preserving gradient mesh generation for image
vectorization. In ACM Transactions on Graphics (TOG), vol-
ume 28, page 85. ACM, 2009. 2

[13] H. Lieng, J. Kosinka, J. Shen, and N. A. Dodgson. A colour
interpolation scheme for topologically unrestricted gradient
meshes. In Computer Graphics Forum, volume 36, pages
112–121, 2017. 2, 7

[14] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot,
and D. Salesin. Diffusion curves: a vector representation for
smooth-shaded images. In ACM Transactions on Graphics
(TOG), volume 27, pages 92:1–92:8. ACM, 2008. 2

[15] K. Perlin. An image synthesizer. SIGGRAPH Comput.
Graph., 19(3):287–296, July 1985. 2

[16] J. Sun, L. Liang, F. Wen, and H.-Y. Shum. Image vector-
ization using optimized gradient meshes. In ACM Trans-
actions on Graphics (TOG), volume 26, pages 11:1–11:7.
ACM, 2007. 2

[17] J. J. Van Wijk. Spot noise texture synthesis for data visual-
ization. ACM Siggraph CG, 25(4):309–318, 1991. 4

[18] T. W. Verstraaten and J. Kosinka. Local and hierarchical re-
finement for subdivision gradient meshes. Computer Graph-
ics Forum, 37(7):373–383, 2018. 2

[19] B. Wood. Adobe Illustrator CC Classroom in a Book. Adobe
Press, 2017. 2

[20] S. Worley. A cellular texture basis function. In Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, pages 291–294. ACM, 1996. 3

http://wiki.inkscape.org/wiki/index.php/Mesh_Gradients
http://wiki.inkscape.org/wiki/index.php/Mesh_Gradients


Appendix - Editing Tool

For this paper, we have built our own experimental noisy
gradient mesh tool, in which one can design and edit noisy
gradient meshes. By dragging and dropping vertices and
tangent handles, the geometry of the gradient mesh can be
manipulated. Colours can be assigned to vertices, or to
edges to create sharp transitions in colour. Likewise, lo-
cal noise parameters can be supplied to vertices or to edges
via the right panel of the GUI; see Figure 13. Global pa-
rameters for the noise functions can be set in the left panel,
which also provides several rendering options such as tes-
sellation level and whether to render mesh boundaries and
gradient handles.


