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Abstract. The exchange of ideas between statistical physics and com-
puter science has been very fruitful and is currently gaining momentum as
a consequence of the revived interest in neural networks, machine learning
and inference in general.

Statistical physics methods complement other approaches to the theoreti-
cal understanding of machine learning processes and inference in stochastic
modeling. They facilitate, for instance, the study of dynamical and equi-
librium properties of randomized training processes in model situations.
At the same time, the approach inspires novel and efficient algorithms
and facilitates interdisciplinary applications in a variety of scientific and
technical disciplines.

1 Introduction

The regained popularity of machine learning in general and neural networks in
particular [1–3] can be associated with at least two major trends: On the one
hand, the ever-increasing amount of training data acquired in various domains
facilitates the training of very powerful systems, deep neural networks being
only the most prominent example [4–6]. On the other hand, the computational
power needed for the data driven adaptation and optimization of such systems
has become available quite broadly.

Both developments have made it possible to realize and deploy in practice
several concepts that had been devised previously - some of them even decades
ago, see [4–6] for examples and further references. In addition, and equally im-
portantly, efficient computational techniques have been put forward, such as the
use of pre-trained networks or sophisticated regularization techniques like drop-
out or similar schemes [4–7]. Moreover, important modifications and conceptual
extensions of the systems in use have contributed to the achieved progress sig-
nificantly. With respect to the example of deep networks, this concerns, for
instance, weight sharing in convolutional neural networks or the use of specific
activation functions [4–6,8].
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special session into the program. We are grateful to all authors for their contribution and the
anonymous reviewers for their support.



Recently, several authors have argued that the level of theoretical understand-
ing does not yet parallel the impressive practical success of machine learning
techniques and that many heuristic and pragmatic concepts are not understood
to a satisfactory degree, see for instance [9–13] in the context of deep learning.

While the partial lack of a solid theoretical background does not belittle the
practical importance and success of the methods, it is certainly worthwhile to
strengthen their theoretical foundations. Obviously, the optimization of existing
tools and the development of novel concepts would benefit greatly from a deeper
understanding of relevant phenomena for the design and training of adaptive
systems. This concerns, for instance, their mathematical and statistical foun-
dations, the dynamics of training dynamics and convergence behavior or the
expected generalization ability.

2 Statistical physics and learning

Statistical mechanics based methods have been applied in several areas outside
the traditional realms of physics. For instance, analytical and computational
techniques from the statistical physics of disordered sytems have been applied
in various areas of computer science and statistics, including inference, machine
learning and optimization.

The wide-spread availability of powerful computational resources has facili-
tated the diffusion of these, often very involved, methods into neighboring fields.
A superb example is the efficient use of Markov Chain Monte Carlo methods,
which were developed to attack problems in Statistical mechanics in the mid-
dle of the last century [14]. Analytical methods, developed for the analysis of
disordered systems with many degrees of freedom, constitute another important
example [15]. They have been applied in a variety of problems on the basis of
mathematical analogies, which appear to be purely formal, at a glance.

In fact it was such an analogy, pointed out by J. Hopfield [16], which triggered
considerable interest in neural networks and similar systems within the physics
community, originally: the conceptual similarity of simple models for dynamical
neural networks and models of disordered magnetic materials [15]. Initially
equilibrium and dynamical effects in so-called attractor neural networks such
as the Little-Hopfield model had been addressed [17]. Later it was realized
that the same or very similar theoretical concepts can be applied to analyse
the weight space of neural networks. Inspired by the groundbreaking work of
E. Grander [18, 19], a large variety of machine learning scenarios have been
investigated, including the supervised training of feedforward neural networks
and the unsupervised analysis of structured data sets, see [20–23] for reviews.
In turn, the study of machine learning processes also triggered the development
and better understanding of statistical physics tools and theories.



3 Current research questions and concrete problems

This special session brings together researchers who develop or apply statistical
physics related methods in the context of machine learning, data analysis and
inference.

The aim is to re-establish and intensify the fruitful interaction between statis-
tical physics related research and the machine learning community. The organiz-
ers are convinced that statistical physics based approaches will be instrumental
in obtaining the urgently needed insights for the design and further improvement
of efficient machine learning techniques and algorithms.

Obviously, the special session and this tutorial paper can only address a small
subset of the many challenges and research topics which are relevant in this area.
Tools and concepts applied in this broad context cover a wide range of concepts
and areas: information theory, the mathematical analysis of stochastic differ-
ential equations, the statistical mechanics of disordered systems, the theory of
phase transitions, mean field theory, Monte Carlo simulations, variational calcu-
lus, renormalization group and a variety of other analytical and computational
methods [7, 15, 24–27,27–29].

Specific topics and questions of current interest include, but are by far not
limited to the following list. Where available, we provide references to tutorial
papers of relevant special sessions at recent ESANN conferences.

• The relation of statistical mechanics to information theoretical methods
and other approaches to computational learning theory [25,30]

Information processing and statistical information theory are widely used
in machine learning concepts. In particular the Boltzmann-Gibbs statistics
is an essential tool in adaptive processes [25, 31–33]. The measuring of
mutual information and the comparison of data in terms of divergences
based on respective entropy concepts stimulated new approches in machine
learning data analysis [34, 35]. For example, Tsallis entropy, known from
non-extensive statistical physics [36,37], can be used to improve learning in
decision trees [38] and kernel based learning [39]. Recent approaches relate
the Tsallis entropy also to reinforcement and causal imitation learning
[40,41].

• Learning in deep layered networks and other complex architectures [42]

Many tools and analytical methods have been developed and applied suc-
cessfully to the analysis of relatively simple, mostly shallow neural net-
works [7, 20–22]. Currently, their application and significant conceptual
extension is gaining momentum (pun intended) in the context of deep
learning and other learning paradigms, see [7, 24, 43–47] for recent exam-
ples of these on-going efforts.

• Emergent behavior in societies of interacting agents

Simple models of societies have been used to show that some social science
problems are, at least in principle, not outside the reach of mathematical



modeling, see [48, 49] for examples and further references. To go beyond
the analysis of simple two-state agents it seems reasonable to add more
ingredients in the agent’s model. These could include learning from the
interaction with other agents and the capability of analyzing issues that can
only be represented in multidimensional spaces. The modeling of societies
of neural networks presents the type of problem that can be dealt with the
methods and ideas of statistical mechanics.

• Symmetry breaking and transient dynamics in training processes
Symmetry breaking phase transitions in neural networks and other learn-
ing systems have been a topic of great interest, see [7, 20–22, 51–53] for
many examples and references. Their counterpart in off-equilibrium on-
line learning scenarios are quasi-stationary plateau states in the learning
curves [23, 50, 54–56]. The existence of these plateaux is in general a sign
of symmetries that can often be only broken after the computational ef-
fort of including more data. Methods to analyse, identify, and possibly
to partially alleviate these problems in simple feedforward networks have
been presented in the context of statistical mechanics, see [50, 54–56] for
some of the many examples. The problem of saddle-point plateau states
has recently re-gained attention within the deep learning community, see
e.g. [44].

• Equilibrium phenomena in vector quantization

Phase transitions and equilibrium phenomena were intensively studied also
in the context of self-organizing maps for unsupervised vector quantization
and topographic vector quantization [57, 58]. Particularly, phase transi-
tions in the context of violations of topology preservation in self-organizing
maps (SOM) in dependence on the range of interacting neurons in the neu-
ral lattices were investigated applying Fokker- Planck-approaches [59, 60].
Moreover, energy function for those networks were considered in [61, 62]
and [63]. Ordering processes and asymptotic behavior of SOMs were stud-
ied in terms of stationary states in particle systems of interacting particles
delivering results for [61, 64,65].

• Theoretical approaches to consciousness

No agreement on what consciousness is seems to be around the corner [66].
However, some measures of casual relationships in complex systems, see
e.g. [67], have been put forward as possible ways to discuss how to recognize
when a certain degree of consciousness can be attributed to a system. Inte-
grated information has been presented in several forms, including versions
of Tononi’s information integration [68, 69] based on information theory.
Since the current state of the theory permits dealing with very few degrees
of freedom, methods from the repertoire developed to study neural net-
works as versions of disordered systems, are a real possibility for advance
our understanding in this field.



Without going into detail, we only mention some of the further topics of interest
and on-going research:

• Design and anlysis of interpretable models and white-box systems [70–72]

• Probabilistic inference in stochastic systems and complex networks

• Learning in model space

• Transfer learning and lifelong learning in non-stationary environments [73]

• Complex optimization problems and related algorithmic approaches.

The diversity of methodological approaches inspired by statistical physics
leads to a plethora of potential applications. The relevant scientific disciplines
and application areas include neurosciences, systems biology and bioinformatics,
environmental modelling, social sciences and signal processing, to name just very
few examples. Methods borrowed from statistical physics continue to play an
important role in the development all of these challenging areas.

4 Contributions to the ESANN 2019 special session on the
”Statistical physics of learning and inference”

The three accepted contributions to the special session address a selection of
diverse topics, which reflect the relevance of statistical physics ideas and concepts
in a variety of areas.

Trust law and ideology in a NN agent model of the US Appellate Courts
In their contribution [74], N. Caticha and F. Alves employ systems of interacting
neural networks as mathematica models of judicial panels. The authors investi-
gate the the role of ideological bias, dampening and amplification effects in the
decision process.

Noise helps optimization escape from saddle points in the neural dynamics
Synaptic plasticity is in the focus of a contribution by Y. Fang, Z. Yu and F.
Chen [75]. The authors investigate the influence of saddle points and the role of
noise in learning processes. Mathematical analysis and computer experiments
demonstrate how noise can improve the performance of optimization strategies
in this context.

On-line learning dynamics of ReLU neural networks using statistical physics
techniques
The statistical physics of on-line learning is revisited in a contribution by M.
Straat and M. Biehl [76]. They study the training of layered neural networks
with rectified linear units (ReLU) from a stream of example data. Emphasis
is put on the role of the specific activation function for the occurrance of sub-
optimal quasi-stationary plateau states in the learning dynamics.



Statistical physics has contributed significantly to the investigation and un-
derstanding of relevant phenomena in machine learning and inference, and it
continues to do so. We hope that the contributions to this special session on the
”Statistical physics of learning and inference” helps to increase attention among
active machine learning researchers.
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