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Investigating the possibility of applying techniques from linear systems theory to the setting of non-
linear systems has been the focus of many papers. The pseudo-linear (PL) form representation of non-
linear dynamical systems has led to the concept of non-linear eigenvalues (NEValues) and non-linear
eigenvectors (NEVectors). When the NEVectors do not depend on the state vector of the system, then the
NEValues determine the global qualitative behaviour of a non-linear system throughout the state space.
The aim of this paper is to use this fact to construct a non-linear dynamical system of which the trajectories
of the system show continual stretching and folding. We first prove that the system is globally bounded.
Next we analyse the system numerically by studying bifurcations of equilibria and periodic orbits. Chaos
arises due to a period doubling cascade of periodic attractors. Chaotic attractors are presumably of Hénon-
like type, which means that they are the closure of the unstable manifold of a saddle periodic orbit. We
also show how PL forms can be used to control the chaotic system and to synchronize two identical
chaotic systems.

Keywords: chaos generation; qualitative analysis; pseudo-linear systems; non-linear eigenvalues;
non-linear eigenvectors.

1. Introduction

The analysis of non-linear systems is a wide field of research with many applications and techniques.
One main approach to the analysis and control of non-linear systems consists of transferring results
from linear systems theory. The best known example is the Poincaré linearization near an equilibrium
point where for a hyperbolic equilibrium point, the linear dynamics associated with the Jacobian matrix
of the vector field is by the Hartman–Grobman theorem conjugate to the non-linear dynamics near
the equilibrium point; see, e.g. Cheng et al. (2010). As another linearization scheme we mention
feedback linearization that amounts to designing a feedback control along with some change of
coordinate that transforms the closed-loop non-linear system into a linear system; see Baillieul &
Willems (1999).

However, one of the most effective applications of linear systems theory in non-linear systems
is the state-dependent Riccati equation (SDRE) strategy in non-linear optimal control theory; see
Çimen (2008). This approach requires a representation of the non-linear dynamics into a linear form
with a state-dependent system matrix. In doing so, this matrix-valued function fully captures the
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378 H. GHANE ET AL.

non-linearities of the system, which provides the designer a very effective method of making a good
and yet systematic trade-off between state error and input effort via a state-dependent linear quadratic
formulation. An SDRE, of which the coefficients vary across state space, is then solved to give a
suboptimal control law. The SDRE approach in non-linear optimal control design relies on the pseudo-
linear (PL) representation of a non-linear dynamical system. Indeed, the closed-loop system obtained
by this optimal controller is still in a PL form. However, the stability analysis of the closed-loop system
by exerting the resulting optimal control is still a problematic challenge and has attracted several
studies during the past years. As noted by Cloutier (1997), the number of successful applications of
the SDRE approach in the design of non-linear optimal controllers outpaced the available theoretical
results.

Investigating the possibility of using the PL form representation in the stability analysis of non-linear
systems has been the effort of several works, e.g. Banks & Mhana (1992, 1996), Tsiotras et al. (1996),
Langson & Alleyne (2002) and Muhammad & Van Der Woude (2009). The key focus of these works was
the stabilizability of a PL form by exerting the state-dependent control obtained via the SDRE approach.
Recently, Ghane & Menhaj (2015) introduced a theorem providing a sufficient condition of a PL system
for correct stability analysis based on its state-dependent eigenvalues and eigenvectors. Although the
PL representation was originally introduced for the systematic design of a non-linear optimal controller
through the SDRE approach, Ghane & Menhaj (2015) have shown that besides stability analysis, the
PL form can also provide a useful tool for the global qualitative analysis of non-linear dynamical
systems when the non-linear eigenvectors (NEVectors) obtained from this PL representation are state-
independent (SI).

The ability of determining the qualitative behaviour of a non-linear dynamical system by means
of eigenvalues and eigenvectors obtained from a PL form is also attractive for fields beyond
control engineering applications, such as dynamical systems (see Ghane & Menhaj, 2014). The
widespread applications of chaotic systems in practical applications, like image watermarking (see
Wang et al., 2015), chaotic communication (see Zhou et al., 2014 and Çiçek et al., 2016) and
robotics (see Zang et al., 2016), have motivated us to apply this qualitative approach to generate
a class of chaotic systems. In this paper, we apply the PL representation in the interesting field
of chaos generation that may be potentially useful for the engineering applications mentioned
above.

The aim of this paper is to synthesize the basic qualitative characteristics of a chaotic behaviour.
With the help of non-linear eigenvalues (NEValues) as the qualitative indicator of the behaviour
of a system in PL form, we introduce a system with a specific type of locally unstable and
globally bounded trajectories. The system that we construct in this way has equilibria that become
unstable through a Hopf bifurcation. The resulting periodic orbits bifurcate further through a period
doubling cascade that leads to chaotic attractors. The latter are presumably of Hénon-like type, which
means that they are the closure of the unstable manifold of a saddle periodic orbit. In addition,
we show the application of NEValues in non-linear control and synchronization of the chaotic
system.

The rest of the paper is organized as follows. In Section 2, the PL representation of non-linear
systems is briefly introduced and its ability for qualitative analysis of non-linear dynamical systems is
discussed. Section 3 is devoted to use the PL form to generate a chaotic system and to prove the global
boundedness of the trajectories. The dynamical analysis of the obtained chaotic system is presented in
Section 4. In Section 5, an eigenstructure-based analysis is used to design a control law for the chaotic
system and to perform an identical synchronization of two chaotic systems. Finally, some concluding
remarks are presented in Section 6.
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CHAOTIC DYNAMICS FROM A PSEUDO-LINEAR SYSTEM 379

2. PL systems: a brief review

An autonomous non-linear system is described by a system of non-linear ordinary differential equations
that do not explicitly depend on the independent variable. The general form of such a system is given by

ẋ(t) = f(x(t)), (2.1)

where x takes values in n-dimensional Euclidean space and the independent variable t is usually time.
Now assume that f : Rn → R

n is sufficiently smooth and that f(0) = 0. Inspired by the theory of linear
systems we can then transform an autonomous system (2.1) to the form

ẋ(t) = A(x(t))x(t), (2.2)

where A : R
n → R

n×n. This form is calledPL and it was originally introduced by Banks & Mhana
(1992) to cope with the difficulty of designing optimal control laws for non-linear systems.

Using the PL form (2.2), it is possible to extend the concept of eigenvalues and eigenvectors to the
setting of non-linear systems. The NEValue and its corresponding NEVector are defined as the functions
λ : Rn → C and v : Rn → C

n, respectively, that satisfy the equation

A(x)v(x) = λ(x)v(x). (2.3)

Equivalently, the NEValues can also be obtained as the solution of the characteristic equation

det
(
A(x) − λ(x)In

) = 0. (2.4)

Based on these generalized concepts, the following remarks and proposition are presented. Proofs
and more explanations can be found in Ghane & Menhaj (2014, 2015). By means of these results we can
study the qualitative behaviour of non-linear dynamical systems. The qualitative analysis of non-linear
systems based on PL forms mainly uses the following observation from linear systems theory.

Remark 2.1 The qualitative behaviour of non-linear systems is determined by the following:

1. The sign of the real part of the NEValues;

2. The realness or complexness of the NEValues.

The first condition determines the stability properties of the dynamics and the second condition
determines the spiralling or exponential nature.

Consider a non-linear dynamical system ẋ = f (x), where f : Rn → R
n satisfies f(0) = 0. Among

the infinite distinct possible PL forms of this system, only the unique PL form that hasSI NEVectors
must be used in eigenstructure-based analysis, because only a PL form with SI NEVectors is guaranteed
to yield correct qualitative results through its NEValues analysis.

Proposition 2.2 For a non-linear system ẋ = f(x), where f : Rn → R
n satisfies f(0) = 0, a sufficient

condition for global asymptotic stability of the origin is that the system has a PL form representation
that satisfies the following conditions:

1. Re
{
λi(x)

}
< 0 for all x ∈ R

n and i = 1, . . . , n;

2. For every NEValue the algebraic and geometric multiplicities are equal;

3. All NEVectors of the matrix A (x) are SI.
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380 H. GHANE ET AL.

This proposition has been proved through discretization of the non-linear differential equation of the
underlying system in Ghane & Menhaj (2014).

All of the aforementioned results are applicable to the special class of non-linear systems of the form
(2.2) in which A(x) = diag(D1(x), . . . , Dp(x)) is a block diagonal matrix and where each block is of
the form

Di(x) = [
gi(x)

]
or Di(x) =

[
gi(x) −ωi
ωi gi(x)

]
,

where gi : Rn → R and ωi > 0 for i = 1, . . . , p. Each 1 × 1 block gives rise to a real NEValue and
each 2 × 2 block gives rise to a complex NEValue. It is straightforward to verify that the corresponding
NEVectors are SI.

3. Chaos generation

Qualitatively speaking, the occurrence of chaotic behaviour is usually related to the interplay between
local instability and global boundedness of trajectories (see Schöll & Schuster, 2008). The local
instability is responsible for the exponential divergence of nearby trajectories, while the global
boundedness folds trajectories within the finite volume of the system’s phase space. The combination
of these two mechanisms can result in high sensitivity of the system trajectories to the initial conditions.
In this paper we use NEValues of a PL form as indicators of a system’s qualitative behaviour and to
construct a dynamical system that shows chaotic behaviour without the need for exhaustive tuning of
parameter values.

3.1. Constructing a candidate chaotic system

The Poincaré–Bendixson theorem implies that the dynamical behaviour a system of the form (2.1) with
n = 2 cannot be chaotic; see Guckenheimer & Holmes (1983). Hence, the minimum dimension of a
chaotic system is n = 3. We first concentrate on finding non-linear functions λi(x), where i = 1, 2, 3, to
generate the continual stretching and folding property in the dynamics of the system. By the approach
proposed in the previous section, it is possible to produce such a behaviour with a proper selection of
NEValues. As a result, this approach may lead to different choices of NEValues that satisfy the desired
qualitative behaviour; one of these choices is the following one:

λ1,2(x) =
(

x2
3 − h2

)
± jω,

λ3(x) = r2 − ax2
1 − bx2

2 − cx2
3,

(3.1)

in which a, b, c, ω, h, r > 0 are fixed parameters and j2 = −1.
Applying Remark 2.1, these NEValues give rise to the following non-linear system:

ẋ1 = (x3
2 − h2)x1 − ωx2,

ẋ2 = ωx1 + (x3
2 − h2)x2,

ẋ3 = (r2 − ax1
2 − bx2

2 − cx3
2)x3.

(3.2)
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CHAOTIC DYNAMICS FROM A PSEUDO-LINEAR SYSTEM 381

Fig. 1. Graphical illustration of the qualitative behaviour of system (3.2). On the ellipsoid ax1
2 + bx2

2 + cx3
2 = r2 and on the

plane x3 = 0 the x3-component of the vector field is vanishing. On the planes x3 = ±h, ρ̇ = 0. (a) Nullclines ẋ3 = 0 and ρ̇ = 0
in the three-dimensional state space. (b) Section x2 = 0 of the state space. The arrows indicate direction of the vector field in
terms of the signs of ẋ3 and ρ̇ in the regions 1, 2, 3 and 4. (c) Section x3 = 0 with the intersection of the nullclines along the
ellipse ax1

2 + bx2
2 + ch2 = r2. In the region enclosed by the ellipse the x3-component of the vector field is positive. Outside it

is negative. The arrows indicate the direction of the vector field on the ellipse.

The NEVectors of the system (3.2), which are simply given by

v1 = [
1 −j 0

]� , v2 = [
j 1 0

]� , v3 = [
0 0 1

]� ,

satisfy the condition of Remark 2.1. Therefore, the chosen NEValues guarantee that the system will
exhibit the continual stretching and folding that is characteristic of a chaotic system. For further analysis,
it is convenient to set x1 = ρ cos θ and x2 = ρ sin θ by which the system (3.2) can be rewritten in terms
of cylindrical coordinates

ρ̇ =
(

x2
3 − h2

)
ρ,

θ̇ = ω,

ẋ3 = (r2 − aρ2 cos2 θ − bρ2 sin2 θ − cx2
3)x3.

(3.3)

As illustrated in Fig. 1 the ρ nullclines given by the horizontal planes x3 = ±h and the x3 nullclines
given by the ellipsoid ax1

2 + bx2
2 + cx3

2 = r2 and the horizontal plane x3 = 0 divide the state space
into four regions with different signs of the real parts of the NEValues that give rise to the different
qualitative behaviours described in Table 1. Note that we consider the regions to be open, i.e. to not
contain their boundaries. In regions 2 and 4, the real parts of all NEValues are positive and negative,
respectively. Thus, in these regions the trajectories of the system are repelled from and attracted to the
origin, respectively. In line with our approach for chaos generation, the existence of these two types of
behaviours besides the regions 1 and 3 with saddle behaviour is necessary to ensure both the stretching
and the folding of system trajectories. A proper arrangement of these regions then guarantees that
the trajectories of the system remain bounded, which is proved in detail on the next subsection. This
arrangement is assured in system (3.2) by the assistance of the regions 1 and 3.

Observe that replacing x3 by −x3 in (3.2) yields the same equations. As a consequence the plane
x3 = 0 is invariant under the flow. Therefore, it suffices to discuss the dynamics for x3 > 0 and this is
what we do for the rest of the paper.
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382 H. GHANE ET AL.

Table 1 Qualitative behaviour of the non-linear system (3.2) based on an analysis of the NEValues

Region Sign of Re {λ(x)} Qualitative behaviour

1
ax1

2 + bx2
2 + cx3

2 > r2

x3
2 > h2

Re
{
λ1,2(x)

}
> 0 d

dt ρ > 0 Increasing spiral

Re
{
λ3(x)

}
< 0 d

dt

(∣∣x3

∣∣) < 0 Decreasing exponential

2
ax1

2 + bx2
2 + cx3

2 > r2

x3
2 < h2

Re
{
λ1,2(x)

}
< 0 d

dt ρ < 0 Increasing spiral

Re
{
λ3(x)

}
< 0 d

dt

(∣∣x3

∣∣) < 0 Decreasing exponential

3
ax1

2 + bx2
2 + cx3

2 < r2

x3
2 < h2

Re
{
λ1,2(x)

}
< 0 d

dt ρ < 0 Increasing spiral

Re
{
λ3(x)

}
> 0 d

dt

(∣∣x3

∣∣) > 0 Decreasing exponential

4
ax1

2 + bx2
2 + cx3

2 < r2

x3
2 > h2

Re
{
λ1,2(x)

}
> 0 d

dt ρ > 0 Increasing spiral

Re
{
λ3(x)

}
> 0 d

dt

(∣∣x3

∣∣) > 0 Decreasing exponential

Fig. 2. The cyclic evolution of solution trajectories of the system (3.2).

From the equations of motion (3.2) we see that the x3-axis is also invariant under the flow. From the
third component of (3.2) we see that the plane x3 = h is transversal to the flow at all points not contained
in the intersection with the ellipsoid ax1

2 + bx2
2 + cx3

2 = r2. The ellipsoid ax1
2 + bx2

2 + cx3
2 = r2

is, however, not even away from its intersection with the plane x3 = h transversal to the flow. Still we
can use the structure of the NEValues summarized in Table 1 to infer that the system trajectories with
initial conditions x3 > 0 and not contained in the invariant x3-axis visit the different region in the cyclic
pattern illustrated in Fig. 2. To this end first note that the NEValues show that trajectories cannot get
permanently trapped in either of the regions 1, 2, 3 or 4. Let us consider trajectories going through the
intersection of the nullclines ρ̇ = 0 and ẋ3 = 0 that is given by the ellipse ax1

2 + bx2
2 + ch2 = r2

in the plane x3 = h. The ellipse is illustrated in Fig. 1(c) for the case a > b (for a < b relabel x1
and x2). Trajectories crossing the ellipse in the first or third quadrant evolve from region 3 to region 2.
Trajectories crossing the ellipse in the second or fourth quadrant evolve from region 1 to region 4. At
the four points on the ellipse contained on the x1-axis or x2-axis the vector field is tangent to the ellipse.
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CHAOTIC DYNAMICS FROM A PSEUDO-LINEAR SYSTEM 383

At the two points on the ellipse located on the x1-axis the trajectories evolve from region 3 to region 4.
At the two points on the ellipse located on the x2-axis the trajectories evolve from region 1 to region 2.

Using the above results on how the nullclines ẋ3 = 0 and ρ̇ = 0 are crossed by trajectories we
can conclude the following on the evolution between the different regions. All trajectories with initial
conditions in region 4 will evolve directly (i.e. without visiting any other region in between) to region 1.
Similarly, all trajectories with initial conditions in region 2 will evolve directly to region 3. Trajectories
with initial conditions in region 1 evolve directly to region 2 or move to region 2 after a finite number of
visits to region 4. The latter option follows from the non-transversality of the boundary between regions
1 and 4 and the fact that ρ is exponentially increasing in regions 1 and 4. Similarly, trajectories with
initial conditions in region 3 evolve directly to region 4 or move to region 4 after a finite number of
visits to region 3. The latter option follows from the non-transversality of the boundary between regions
2 and 3 and the fact that ρ is exponentially decreasing in regions 2 and 3.

By the arrangement of regions 1–4, it follows that the stretching of trajectories occurs along the
x3-axis followed by the folding action and the cyclic pattern occurs repeatedly. On the other hand,
the results of the qualitative analysis of the system trajectories summarized in Table 1 and Figs 1 and 2
suggest that the system will be globally bounded, which will be rigorously proved in the next subsection.

In summary, based on this qualitative analysis we expect that the synthesized system (3.2) will
exhibit chaotic behaviour for a suitable range of parameter values. Note that the proposed approach
is essentially qualitative without any quantitative rigorous proof. In the next section, we present a
numerical analysis of the system that indeed suggests the occurrence of chaotic behaviour and we
discuss some interesting features of the system.

3.2. Boundedness of system trajectories

We note that all orbits in the plane x3 = 0 are attracted to the origin (see Section 4.1) that guarantees
boundedness of trajectories with initial conditions in the plane x3 = 0 in the forward time direction.

Given the possible transport scenarios between the regions 1–4 discussed in the previous subsection
the boundedness of system trajectories in general follows from the following proposition.

Proposition 3.1 Trajectories with initial conditions in region 1 can enter region 2 only with a finite
maximal value of ρ (where this maximal value depends on the initial condition).

This gives the boundedness of system trajectories in general because of the following (as before we
consider because of symmetry only the half x3 > 0):

1. Trajectories on the invariant x3-axis have ẋ3 < 0 for x3 > r
√

c;

2. Regions 3 and 4 are bounded;

3. Region 2 is bounded in the vertical direction from below and from above and in region 2 we have
ρ̇ < 0; and

4. Region 1 can only be entered from the bounded region 4.

Let us now prove Proposition 3.1.

Proof. (Proposition 3.1) We show that trajectories with initial conditions (x1(0), x2(0), x3(0)) =
(x1 0, x2 0, x3 0) in region 1 will reach the plane x3 = h in the forward time direction with a finite value

ρ0. Let x3 0 = x3(0) and d = min{a, b} > 0. Then there exists a ρ1 > max{r/√d,
√

x2
1 0 + x2

2 0} such that
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384 H. GHANE ET AL.

for all points (x1, x2, x3) with h � x3 � x3 0 and
√

x2
1 + x2

2 = ρ ≥ ρ1 the following holds: the slope of
the projection of the trajectory to the x3 − ρ coordinate plane that is negative by the definition of region
1 satisfies by the chain rule

ẋ3

ρ̇
=

(
r2 − ax2

1 − bx2
2 − cx2

3

)
x3

(x2
3 − h2)ρ

� (r2 − dρ2)x3

(x2
3 − h2)ρ

(3.4)

� (r2 − dρ2)x3

(x2
3 0 − h2)ρ

(3.5)

� (r2 − dρ2)h

(x2
3 0 − h2)ρ

(3.6)

< −1. (3.7)

Here the inequality in (3.4) uses r2 − ax2
1 − bx2

2 − cx2
3 < r2 − dρ2 that follows by the definition of d

and the fact that ρ > max{r/√d,
√

x2
1 0 + x2

2 0}. The second and the third inequalities, (3.5) and (3.6),
use x3 ≤ x3 0 and x3 ≥ h, respectively. The existence of ρ1 and the last inequality (3.7) follow from
the expression in (3.6) going to −∞ as ρ → ∞. As ẋ3 < 0 in region 1 the vertical variation of the
trajectory in the forward time direction is equal to x3 0 −h before the orbit reaches the plane x3 = h. The
orbit can then depart in the forward time direction no further from the x3-axis than ρ0 = ρ1 + x3 0 − h
before it reaches the plane x3 = h. �

4. Dynamical analysis of the candidate system

In this section we study the dynamics of the system (3.2). We start by studying the bifurcations of
equilibria and periodic orbits. Numerical simulations suggest that chaotic attractors appear after a
cascade of period doubling bifurcations. These chaotic attractors are presumably of Hénon-like type,
which means that they are the closure of the unstable manifold of a saddle periodic orbit.

4.1. Equilibria and their stability

For x3 � 0, the system has the following equilibria:

O = (0, 0, 0), Z = (0, 0, r/
√

c).

The eigenvalues of the Jacobi matrix J = Df evaluated at O are given by

λO,1 = −h2 + ωj, λO,2 = −h2 − ωj, λO,3 = r2.

Under the assumption that h, r 
= 0 the stable and unstable manifolds of O are given by

Ws(O) =
{
(x1, x2, 0) ∈ R

3
}

,

Wu(O) =
{
(0, 0, x3) ∈ R

3 : 0 < |x3| < r/
√

c
}

.

The eigenvalues of the matrix J evaluated at Z are given by

λZ,1 = r2/c − h2 + ωj, λZ,2 = r2/c − h2 − ωj, λZ,3 = −2r2.
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CHAOTIC DYNAMICS FROM A PSEUDO-LINEAR SYSTEM 385

Fig. 3. Left: five orbits on the unstable manifold of the equilibrium Z for the parameters (a, b, c, h, r, ω, c) = (1, 1, 1, 0.25, 1, 1)

(grey) and a stable periodic orbit (black). Right: cross section of the unstable manifold of the equilibrium Z.

Note that the complex eigenvalue pair (λZ,1, λZ,2) crosses the imaginary axis when h = r/
√

c. This
implies that, under suitable non-degeneracy conditions, the equilibrium Z becomes unstable through a
Hopf bifurcation that gives birth to a stable periodic orbit (see Kuznetsov, 2004).

For a = b and r2/c − h2 > 0 it is straightforward to verify that

x1(t) = ρ0 cos(ωt),

x2(t) = ρ0 sin(ωt),

x3(t) = h,

(4.1)

where ρ0 = √
(r2 − ch2)/a, is a periodic orbit of the system (3.2). Note that for h = r/

√
c this orbit

coalesces with the equilibrium Z. This suggests that for a = b the periodic orbit in equation (4.1) indeed
arises through a Hopf bifurcation of the equilibrium Z.

Under the assumptions that r 
= 0 and r2/c − h2 > 0 it follows that the stable manifold of Z is
given by

Ws(Z) =
{
(0, 0, x3) ∈ R

3 : x3 > 0
}

.

The two-dimensional unstable manifold of Z cannot be computed analytically, but the linearization of the
system (3.2) at Z shows that the unstable manifold is tangent to the plane {(x1, x2, r/

√
c) : x1, x2 ∈ R}.

Figure 3 shows a numerical approximation of Wu(Z), which suggests that this manifold is part of the
stable manifold of a periodic orbit.

4.2. Periodic orbits and their bifurcations

The periodic solutions of (3.2) can be studied in terms of a so-called Poincaré return map (see
Guckenheimer & Holmes, 1983). The idea is to study the intersections of orbits of (3.2) with a plane
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Fig. 4. Bifurcation diagram of fixed points of the Poincaré map P : Σ → Σ as a function of the parameter a. The other
parameters are fixed at (b, c, h, r, ω) = (1, 1, 0.25, 3, 1). Blue solid lines indicate stable branches and red dashed lines represent
unstable branches. Triangles denote period doubling bifurcations. Note that multiple stable fixed points can coexist for the same
parameter values.

that is transversal to the vector field. Consider the following set:

Σ =
{
(x1, 0, x3) ∈ R

3 : x1 > 0, x3 > 0
}

.

We define the Poincaré map P : Σ → Σ as follows. If (x1, 0, x3) ∈ Σ , then P(x1, 0, x3) is defined by
integrating equation (3.2) for 2π/ω units of time. From equation (3.3) it follows that indeed P(Σ) ⊂ Σ .
In addition, the existence and uniqueness theorems for differential equations imply that the map P is a
diffeomorphism. A point x ∈ Σ is called a period-n point of P if Pn(x) = x. Such points correspond to
periodic orbits of (3.2) that make n turns around the x3-axis. Period-1 points of P are also referred to as
fixed points of P.

For a = b and r2/c − h2 > 0, the point (ρ0, 0, h), with ρ0 = √
(r2 − ch2)/a, is a fixed point

of the map P. This fixed point corresponds to the periodic solution given in equation (4.1). Using
the numerical continuation software package AUTO-07P (see Doedel & Oldeman, 2007), we have
computed the bifurcation diagram for this fixed point shown in Fig. 4. The parameter a is used as
the continuation parameter; the other parameters are fixed at (b, c, h, r, ω) = (1, 1, 0.25, 3, 1). The fixed
point is stable up to a ≈ 1.196, where it loses stability in a supercritical pitchfork bifurcation. From the
pitchfork bifurcation two stable fixed points emanate, which lose (resp. regain) stability at saddle-node
bifurcations for a ≈ 1.233 (resp. a ≈ 1.086). After that the two branches undergo a period doubling
bifurcation at a ≈ 1.175. This leads to the coexistence of two stable period-2 points.

For a ≈ 1.197 the stable period-2 points lose stability through a period doubling bifurcation that
leads to the coexistence of two stable period-4 points. This suggests that an infinite cascade of period
doubling bifurcations occurs when a increases. In principle, the next period doubling bifurcations can
be obtained by means of numerical continuation. However, in a period doubling cascade the distances
between successive period doublings asymptotically scale with the Feigenbaum constant δ ≈ 4.669 (see
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Fig. 5. Bifurcation diagram of two stable period-2 points of the Poincaré map P : Σ → Σ . For each value of a the map P is
iterated 500 times and the last 100 iterates are plotted. The parameters (b, c, h, r, ω) = (1, 1, 0.25, 3, 1) are fixed.

Guckenheimer & Holmes, 1983). This implies that prohibitively small step sizes are needed to detect the
bifurcations by means of continuation. Bifurcations can go undetected when the step size is too large.

A more practical way of obtaining an overview of the dynamics of the Poincaré map P is to use brute
force iteration. We increase the value of a from 1.197 up to 1.205 in 1000 steps. For each value of a we
compute 600 iterates of P and plot the x1-coordinates of the last 100 computed points as a function of a.
The final point of the last attractor serves as an initial condition for the next loop. The starting points are
the two stable period-2 points (2.633, 0.00129) and (3.203, 0.03657). The bifurcation diagrams for these
points are shown in Fig. 5. This figure suggests that indeed each of the two points bifurcates through
an infinite cascade of period doublings. In turn this leads to the coexistence of two chaotic attractors of
which the structure will be discussed in the next section.

The coexistence of two or more attractors in a dynamical systems is referred to as multi-stability.
This phenomenon often arises due to symmetries of the system (see Lai & Chen, 2016) and in particular
due to the presence of pitchfork bifurcations (see Van Kekem & Sterk, 2017, 2018b) as is the case in
the present paper. A different mechanism by which multi-stability can occur is due to the presence of
codimension-2 bifurcations, such as double Hopf bifurcations (see Van Kekem & Sterk, 2018a). For
an overview of the wide range of applications of multi-stability in different disciplines of science, see
Feudel (2008).

4.3. Chaotic dynamics

Figure 6 shows two chaotic attractors of the Poincaré map P : Σ → Σ detected after the period
doubling cascade. Note that these attractors coexist for the same parameter values. The attractors have
the appearance of a ‘fattened curve’ that makes them qualitatively similar to the well-known attractor
of the Hénon map (see Hénon, 1976). In fact, for the latter map it was proven by Benedicks & Carleson
(1991) that for a set of parameter values with positive Lebesgue measure the attractor is the closure of
the unstable manifold of a saddle fixed point.

By numerical continuation we obtained two saddle fixed points of the Poincaré map P : Σ → Σ for
the parameter values (a, b, c, h, r, ω) = (1.205, 1, 1, 0.25, 3, 1). We computed the unstable manifolds of
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Fig. 6. Two coexisting chaotic attractors of the Poincaré map P : Σ → Σ for the parameter values (a, b, c, h, r, ω) =
(1.205, 1, 1, 0.25, 3, 1). The corresponding attractors for the system (3.2) in R

3 are shown in Fig. 8.

Fig. 7. Unstable manifold of two different saddle fixed points of the Poincaré map P : Σ → Σ for the parameter values
(a, b, c, h, r, ω) = (1.205, 1, 1, 0.25, 3, 1). Note the striking resemblance with the attractors shown in Fig. 6.

these fixed points by means of techniques based on iterating fundamental domains described in Broer
& Takens (2010) and Simó (1990). Their unstable manifolds are shown in Fig. 7. Note the striking
resemblance with the attractors shown in Fig. 6. We therefore conjecture that these attractors are indeed
the closure of the manifolds shown in Fig. 7. This implies that the corresponding chaotic attractors for
the system (3.2) are the closure of the unstable manifold of a saddle periodic orbit.
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Fig. 8. Two coexisting chaotic attractors of the system (3.2) for the parameter values (a, b, c, h, r, ω) = (1.205, 1, 1, 0.25, 3, 1).
Their corresponding Poincaré sections are shown in Fig. 6.

5. Control design

This section presents the possibility of using the eigenstructure analysis in non-linear control design.
First, a non-linear state feedback controller is constructed to stabilize a chaotic system by the help
of a NEValues assignment. Secondly, a synchronizing controller is obtained through a master-slave
formalism.

5.1. Chaos control

The chaotic system (3.2) can be controlled just by one control input. In fact we can control the system
in such a way that the origin becomes a global attractor by a single input u exerted on the x3 component
of the system (3.2) according to

ẋ1 =
(

x3
2 − h2

)
x1 − ωx2,

ẋ2 = ωx1 +
(

x3
2 − h2

)
x2,

ẋ3 =
(

r2 − ax1
2 − bx2

2 − cx3
2
)

x3 + u.

(5.1)

The control function u : R → R makes the origin asymptotically stable if the following condition is
satisfied:

λ3cl(x) < 0 for all x ∈ R
3 \ {0}. (5.2)

From the eigenstructure analysis of the system depicted in Table 1 we see that even though the states
x1 and x2 are not accessed by the input, the chaotic system can still be controlled by means of a simple
state feedback of the form u = −Kr2x3 with K > 1. The closed-loop system obtained by applying this
controller is

ẋ1 =
(

x3
2 − h2

)
x1 − ωx2,

ẋ2 = ωx1 +
(

x3
2 − h2

)
x2,

ẋ3

(
(1 − K)r2 − ax1

2 − bx2
2 − cx3

2
)

x3,
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which is again in PL form with the old NEValues λ1,2cl
(x) = λ1,2(x) and the new NEValue λ3cl(x) =

(1−K)r2 −ax1
2 −bx2

2 − cx3
2. The simulation results of this controlled system are illustrated in Fig. 9.

5.2. Synchronization

In this section we synchronize a pair of chaotic systems, which consist of a master system given by

ẋm1 =
(

xm3
2 − h2

)
xm1 − ωxm2,

ẋm2 = ωxm1 +
(

xm3
2 − h2

)
xm2,

ẋm3 =
(

r2 − axm1
2 − bxm2

2 − cxm3
2
)

xm3,

and a slave system given by

ẋs1 =
(

xs3
2 − h2

)
xs1 − ωxs2 + u1,

ẋs2 = ωxs1 +
(

xs3
2 − h2

)
xs2 + u2,

ẋs3 =
(

r2 − axs1
2 − bxs2

2 − cxs3
2
)

xs3 + u3.

The equations for the error signal e = xs − xm are given by

ė1 = −h2e1 − ωe2 + xs3
2xs1 − xm3

2xm1 + u1,

ė2 = ωe1 − h2e2 + xs3
2xs2 − xm3

2xm2 + u2,

ė3 = r2e3 − a
(

xs3xs1
2 − xm3xm1

2
)

− b
(

xs3xs2
2 − xm3xm2

2
)

− c
(

xs3
3 − xm3

3
)

+ u3.

(5.3)

Unfortunately, the synchronization of the master and slave system cannot be achieved by only one
control input. Instead, we need three independent control inputs to guarantee that the origin of the system
(5.3) is asymptotically stable. Hence, we consider the controller

u1 = −xs3
2xs1 + xm3

2xm1,

u2 = −xs3
2xs2 + xm3

2xm2,

u3 = −r2e3,

which gives the following closed-loop system for the error equations:

ė1 = −h2e1 − ωe2,

ė2 = ωe1 − h2e2,

ė3 = −a
(

xs3xs1
2 − xm3xm1

2
)

− b
(

xs3xs2
2 − xm3xm2

2
)

− c
(

xs3
3 − xm3

3
)

.
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This means that regardless of e3, the e1 and e2 components approach zero in a spiralling manner
with the exponential rate of h2. The remaining error dynamic in e3 is then

ė3 = −
(

ax∗
1

2 + bx∗
2

2 + c(xs3
2 + xs3xm3 + xm3

2)
)

e3,

in which x∗
1 and x∗

2 denote the synchronized values of x1 and x2 assuming that e1,2 has saturated at 0.
The dynamic of the e3 component is in a PL form with the NEValue

λ3CL
(e) = −

(
ax∗

1
2 + bx∗

2
2 + c(xs3

2 + xs3xm3 + xm3
2)

)
.

Since λ3CL
(e) ≤ 0, the asymptotic exponential stability of e3 is guaranteed and then the complete

synchronization of all components will be obtained. The simulation results are shown in Fig. 10.
It is worth mentioning that for the parameter values in both the control and synchronization

simulations, system (3.2) is chaotic.

6. Concluding remarks

The key idea of this paper was to use the PL form representation of non-linear dynamical systems
for the generation of chaotic behaviour. It is well known that the continual stretching and folding is the
basic qualitative characteristic of a chaotic behaviour. This feature is essentially responsible for the local
instability and global boundedness of chaotic trajectories. It has been shown that for a special class of
non-linear dynamical systems, the NEValues are indicators for the qualitative behaviour of the system.
These qualitative indicators were applied to synthesize a particular form of continual stretching and
folding behaviour in the state space of a three-dimensional dynamical system. Numerical simulations
verified the chaotic nature of the obtained system for a wide range of parameters. Chaotic dynamics
arises through period doubling cascades of periodic attractors. Analysis by means of a Poincaré map
suggests that the resulting chaotic attractors are of Hénon-like type, which means that they are the
closure of an unstable manifold of a saddle periodic orbit. Due to symmetries the system also exhibits
multi-stability, which means that two different chaotic attractors coexist for the same parameter values.

In addition, we showed that by means of an eigenstructure-based method the chaotic system can be
easily both controlled and identically synchronized with another system through some non-linear state
feedback even if not all states are accessible. We tried to show that some efforts in non-linear optimal
control theory leading to the SDRE approach can be applied in another field of dynamical system theory.
Currently, we are working on the definition and control of non-linear non-minimum phase system by
the help of PL form representation and the results will be reported soon.
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