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Chapter 1

Introduction

Inferring network topologies of interacting units from temporal data is a stat-
istically challenging task in many scientific disciplines. The goal is to learn the
dependencies between the units from the data and to represent them in form of a
network. A topical example is the field of computational system biology, where
one of the major goals is to learn cellular networks, such as gene regularity tran-
scription networks (see, e.g., [18]) and protein signaling pathways (see, e.g., [51].)
Further examples include neural information flow networks [60] and ecological
networks [2].

One class of models that has been widely applied to deal with this challenge, is
the class of dynamic Bayesian network (DBN) models. The underling assumption
is that the regulatory processes are homogeneous, so that DBNs assume the
network interaction parameters to stay constant in time. For many real-world
applications, this homogeneity assumption is too restrictive and can lead to wrong
conclusions. To address this shortcoming, non-homogeneous dynamic Bayesian
networks (NH-DBNs) have been proposed in the literature. Section 1.3 of this
chapter gives an overview to different types of NH-DBNs and also discusses their
advantages and disadvantages.

1.1 Static and dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) are a popular class of models for learning
the dependencies between random variables from temporal data.1 Unlike in static
Bayesian networks (BNs), a dependency between two random variables X and
Y is typically interpreted in terms of a regulatory interaction with a time delay. A
directed edge from variable X to variable Y , symbolically X → Y , indicates that
the value of variable Y at any time point t depends on the realisation of X at the
previous time point t− 1. Therefore, in DBNs, since all interactions are subject to
a time lag the network does not have to be acyclic.

1DBNs extend standard static Bayesian networks (BNs) with the concept of time.

1



1.2. Network inference 2

Typically, various variables X1, . . . , Xk have a regulatory effect on a target Y ,
and the relationship betweenX1, . . . , Xk and Y can be represented by a regression
model that takes the time lag into account. E.g., if the time lag is one time point,
the regression model takes the form:

yt = β0 + β1x1,t−1 + ...+ βkxk,t−1 + ut (t = 2, . . . , T ) (1.1)

where T is the number of time points, yt is the value of Y at time point t, xi,t−1 is
the value of covariate Xi at time point t− 1, β0, . . . , βk are regression coefficients,
and ut is the “unexplained” noise at time point t.

1.2 Network inference

In dynamic Bayesian network (DBN) applications there are usually N domain
variables Y1, . . . , YN and the goal is to infer the covariates of each variable Yi. As
the covariates can be learned for each Yi separately, DBN learning can be thought
of as learning the covariates for a set of target variables {Y1, . . . , YN}. There are
N regression tasks, and in the i-th regression model, Yi is the target variable
and the remaining N − 1 variables take the role of the potential covariates. The
goal is to infer a covariate set πi ⊂ {Y1, . . . , Yi−1, Yi+1, . . . , YN} for each Yi. From
the covariate sets π1, . . . , πN a network can be extracted. The network shows
all regulatory interactions among the variables Y1, . . . , YN . An edge Yj → Yi
indicates that Yj is a covariate of Yi, i.e. that Yj ∈ πi. In the terminology of
DBNs Yj is then called a regulator of Yi. All variables in πi are regulators of Yi
(i = 1, . . . , N ).

1.3 Non-homogeneous DBNs (NH-DBNs)

The conventional assumption in dynamic Bayesian network models (DBNs) is
that the regulatory relationships are homogeneous, so that the network para-
meters do not change in time. That is, the regression coefficients β0, . . . , βK in
Equation (1.1) stay constant across all time points (t = 2, . . . , T ). Thus DBNs infer
the network structure along with one single set of network parameters, and those
parameters then apply to the whole time series. This homogeneity assumption is
very restrictive and can lead to wrong results and conclusions. Therefore, DBNs
cannot deal with non-homogeneous regularity processes, which often arise in
systems biology. For example in a cellular network, the strength of the regulatory
interactions are often exposed to (unobserved) external factors, such as cellular,
environmental and/or experimental conditions (see, e.g., [8]), that influence the
interactions. This renders the traditional DBNs inappropriate for most of the
applications in systems biology. Therefore non-homogeneous dynamic Bayesian
network models (NH-DBNs) have been proposed (see, e.g., [37]). NH-DBNs are
a powerful statistical tool and do not make use of the homogeneity assumption.
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The concept of non-homogeneity leads to time varying network parameters
and/or time varying network structures. Therefore, NH-DBNs can be divided
into two conceptual groups: NH-DBNs that allow only the network parameters to
vary in time (see, e.g., [23]) and NH-DBNs that also allow the network structure
to be time-dependent, see, e.g., [49], [38] or [14]. A statistical problem is that gene
expression time series are often short so that NH-DBNs with time-dependent
network structures are over-flexible and lead to inflated inference uncertainties.
With regard to our biological applications throughout this thesis, we therefore
focus on NH-DBNs which only allow the network parameters to change.

NH-DBNs with time-varying network parameters have been implemented
with various allocation models to divide the data into disjoint data subsets:

• DBNs have been combined with free mixture models (MIX); see, e.g., [34]
or [26].

• DBNs have been combined with hidden Markov models (HMM); see, e.g.,
[62] or [22].

• DBNs have been combined with multiple changepoint processes (CPS). see,
e.g., [38] or [23].

The models infer the data segmentation, the joint network structure and the
segment- or component-specific interaction parameters altogether from the data.
In this thesis we focus on changepoint-divided (CPS) NH-DBNs, which have
become the most widely applied NH-DBNs.

1.3.1 Changepoint-divided NH-DBNs
Changepoint-divided (CPS) non homogeneous dynamic Bayesian networks (NH-
DBNs) models infer changepoints, which divide the data into disjunct segments.
The data within each segment are modeled with linear regression models. There
is a shared network structure among segments, and the segment-specific network
parameters are learned for each segment separately. In typical applications in
systems biology these NH-DBNs divide a short time series into even shorter
segments, containing only a few data points. Learning the network parameters
for each segment separately (conventional ‘uncoupled’ NH-DBN models) see,
e.g. [38], then inevitably leads to over flexibility and inflated inference uncer-
tainties. Moreover, they do not incorporate the reasonable prior assumption that
neighbouring segments are often more likely to have similar network interaction
parameters than distant segments.

To address these bottlenecks, more realistic models which allow for gradual
adaptations of the network interaction parameters, have been proposed. E.g., the
frequentistic models, proposed by [3], [36] and [35]. Those models make use of
L1-regularized regression models (‘LASSO’) for the network parameter inference,
and they employ a second L1 regularization term to penalize dissimilarities
between network parameters of neighbouring segments. In those frequentistic
models inference is based on penalized maximum likelihood approaches, and the
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fixed regularization parameter has to be optimized by cross-validation or in terms
of the Bayesian Information Criterion (“BIC”). Bayesian models with coupling
mechanisms between the segment-specific parameters have also been proposed.
In [25] it was proposed to globally couple the segment-specific parameters. The
key idea is to treat the segments as interchangeable units and to impose a shared
hyperprior onto the prior expectations of the segment-specific parameters. In a
complementary work ([24]) it was proposed to sequentially couple the parameters.
The fully (sequentially) coupled model was developed to keep the network
parameters of each segment similar to those of the previous segment. Here
the parameters within segment h obtain as prior expectations their posterior
expectations from the preceding segment h − 1, and the coupling strength i.e.,
the variance of the network parameter priors (the similarity of the regression
coefficients), is regulated by a coupling hyperparameter λ. This model can thus be
seen as a Bayesian counterpart of the frequentistic models, mentioned above. The
Bayesian models are inferred with Reversible Jump Markov Chain Monte Carlo
(RJMCMC) simulations [21], and a comparative evaluation study of network
reconstruction methods in [1] showed that the Bayesian models tend to reach
higher network reconstruction accuracies than the frequentistic models.

1.3.2 The concept of parameter coupling

Parameter coupling can lead to significantly improved network reconstruction
accuracies when the segment-specific parameters are similar, as shown in
[24] and [25]. However, recently we have found that coupling can become
counter-productive when the segment-specific parameters are dissimilar. The
reason for that is that neither the sequential nor the global coupling scheme has
an effective mechanism for uncoupling. When the segment-specific parameters
are dissimilar, coupled NH-DBNs can only reduce the coupling strengths by
making the parameter priors vague. This renders them significantly inferior to
NH-DBNs without any coupling mechanism. Moreover, the fully coupled model
suffers from another serious bottlenecks: The model couples all neighbouring
segments (h − 1, h) with the same coupling strength. That is, it possesses only
one single coupling hyperparameter λ which is shared among all segments h > 1
and all covariates.2 To shed more light onto this, we note that both coupling
mechanisms have been designed such that if a node A is regulated by a set of
other nodes, e.g. B → A← C, then both edges have to be coupled with the same
strength across all segments.3 For many real-world applications this is unrealistic.
E.g., the regulatory effect of B on A (i.e., the parameter associated with B → A)
can stay similar, while the regulatory effect of C on A can be subject to major
changes. To re-use a traffic flow analogy from [48]: The traffic flow on the roads

2The models from [3], [36] and [35] suffer from the same drawbacks. Those models also possess
only one single regularization (‘tuning’) parameter which determines the similarity of the network
parameters among segments. The coupling strength between segments can neither vary over time
nor is there any mechanism for uncoupling segments.

3We will therefore also refer to these models as fully coupled NH-DBNs.
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is different during rush hours and off-peak times. But rush hours usually do
not affect the traffic flow on all roads. Typically there are susceptible roads with
tailbacks during rush hours, while the traffic demand on other roads might stay
constant.

1.4 Another conceptual problem

In many applications in systems biology, we encounter data that are collected
under different experimental conditions. Instead of one single (long) time series,
which can be divided into segments with natural temporal order, there are K
(short) time series. These individual time series k = 1, . . . ,K have no natural or-
der and are exchangeable units. That is, the available data are then automatically
divided into K unordered components (=the individual time series), and there is
no need for inferring the segmentation. In this situation it is often unclear a priori
whether the network parameters are actually component-specific or whether they
are constant across components. If the parameters stay constant, all data could be
merged and be analyzed altogether with one single homogeneous DBN model.
If there are component-specific parameters, then the data should not be merged
and it would be better to analyze each time series separately. In the latter case, it
can be useful to adapt the global parameter coupling scheme from [25], so as to
encourage the network parameters to stay at least similar among components.
The bottleneck of both approaches is that either the parameters are assumed to
stay constant or that the parameters are assumed to be component-specific. In
real-world applications there can be both types of parameters. E.g., if a variable
Y is regulated by two other variables, symbolically X1 → Y ← X2, then the regu-
latory interactions X1 → Y might not be affected by the experimental conditions,
while the regulatoryX2 → Y might be influenced by the condition, e.g. forK = 2
in terms of a linear regression model, one might have:

E[Y |X1 = x1, X2 = x2] =
{
αx1 + βx2 if k = 1
αx1 + γx2 if k = 2

(1.2)

A homogeneous model is then inappropriate, since it would ignore that the
regression coefficients β and γ are different. A non-homogeneous model comes
with the drawback that the same regression coefficient α has to be learned two
times separately. This is disadvantageous when the data within each component
(k = 1, 2) are sparse and uninformative.

1.5 The aim of this thesis

To summarize what has been discussed in the previous sections, Figure 1.1 shows
a graphical overview of the various NH-DBN models. In this thesis, we put our
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focus on the sequential and global coupling scheme and show how the coupled
models can be improved, so as to address the above-mentioned drawbacks. We
propose four novel non-homogeneous dynamic Bayesian network (DBN) models,
which are more flexible and thus have the potential to capture the underlying
interactions more accurately than the earlier proposed models.

1.6 Outline of thesis contribution

This thesis is organized as follows:
In chapter 2, we propose two new NH-DBN models to fix the deficits of the

fully (sequentially) coupled NH-DBN model from [24]. The partially segment-
wise coupled model can be seen as a consensus model between the uncoupled
model and the fully coupled model. It has the uncoupled and a sequentially
coupled NH-DBN models as limiting cases: If it couples all segments, it effect-
ively becomes the fully coupled model. If it uncouples all segments, it effectively
becomes the conventional uncoupled model. Moreover, we propose the general-
ized coupled model, which is a generalization of the fully sequentially coupled
model. Like the fully sequentially coupled model, the new model does not have
any option to uncouple, but it possesses segment-specific coupling parameters
and allows for different coupling strengths between segments. We will demon-
strate that the partially segment-wise coupled model can lead to significantly
improved network reconstruction accuracies, while we do not see any significant
improvements for the generalized coupled model. In chapter 3 we therefore have
a closer look the generalized coupled model and refine it.

In chapter 3, we refine the generalized fully coupled model. In particular,
we impose a hyperprior onto the second hyperparameter of the coupling para-
meter prior to allow for more information-exchange among the segment-specific
coupling strengths.

In chapter 4, we present a novel partially edge-wise coupled model. Unlike
the partially coupled model from chapter 2, this model infers for each individual
edge whether the associated parameters should be coupled or stay uncoupled
across the segments.

In chapter 5, we introduce another consensus model, which we refer to as
a partially NH-DBN model. This model has been developed for the situation
described in Section 1.4. The new model aims to infer the best trade-off between
a homogeneous model (with constant parameters) and a non-homogeneous
model (with component-specific parameters). In this chapter we also propose a
Gaussian process based approach to deal with non-equidistant measurements.
The (non-homogeneous) dynamic Bayesian network models assume that the
domain variables have been measured at equidistant time points. For applications
where this assumption is violated, we propose to employ a Gaussian process to
predict the values at equidistant data points.

Chapter 6 presents a study, which is independent to those presented in the
previous chapters. In chapter 6 we perform a comparative evaluation study
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1

Figure 1.1: Overview of non-homogeneous dynamic Bayesian networks (NH-
DBNs). We consider NH-DBNs whose parameters vary in time, and we use a multiple
changepoint process (CPS) to segment the data into segments.

on popular non-homogeneous Poisson models for count data. For this study
the standard homogeneous Poisson model (HOM) and three non-homogeneous
variants, namely a Poisson changepoint model (CPS), a Poisson free mixture
model (MIX), and a Poisson hidden Markov model (HMM) are implemented in
both conceptual frameworks: a frequentist and a Bayesian framework. This yields
8 models in total, and the goal of this chapter is to shed some light onto their
relative merits and shortcomings. The first major objective is to cross-compare
the performances of the four models (HOM, CPS, MIX and HMM) independently
for both modelling frameworks (Bayesian and frequentist). Subsequently, a
pairwise comparison between the four Bayesian and the four frequentist models is
performed to elucidate to which extent the results of the two paradigms (‘Bayesian
versus frequentist’) differ. The evaluation study is performed on various synthetic
Poisson data sets as well as on real-world taxi pick-up counts, extracted from the
recently published New York City Taxi (NYCT) database.

Several parts of this thesis have previously been published in form of two
journal articles, one in press, and four conference papers. One more paper has
been submitted. The references are:

• Shafiee Kamalabad, M., Heberle A.M., Thedieck K. and Grzegorczyk, M.
(2018) (accepted and in press):
Partially non-homogeneous dynamic bayesian networks based on Bayesian
regression models with partitioned design matrices. Bioinformatics, http:
//dx.doi.org/10.1093/bioinformatics/bty917, (chapter 5, see
[59]).

• Shafiee Kamalabad, M. and Grzegorczyk, M. (2018):
Hierarchical Bayesian piecewise regression model with partially edge-wise
coupled parameters. Submitted to Journal of Computational and Graphical
Statistics (chapter 4).

• Shafiee Kamalabad, M. and Grzegorczyk, M. (2018):
Improving nonhomogeneous dynamic Bayesian networks with sequentially

http://dx.doi.org/10.1093/bioinformatics/bty917
http://dx.doi.org/10.1093/bioinformatics/bty917
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coupled parameters. Statistica Neerlandica, 72 (3), 281-305 (chapter 3, see
[58]).

• Shafiee Kamalabad, M. and Grzegorczyk, M. (2018):
Non-homogeneous dynamic Bayesian networks with edge-wise coupled
parameters. Proceedings of the International Workshop on Statistical Mod-
elling, vol. 1, 270-275, Bristol, England (chapter 4, see [57]).

• Shafiee Kamalabad, M. and Grzegorczyk, M. (2018):
A new partially Coupled Piece-Wise linear Regression Model for statistical
network Structure Inference. Proceedings of the International Computa-
tional Intelligence methods for Bioinformatics and Biostatistics, page 30,
Caparica, Portugal (chapter 2, see [56]).

• Shafiee Kamalabad, M. and Grzegorczyk, M. (2017):
A sequentially coupled non-homogeneous dynamic Bayesian network
model with segment-specific coupling strengths. Proceedings of the In-
ternational Workshop on Statistical Modelling, vol. 1, 173-178, Groningen,
Netherlands (chapter 3, see [55]).

• Shafiee Kamalabad, M. and Grzegorczyk, M. (2016): A non-homogeneous
dynamic Bayesian network model with partially sequentially coupled net-
work parameters. Proceedings of the International Workshop on Statistical
Modelling, vol. 1, 139-144, Rennes, France (chapter 2, see [54]).

• Grzegorczyk, M. and Shafiee Kamalabad, M. (2016):
Comparative evaluation of various frequentist and Bayesian non-
homogeneous Poisson counting models. Computational Statistics, 32 (1),
1-33. (chapter 6, see [28]).



Chapter 2

Partially sequentially
segmentwise coupled
NH-DBNs

A common Bayesian approach is to employ a multiple changepoint process to
divide the time series into disjunct segments with segment-specific network in-
teraction parameters and to model the data in each segment by linear Bayesian
regression models. The conventional uncoupled models infer the network inter-
action parameters for each segment separately. There is no information-sharing
among segments. The uncoupled models are very flexible, but for short time
series they can be subject to inflated inference uncertainties. It was therefore
proposed to couple the network interaction parameters sequentially among seg-
ments. The key idea is to enforce the parameters of any segment to stay similar
to those of the previous by using the posterior expectation of the network para-
meters as prior expectation for the consecutive segment. Node-specific coupling
parameters regulate the variance of the parameter priors and so the strength of
coupling. However, the proposed models are based on coupling mechanisms
which can become disadvantageous: First, the models enforce coupling for all
segments without any option to uncouple, and second, they couple all pairs of
neighbouring segments with the same coupling strength. In this chapter we
propose two improved hierarchical Bayesian models to fix those deficits. The par-
tially segment-wise coupled model infers for each segment whether it is coupled
to (or uncoupled from) the previous segment. The generalized coupled model
introduces segment-specific coupling strengths, so as to allow for a greater model
flexibility.

The partially segment-wise coupled model (M3) is a consensus model between
the uncoupled model and the fully coupled model. There is a discrete binary
variable δh for each segment h indicating whether segment h is coupled to the
previous segment (δh = 1) or uncoupled from the previous segment (δh = 0).

9
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Along with the network structure, the changepoints, the segment-specific network
interaction parameters and the values of those indicator variables are inferred
from the data. The new partially coupled M3 model has the original models as
limiting cases: If it couples all segments, it effectively becomes the fully coupled
model. If it uncouples all segments, it effectively becomes the conventional
uncoupled model. The second model, which we propose here, is the generalised
(fully) coupled model, which we refer to as the M4 model. The M4 model
generalises the fully coupled model by introducing segment-specific coupling
strength hyperparameters. Alternatively, the M4 model can also be thought of
as a continuous version of the partially segment-wise coupled model (M3). The
M4 model replaces the segment-specific binary indicator variables δh ∈ {0, 1}
(uncoupled vs. coupled) by continuous coupling hyperparameters λh ∈ R+. For
each pair of neighbouring segments (h − 1, h) there is then a segment-specific
continuous coupling strength hyperparameter λh.

The work presented in this chapter, is still work in progress. Some parts of
this chapter have also been appeared in proceedings of the International confer-
ence on Computational Intelligence methods for Bioinformatics and Biostatistics
(2018)(see [56]) and proceedings of the International Workshop on Statistical
Modelling (2016)(see [54]).

2.1 Methods

2.1.1 Learning dynamic networks with time-varying paramet-
ers

Consider a network domain with N random variables Z1, . . . , ZN being the
nodes. Let D denote a data matrix whose N rows correspond to the variables
and whose T + 1 columns correspond to equidistant time points t = 1, . . . , T + 1.
The element in the i-th row and t-th column, Di,t, is the value of Zi at time point
t. Temporal data are usually modelled with dynamic Bayesian networks, where
all interactions are subject to a time lag: An edge Zi → Zj indicates that Dj,t+1
(Zj at t+ 1) depends on Di,t (Zi at t). Zi is then called a parent (node) of Zj .

Because of the time lag, there is no acyclicity constraint in dynamic Bayesian
networks, and the parent nodes of each node Zj can be learned separately.
A common approach is to use a regression model where Y := Zj is the
response and the other variables {Z1, . . . , Zj−1, Zj+1, . . . , ZN} =: {X1, . . . , Xn}
are the n := N − 1 covariates. Each data point Dt (t ∈ {1, . . . , T})
contains a response value Y = Dj,t+1 and the shifted covariate values:
X1 = D1,t, . . . , Xj−1 = Dj−1,t, Xj = Dj+1,t, . . . , Xn = DN,t, where n = N − 1.
Having a covariate set πj for each Zj , a network can be built by merging the
covariate sets: G := {π1, . . . ,πN}. There is the edge Zi → Zj if and only if
Xi ∈ πj . As the same regression model is used for each Zj separately, we
describe the models (M1-M4) using the general terminology: Y is the response
and X1, . . . , Xn are the covariates.
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To allow for time-dependent regression coefficients, a piece-wise linear
regression model can be used. A set of changepoints τ := {τ1, . . . , τH−1}
with 1 ≤ τh < T divides the data points D1, . . . ,DT into disjunct segments
h = 1, . . . ,H covering T1, . . . , TH consecutive data points, where

∑
Th = T . Data

point Dt (1 ≤ t ≤ T ) belongs to segment h if τh−1 < t ≤ τh, where τ0 := 1 and
τH := T .
We assume all covariate sets π ⊂ {X1, . . . , Xn} with up to F = 3 covariates to be
equally likely a priori, p(π) = c, while parent sets with more thanF covariates get
a zero prior probability (‘fan-in restriction’).1 Further we assume that the distance
between changepoints is geometrically distributed with parameter p ∈ (0, 1), so
that

p(τ ) =
(
H−1∏
h=1

(1− p)τh−τh−1−1 · p

)
·(1−p)τH−τH−1−1 = (1−p)(T−1)−(H−1) ·pH−1

With y = yτ := {y1, . . . ,yH} being the set of segment-specific response vectors,
implied by τ , the posterior distribution takes the form:

p(π, τ ,θ|y) ∝ p(π) · p(τ ) · p(θ|π, τ ) · p(y|π, τ ,θ) (2.1)

where θ = θ(π, τ ) denotes the set of all model parameters, including the segment-
specific parameters and those parameters which are shared among segments.
In subsections 2.1.3 to 2.1.6 we assume π ⊂ {X1, . . . , Xn} and the segmentation
y = {y1, . . . ,yH} induced by τ to be fixed, and we do not make π and τ explicit
anymore. Without loss of generality, we assume further that π contains the first
k covariates: π := {X1, . . . , Xk}. Focusing only on the model-parameters θ,
Equation (2.1) reduces to:

p(θ|y) ∝ p(θ) · p(y|θ)

How to infer the covariate set π and changepoint set τ from the data is sub-
sequently described in Subsection 2.1.7.

2.1.2 A generic Bayesian piece-wise linear regression model
Consider a Bayesian regression model where Y is the response and X1, . . . , Xk

are the covariates. We assume that T data points D1, . . . ,DT have been measured
at equidistant time points and that the data can be subdivided into disjunct
segments h ∈ {1, . . . ,H}, where segment h contains Th data points and has the
segment-specific regression coefficient vector βh. Let yh be the response vector
and Xh be the design matrix for segment h, where each Xh includes a first column
of 1’s for the intercept. For each segment h = 1, . . . ,H we assume a Gaussian
likelihood:

yh|(βh, σ2) ∼ N (Xhβh, σ
2I) (2.2)

1The fan-in restriction is biologically motivated, as it is known that genes are rarely regulated by
more than 2-3 other regulator genes [31].
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Figure 2.1: Graphical representation of the generic model. Parameters that have to
be inferred are represented by white circles. The data and the fixed hyperparameters
are represented by grey circles. Circles within the plate are specific for segment h.

where I is the identity matrix, and σ2 is the noise variance parameter, which
is shared among segments. We impose an inverse Gamma prior on σ2, σ−2 ∼
GAM(ασ, βσ), and we assume that the βh’s have Gaussian prior distributions:

βh|(µh,Σh, σ
2) ∼ N (µh, σ2Σh) (2.3)

Re-using the parameter σ2 in Equation (2.3), yields a fully-conjugate prior in both
βh and σ2 (see, e.g., Sections 3.3 and 3.4 in [19]). Figure 2.1 shows a graphical
model representation of this generic model. For notational convenience we define:

θ := {µ1, . . . ,µH ; Σ1, . . . ,ΣH}

The full conditional distribution of βh is (cf. Section 3.3 in [5]):

βh|(yh, σ2,θ) ∼ N ([Σ−1
h + XT

hXh]−1(Σ−1
h µh + XT

hyh), σ2(Σ−1
h + XT

hXh)−1)
(2.4)

and the segment-specific marginal likelihoods with βh integrated out are:

yh|(σ2,θ) ∼ N (Xhµh, σ
2Ch(θ)) (2.5)

where Ch(θ) := I + XhΣhXT
h (cf. Section 3.3 in [5]). From Equation (2.5) we get:

p(σ2|y,θ) ∝ p(σ2) ·
H∏
h=1

p(yh|σ2,θ) = (σ−2)aσ+ 1
2 ·T−1e−σ

−2(bσ+ 1
2 ·∆

2(θ))

where y := {y1, . . . ,yH} and ∆2(θ) :=
∑H
h=1(yh−Xhµh)TCh(θ)−1(yh−Xhµh).

The shape of p(σ2|y,θ) implies:

σ−2|(y,θ) ∼ GAM
(
ασ + 1

2 · T, βσ + 1
2 ·∆

2(θ)
)

(2.6)
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For the marginal likelihood, with βh (h = 1, . . . ,H) and σ2 integrated out, we
apply the rule from Section 2.3.7 in [5]:

p(y|θ) =
Γ(T2 + aσ)

Γ(aσ) · π−T/2 · (2bσ)aσ(
H∏
h=1

det(Ch(θ))
)1/2 ·

(
2bσ + ∆2(θ)

)−(T2 +aσ)
(2.7)

When all parameters in θ are fixed, the marginal likelihood of the piece-
wise linear regression model can be computed in closed form. In real-world
applications there is normally no prior knowledge about the hyperparameters in
θ.
In typical models the (hyper-)hyperparameters in θ do not have all degrees of
freedom, but depend on some free hyperparameters with their own hyperprior
distributions. From now on, we will only include the free hyperparameters in θ.
In the following subsections we describe four concrete model instantiations: the
uncoupled model (M1), the fully coupled model (M2), the partially segment-wise
coupled model (M3) and the generalised coupled model (M4), where the latter
two are proposed in this chapter.

2.1.3 Model M1: The uncoupled model

A standard approach, akin to the models of [38] and [14], is to set µh = 0
and to assume that the matrices Σh are diagonal matrices Σh = λuI, where
the parameter λu ∈ R+ is shared among segments and assumed to be inverse
Gamma distributed, λ−1

u ∼ GAM(αu, βu). Figure 2.2 shows the uncoupled model
(M1) graphically. Using the notation of the generic model, we have:

θ = {λu}, Ch(λu) = I + λuXhXT
h , ∆2(λu) :=

H∑
h=1

yT
hCh(λu)−1yh (2.8)

For the posterior distribution of the uncoupled model we have:

p(β, σ2, λu|y) ∝ p(σ2) · p(λu) ·
H∏
h=1

p(βh|σ2, λu) ·
H∏
h=1

p(yh|σ2,βh) (2.9)

where β := {β1, . . . ,βH}. From Equation (2.9) it follows for the full conditional
distribution of λu:

p(λu|y,β, σ2) ∝ p(λu) ·
H∏
h=1

p(βh|σ2, λu)

∝ (λ−1
u )au+H·(k+1)

2 · exp{−λ−1
u (bu + 1

2σ
−2

H∑
h=1

βT
hβh)}



2.1. Methods 14

βh

Σh := λuI µh := 0

λu

αu βu

σ2

yhXh

ασ βσ

βh ∼ N(µh, σ
2Σh)

yh ∼ N(Xhβh, σ
2I)

σ−2 ∼ GAM(ασ, βσ)

λ−1
u ∼ GAM(αu, βu)

segment h

1

Figure 2.2: Graphical representation of the uncoupled model (M1). Parameters that
have to be inferred are represented by white circles. The data and the fixed hyperpara-
meters are represented by grey circles. The two rectangles indicate definitions, which
deterministically depend on the parent nodes. Circles and definitions within the plate
are segment-specific.

and the shape of the latter density implies:

λ−1
u |(y,β, σ2) ∼ GAM

(
αu + H · (k + 1)

2 , βu + 1
2σ
−2

H∑
h=1

βT
hβh

)
(2.10)

Since the full conditional distribution of λu depends on σ2 and β, those paramet-
ers have to be sampled first. From Equation (2.6) an instantiation of σ2 can be
sampled via a collapsed Gibbs-sampling step, with the βh’s being integrated out.
Subsequently, given σ2, Equation (2.4) can be used to sample the βh’s. Finally, for
each λu sampled from Equation (2.10) the marginal likelihood, p(y|λu), can be
computed by plugging in the expressions from Equation (2.8) into Equation (2.7).

2.1.4 Model M2: The fully coupled model

The (fully) coupled model, proposed by [24], uses the posterior expectation of
βh−1 as prior expectation for βh. Only the first segment h = 1 has an uninform-
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ative prior:

βh ∼

{
N (0, σ2λuI) if h = 1
N (β̃h−1, σ

2λcI) if h > 1
(2.11)

where β̃h−1 is the posterior expectation of βh−1 (cf. Equation (2.4)):2

β̃h−1 :=
{

[Σ−1
1 + XT

1 X1]−1(XT
1 y1) if h = 2

[Σ−1
h−1 + XT

h−1Xh−1]−1(λ−1
c β̃h−2 + XT

h−1yh−1) if h > 2

The parameter λc has been called the ’coupling parameter’ onto which also an
inverse Gamma distribution can be imposed, λ−1

c ∼ GAM(αc, βc). Using the
notation from the generic model (see Figure 2.1), we note that Equation (2.11)
corresponds to:

µh =
{

0 if h = 1
β̃h−1 if h > 1

, Σh =
{
λuI if h = 1
λcI if h > 1

, Ch(θ) =
{

I + λuXhXT
h if h = 1

I + λcXhXT
h if h > 1

θ = {λu, λc}, and ∆2(θ) =
H∑
h=1

(yh −Xhβ̃h−1)TCh(θ)−1(yh −Xhβ̃h−1)

where β̃0 := 0, λ−1
u ∼ GAM(αu, βu) and λ−1

c ∼ GAM(αc, βc). As β̃h−1 is treated like
a fixed hyperparameter when used as input for segment h, we exclude the parameters
β̃1, . . . , β̃H−1 from θ . Figure 2.3 shows a graphical representation of the coupled model.

For the posterior we have:

p(β, σ2, λu, λc|y) ∝ p(σ2) · p(λu) · p(λc) · p(β1|σ
2, λu) (2.12)

·
H∏
h=2

p(βh|σ
2, λc) ·

H∏
h=1

p(yh|σ2,βh)

In analogy to the derivations in the previous subsection one can derive (cf. [24]):

λ−1
u |(y,β, σ2, λc) ∼ GAM

(
αu + 1 · (k + 1)

2 , βu + 1
2σ
−2D2

u

)
(2.13)

λ−1
c |(y,β, σ2, λu) ∼ GAM

(
αc + (H − 1) · (k + 1)

2 , βc + 1
2σ
−2D2

c

)
(2.14)

where D2
u := βT

1β1 and D2
c :=

∑H

h=2(βh − β̃h−1)T(βh − β̃h−1).
For each θ = {λu, λc} the marginal likelihood, p(y|λu, λc), can be computed by plugging
the expressions Ch(θ) and ∆2(θ) into Equation (2.7).

2.1.5 Model M3: The partially segment-wise coupled model,
proposed here

The first new model, which we propose here, allows each segment h > 1 to uncouple from
the previous one h − 1. We use an uninformative prior for segment h = 1, and for all

2Note: β̃h−1 in Equation (2.4) is the posterior expectation of βh−1 given σ2 and θ = {λu, λc}.
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Figure 2.3: Graphical representation of the fully coupled model (M2). See caption
of Figure 2.2 for the terminology. Each posterior expectation β̃h is treated like a fixed
parameter vector when used as input for segment h+ 1. The prior for βh depends on
h.

segments h > 1 we introduce a binary variable δh which indicates whether segment h is
coupled to (δh = 1) or uncoupled from (δh = 0) the preceding segment h− 1:

βh ∼
{
N (0, σ2λuI) if h = 1
N (δh · β̃h−1, σ

2λ
δh
c λ

1−δh
u I) if h > 1

(2.15)

where β̃h−1 is again the posterior expectation of βh−1. The new priors from Equation (2.15)
yield for h ≥ 2 the following posterior expectations (cf. Equation (2.4)):

β̃h−1 =
(
λ
−δh−1
c λ

−(1−δh−1)
u I + XT

h−1Xh−1

)−1 (
δh−1λ

−1
c β̃h−2 + XT

h−1yh−1
)

With β̃0 := 0, δ1 := 0, we have in the generic model notation:

µh = δhβ̃h−1, Σh = λδhc λ
1−δh
u I, θ = {λu, λc, {δh}h≥2}, Ch(θ) = I + λδhc λ

1−δh
u XhXT

h

We assume the binary variables δ2, . . . , δH to be Bernoulli distributed, δh ∼ BER(p),
with p ∈ [0, 1] having a Beta distribution, p ∼ BETA(a, b).

• δh = 0 (h ≥ 2) gives model M1 with P (βh) = N (0, λuσ2I) for all h

• δh = 1 (h ≥ 2) gives model M2 with P (βh) = N (β̃h−1, λcσ
2I) for h ≥ 2.

• The new partially segment-wise coupled model infers the variables δh (h ≥ 2) from
the data, so as to find the best trade-off between model M1 and model M2.
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Figure 2.4: Graphical representation of the partially coupled model (M3), proposed
here. See caption of Figure 2.3 for the terminology. For each segment h it is inferred
from the data whether the prior for βh should be coupled to (δh = 1) or uncoupled
from (δh = 0) the preceding segment h− 1.

A graphical model presentation of the partially coupled model is shown in Figure 2.4. For
δh ∼ BER(p) with p ∼ BETA(a, b) the joint marginal density of {δh}h≥2 is:

p({δh}h≥2) =
∫
p(p)

H∏
h=2

p(δh|p) dp = Γ(a+ b)
Γ(a)Γ(b) ·

Γ(a+
H∑
h=2

δh)Γ(b+
H∑
h=2

(1− δh))

Γ(a+ b+ (H − 1))

For the posterior distribution of the partially segment-wise coupled model we get:

p(β, σ2, λu, λc, {δh}h≥2|y) ∝ p(σ2) · p(λu) · p(λc) · p({δh}h≥2) · p(β1|σ
2, λu)

·
H∏
h=2

p(βh|σ
2, λu, λc, δh) ·

H∏
h=1

p(yh|σ2,βh)

For the full conditional distributions of λu and λc we have:

p(λu|y,β, σ2, λc, {δh}h≥2) ∝ p(λu) ·
∏

h:δh=0

p(βh|σ
2, λu)

p(λc|y,β, σ2, λu, {δh}h≥2) ∝ p(λc) ·
∏

h:δh=1

p(βh|σ
2, λc)
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where δ1 := 0 fixed. And it follows from the shapes of the densities:

λ−1
u |(y,β, σ2, λc, {δh}h≥2) ∼ GAM

(
αu + Hu · (k + 1)

2 , βu + 1
2σ
−2D2

u

)
λ−1
c |(y,β, σ2, λu, {δh}h≥2) ∼ GAM

(
αc + Hc · (k + 1)

2 , βc + 1
2σ
−2D2

c

)
where Hc =

∑
h
δh is the number of coupled segments, Hu =

∑
h
(1− δh) is the number

of uncoupled segments, so that Hc +Hu = H , and

D2
u :=

∑
h:δh=0

βT
hβh, D2

c :=
∑
h:δh=1

(βh − β̃h−1)T(βh − β̃h−1) (2.16)

For each parameter instantiation θ = {λu, λc, {δh}h≥2} the marginal likelihood, p(y|θ),
can be computed with Equation (2.7), where Ch(θ) was defined above, and

∆2(θ) =
H∑
h=1

(yh − δhXhβ̃h−1)T [I + λδhc λ
1−δh
u XhXT

h

]−1 (yh − δhXhβ̃h−1)

Moreover, we have for each binary variable δk (k = 2, . . . , H):

p(δk = 1|λu, λc, {δh}h 6=k,y) ∝ p(y|λu, λc, {δh}h 6=k, δk = 1) · p({δh}h6=k, δk = 1)

so that its full conditional distribution is:

δk|(λu, λc, {δh}h 6=k,y) ∼ BER( p(y|λu, λc, {δh}h6=k, δk = 1) · p({δh}h 6=k, δk = 1)
1∑
j=0

p(y|λu, λc, {δh}h 6=k, δk = j) · p({δh}h6=k, δk = j)
)

Thus, each δk (k > 1) can be sampled with a collapsed Gibbs sampling step where
{βh}, σ2 and p have been integrated out.

2.1.6 Model M4: The generalised coupled model, proposed
here

We generalise the fully coupled model M2 by introducing segment-specific coupling
parameters λh for the segments h = 2, . . . , H . This yields:

βh ∼
{
N (0, σ2λuI) if h = 1
N (β̃h−1, σ

2λhI) if h > 1
(2.17)

where β̃h−1 is again the posterior expectation of βh−1. For the parameters λh we assume
that they are inverse Gamma distributed, λ−1

h ∼ GAM(αc, βc), with hyperparameters αc
and βc. Figure 2.5 gives a graphical model representation. Recalling the generic notation
and setting β̃0 := 0 and λ1 := λu, Equation (2.17) gives:

µh = β̃h−1, Σh = λhI, Ch(θ) = I + λhXhXT
h, θ = {λu, {λh}h≥2},

and ∆2(θ) =
H∑
h=1

(yh −Xhβ̃h−1)TCh(θ)−1(yh −Xhβ̃h−1)
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Figure 2.5: Graphical representation of the generalised coupled model (M4), pro-
posed here. See caption of Figures 2.2-2.3 for the terminology. Unlike the M2 model,
this new model has segment-specific coupling parameters λh (h > 1).

For the posterior we have:

p(β, σ2, λu, {λh}h≥2|y) ∝ p(σ2) · p(λu) ·

(
H∏
h=2

p(λh)

)
(2.18)

·p(β1|σ
2, λu) ·

H∏
h=2

p(βh|σ
2, λh) ·

H∏
h=1

p(yh|σ2,βh)

Like for the coupled model M2, it can be derived for k = 2, . . . , H :

λ−1
k |(y,β, σ

2, λu, {λh}h 6=k) ∼ GAM

(
αc + (k + 1)

2 , βc + 1
2σ
−2D2

k

)
and λ−1

u |(y,β, σ2, {λh}h≥2) ∼ GAM

(
αu + (k + 1)

2 , βu + 1
2σ
−2D2

u

)
where D2

u := βT
1β1 and D2

k := (βk − β̃k−1)T(βk − β̃k−1).
For each θ = {λu, {λh}h≥2} the marginal likelihood, p(y|{λu, {λh}h≥2}), can be com-
puted with Equation (2.7); using the expressions Ch(θ) and ∆2(θ) defined above.

2.1.7 Reversible Jump Markov Chain Monte Carlo inference
We use Reversible Jump Markov Chain Monte Carlo simulations [21] to generate posterior
samples {π(w), τ (w), θ(w)}w=1,...,W . In each iteration we re-sample the parameters in θ
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from their full conditional distributions (Gibbs sampling), and we perform two Metropolis-
Hastings moves; one on the covariate set π and one on the changepoint set τ . For the four
models Equation (2.1) takes the form:3

p(π, τ , θ|y) ∝


p(π) · p(τ ) · p(λu) · p(y|π, τ , λu) (M1)
p(π) · p(τ ) · p(λu) · p(λc) · p(y|π, τ , λu, λc) (M2)
p(π) · p(τ ) · p(λu) · p(λc) · p({δh}h≥2) · p(y|π, τ , λu, λc, {δh}h≥2) (M3)
p(π) · p(τ ) · p(λu) ·

(∏H

h=2 p(λh)
)
· p(y|π, τ , λu, {λh}h≥2) (M4)

For the models M1-M2 the dimension of θ does not depend on τ . For the new models
M3-M4 the dimension of θ depends on τ . Model M3 has a discrete parameter δh ∈ {0, 1}
for each segment h > 1. Model M4 has a continuous parameter λh ∈ R+ for each segment
h > 1. That is, we have three standard cases of RJMCMC:

M1: θ = {λu}. All segment-specific parameters can be integrated out.

M2: θ = {λu, λc}. All segment-specific parameters can be integrated out.

M3: θ = {λu, λc, {δh}h≥2}. All segment-specific parameters can be integrated out,
except for a set of discrete parameters {δh}h≥2 whose cardinality depends on H .

M4: θ = {λu, {λh}h≥2} All segment-specific parameters can be integrated out, except
for a set of continuous parameters {λh}h≥2 whose cardinality depends on H .

The model-specific full conditional distributions for the Gibbs sampling steps have
already been provided in subsections 2.1.3 to 2.1.6. For sampling covariate sets π we
implement 3 moves: the covariate ‘removal (R)’, ‘addition (A)’, and ‘exchange (E)’ move.
Each move proposes to replace π by a new covariate set π∗ having one covariate more (A)
or less (R) or exchanged (E). When randomly selecting the move type and the involved
covariate(s), we get for all models the acceptance probability:

A(π → π∗) = min
{

1, p(y|π
∗, . . .)

p(y|π, . . .) ·
p(π∗)
p(π) ·HRπ

}
with the Hastings Ratios: HRπ,R = |π|

n− |π∗| , HRπ,A = n− |π|
|π∗| , HRπ,E = 1

For sampling changepoint sets τ we also implement 3 move types: the changepoint
‘birth (B)’, ‘death (D)’, and ‘re-allocation (R)’ move. Each move proposes to replace τ by a
new changepoint set τ ∗ having one changepoint added (B) or deleted (D) or re-allocated
(R). When randomly selecting the move type, the involved changepoint and the new
changepoint location, we get for the models M1 and M2:

A(τ → τ ∗) = min
{

1, p(y|τ
∗, . . .)

p(y|τ , . . .) ·
p(τ ∗)
p(τ ) ·HRτ

}
with the Hasting Ratios: HRτ ,B = T − 1− |τ ∗|

|τ | , HRτ ,D = |τ ∗|
T − 1− |τ | , HRτ ,R = 1

For the new models M3 and M4 the changepoint moves also affect the numbers of para-
meters in {δh}h≥2 and {λh}h≥2, respectively. For segments that stay identical we keep the

3The likelihoods in the posterior distributions are marginalized over the regression coefficient
vectors {βh} and the variance σ2. In M3, where δh ∼ BER(p), the parameter p is also integrated
out.
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parameters unchanged. For altering segments we re-sample the corresponding parameters.
For M3 we flip coins to get candidates for the involved δh’s. This yields:

A([τ , {δh}]→ [τ ∗, {δh}∗]) = min
{

1, p(y|τ
∗, {δh}∗, . . .)

p(y|τ , {δh}, . . .)
p(τ ∗)
p(τ )

p({δh}∗)
p({δh})

·HRτ · cτ
}

where cτ ,B = 1/2 for birth, cτ ,D = 2 for death, and cτ ,R = 1 for re-allocation moves. For
M4 we re-sample the involved λh’s from their priors p(λh). We obtain:

A([τ , {λh}]→ [τ ∗, {λh}∗]) = min
{

1, p(y|τ
∗, {λh}∗, . . .)

p(y|τ , {λh}, . . .)
· p(τ

∗)
p(τ ) ·HRτ

}
since the new ratio in HRτ cancels with the prior ratio p({λh}∗)

p({λh})
.

2.1.8 Edge scores and areas under precision-recall curves (AUC)
For a network with N variables Z1, . . . , ZN we infer N separate regression models. For
each Zi we get a sample {π(w), τ (w), θ(w)}w=1,...,W from the i-th posterior distribution.
From the covariate sets we form a sample of graphs G(w) = {π(w)

1 , . . . ,π
(w)
N }w=1,...,W .

The marginal posterior probability that the network has the edge Zi → Zj is:

êi,j = 1
W

W∑
w=1

Ii→j(G(w)) where Ii→j(G(w)) =
{

1 if Xi ∈ π(w)
j

0 if Xi /∈ π(w)
j

We refer to êi,j as the ‘score’ of the edge Zi → Zj .
If the true network is known and hasM edges, we evaluate the network reconstruction

accuracy as follows: For each threshold ξ ∈ [0, 1] we extract the nξ edges whose scores êi,j
exceed ξ, and we count the number of true positives Tξ among them. Plotting the precisions
Pξ := Tξ/nξ against the recalls Rξ := Tξ/M , gives the precision-recall curve. Precision-
recall curves have advantages over the traditional Receiver-Operator-Characteristic (ROC)
curves (for ROC curves see, e.g., [32]). The advantages were for example shown in [11].
In this thesis we refer to the area under the precision-recall curve as AUC (‘area under
curve’) value.

2.1.9 Hyperparameter settings and simulation details
For the models M1, M2 and M4 we re-use the hyperparameters from the earlier works
by [38] and [24]: σ−2 ∼ GAM(ασ = ν, βσ = ν) with ν = 0.005, λ−1

u ∼ GAM(αu =
2, βu = 0.2), and λ−1

c ∼ GAM(αc = 3, βc = 3). For M3 we use the same setting with the
extension: δh ∼ BER(p) with p ∼ BETA(a = 1, b = 1). For the new models M3-M4
we also experimented with alternative hyperparameter settings, which we took from
[24]. In agreement with the results reported in [24], we found that the models are rather
robust w.r.t. the hyperparameter values. The results were only slightly affected by the
hyperparameter values.

For all models we run each Reversible Jump Markov Chain Monte Carlo (RJMCMC)
simulation for V = 100, 000 iterations. Setting the burn-in phase to 0.5V (50%) and
thinning out by the factor 10 during the sampling phase, yields W = 0.5V/10 = 5000
samples from each posterior. To check for convergence, we compared the samples of
independent simulations, using the conventional diagnostics, based on potential scale
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reduction factors [20] as well as scatter plots of the estimated edge scores. The latter type
of diagnostic has become very common for Bayesian networks (see, e.g., the work by
[17]). For most of the data sets, analysed here, the scatter plot diagnostics indicated almost
perfect convergence already after V = 10, 000 iterations; see Figure 2.9(a) for an example.
For V = 100, 000 iterations we consistently observed perfect convergence for all data sets.

2.2 Data

2.2.1 Synthetic network data

For model comparisons we generated various synthetic network data sets. We
report here on two studies with realistic network topologies, shown in Figure 2.6.
In both studies we assumed the data segmentation to be known. Hence, we kept
the changepoints in τ fixed at their right locations and did not perform reversible
jump Markov chain Monte Carlo moves on τ .

Study 1: For the RAF pathway [50] with N = 11 nodes and M = 20 edges,
shown in Figure 2.6, we generated data with H = 4 segments having m = 10
data points each. For each node Zi and its parent nodes in πi we sampled
the regression coefficients for h = 1 from standard Gaussian distributions
and collected them in a vector wi

1 which we normalised to Euclidean norm
1, wi

1 ← wi
1/|wi

1|. For the segments h = 2, 3, 4 we use: wi
h = wi

h−1 (δh = 1,
coupled) or wi

h = −wi
h−1 (δh = 0, uncoupled). The design matrices Xi

h contain
a first column of 1’s for the intercept and the segment-specific values of the
parent nodes, shifted by one time point. To the segment-specific values of Zi:
zih = Xi

hwi
h we element-wise added Gaussian noise with standard deviation

σ = 0.05. For all coupling scenarios (δ2, δ3, δ4) ∈ {0, 1}3, we generated 25 data
sets having different regression coefficients.

Study 2: This study is similar to the first one with three changes: (i) We
used the yeast network [8] with N = 5 nodes and M = 8 edges, shown in
Figure 2.6, (ii) again we generated data with H = 4 segments, but we varied the
number of time points per segment m ∈ {2, 3, . . . , 12}. (iii) We focused on one
scenario: For each node Zi and its parent nodes in πi we generated two vectors
wi
� and wi

? with standard Gaussian distributed entries. We re-normalised the
first vector to Euclidean norm 1, wi

� ← wi
�/|wi

�|, and the 2nd vector to norm 0.5,
wi
? ← 0.5 ·wi

?/|wi
?|. We set wi

1 = wi
2 = wi

� so that the segments h = 1 and h = 2
are coupled, and wi

3 = wi
4 = (wi

� + wi
?)/(|wi

� + wi
?|), so that the segments h = 3

and h = 4 are coupled, while the coupling between h = 3 and h = 2 is ‘moderate’.
For each m we generated 25 data matrices with different regression coefficients.

2.2.2 Yeast gene expression data

[8] synthetically designed a network in S. cerevisiae (yeast) with N = 5 genes,
and measured gene expression data under galactose- and glucose-metabolism:
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16 measurements were taken in galactose and 21 measurements were taken in
glucose, with 20 minutes intervals in between measurements. Although the
network is small, it is an ideal benchmark data set: The network structure is
known, so that network reconstruction methods can be cross-compared on real
wet-lab data. We pre-process the data as described in [24]. The true network
structure is shown in Figure 2.6 (left panel). As an example, a network prediction
obtained with the partially coupled model (M3) is shown in the centre panel. For
the prediction we extracted the 8 edges with the highest scores.

2.2.3 Arabidopsis gene expression data

The circadian clock in Arabidopsis thaliana optimizes the gene regulatory processes
with respect to the daily dark:light cycles (photo periods). In four experiments A.
thaliana plants were entrained in different dark:light cycles, before gene expres-
sion data were measured under constant light condition over 24- and 48-hour
time intervals. We follow [24] and merge the four time series to one single data
set with T = 47 data points and focus our attention on the N = 9 core genes:
LHY, TOC1, CCA1, ELF4, ELF3, GI, PRR9, PRR5, and PRR3.

2.3 Empirical results

We found that the proposed partially coupled model (M3), performed, overall,
better than the other models. Thus, we decided to use M3 as reference model.

2.3.1 Results for synthetic network data

We start with the RAF-pathway for which we generated network data for 8 dif-
ferent coupling scenarios. Figure 2.7(a) compares the network reconstruction
accuracies in terms of average AUC value differences. For 6 out of 8 scenarios
the three AUC differences are clearly in favour of M3. Not surprisingly, for the
two extreme scenarios, where all segments h ≥ 2 are either coupled (‘0111’) or
uncoupled (‘0000’), M3 performs slightly worse than the fully coupled models
(M2 and M4) or the uncoupled model (M1), respectively. But unlike the un-
coupled model (M1) for coupled data (‘0111’), and unlike the coupled models
(M2 and M4) for uncoupled data (‘0000’), the partially coupled model (M3) never
performs significantly worse than the respective ‘gold-standard’ model. For the
partially coupled model, Figure 2.7(b) shows the posterior probabilities that the
segments h = 2, 3, 4 are coupled. The trends are in good agreement with the
true coupling mechanism. Model M3 correctly infers whether the regression
coefficients stay similar (identical) or change (substantially). The generalised
coupled model (M4) can only adjust the segment-specific coupling strengths,
but has no option to uncouple. Like the coupled model (M2), it fails when the
parameters are subject to drastic changes. When comparing the coupled model
(M2) with the generalised coupled model (M4), we see that M2 performs better
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when only one segment is coupled, while the new M4 model is superior to M2 if
two segments are coupled, see the scenarios ‘0011’, ‘0110’, and ‘0101’.

For the yeast network we generated data corresponding to a ‘0101’ coupling
scheme and the change of the parameters (from the 2nd to the 3rd segment) is
less drastic than for the RAF pathway data. Figure 2.8 shows how the AUC
differences vary with the number of time points T , where T = 4m and m is
the number of data points per segment. For sufficiently many data points the
effect of the prior diminishes and all models yield high AUC values (see bottom
right panel). There are then no substantial differences between the AUC values
anymore. However, for the lower sample sizes again the partially coupled model
(M3) performs clearly best. For 12 ≤ m ≤ 28 model M3 is clearly superior to all
other models and for 30 ≤ T ≤ 40 it still outperforms the uncoupled (M1) as well
as the coupled (M2) model. The performance of the generalised model (M4) is
comparable to the performance of the uncoupled model. For moderate sample
sizes (12 ≤ T ≤ 44) model M4 is superior to the fully coupled model (M2).

2.3.2 Results for yeast gene expression data

For the yeast gene expression data we assume the changepoint(s) to be unknown
and we infer the segmentation from the data. Figure 2.9(a) shows convergence
diagnostics for the partially coupled model (M3). It can be seen from the scatter
plots that V = 10, 000 RJMCMC iterations yield already almost perfect conver-
gence. The edge scores of 15 independent MCMC runs are almost identical to
each other.

The average AUC scores of the models M1-M4 are shown in Figure 2.9(b).
Since the number of inferred changepoints grows with the hyperparameter p of
the geometric distribution on the distance between changepoints, we implemen-
ted the models with different p’s. The uncoupled model is superior to the coupled
model for the lowest p (p = 0.02) only, but becomes more and more inferior to
the coupled model, as p increases. This result is consistent with the finding in
[24], where it was argued that parameter coupling gets more important when
the number of segments H increases so that the individual segments become
shorter. The new partially coupled model (M3) performs consistently better than
the uncoupled and the coupled model (M1-M2). The only exemption occurs for
p = 0.1 where the coupled model (M2) appears to perform slightly (but not statist-
ically significantly) better than M3. For p’s up to p = 0.05 the fully coupled (M2)
and the generalised fully coupled model (M4) perform approximately equally
well. However, for the three highest p’s the new model M4 performs better
than the coupled model (M2) and even outperforms the partially coupled model
(M3). While the performances of the models M1-M3 decrease with the number
of changepoints, the performance of model M4 stays robust. Subsequently, we
re-analysed the yeast data with K = 1, . . . , 5 fixed changepoints. For each K we
used the first changepoint to separate the two parts of the time series (galactose
vs. glucose metabolism). Successively we located the next changepoint in the
middle of the longest segment to divide it into 2 segments, until K changepoints
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Figure 2.7: Results for synthetic RAF pathway data. We distinguish 8 coupling
scenarios (δ1 = 0, δ2, δ3, δ4). (a): Each histogram has three bars for the average AUC
differences between the partially coupled model (M3) and the other models: ‘M3 vs. M1
[=Uncoupled]’ (gray), ‘M3 vs. M4 [=Generalised]’ (black), and ‘M3 vs. M2 [=Coupled]’
(white). The error bars indicate 95% t-test confidence intervals. (b): Diagnostic for the
partially coupled model (M3): The bars give the posterior probabilities p(δh = 1|D)
that segment h is coupled to h− 1 (h = 2, 3, 4).

were set. Figure 2.10(a-b) show the average AUC scores and the AUC score dif-
ferences in favour of the partially coupled model (M3). Panel (a) reveals that the
partially coupled model (M3) reaches again the highest network reconstruction
accuracies. Panel (b) shows that the superiority of M3 is statistically significant,
with only one exemption: For K = 1 the uncoupled model M1 performs as good
as the partially coupled model (M3). Subsequently, we investigated the segment-
specific coupling posterior probabilities p(δh = 1|D) (h = 2, . . . ,H = K + 1) for
the partially coupled model (M3) and the posterior distributions of the coupling
parameters λu, λ2, . . . , λK+1 for the generalized model (M4), but we could not
find clear trends for any gene. As an example, we provide the results for gene
ASH1 in Figure 2.10(c-d). Panel (c) shows that the coupling posterior probabilit-
ies of model M3 do not have a clear pattern. However, it becomes obvious that
the partially coupled model makes use of segment-wise switches between the
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Figure 2.9: Analysis of the real yeast data. Panel (a): For each run length, V ∈
{100, 1000, 10000, 100000}we performed 15 RJMCMC simulations with the partially
coupled model (M3). We used the hyperparameter p = 0.05 for the changepoint prior.
For each V there is a scatter plot where the simulation-specific edge scores (vertical
axis) are plotted against the average scores for that V (horizontal axis). Panel (b): We
implemented the models M1-M4 with different hyperparameters p of the geometric
distribution for the distance between changepoints. For each p the bars show the
model-specific average AUC scores. The error bars indicate standard deviations.
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uncoupled and the coupled approach. Panel (d) shows that the distributions of
the coupling parameters, λ2, . . . , λK+1, of model M4 do not substantially differ
among segments. This might be the reason why the generalised coupled model
(M4) is not superior to the fully coupled model (M2).

2.3.3 Application to Arabidopsis gene expression data

For the Arabidopsis thaliana gene expression data we cannot objectively compare
the network reconstruction accuracies of the four models, since the true circadian
clock network is not known. We therefore only applied the partially coupled
model (M3), which we had found to be the best model in our earlier studies.
Figure 2.11 shows the Arabidopsis thaliana network, which was reconstructed
using the hyperparameter p = 0.1 for the geometric distribution on the distance
between changepoints. To obtain a network prediction, we extracted the 20
edges with the highest edge scores. Although a proper evaluation of the network
prediction is beyond the scope of this paper, we note that several features of the
network are consistent with the plant biology literature. E.g. the feedback loop
between LHY and TOC1 is the most important key feature of the circadian clock
network (see, e.g., the work by [41]). Many of the other predicted edges have been
reported in more recent works. E.g. the edges LHY → ELF3, LHY → ELF4,
GI → TOC1, ELF3 → PRR3 and ELF4 → PRR9 can all be found in the
circadian clock network (hypothesis) of [29].

2.4 Discussion and conclusions

We have proposed two new Bayesian piece-wise linear regression models (M3
and M4) for reconstructing regulatory networks from gene expression time series.
The partially coupled model (M3), shown in Figure 2.4, is a consensus model
between the conventional uncoupled model (M1) and the fully sequentially
coupled model (M2), proposed by [24]. In the uncoupled model (M1) the segment-
specific regression coefficients have to be learned for each segment separately.
In the fully coupled model (M2) each segment is compelled to be coupled to
the previous one. The new partially coupled model (M3) combines features of
the uncoupled and the fully coupled model. It infers for each segment whether
it is coupled to (or uncoupled from) the preceding segment. The generalised
coupled model (M4) is a generalisation of the coupled model (M2). Like the fully
coupled model (M2), it does not have any option to uncouple, but it possesses
segment-specific coupling parameters and allows for different coupling strengths
between segments. Figure 2.5 shows a graphical model representation of the
generalised model.

We have cross-compared the two newly proposed models (M3-M4) with the
two established models (M1-M2); see Figures 2.2-2.3 for their graphical model
representations. Our empirical results show that the generalised coupled model
(M4) does not yield consistent improvements over the coupled model (M2). In
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Figure 2.10: Results for real yeast data with fixed changepoints. We imposed K ∈
{1, . . . , 5} fixed changepoints. See Subsection 2.3.2 for more detail. Panel (a) show the
model-specific average total AUC scores with error bars indicating standard deviations.
Panel (b) shows the AUC score differences with error bars indicating 95% two-sided
t-test confidence intervals. Panel (c): Diagnostic for the partially coupled model (M3):
The bars give the posterior probabilities p(δh = 1|D) that segment h is coupled to
h − 1 (h = 2, . . . ,K + 1) for gene ASH1. Panel (d): Diagnostic for the generalized
coupled model (M4): In each panel there is a boxplot for each segment showing the
distributions of the logarithmic coupling parameters λh for gene ASH1.
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Figure 2.11: Prediction of the circadian clock network in Arabidopsis thaliana. The
prediction was obtained with the proposed partially coupled model (M3), using the
hyperparameter p = 0.1 for the geometric distribution on the distance between change-
points. The network shows the 20 edges with the highest edge scores.

next chapter, we will try to figure out why the generalised fully coupled model
did not perform better than the fully coupled model and we will try to refine this
model.

The partially coupled model (M3), on the other hand, led consistently to
improved network reconstruction accuracies. It has the desirable feature that it
comprises the uncoupled (M1) and the fully coupled (M2) model as limiting cases.
As the new partially segment-wise coupled model (M3) infers the best trade-off
between M1 and M2 from the data, we would argue that this model should have
precedence over the models M1 and M2 with regard to future applications.



Chapter 3

Generalized sequentially
coupled NH-DBNs

A drawback of the fully sequentially coupled model, as discussed in previous
chapters, is that all pairs of neighboring segments (h− 1, h) are coupled with the
same coupling parameter λc and thus with the same strength. For addressing
this pitfall we introduced generalized sequentially coupled model with segment-
specific coupling parameters in chapter 2. We showed that, this generalized
model does not perform consistently better reconstruction accuracy than the
coupled model in term of area under precision recall curve (AUC). In this chapter,
we investigate this problem and try to refine it. Therefore, we introduce an
improved version of generalized coupled model, proposed in chapter 2. Unlike
the original model, that is, sequentially coupled model, our novel model possesses
segment-specific coupling parameters, so that the coupling strengths between
parameters can vary over time. Thereby, to avoid model over-flexibility and to
allow for some information exchange among time segments, we globally couple
the segment-specific coupling (strength) parameters by introducing a hyperprior
onto the second hyperparameter of the coupling parameter prior which refine
the generalized coupled model introduced in previous chapter. Our empirical
results on synthetic as well as on real biological network data show that the new
model yields better network reconstruction accuracies than the original model.

The work, presented in this chapter, has been published in Statistica Neer-
landica (2018) (see [58]). Some parts of it also have been appeared in Proceedings
of the International Workshop on Statistical Modelling (2017) (see [55]).

3.1 Methods

We consider piecewise-linear regression models where the random variable Y is
the target and the random variablesX1, . . . , Xk are the covariates. We assume that
T data points D1, . . . ,DT are available and that the subscript index t ∈ {1, . . . , T}

31
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refers to T equidistant time points. Each data point Dt contains a value of the
target Y and the corresponding values of the k covariates. We assume further that
the T data points are allocated to H disjunct segments, h ∈ {1, . . . ,H}. Segment
h contains Th consecutive data points with

∑H
h=1 Th = T . Within each individual

segment h we apply a Bayesian linear regression model with a segment-specific
regression coefficient vector βh = (βh,0, . . . , βh,k)T. Let yh be the target vector
of length Th and let Xh be the Th-by-(k + 1) design matrix for segment h, which
includes a first column of 1’s for the intercept. For each segment h = 1, . . . ,H we
assume a Gaussian likelihood:

yh|(βh, σ2) ∼ N (Xhβh, σ
2I) (3.1)

where I denotes the Th-by-Th identity matrix, and σ2 is the noise variance para-
meter, which is shared among segments. We impose an inverse Gamma prior on
σ2, σ−2 ∼ GAM(ασ, βσ). In the forthcoming subsections we will present different
model instantiations with different prior distributions for the segment-specific
regression coefficient vectors βh (h = 1, . . . ,H).

3.1.1 The original sequential coupling scheme
In the sequentially coupled piecewise linear regression model, proposed by [24], it
is assumed that the regression coefficient vectors βh have the following Gaussian
prior distributions:

βh|(σ2, λu, λc) ∼
{
N (0, σ2λuI) if h = 1
N (β̃h−1, σ

2λcI) if h > 1
(h = 1, . . . ,H) (3.2)

where 0 is the zero vector of length k+ 1, I denotes the (k+ 1)-by-(k+ 1) identity
matrix, and β̃h−1 is the posterior expectation of βh−1. That is, only the first
segment h = 1 gets an uninformative prior expectation, namely the zero vector,
while the subsequent segments h > 1 obtain informative prior expectations,
stemming from the preceding segment h− 1. We follow [24] and refer to λu ∈ R+

as the signal-to-noise ratio (SNR) parameter and to λc ∈ R+ as the coupling
parameter. A low (high) SNR parameter λu yields a peaked (vague) prior for
h = 1 in Equation (3.2), and thus that the distribution of β1 is peaked (diffuse)
around the zero vector. A low (high) coupling parameter λc yields a peaked
(vague) prior for h > 1 in Equation (3.2), and thus a strong (weak) coupling of
βh to the posterior expectation β̃h−1 from the preceding segment. We note that
re-employing the variance parameter σ2 in Equation (3.2), yields a fully-conjugate
prior in both groups of parameters βh (h = 1, . . . ,H) and σ2 (see, e.g., Sections
3.3 and 3.4 in [19]) with the marginal likelihood given below in Equation (3.10).
The posterior distribution of βh (h = 1, . . . ,H) can be computed in closed form
[24]:

βh|(yh, σ
2, λu, λc)

∼
{
N
(
[λ−1
u I + XT

1 X1]−1XT
1 y1, σ

2(λ−1
u I + XT

1 X1)−1) if h = 1
N
(
[λ−1
c I + XT

hXh]−1(λ−1
c β̃h−1 + XT

hyh), σ2(λ−1
c I + XT

hXh)−1) if h ≥ 2
(3.3)
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and the posterior expectations in Equation (3.3) are the prior expectations used
in Equation (3.2):

β̃h−1 :=
{

[λ−1
u I + XT

1 X1]−1XT
1 y1 if h = 2

[λ−1
c I + XT

h−1Xh−1]−1(λ−1
c β̃h−2 + XT

h−1yh−1) if h ≥ 3
(3.4)

[24] assigned inverse Gamma priors to the parameters λu and λc:

λ−1
u ∼ GAM(αu, βu) (3.5)
λ−1
c ∼ GAM(αc, βc) (3.6)

The fully sequentially coupled model is then fully specified and we will refer to it
as theM0,0 model. A graphical model representation for the relationships in the
first segment h = 1 is provided in Figure 3.1, while Figure 3.2 shows a graphical
model representation for the segments h > 1. The posterior distribution of the
M0,0 model fulfills:

p(β1, . . . ,βH , σ
2, λu, λc|y1, . . . ,yH)

∝ p(y1, . . . ,yH ,β1, . . . ,βH , σ
2, λu, λc)

∝
H∏
h=1

p(yh|σ2,βh) · p(β1|σ2, λu)

·
H∏
h=2

p(βh|σ2, λc) · p(σ2) · p(λu) · p(λc)

(3.7)

Like the regression coefficient vectors βh, whose full conditional distributions
have been provided in Equation (3.3), the parameters λu and λc can also be
sampled from their full conditional distributions.

λ−1
c |(y1, . . . ,yH ,β1, . . . ,βH , σ

2, λu, λc)

∼ GAM

(
αc + (H − 1) · (k + 1)

2 , βc + 1
2σ
−2 ·

H∑
h=2

(βh − β̃h−1)T(βh − β̃h−1)

)
λ−1
u |(y1, . . . ,yH ,β1, . . . ,βH , σ

2, λu, λc)

∼ GAM
(
αu + 1 · (k + 1)

2 , βu + 1
2σ
−2 · βT

1β1

)
(3.8)

For the parameter σ2 a collapsed Gibbs sampling step, with βh (h = 1, . . . ,H)
integrated out, can be used:

σ−2|(y1, . . . ,yH , λu, λc)

∼ GAM

(
ασ + 1

2 · T, βσ + 1
2 ·

H∑
h=1

(yh −Xhβ̃h−1)TC−1
h (yh −Xhβ̃h−1)

)
(3.9)
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β1β̃0

Set β̃0 := 0

λu

β̃1
prior expectation

for β2

Compute
posterior expectation

of β1

σ2

y1 X1

αu βu

ασ βσ

λ−1u ∼ GAM(αu, βu)

β1 ∼ N(0, σ2λuI)
y1 ∼ N(X1β1, σ

2I)

σ−2 ∼ GAM(ασ, βσ)

segment h = 1

Figure 3.1: Graphical model of the probabilistic relationships in the first segment,
h = 1. Parameters that have to be inferred are represented by white circles. The
observed data (y1 and X1) and the fixed hyperparameters are represented by grey
circles. All nodes in the plate are specific for the first segment. The posterior expectation
β̃1 is computed and then treated like a fixed hyperparameter vector when used as
input for segment h = 2.

where β̃0 := 0 and Ch :=
{

I + λuXhXT
h if h = 1

I + λcXhXT
h if h > 1

For the marginal likelihood, with βh (h = 1, . . . ,H) and σ2 integrated out, the
marginalization rule from Section 2.3.7 of [5] can be applied:

p(y1, . . . ,yH |λu, λc) =
Γ(T2 + aσ)

Γ(aσ) · π
−T/2 · (2bσ)aσ

(
H∏
h=1

det(Ch))1/2

(3.10)

·(2bσ +
H∑
h=1

(yh −Xhβ̃h−1)TC−1
h (yh −Xhβ̃h−1))−(T2 +aσ)

where the matrices Ch were defined below Equation (3.9). For the derivations of
the full conditional distributions in Equations (3.8) and (3.9) and the marginal
likelihood in Equation (3.10) we refer to [24].

3.1.2 The improved sequential coupling scheme, proposed here

We propose to generalized the sequentially coupled model from Subsection 3.1.1
by introducing segment-specific coupling parameters λh (h = 2, . . . ,H) and a
new hyperprior onto the second hyperparameter of the coupling parameter prior.
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βhβ̃h−1
from h− 1

λc

β̃h
prior expectation

for βh+1

Compute
posterior expectation

of βh

σ2

yh Xh

αc βc

ασ βσ

λ−1c ∼ GAM(αc, βc)

βh ∼ N(β̃h−1, σ
2λcI)

yh ∼ N(Xhβh, σ
2I)

σ−2 ∼ GAM(ασ, βσ)

segment h

Figure 3.2: Graphical model of the probabilistic relationships within and between
segments h > 1 for theM0,0 model from [24]. Parameters that have to be inferred
are represented by white circles. The observed data and the fixed hyperparameters
are represented by grey circles. All nodes in the plate are specific for segment h.
The posterior expectation β̃h−1 of the regression coefficient vector from the previous
segment h− 1 is treated like a fixed hyperparameter vector. The posterior expectation
β̃h is computed and forwarded as fixed hyperparameter vector to the subsequent
segment h+ 1.

This yields the new prior distributions:

βh|(σ2, λu, λ2, . . . , λH) ∼
{
N (0, σ2λuI) if h = 1
N (β̃h−1, σ

2λhI) if h > 1
(3.11)

where β̃h−1 is again the posterior expectation of βh−1. For notational convenience
we now introduce two new definitions, namely: λ1 := λu and β̃0 := 0. We can
then compactly write: For h = 2, . . . ,H

β̃h−1 := [λ−1
h−1I + XT

h−1Xh−1]−1(λ−1
h−1β̃h−2 + XT

h−1yh−1) (3.12)

We show in the next subsection that β̃h−1, defined in Equation (3.12), is the
posterior expectation of βh−1, cf. Equation (3.14). For the parameter λu we re-use
the inverse Gamma prior with hyperparameters αu and βu. For the first segment
h = 1 we thus have the same probabilistic relationships like for the original model,
compare the graphical model representation in Figure 3.1. For the parameters λh
we assume that they are inverse Gamma distributed, λ−1

h ∼ GAM(αc, βc) where
αc is fixed and βc is a free hyperparameter. A free βc allows for information
exchange among the segments h = 2, . . . ,H . We impose a Gamma hyperprior
onto βc, symbolically βc ∼ GAM(a, b).
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βhβ̃h−1
from h− 1

λh

β̃h
prior expectation

for βh+1

Compute
posterior expectation

of βh

σ2

yh Xh

αc βc βc ∼ GAM(a, b)

ασ βσ

a b

λ−1h ∼ GAM(αc, βc)

βh ∼ N(β̃h−1, σ
2λhI)

yh ∼ N(Xhβh, σ
2I)

σ−2 ∼ GAM(ασ, βσ)

segment h

Figure 3.3: Graphical model of the probabilistic relationships within and between
segments h > 1 for the proposedM1,1 model. Parameters that have to be inferred are
represented by white circles. The observed data and the fixed hyperparameters are
represented by grey circles. All nodes in the plate are specific for segment h. Unlike the
originalM0,0 model, whose graphical model is shown in Figure 3.2, theM1,1 model
has a specific coupling parameter λh for each segment h > 1. Furthermore, there is a
new Gamma hyperprior onto the second parameter of the Inverse Gamma prior on λh.
The hyperprior allows for information exchange among the segment-specific coupling
parameters λ2, . . . , λH .

We refer to the improved model as theM1,1 model. A graphical model rep-
resentation of the relationships within and between segments h > 1 is provided
in Figure 3.3. The posterior of theM1,1 model is

p(β1, . . . ,βH , σ
2, λu, λ2, . . .λH , βc|y1, . . . ,yH)

∝ p(y1, . . . ,yH ,β1, . . . ,βH , σ
2, λu, λ2, . . . λH , βc)

∝
H∏
h=1

p(yh|σ2,βh) · p(β1|σ2, λu)

·
H∏
h=2

p(βh|σ2, λh) · p(σ2) · p(λu)

·
H∏
h=2

p(λh|βc) · p(βc)

(3.13)
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3.1.3 Full conditional distributions of the improved general-
ized coupled model

In this subsection we derive the full conditional distributions for theM1,1 model,
proposed in Subsection 3.1.2. For the derivations we exploit that the full condi-
tional densities are proportional to the joint density, and thus proportional to the
factorized joint density in Equation (3.13). From the shape of the densities we can
conclude what the full conditional distributions are. For notational convenience,
let {λh}h≥2 denote the set of coupling parameters λ2, . . . , λH and let {λk}k 6=h
denote the set of coupling parameters λ2, . . . , λh−1, λh+1, . . . , λH with parameter
λh left out.

The full conditional distribution ofβh (h = 1, . . . ,H) can be derived as follows.
With λ1 := λu and β̃0 := 0 we have:

p(βh|y1, . . . ,yH , {βk}k 6=h, σ2, λu, {λh}h≥2, βc)
∝ p(y1, . . . ,yH ,β1, . . . ,βH , σ

2, λu, {λh}h≥2, βc)
∝ p(βh|λh, σ2) · p(yh|βh, σ2)

∝ e−
1
2 (βh−β̃h−1)T(λhσ2I)−1(βh−β̃h−1) · e− 1

2 (yh−Xhβh)T(σ2I)−1(yh−Xhβh)

∝ e
− 1

2 ·β
T
h(σ−2[λ−1

h
·I+XT

hXh])βh + βT
h

(
σ−2(λ−1

h
β̃h−1+XT

hyh)
)

and from the shape of the latter density it follows for the full conditional distribu-
tion:

βh|(y1, . . . ,yH , {βk}k 6=h, σ2, λu, {λh}h≥2, βc) ∼ (3.14)

N
(
[λ−1
h I + XT

hXh]−1(λ−1
h β̃h−1 + XT

hyh) , σ2[λ−1
h I + XT

hXh]−1)
We note that the posterior expectation in Equation (3.14) is identical to the one
which we used in Equation (3.12).
For the full conditional distributions of the segment-specific coupling parameters
λh (h = 2, . . . ,H) we get:

p(λh|y1, . . . ,yH ,β1, . . . ,βH , σ
2, λu, {λk}k 6=h, βc)

∝ p(y1, . . . ,yH ,β1, . . . ,βH , σ
2, λu, {λh}h≥2, βc)

∝ p(λh|βc) · p(βh|σ2, λh)

∝ βαcc
Γ(αc)

(λ−1
h )αc−1e−βcλ

−1
h

· (2π)−
k+1

2
1√

det(λhσ2I)
e−

1
2 (βh−β̃h−1)T(λhσ2I)−1(βh−β̃h−1)

∝ (λ−1
h )αc+

k+1
2 −1 · e−λ

−1
h

(βc+ 1
2σ

−2(βh−β̃h−1)T(βh−β̃h−1)
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and it follows from the shape of the full conditional density:

λ−1
h |(y1, . . . ,yH ,β1, . . . ,βH , σ

2, λu, {λk}k 6=h, βc)

∼ GAM
(
αc + (k + 1)

2 , βc + 1
2σ
−2(βh − β̃h−1)T(βh − β̃h−1)

) (3.15)

For the full conditional distribution of λu we get in a similar way:

p(λu|y1, . . . ,yH ,β1, . . . ,βH , σ
2, {λh}h≥2, βc)

∝ p(y1, . . . ,yH ,β1, . . . ,βH , σ
2, λu, {λh}h≥2, βc)

∝ p(λu) · p(β1|σ2, λu)

∝ (λ−1
u )αu−1e−βuλ

−1
u · 1√

det(λuσ2I)
e−

1
2β

T
1(λuσ2I)−1β1

∝ (λ−1
u )(k+1)/2+αu−1 · e−λ

−1
u (βu+0.5σ−2βT

1β1)

The full conditional density has the shape of the inverse Gamma distribution in
Equation (3.8), i.e. the full conditional distribution of λu stays unchanged:

λ−1
u |(y1, . . . ,yH ,β1, . . . ,βH , σ

2, {λh}h≥2, βc)

∼ GAM
(
αu + 1 · (k + 1)

2 , βu + 1
2σ
−2 · βT

1β1

) (3.16)

The new hyperparameter βc can also be sampled from its full conditional distri-
bution. The shape of

p(βc|y1, . . . ,yH ,β1, . . . ,βH , σ
2λu, {λh}h≥2)

∝ p(y1, . . . ,yH ,β1, . . . ,βH , σ
2λu, {λh}h≥2, βc)

∝ p(βc) ·
H∏
h=2

p(λh|βc)

∝ ba

Γ(a) · β
a−1
c · e−bβc ·

H∏
h=2

(
βαcc

Γ(αc)
· λαc−1

h · e−βcλ
−1
h

)
∝ βa+(H−1)αc−1

c · e−(b+
∑H

h=2
λ−1
h

)βc

implies for the full conditional distribution of βc:

βc|(y1, . . . ,yH ,β1, . . . ,βH , σ
2, λu, {λh}h≥2)

∼ GAM

(
a+ (H − 1) · αc, b+

H∑
h=2

λ−1
h

)
(3.17)
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For the noise variance parameter σ2 we follow [24] and implement a collapsed
Gibbs sampling step (with the βh’s integrated out). We have:

p(yh|σ2, λh) =
∫
p(yh,βh|σ

2, λh)dβh =
∫
p(yh|βh, σ

2, λh)p(βh|σ
2, λh)dβh

=
∫
p(yh|βh, σ

2)p(βh|σ
2, λh)dβh

A standard rule for Gaussian integrals (see, e.g., Section 2.3.2 in [5]) implies for
the latter integral:

yh|(σ2, λh) ∼ N (Xhβ̃h−1, σ
2[I + λhXhXT

h ]) (3.18)

With λ1 := λu, β̃0 := 0, and using the marginal likelihood from Equation (3.18)
we have:

p(σ2|y1, . . . ,yH , λu, {λh}h≥2, βc)
∝ p(σ2, λu, {λh}h≥2, βc|y1, . . . ,yH)
∝ p(y1, . . . ,yH , σ2, λu, {λh}h≥2, βc)

∝

(
H∏
h=1

p(yh|σ2, λh)

)
· p(σ2) · p(λu) ·

H∏
h=2

p(λh|βc) · p(βc)

∝ exp{−σ−2(βσ + 0.5 ·
H∑
h=1

(yh −Xhβ̃h−1)T(I + λhXhXT
h)−1(yh −Xhβ̃h−1))}

· (σ−2)ασ+0.5·T−1

And the shape of the latter density implies the collapsed Gibbs sampling step
(with the βh’s integrated out):
σ−2|(y1, . . . ,yH , λu, {λh}h≥2, βc)

∼ GAM

(
ασ +

1
2
· T, βσ +

1
2

H∑
h=1

(yh −Xhβ̃h−1)T
(
I + λhXhXT

h

)−1
(yh −Xhβ̃h−1)

)
(3.19)

where λ1 := λu and β̃0 := 0.
For the marginal likelihood, with βh (h = 1, . . . ,H) and σ2 integrated out,

again the marginalization rule from Section 2.3.7 of [5] can be applied. For the
improved model the marginalization rule implies:

p(y1, . . . ,yH |λu, {λh}h≥2)

=
Γ(T2 + aσ)

Γ(aσ) · π−
T
2 (2bσ)aσ(

H∏
h=1

det(Ch)
)1/2

·

(
2bσ +

H∑
h=1

(yh −Xhβ̃h−1)TC−1
h (yh −Xhβ̃h−1)

)−(T2 +aσ)

(3.20)

where λ1 := λu, β̃0 := 0, and Ch := I + λhXhXT
h ,
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Figure 3.4: Graphical model for the 1st ‘in between’ model M1,0. See caption of
Figure 3.2 for the terminology. The model is an extension of the original sequentially
coupled model, whose graphical model is shown in Figure 3.2. Unlike the original
M0,0 model, theM1,0 has a free hyperparameter, βc, with a Gamma hyperprior.

3.1.4 Models ‘in between’ the original and the improved se-
quentially coupled model

In the last subsection we have proposed an improved sequentially coupled model,
M1,1. Compared to the original modelM0,0 from Subsection 3.1.1 we have pro-
posed two modifications: (1) To replace the shared coupling parameter λc by
segment-specific coupling parameters {λh}h≥2, and (2) to impose a hyperprior
onto the hyperparameter βc of the inverse Gamma prior on the coupling para-
meters {λh}h≥2. To shed more light onto the relative merits of the two individual
modifications, we also define the two ‘in between’ models where only one of the
two modifications is implemented.

The first ‘in between’ modelM1,0 does not introduce segment-specific coup-
ling parameters, but places a hyperprior onto the hyperparameter βc of the
Inverse Gamma prior on the shared coupling parameter λc. A graphical model
representation forM1,0 is shown in Figure 3.4. The posterior distribution of the
M1,0 model is an extension of Equation (3.7):

p(β1, . . . ,βH , σ
2, λu, λc, βc|y1, . . . ,yH) ∝

H∏
h=1

p(yh|σ2,βh) · p(β1|σ2, λu)

·
H∏
h=2

p(βh|σ2, λc) · p(σ2)

·p(λu) · p(λc|βc) · p(βc)
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The modification does neither change the earlier defined full conditional
distributions from Subsection 3.1.1 nor the marginal likelihood in Equation (3.10).
The only difference is that βc has become a free parameter which, thus, must now
be sampled too. For the full conditional distribution of βc in theM1,0 model we
have:

p(βc|y1, . . . ,yH ,β1, . . . ,βH , σ
2λu, λc)

∝ p(β1, . . . ,βH , σ
2λu, {λh}h≥2, βc|y1, . . . ,yH)

∝ p(λc|βc) · p(βc)

∝ βαcc
Γ(αc)

· λαc−1
c · e−βcλ

−1
c · ba

Γ(a) · β
a−1
c · e−bβc

∝ βa+αc−1
c · e−(b+λ−1

c )βc

This implies for the full conditional distribution of βc:

βc|(y1, . . . ,yH ,β1, . . . ,βH , σ
2, λu, λc) ∼ GAM

(
a+ αc, b+ λ−1

c

)
(3.21)

The second ‘in between’ model M0,1 does make use of segment-specific
coupling parameters {λh}h≥2, but keeps the hyperparameter βc of the Inverse
Gamma priors on the parameters {λh}h≥2 fixed. This yields that the segment-
specific coupling parameters λ2, . . . , λH are independent a priori. A graphical
model representation is shown in Figure 3.5. The posterior distribution of the
2nd ‘in between’ modelM0,1 is a simplified version of Equation (3.13):

p(β1, . . . ,βH , σ
2, λu, {λh}h≥2|y1, . . . ,yH) ∝

H∏
h=1

p(yh|σ2,βh) · p(β1|σ2, λu)

·
H∏
h=2

p(βh|σ2, λh)

·p(σ2) · p(λu) ·
H∏
h=2

p(λh)

and the modification (i.e. fixing βc) does neither change the full conditional distri-
butions in Equations (3.14), (3.15), (3.16) and (3.19) nor the marginal likelihood in
Equation (3.20). The only difference is that βc is kept fixed and will not be inferred
from the data. The corresponding Gibbs sampling step (see Equation (3.21)) is
never performed.

3.1.5 Learning the covariate set
In typical applications the covariates have to be inferred from the data. That is,
there is a set of potential covariates and the subset, relevant for the target Y , has
to be found.
Let X1, . . . , Xn be a set of potential covariates for the target variable Y , and let
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βhβ̃h−1
from h− 1

λh

β̃h
prior expectation

for βh+1

Compute
posterior expectation

of βh

σ2

yh Xh

αc βc

ασ βσ

λ−1h ∼ GAM(αc, βc)

βh ∼ N(β̃h−1, σ
2λhI)

yh ∼ N(Xhβh, σ
2I)

σ−2 ∼ GAM(ασ, βσ)

segment h

Figure 3.5: Graphical model for the 2nd ‘in between’ model M0,1 . See caption
of Figure 3.3 for the terminology. The model is similar to the proposed improved
sequentially coupled model, whose graphical model is shown in Figure 3.3. Unlike the
proposedM1,1 model, theM0,1 model has a fixed hyperparameter βc.

D1, . . . ,DT be equidistant temporally ordered data points. Each Dt contains
a target value yt and the values x1,t−1, . . . , xn,t−1 of the n potential covariates.
A priori we assume that all covariate sets π ⊂ {X1, . . . , Xn} with up to three
covariates are equally likely, while all parent sets with more than three elements
have zero prior probability.1

p(π) =
{

1
c if|π| ≤ 3
0 if|π| > 3

where c =
3∑
i=0

(
n

i

)
We make the assumption that there cannot be more than 3 covariates (|π| ≤ 3)

with regard to our applications in the field of gene network inference, and we note
that this assumption might be inappropriate for other applications. However,
in the context of gene regulatory networks this assumption is very common.
The known topologies of gene regulatory networks suggest that there are rarely
genes that are regulated by more than three regulators. The assumption is thus
biologically reasonable and has the advantage that it reduces the complexity
of the problem and the computational costs of the Markov Chain Monte Carlo
(MCMC) based model inference.

Given a fixed segmentation into the segments h = 1, . . . ,H , for each possible
covariate set π the piecewise linear regression models can be applied. We focus
our attention on the improved sequentially coupled modelM1,1 from Subsec-
tion 3.1.2, but we note that the MCMC algorithm can also be used for generating
samples for the competing models (M0,0,M1,0, andM0,1). Only the marginal
likelihood expressions have to be replaced in the acceptance probabilities.

1To be consistent with earlier studies we assume all covariate sets containing up to three covariates
to be equally likely.
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Using the marginal likelihood from Equation (3.20), we obtain for the posterior
of theM1,1 model:

p(π, λu, {λh}h≥2, βc|D1, . . . ,DT ) ∝ p(y1, . . . ,yH |λu, {λh}h≥2, βc, π) (3.22)

·p(π) · p(λu) ·
H∏
h=2

p(λh|βc) · p(βc)

Given λu, {λh}h≥2, and βc, the Metropolis-Hasting algorithm can be used to
sample the covariate set π. We implement 3 moves: In the deletion move (D)
we randomly select one Xi ∈ π and remove it from π. In the addition move (A)
we randomly select one Xi /∈ π and add it to π. In the exchange move (E) we
randomly select one Xi ∈ π and replace it by a randomly selected Xj /∈ π. Each
move yields a new covariate set π?, and we propose to replace the current π by
π?. When randomly selecting the move type the acceptance probability for the
proposed move is:

A(π, π?) = min
{

1, p(y1, . . . ,yH |λu, {λh}h≥2, βc, π
?)

p(y1, . . . ,yH |λu, {λh}h≥2, βc, π) ·
p(π?)
p(π) ·HR

}

where HR =


|π|

n−|π?| for (D)
n−|π|
|π?| for (A)

1 for (E)

n is the number of potential covariates X1, . . . , Xn, and |.| denotes the cardinality.

3.1.6 Learning the segmentation
If the segmentation of the data is unknown, we can also infer it from the data. We
assume that a changepoint set τ := {τ1, . . . , τH−1} with 1 ≤ τh < T divides the
data points D1, . . . ,DT into disjunct segments h = 1, . . . ,H covering T1, . . . , TH
consecutive data points, where

∑H
h=1 Th = T . Data point Dt (1 ≤ t ≤ T ) is

in segment h if τh−1 < t ≤ τh, where τ0 := 1 and τH := T . A priori we
assume that the distances between changepoints are geometrically distributed
with hyperparameter p ∈ (0, 1) and that there cannot be more H = 10 segments.2

This implies for the prior density:

p(τ ) =
{

(1− p)τH−τH−1 ·
∏H−1
h=1 p · (1− p)τh−τh−1−1 if |τ | ≤ 9 (i.e. H ≤ 10)

0 if |τ | > 9 (i.e. H > 10)
(3.23)

Let yτ := {y1, . . . ,yH} be the segmentation, implied by the changepoint set τ .

2The assumption that there cannot be more than H = 10 segments is made with regard to
our applications. Gene expression time series are often rather short; the gene expressions in yeast,
described in Subsection 3.2.2, have been measured over T = 33 time points only. Restricting
the number of segments H avoids segmentations whose individual segments are very short and
uninformative.
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Again we focus on the improved sequentially coupled modelM1,1, and just
note that the MCMC algorithm requires only minor adaptions when used for
the three competing models, namely the original sequentially coupled model
M0,0 (see Subsection 3.1.1) and the two ‘in between’ modelsM1,0 andM0,1 (see
Subsection 3.1.4).

Using the marginal likelihood from Equation (3.20), the posterior of the im-
proved model takes the form:

p(π, τ , λu, {λh}h≥2, βc|D1, . . . ,DT ) ∝ p(yτ |λu, {λh}h≥2, βc, π, τ ) (3.24)

·p(π) · p(τ ) · p(λu) ·
H∏
h=2

p(λh|βc) · p(βc)

For sampling the changepoint sets we also implement 3 Metropolis Hastings
moves. Each move proposes to replace the current changepoint set τ by a new
changepoint set τ ?, and τ ? implies a new data segmentation y?τ := {y?1, . . . ,y?H?}.
The new segmentation y?τ contains new segments h that have not been in yτ ,
symbolically y?h /∈ yτ , and for each of those segments h we sample a new
segment specific coupling parameter from the prior, λ?h ∼ INV-GAM(αc, βc). For
all other segments we do not change the segment-specific coupling parameters.
Let {λ?h}h≥2 denote the set of coupling parameters associated with the new
segmentation y?τ .

In the birth move (B) we propose to set a new changepoint at a randomly
selected location. The new changepoint set τ ? then containsH? = H+1 segments.
The new changepoint is located in a segment h and divides it into two consecutive
sub-segments h and h+ 1. For both we re-sample the segment-specific coupling
parameters λ?h, λ

?
h+1 ∼ INV-GAM(αc, βc). In the death move (D) we randomly

select one changepoint τ ∈ τ and delete it. The new changepoint set τ ? then
contains H? = H−1 segments. Removing a changepoint yields that two adjacent
segments h and h + 1 are merged into one single segment h, and we sample
λ?h ∼ INV-GAM(αc, βc). In the reallocation move (R) we randomly select one
changepoint τ ∈ τ and propose to re-allocate it to a randomly selected position in
between the two surrounding changepoints. The re-allocated changepoint yields
new bounds for two consecutive segments h (whose upper bound changes) and
h + 1 (whose lower bound changes), and for both segments we re-sample the
coupling parameters λ?h, λ

?
h+1 ∼ INV-GAM(αc, βc).

When randomly selecting the move type, the acceptance probabilities for the
move from the changepoints set τ with segmentation yτ := {y1, . . . ,yH} and
coupling parameters {λh}h≥2 to the changepoint set τ ? with the new segmenta-
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tion y?τ := {y?1, . . . ,y?H?} and the new coupling parameters {λ?h}h≥2 is:

A([τ , {λh}h≥2], [τ ?,{λ?h}h≥2])

= min
{

1, p(yτ
? |λu, {λ?h}h≥2, βc, π, τ

?)
p(yτ |λu, {λh}h≥2, βc, π, τ ) ·

p(τ ?)
p(τ ) ·HR

}

where HR =


T−1−|τ ∗|
|τ | for (B)
|τ ∗|

T−1−|τ | for (D)

1 for (R).

T is the number of data points, and |.| denotes the cardinality. We note that
the prior ratio p({λ?h}h≥2)

p({λh}h≥2) has cancelled with the inverse proposal ratio (HR) for
re-sampling the coupling parameters for the new segments.

To adapt the MCMC algorithm to the competing models, the marginal likeli-
hood expressions in the acceptance probability have to be replaced. Moreover,
for the two models (M0,0 andM1,0) with a shared coupling parameter λc, we
follow [24] and implement the three changepoint moves such that they do not
propose to re-sample λc.

3.1.7 Markov Chain Monte Carlo (MCMC) inference
For model inference we use a Markov Chain Monte Carlo (MCMC) algorithm.
For the posterior distribution of the improved sequentially coupled modelM1,1,
described in Subsection 3.1.2, we have:

p(π, τ , λu, {λh}h≥2, βc|D1, . . . ,DT ) ∝ p(yτ |λu, {λh}h≥2, βc, π, τ ) (3.25)

·p(π) · p(τ ) · p(λu) ·
H∏
h=2

p(λh|βc) · p(βc)

We initialize all entities, e.g. π = {}, τ = {}, λu = 1, λh = 1 for h > 1, and βc = 1,
before we iterate between Gibbs and Metropolis-Hastings sampling steps:

Gibbs sampling part: We keep the covariate set π and the changepoint set
τ fixed, and we successively re-sample the parameters λu, λh (h = 2, . . . ,H),
and βc from their full conditional distributions. Although the parameters σ2 and
βh (h = 1, . . . ,H) do not appear in the posterior above, the full conditionals of
λu and λ2, . . . , λH depend on instantiations of σ2 and βh. The latter parameters
thus have to be sampled first, but can then be withdrawn at the end of the
Gibbs sampling part. The full conditional distributions have been derived in
Subsection 3.1.3. With λ1 := λu and β̃0 = 0 we have:
(G.1) σ−2 ∼ GAM(

ασ + 1
2 · T, βσ + 1

2
∑H

h=1(yh −Xhβ̃h−1)T (I + λhXhXT
h

)−1 (yh −Xhβ̃h−1)
)

(G.2) βh ∼ N
(
[λ−1
h I + XT

hXh]−1(λ−1
h β̃h−1 + XT

hyh) , σ2[λ−1
h I + XT

hXh]−1)
(h = 1, . . . , H)

(G.3) λ−1
u ∼ GAM

(
αu + 1·(k+1)

2 , βu + 1
2σ
−2 · βT

1β1
)
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(G.4) λ−1
h ∼ GAM

(
αc + (k+1)

2 , βc + 1
2σ
−2(βh − β̃h−1)T(βh − β̃h−1)

)
(h = 1, . . . , H)

(G.5) βc ∼ GAM
(
a+ (H − 1) · αc, b+

∑H

h=2 λ
−1
h

)
We note that each Gibbs step yields parameter updates and that the sub-

sequent full conditional distributions are always based on the newest parameter
instantiations (sampled in the previous steps).

Metropolis-Hastings sampling part: We keep λu, λh (h = 2, . . . ,H), and βc
fixed, and we perform one Metropolis-Hastings move on the covariate set π and
one Metropolis Hastings step on the changepoint set τ .

(M.1) We propose to change the covariate set π → π? by adding, deleting or ex-
changing one covariate. The new covariate set is accepted with probability
A(π, π?); see Subsection 3.1.5 for details. If accepted, we replace π ← π?. If
rejected, we leave π unchanged.

(M.2) We propose to change the changepoint set τ → τ ? by adding, deleting or
reallocating one changepoint. Along with the changepoint set we propose
to update coupling parameters, {λh}h≥2 → {λ?h}h≥2. The new state is ac-
cepted with probability A([τ , {λh}h≥2], [τ ?, {λh}?h≥2]); see Subsection 3.1.6
for details. If accepted, we replace τ ← τ ? and {λh}h≥2 ← {λ?h}h≥2. If
rejected, we leave τ and {λh}h≥2 unchanged.

The MCMC algorithm, consisting of seven sampling steps (G.1-5) and (M.1-2)
yields a posterior sample:

{π(r), τ (r), λ(r)
u , {λh}(r)

h≥2, β
(r)
c } ∼ p(π, τ , λu, {λh}h≥2, βc|D1, . . . ,DT ) (r = 1, . . . , R)

We adapt the MCMC inference algorithm for the three alternative models (M0,0,
M1,0, and M0,1) from Subsection 3.1.1 and 3.1.4. To this end, we modify the
Gibbs- and Metropolis Hastings- steps as outlined in Subsections 3.1.4 to 3.1.6.

3.1.8 Learning dynamic networks
Dynamic network models are used for learning the regulatory interactions among
variables from time series data. The standard assumption is that all regulatory
interactions are subject to a time lag ξ ∈ N. Here we assume that the time lag
has the standard value ξ = 1. We further assume that the values of n random
variables Y1, . . . , Yn have been measured at T equidistant time points t = 1, . . . , T .
Let D denote the n-by-T data matrix with Di,t being the observed value of Yi at
time point t. The piecewise linear regression models, described in the previous
subsections, can then be applied to each variable Yi (i = 1, . . . , n) separately.

In the i-th regression model Yi is the target, and the potential covariates are
the ñ := n− 1 remaining variables Y1, . . . , Yi−1, Yi+1, . . . , Yn. Given the time lag
ξ, the number of data points, which can be used for the regression model, reduces
from T to T̃ := T − ξ. For each target Yi we have the data points Di,1, . . . ,Di,T̃ ,
and each data point Di,t (t = 1, . . . , T̃ ) contains a target value Di,t+ξ (i.e. the
value of Yi at time point t + ξ) and the values of the ñ potential covariates:
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D1,t, . . . ,Di−1,t,Di+1,t, . . . ,DN,t (i.e the values of Y1, . . . , Yi−1, Yi+1, . . . , Yn at
the shifted time point t).

The system of all n covariate sets {πi}i=1,...,n, where πi is the covariate set for
Yi, can be thought of as a network. There is an edge Yj → Yi in the network if
Yj is a covariate for Yi, symbolically Yj ∈ πi. There is no edge from Yj to Yi in
the network if Yj /∈ πi. We represent the resulting network in form of a n-by-n
adjacency matrix N whose elements are binary, Nj,i ∈ {0, 1}. Nj,i = 1 indicates
that there is an edge from Xj to Xi (i.e. that Xj ∈ πi).

For each Yi we can generate a posterior sample, as described in Subsec-
tion 3.1.7. For each Yi we then extract the covariate sets, π(1)

i , . . . , π
(R)
i from

the sample, and use the covariate sets to build a sample of adjacency matrices
N (1), . . . ,N (R) where N (r)

j,i = 1 if Xj ∈ π
(r)
i (i, j ∈ {1, . . . , n}; r ∈ {1, . . . , R}).

The mean of the adjacency matrices:

N̂ := 1
R

R∑
r=1
N (r)

yields estimates of the marginal posterior probabilities that the individual edges
are present. E.g. N̂j,i ∈ [0, 1] is an estimate for the marginal probability that there
is an edge from Xj to Xi (i.e. that Xj ∈ πi). By imposing a threshold ψ ∈ [0, 1]
on the edge probabilities, we get a concrete network prediction. The predicted
network contains all edges Xj → Xi whose probability to be present is equal to
or higher than ψ (N̂j,i ≥ ψ).

For applications where the true network is known, we can build the n-by-n
adjacency matrix of the true network T with Tj,i ∈ {0, 1} and Tj,i = 1 if and only
if the true network contains the edge Xj → Xi. For each ψ ∈ [0, 1] we can then
compute the recallR(ψ) and the precision P(ψ) of the predicted network:

R(ψ) = |{Xj → Xi|Tj,i = 1, N̂j,i ≥ ψ}|
|{Xj → Xi|Tj,i = 1}|

P(ψ) = |{Xj → Xi|Tj,i = 1, N̂j,i ≥ ψ}|
|{Xj → Xi|N̂j,i ≥ ψ}|

The curve {(R(ψ),P(ψ))|0 ≤ ψ ≤ 1} is the precision recall curve ([11]). The area
under the precision recall curve (AUC), which can be obtained by numerical
integration, is a popular measure for the network reconstruction accuracy. The
higher the AUC, the higher the accuracy of the predicted network.

3.1.9 Technical details of our simulation study
Table 3.1 provides an overview to the four models Mi,j (i, j ∈ {0, 1}) under
comparison. We re-use the hyperparameters from the works by [38] and [24],
namely

σ−2 ∼ GAM(ασ = 0.005, βσ = 0.005) and λ−1
u ∼ GAM(αu = 2, βu = 0.2)
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For the models without hyperprior (M0,0 andM0,1) we further set:

λ−1
c , λ−1

h ∼ GAM(αc = 2, βc = 0.2)

while we use for the models with hyperprior (M1,0 andM1,1):

λ−1
c , λ−1

h ∼ GAM(αc = 2, βc)

with βc ∼ GAM(a = 0.2, b = 1) so that E[βc] = a

b
= 0.2

For the four models we run the MCMC algorithms with 100, 000 iterations.
Withdrawing the first 50% of the samples (‘burn-in phase’) and thinning out the
remaining 50, 000 samples (from the ‘sampling phase’) by the factor 100, yields
R = 500 samples from each posterior. To check for convergence, we applied
diagnostics based on trace plot and potential scale reduction factors (PSRFs)
diagnostics, see, e.g., [20]. All diagnostics indicated perfect convergence for the
above setting.

3.2 Data

3.2.1 Synthetic RAF-pathway data

For our cross-method comparison we generate synthetic network data from
the RAF pathway, as reported in [50]. The RAF-pathway shows the regulatory
interactions among the following n = 11 proteins: Y1: PIP3, Y2: PLCG, Y3: PIP2,
Y4: PKC, Y5: PKA, Y6: JNK, Y7: P38, Y8: RAF, Y9: MEK, Y10: ERK, and Y11: AKT.
There are 20 regulatory interactions (directed edges) in the RAF pathway. We
extract the true 11-by-11 adjacency matrix T where Tj,i = 1 if there is an edge
from the jth to the ith protein. We get:

T =



0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 0 0 1 1
1 1 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


The covariate set of variable Yi is then: πi = {Yj : Tj,i = 1}. We follow [24]

and generate synthetic data sets with H = 4 segments having m data points
each. For each Yi we thus require 4 segment-specific regression coefficient vectors
βi,1, . . . ,βi,4 each being of length |πi| + 1. Given those vectors, we generate
11-by-(4m+ 1) data matrices D, where Di,t is the value of Yi at t. Let D.,t denote
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the tth column of D (i.e. the values of the variables at t) and let Dπi,t denote
the subvector of D.,t containing only the values of the |πi| covariates of Yi. We
randomly sample the values of D.,1 from independent Gaussian distributions
with mean 0 and variance σ2 = 0.025, before we successively generate data for
the next time points. Di,t (i = 1, . . . , 11; t = 2, . . . , 4m+ 1) is generated as follows:

Di,t = (1,DT
πi,t−1) · βi,H(t) + εi,t, (3.26)

where the εi,t are iid N (0, σ2) distributed noise variables, and H(t) is a step
function, indicating the segment to which time point t belongs:

H(t) =


1, 2 ≤ t ≤ m+ 1
2, m+ 2 ≤ t ≤ 2m+ 1
3, 2m+ 2 ≤ t ≤ 3m+ 1
4, 3m+ 2 ≤ t ≤ 4m+ 1

.

We sample the regression coefficient vectors for the first segment h = 1, βi,1
(i = 1, . . . , 11), from independent standard Gaussian distributions and normalize

each vector to Euclidean norm 1: βi,1 ←
βi,1
|βi,1|

. For the segments h > 1 we change

the vector from the previous segment, βi,h−1, as follows:

(U) Either we change the regression coefficients drastically by flipping their
signs, βi,h = (−1) · βi,h−1. We then say that segment h is uncoupled (‘U’)
from segment h− 1; i.e. βi,h and βi,h−1 are very dissimilar.

(C) Or we change the regression coefficients moderately. To this end, we first
sample the entries of a new vector βi,? from independent standard Gaus-

sians, N (0, 1), and normalize βi,? to Euclidean norm ε, βi,? ← ε · βi,?
|βi,?|

,

where ε is a tuning parameter. Then we add the new vector to the vector
βi,h−1 and re-normalize the result to Euclidean norm 1:

βi,h :=
βi,h−1 + βi,?
|βi,h−1 + βi,?|

.

We then say that segment h is coupled (‘C’) to segment h− 1; i.e. βi,h and
βi,h−1 are similar.

We use the symbolic notation: ‘C − U − C’ to indicate that segment 2 is
coupled to segment 1, segment 3 is uncoupled from segment 2, and segment 4 is
coupled to segment 3. In our simulation study we consider all possible scenarios
‘S2 − S3 − S4’ with Sh ∈ {C,U} (h = 2, 3, 4), where Sh = U (Sh = C) indicates
that segment h is uncoupled from (coupled to) segment h− 1; i.e. the regression
coefficient vectors βi,h and βi,h−1 are dissimilar (similar).

For coupled segments (‘C’) the parameter ε regulates how similar the vectors
βi,h and βi,h−1 are. For our first study we set ε = 0.25. In a follow-up study we
then investigate the effect of ε, and vary this parameter (ε ∈ {0, 0.25, 0.5, 1}).
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GAL80 

GAL4 

SWIS 

CBF1 

ASH1 

Figure 3.6: The true yeast network, as synthetically designed by [8].

3.2.2 Yeast gene expression data

[8] synthetically generated a small network of n = 5 genes in Saccharomyces
cerevisiae (yeast), depicted in Figure 3.6. The five genes are: CBF1, GAL4, SWI5,
GAL80, and ASH1. The network among those genes was obtained from syn-
thetically designed yeast cells grown with different carbon sources: galactose
(“switch on”) or glucose (“switch off”). [8] obtained in vivo data with quantitative
real-time RT-PCR in intervals of 20 minutes up to 5 hours for the first, and in
intervals of 10 minutes up to 3 hours for the second condition. This led to the
sample sizes T1 = 16 (“switch on”) and T2 = 21 (“switch off”). We follow [24] and
pre-process the data, (D(1)

.,1 , . . . ,D
(1)
.,16) and (D(2)

.,1 , . . . ,D
(2)
.,21), where D(c)

.,t is the t-th
observation (vector) of the c-th condition (c = 1, 2), as follows: For both conditions
we withdraw the initial measurements D(1)

.,1 and D(2)
.,1 , as they were taken while

extant glucose (galactose) was washed out and new galactose (glucose) was sup-
plemented. This leaves us with the data vectors: D(1)

.,2 , . . . ,D
(1)
.,16,D

(2)
.,2 , . . . ,D

(2)
.,21,

which we standardize via a log transformation and a subsequent gene-wise mean
standardization (to mean 0). We also take into account that D(2)

.,2 has no proper

relation with D(1)
.,16. For each target gene Yi with covariate set πi we therefore

only use T̃ = T1 +T2−4 = 33 target D(1)
i,3 , . . . ,D

(1)
i,16,D

(2)
i,3 , . . . ,D

(2)
i,21 and covariate

values D(1)
πi,2, . . . ,D

(1)
πi,15,D

(2)
πi,2, . . . ,D

(2)
πi,20.

3.3 Empirical results

3.3.1 Results for synthetic RAF pathway data

In our first empirical evaluation study we cross-compare the network recon-
struction accuracies of the four models Mi,j (i, j ∈ {0, 1}), listed in Table 3.1,
on synthetic RAF pathway data, generated as described in Subsection 3.2.1. In
this study we assume the data segmentation into H = 4 segments to be known.
We can then set the three changepoints at the right locations and we do not
perform MCMC moves on the changepoint set τ . That is, we keep τ fixed
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Figure 3.7: Boxplots of the logarithmic segment specific coupling parameters for
the RAF pathway data. We generated data with H = 4 segments and m = 10
data points per segment, and we distinguished eight coupling scenarios of the type:
‘S2 − S3 − S4’ with Sh ∈ {U,C}. For each scenario there is a panel with four boxplots.
The boxplots indicate how the logarithmic sampled coupling parameters log(λ1) :=
log(λu), log(λ2), log(λ3), and log(λ4) are distributed for the given scenario. For a
compact representation we decided to merge all samples taken for N = 11 variables
from independent MCMC simulations on 25 independent data instantiations. In each
panel the h-th boxplot from the left refers to log(λh). Our focus is on λh with h > 1,
and it can be seen that the coupling parameters for coupled segments (Sh = C) are
lower than for uncoupled segments (Sh = U ). For m = 5 data points per scenario we
observed the same trends (boxplots not shown).

during the MCMC simulations. The corresponding moves on τ , described in
Subsection 3.1.6, are skipped.

In our first study we generate data for eight different coupling scenarios of
the form ‘S2 − S3 − S4’ with Si ∈ {U,C} where Xh = U indicates that segment h
is uncoupled from segment h− 1 (i.e. βi,h and βi,h−1 are dissimilar), and Sh = C
indicates that segment h is coupled to segment h − 1 (i.e. βi,h and βi,h−1 are
similar). For the technical details we refer to Subsection 3.2.1.

First we perform a sanity check for the proposedM1,1 model: We investigate
whether it actually infers different coupling parameters for the segments and
whether the segment-specific coupling parameter distributions are consistent
with the underlying coupling schemes of the form ‘S2 − S3 − S4’ . For uncoupled
segments with Sh = U the coupling parameters should on average be greater
than for coupled segments with Sh = C (h = 2, 3, 4). Figure 3.7 shows boxplots
of the inferred segment-specific coupling parameters λ1(= λu), λ2, λ3 and λ4.
Focusing on λh with h = 2, 3, 4, it can be seen from the boxplots that the coupling
parameters for coupled segments (where Sh = C) are consistently lower than for
uncoupled segments (where Sh = U ).

The AUC results, provided in Figure 3.8, show that the proposed generalized
model (M1,1) shows, overall, the best performance. It is always among the best
models and it never performs substantially worse than any other model. On
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(a) Scenarios of the type ‘S2 − S3 − S4’ with H = 4 and m = 10.
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(b) Scenarios of the type ‘S2 − S3 − S4’ with H = 4 and m = 5.

Figure 3.8: Network reconstruction accuracy for the RAF-pathway data. For the RAF
pathway we generated synthetic data with H = 4 segments and with m ∈ {5, 10} data
points per segment. For both m we distinguished 8 coupling scenarios of the type:
‘S2 − S3 − S4’ (with Sh ∈ {U,C}). For coupled (‘C’) segments we set the parameter ε
to 0.25, see Subsection 3.2.1 for details. The histogram bars correspond to the model-
specific average precision-recall AUC values, averaged across 25 MCMC simulations.
The errorbars correspond to standard deviations.
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the other hand, the proposedM1,1 model outperforms its competitors for some
settings. Especially for scenarios where 2 out of 3 segments with h > 1 are
coupled to the previous segment. For the scenarios ‘C −C −U ’, ‘U −C −C’ and
‘C − U − C’ the proposed model performs better than the three other models.
When comparing the two in-between models (M1,0 andM0,1) with the original
M0,0 model from [24] it becomes obvious that imposing a hyperprior on βc, as
implemented in theM1,0 model, almost consistently improves the AUC scores,
while making the coupling parameter segment-specific, as done in the M0,1
model, can lead to deteriorations of the AUC scores which is consistent with
the results in chapter 2. We draw the conclusion that replacing the coupling
parameter λc by segment-specific parameters λ2, . . . , λ4 is counter-productive,
unless this modification is combined with a hyperprior so that information can
be shared among the segment-specific coupling strengths. Just imposing a hy-
perprior, which then only allows to adjust the prior for the coupling strength
parameter λc (in light of the data), also improves the network reconstruction
accuracy; but the improvement is slightly minor to the improvement that can
be achieved by implementing both modifications together, as proposed in this
paper.

In a follow-up study we then had a closer look at the eight scenarios and varied
the tuning parameter ε ∈ {0, 0.25, 0.5, 1} for each of them. With the parameter ε
the similarity of the regression parameters (i.e. the coupling strength between
coupled segments) can be adjusted. The greater ε, the weaker the similarity of the
regression coefficient βi,h and βi,h−1 of coupled segments; see Subsection 3.2.1
for the mathematical details. As an example, Figure 3.9 shows the results for
the scenario: ‘C − C − U ’, which belongs to the scenarios where the proposed
M1,1 model was found to outperform its competitors (see Figure 3.8). We can
see from the AUC results in Figure 3.9 that ε = 0 and ε = 0.5 yield the same
trends, as observed earlier for ε = 0.25; see Figure 3.8. But for the highest ε (ε = 1)
M1,0 and M1,1 perform equally well and better than the other two models
(M0,0 andM0,1). The explanation for this finding is most likely as follows: The
similarity of the coupled regression coefficients decreases in ε. Hence, for ε = 1
even the regression parameters for the two coupled segments get very dissimilar.
Thus, ε = 1 implies that all four segment-specific regression coefficients βi,h
(h = 1, . . . , 4) are dissimilar and there is no more need for segment-specific
coupling parameters. The reason why for ε = 1 the originalM0,0 model and the
M0,1 model are inferior to the models which possess hyperpriors is probably
the following one: The models M0,0 and M0,1 cannot adjust the prior of the
coupling parameter (in light of the data). As a consequence they are likely to
over-penalize dissimilar regression coefficients (i.e. high coupling parameters)
through the prior.

3.3.2 Results for the yeast gene expression data

In this subsection we cross-compare the network reconstruction accuracies of the
four modelsMi,j (i, j = 0, 1), listed in Table 3.1, on the yeast gene expression data,
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Figure 3.9: Network reconstruction accuracy for the RAF-pathway data. Unlike
in Figure 3.8, here we focus on the scenario: ‘C − C − U ’, and we vary the tuning
parameter ε ∈ {0, 0.25, 0.5, 1}. Like in Figure 3.8, the model-specific bars and errorbars
correspond to the average AUC values and their standard deviations.

described in Subsection 3.2.2. For this application we infer the data segmentation
(i.e. the changepoint set τ ) along with the network structure from the data.

To vary the segmentations and especially the number of segments (i.e. the
number of changepoints in τ ), we implement the four models with 8 different
hyperparameters p ∈ {0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8} of the geomet-
ric prior on the distance between changepoints; see Equation (3.23) in Subsec-
tion 3.1.6 for the mathematical details. We note that the hyperparameters are of
the form: p = 0.1 · 2i with i = −4,−3, . . . , 3.

Figure 3.10 shows histograms of the inferred posterior distributions of the
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Figure 3.10: Posterior distribution of the numbers of segments H for the yeast data
from Subsection 3.2.2. We implemented the models with different hyperparameters p
for the geometric distribution on the distance between changepoints. For the proposed
M1,1 model the histograms show how the posterior distributions of the numbers of
segments H varies with the hyperparameter p. Each row refers to a gene of the yeast
network; the four columns refer to the hyperparameters p ∈ {0.00625, 0.025, 0.1, 0.4}.
For each number of segments 1 ≤ H ≤ 10 the bars give the relative frequencies with
which the data of the corresponding gene were segmented into H segments in the
posterior samples. The relative frequencies are averaged over 25 independent MCMC
simulations.

numbers of segments H for the proposed M1,1 model from Subsection 3.1.2.
It can be clearly seen that the inferred segmentations strongly depend on the
hyperparameter p. For the lowest p the data are rarely divided into more than
H = 2 segments, while the posterior for p = 0.4 peaks at the imposed maximum
of H = 10 segments. For the other three models we observed almost identical
trends (histograms not shown in this chapter).

Figure 3.11 shows how the empirical network reconstruction accuracy, quanti-
fied in terms of the average areas under the precision recall curve (AUC) values,
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Figure 3.11: Network reconstruction accuracy for the yeast gene expression data from
Subsection 3.2.2. For our study we implemented the four models, listed in Table 3.1
with 8 different hyperparameters p = 0.1 · 2i (i ∈ {−4,−3, . . . , 3}) for the geometric
distribution on the distance between changepoints; see Equation (3.23). The upper
left panel shows the average precision-recall AUC scores, averaged across 25 MCMC
simulations. The other panels show the relative AUC differences in favor of theM1,1
model, with error bars indicating 95% t-test confidence intervals.

varies with the hyperparameter p. From the upper left panel of Figure 3.11, which
shows the average AUC scores, the following trends can be observed:

• The M0,1 model (which has segment-specific coupling parameters
λ2, . . . , λH , but does not couple them by a Gamma hyperprior) performs
worse than the original sequentially coupled model from [24]. Only for very
small hyperparameters p ≤ 0.05 (i.e. when few changepoints are learned)
the two modelsM0,0 andM0,1 reach approximately the same AUC scores.
For higher hyperparameters the introduction of segment-specific coupling
parameters has a counter-productive effect, and is, thus, not recommended.

• TheM1,0 model, which leaves the coupling parameter λc shared among
segments and only imposes a hyperprior to adjust the prior on λc (in light
of the data), performs better than the original model from [24]. For very
small hyperparameters p ≤ 0.0125 (i.e. when very few changepoints are
learned) the two models M0,0 and M1,0 reach approximately the same
AUC scores. For the 6 higher hyperparameters p > 0.0125 the introduction
of the hyperprior consistently leads to improved network reconstruction
accuracies.
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• TheM1,1 model, which we propose in this paper, has both modifications
implemented: It has segment-specific coupling parameters λ2, . . . , λH and
couples those parameters by a Gamma hyperprior; see Subsection 3.1.2
for a detailed model description. The combination of both modifications
yields that theM1,1 model performs overall best. Its performance even
stays stable for rather large hyperparameters p where the AUC scores of
the other three models substantially diminish. The AUC difference plots in
Figure 3.11 show that most of the improvements are statistically significant
in terms of paired t-tests. In particular, theM1,1 model performs better than
the originalM0,0 model, proposed in [24], for 6 out of 8 hyperparameters p,
namely for all p > 0.0125.

Based on our network reconstruction accuracy results for the real gene expres-
sion data, we conclude that the performance of the proposed generalized model
(M1,1) is superior to the performance of the original sequentially coupled model
(M0,0). The empirical results obtained with the two ‘in between’ models (M1,0
andM0,1) suggest further that the main contribution stems from the hyperprior.
The capability to adjust the coupling parameter prior in light of the data boosts
the performance. The modelM0,1, whose segment-specific coupling parameters
are not coupled by a hyperprior, led to decreased AUC results. The results, ob-
tained for the yeast gene expression data, are hence in agreement with the earlier
results obtained for synthetic network data; see Subsection 3.3.1.

3.4 Discussion and conclusions

In this chapter we have proposed an improved version of NH-DBN model, pro-
posed in [24], in order to refine the generalized coupled model introduced in
previous chapter. Unlike the original M0,0 model, our new M1,1 model pos-
sesses segment-specific coupling (strength) parameters and a hyperprior on the
coupling parameter priors; see Subsection 3.1.2 for the mathematical details.
Replacing the shared coupling parameter λc by segment-specific coupling para-
meters λ1, . . . , λH increases the model flexibility, while the new hyperprior allows
for information-exchange among segments as well as to adjust the coupling para-
meter prior(s) in light of the data. Our empirical evaluation studies on synthetic
RAF pathway data (see Subsection 3.3.1) and on yeast gene expression data (see
Subsection 3.3.2) have shown that the newM1,1 model leads to improved net-
work reconstruction accuracies. To gain more insight into the merits of the two
individual modifications, we also compared with the performances of the two
‘in-between’ models (M1,0 andM0,1), which we defined to be subject to only
one of the two modifications; see Table 3.1 for an overview to the four models
Mi,j (i, j ∈ {0, 1}) under comparison. Overall, the proposedM1,1 has reached
the highest network reconstruction accuracies among the 4 models. TheM0,1
model, which we defined to have segment specific coupling parameters but no
hyperprior, performed worse than the originalM0,0 model. TheM1,0 model,
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which we defined to have a shared coupling parameter with a hyperprior, per-
formed better than the originalM0,0 model and for some scenarios comparable
to the proposedM1,1 model. This shows that the major part of the improvement,
achieved with the proposedM1,1, stems from imposing a hyperprior onto the
coupling parameter prior(s).

To put it in a nutshell, our empirical results show that the model variantM1,1
reaches, overall, the highest network reconstruction accuracies. With regard to
future applications, we therefore recommend giving precedence to this model.
Moreover, our results for the yeast gene expression data (see Figure 3.11) also
suggest that only the M1,1 model is robust with respect to the changepoint
process hyperparameter. The network reconstruction accuracies of the other
models deteriorate, as the number of inferred changepoints increases. Only
the network reconstruction accuracy of theM1,1 model stays high, even if the
data are divided into short (uninformative) segments. This is a very important
property for applications where the underlying segmentation is unknown and
has to be inferred from the data. The number of inferred changepoints (i.e. the
data segmentation) strongly depends on the changepoint process hyperparameter
(see Figure 3.10). In the absence of any genuine prior knowledge, the changepoint
process hyperparameter can easily be misspecified. Non-robust models will then
output biased results what might lead to erroneous conclusions.

Our future work will aim to transfer the concept of segment-specific coupling
parameters to the globally coupled NH-DBN model from [25]. Unlike the sequen-
tial coupling mechanism, which requires a temporal ordering of the segments, the
global coupling mechanism treats all segments as interchangeable units. When
segmenting a single time series by changepoints, the assumption of interchange-
able segments is often not appropriate. But there are other applications in systems
biology where data stem from different experiments so that the segments might
contain data from different experimental conditions. The segments then do not
have any natural order and the sequential coupling scheme should be replaced
by the global coupling scheme.
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Chapter 4

Partially edge-wise coupled
NH-DBNs

In the standard ‘uncoupled’ NH-DBN the segment-specific parameters have to be
learned separately for each segment, even if parameters stay identical (or similar).
This makes uncoupled model inappropriate for many real world applications.
Recently three improved NH-DBNs with coupled network parameters have been
proposed, which couple the segment-specific parameters among segments, so
as to allow for information exchange between them. When all segment-specific
parameters stay similar over time, coupled NH-DBNs perform significantly
better than the uncoupled NH-DBNs. But the coupled NH-DBNs have the
drawback that there is no effective mechanism for uncoupling. When the segment-
specific parameters are dissimilar, the parameter coupling can become counter-
productive. Partially segment-wise coupled NH-DBN models, introduced in
chapter 2, consider both features (coupling and uncoupling) simultaneously. But
these models have the pitfall that the (un-)coupling applies for all covariates at
each changepoint contemporaneously. In real world applications it is usually not
evident how (dis-) similar the segment-specific parameters are. Not rarely there
is even a mixture of both parameter types which makes all the models introduced
in previous chapters inappropriate for these real world scenarios.

We, therefore, propose a new NH-DBN with partially edge-wise coupled
network parameters. The new model operate edge-wise and combines features
of the uncoupled and the coupled NH-DBN and infers for each individual edge
whether the corresponding parameter should be coupled or stay uncoupled. A
beneficial feature of the new model is that it contains the uncoupled and the
coupled NH-DBN as limiting cases: When it couples (uncouples) all edges, it
reduces to the coupled (uncoupled) NH-DBN. Our empirical results show that
the new model can significantly improve the network reconstruction accuracy.

The work, presented in this chapter, has been submitted to Journal of Compu-
tational and Graphical Statistics (2018). Some parts of this chapter have also been

61
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appeared in proceedings of the International Workshop on Statistical Modelling
(2018) (see [57]).

4.1 Methods

4.1.1 Bayesian piece-wise linear regression models

Consider a Bayesian piece-wise linear regression model with Y being the re-
sponse variable and π = {X1, . . . , Xk} being a set of k covariates. We assume that
the observed data points have a temporal order and can be divided into disjunct
segments h ∈ {1, . . . ,H}, where each h has segment-specific regression coeffi-
cients, βh = (βh,0, . . . , βh,k)T. Let yh be the vector of the response values and Xh

be the design matrix for segment h, where each Xh includes a first column of 1’s
for the intercept. For h = 1, . . . ,H we use a Gaussian likelihood:

yh ∼ N (Xhβh, σ
2I) (4.1)

where I denotes the identity matrix, and σ2 is the noise variance parameter,
which is shared among segments. We impose an inverse Gamma prior on σ2,
σ−2 ∼ GAM(aσ, bσ), and we assume that β1 has a Gaussian distribution:

β1 ∼ N (0, σ2λuI) (4.2)

where 0 := (0, . . . , 0)T, λu is the ‘signal-to-noise ratio parameter for uncoupled re-
gression coefficients’ onto which we also impose an inverse Gamma distribution
λ−1
u ∼ GAM(au, bu).1 The posterior distribution of β1 is:

β1|(y1, σ
2, λu) ∼ N (β̃1, σ

2C1) (4.3)

where C1 = ([λuI]−1+XT
1 X1)−1 and β̃1 = C1XT

1 y1. Figure 4.1 shows a graphical
model for h = 1. The conventional ’uncoupled’ (piecewise linear) model uses the
same priors for all segments:

βh ∼ N (0, σ2λuI) (h = 1, . . . ,H) (4.4)

The only information exchange among segments is then w.r.t. σ2 and λu.
The key idea of the ‘(fully) sequentially coupled’ model from [24] is to use the
posterior expectation β̃h as prior expectation for βh+1:

βh+1 ∼ N (β̃h, σ2λcI) (4.5)

where λc has been called the ’coupling parameter’ onto which also an inverse
Gamma distribution can be imposed λ−1

c ∼ GAM(ac, bc). ‘Coupling’ here means

1Re-employing the parameter σ2 in Equation (4.2) yields a fully-conjugate prior in both β1 and σ2;
this allows both parameter groups to be integrated out in the likelihood, i.e. the marginal likelihood
p(y1|λu) to be computed (see, e.g., Sections 3.3 and 3.4 in [19]).
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µ1 := 0 Σ1 := diag{λu1}

λu

β1 β̃1

Posterior
expectation

of β1

σ2

y1X1

au bu

aσ bσ

µ2 = . . .

λ−1u ∼ GAM(au, bu)

β1 ∼ N(µ1, σ
2Σ1)y1 ∼ N(X1β1, σ

2I)

σ−2 ∼ GAM(aσ, bσ)

segment h = 1

specific for segment h = 1

1Figure 4.1: Graphical Model - Part 1: Graphical presentation of the probabilistic rela-
tionships between the random variables for segment h = 1. Variables that have to be
inferred are represented by white circles. The data and the fixed hyperparameters are
represented by grey circles. The two rectangles indicate definitions, which determinist-
ically depend on the parent nodes. All nodes and definitions within the inner plate are
specific for segment h = 1. The posterior expectation β̃1 is treated like a fixed vector
when used as input for segment h = 2. Note that diag{λu1} denotes the diagonal
matrix λuI.

that βh+1 is coupled to the posterior expectation β̃h of βh. Low values λc yield
peaked priors in Equation (4.5) and the vectors βh and βh+1 will tend to be
similar (=coupled). One shortcoming of the fully coupled approach is that βh+1
cannot properly uncouple from the preceding segment. For dissimilar regression
coefficients, λc has to take large values, so as to make the prior in Equation (4.5)
vague. Another bottleneck is that there is only one single coupling parameter
λc, i.e. all coefficients are coupled with the same strength. Generalized coupled
model, discussed in previous chapter, refines the latter bottleneck by possessing
segment-specific coupling parameter, λhc . But in case the regression coefficients
are dissimilar, λhc , has to stay large which makes the prior in Equation (4.5)
diffused.

Partially segment-wise coupled model, introduced in chapter 2, infers for
each segment h > 1 whether it is uncoupled from or coupled to the preceding
one. The shortcoming of this model is that the coupling (uncoupling) always
applies to all covariates simultaneously. On the other hand, at each changepoint
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all regression coefficients stay either similar or get dissimilar.
In this chapter we propose a new model which infers from the data which

regression coefficients stay similar from segment to segment (and should be
coupled) and which regression coefficients vary among segments (and should
better be re-initialised uninformatively with a prior expectation of 0). We intro-
duce a new vector of indicator variables δ = (δ0, . . . , δk) whose elements are
binary variables δi ∈ {0, 1}: δ0 corresponds to the intercept, and δi (i ≥ 1) refers
to the i-th covariate Xi. δi = 1 indicates that the segment-specific coefficients
β1,i, . . . , βH,i for Xi are coupled, while δi = 0 indicates that they are uncoupled.
This definition also holds for intercept. That is, δ0 = 1 indicates that the corres-
ponding segment-specific intercepts are coupled, whereas δ0 = 0 indicates that
they are uncoupled. We introduce the new prior:

βh+1 ∼ N (δ � β̃h, σ2 · diag{λcδ + λu(1− δ)}) (4.6)

where� is the Kronecker product (‘elementwise multiplication’), diag{x} denotes
a diagonal matrix whose diagnoal elements are the elements of the vector x, and
1 := (1, . . . , 1)T . As the covariance matrix in Equation (4.6) is a diagonal matrix,
each element βh+1,i of βh+1 is independently Gaussian distributed:

βh+1,i =
{
N (0, σ2λu) if δi = 0
N (β̃h,i, σ2λc) if δi = 1

(h = 1, . . . ,H − 1; i = 0, . . . , k) (4.7)

where β̃h,i is the i-th element of the posterior expectation vector β̃h. The new
prior yields a consensus between the uncoupled and the fully coupled approach:

• By setting δ = 0 we obtainβh+1 ∼ N (0, σ2λuI) for all h, as in Equation (4.4).
The model is then the uncoupled piecewise linear regression model.

• By setting δ = 1, we obtain βh+1 ∼ N (β̃h, σ2λcI) for h ≥ 1, as in Equa-
tion (4.5). The model is then the (fully) coupled piecewise linear regression
model.

• Our new partially edge-wise coupled model infers δ = (δ0, . . . , δk) from
the data, to find a trade-off between the uncoupled and the (fully) coupled
model.

We assume δ0, . . . , δk to be independently Bernoulli distributed with hyperpara-
meter p = 0.5.2

δi ∼ BER(p) (i = 0, . . . , k) (4.8)

Figure 4.2 shows the relationships within and between segments. The joint

2Alternatively, the parameter p can be assumed to have a Beta hyperprior, p ∼ BETA(a, b).
For our applications the model extension with p ∼ BETA(1, 1) did not lead to any significant
improvements.
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distribution is:

p({yh}, {βh}, σ2, λu, λc, δ) ∝ p(λu) · p(λc) · p(σ2) · p(δ) (4.9)

·
H∏
h=1

p(yh|σ2,βh) · P (β1|λu, σ2)

·
H∏
h=2

P (βh|λu, λc, σ2, δ, β̃h−1)

As bivariate function of λu and λc, p(βh+1|σ2, λu, λc, δ, β̃h) in Equation (4.6) has
a modular form:

p(βh+1|λu, λc, . . .) = (2π)(−k+1)/2 · det
(
σ2 · diag{λcδ + λu(1− δ)}

)−0.5

· exp{−1
2(βh+1 − δ � β̃h)T[σ2diag{λcδ + λu(1− δ)}]−1(βh+1 − δ � β̃h)}

= (2π)−(k+1)/2 · σ−(k+1) · λ
−0.5

∑k

i=0
(1−δi)

u · λ
−0.5

∑k

i=0
δi

c

· exp{−1
2σ
−2λ−1

u

∑
i:δi=0

(βh,i − 0)2} · exp{−1
2σ
−2λ−1

c

∑
i:δi=1

(βh,i − β̃h,i)2}

As a function of λ−1
u or λ−1

c , respectively, p(βh+1|λu, λc, . . .) is thus proportional
to:

p(βh+1|λu, . . .) ∝ (λ−1
u )0.5

∑k

i=0
(1−δi) · exp{−λ−1

u · (
1
2σ
−2 ·

∑
i:δi=0

β2
h,i)} (4.10)

p(βh+1|λc, . . .) ∝ (λ−1
c )0.5

∑k

i=0
δi exp{−λ−1

c (1
2σ
−2 ·

∑
i:δi=1

(βh,i − β̃h,i)2)} (4.11)

The prior for β1 in Equation (4.2) is independent of λc. As a function of λ−1
u we

get:

p(β1|σ2, λu, δ) ∝ (λ−1
u )0.5(k+1) · exp{−λ−1

u · (
1
2σ
−2 ·

k∑
i=0

β2
1,i)} (4.12)

4.1.2 Gibbs sampling of the parameters of the piece-wise regres-
sion model

All free parameters of the new model (white circles in Figure 4.2) can be sampled
from their full conditional distributions (‘Gibbs sampling’). When deriving the
full conditionals we make use of the joint distribution in Equation (4.9). For βh we
can apply standard rules (see, e.g., Chapters 2-3 of [5]). For the other parameters
σ2, λu, λc and δi (i = 0, . . . , k) we derive the full conditionals in this subsection.
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µh := δ � β̃h−1 Σh := diag{λcδ + λu(1− δ)}

δ

λc λu

βhβ̃h−1 β̃h

Posterior
expectation

of βh

p

σ2

yhXh

ac bc au bu

aσ bσ

Posterior
expectation

of βh−1

µh+1 = . . .

λ−1c ∼ GAM(ac, bc) λ−1u ∼ GAM(au, bu)
δ = (δ0, . . . , δk)

δi ∼ Ber(p)

βh ∼ N(µh, σ
2Σh)

yh ∼ N(Xhβh, σ
2I)

σ−2 ∼ GAM(aσ, bσ)

segment h

specific for segment h

1

Figure 4.2: Graphical model - Part 2: Graphical presentation of the probabilistic
relationships within and between segments for h > 1; see caption of Figure 4.1 for the
terminology.

We now make explicit that the model depends on the covariates π = {X1, . . . , Xk},
and we assume that the merged response vector y := (yT

1 , . . . ,yT
H)T is segmented

into y1, . . . ,yH by a changepoint set τ = {τ1, . . . , τH−1}.
The full conditional distribution of β1 has already been provided in Equa-

tion (4.3). For h > 1 we set µh := δ � β̃h−1 and Σh := diag{λcδ + λu(1− δ)} so
that the priors take the form: βh ∼ N (µh, σ2 ·Σh). Applying the corresponding
rule from Section 3.3 of [5] yields:

βh|(yh, σ2, λu, λc, δ, π, τ ) ∼ N(β̃h, σ2Ch) (4.13)

where Ch = (Σ−1
h + XT

hXh)−1 and β̃h = Ch(Σ−1
h µh + XT

hyh).
The noise variance parameter, σ2, can be re-sampled via a collapsed Gibbs
sampling step, where the regression coefficients, β1, . . . ,βH , have been integrated
out. In the Appendix we show that:

σ−2|(y1, . . . ,yH , λu, λc, δ, π, τ ) ∼ GAM
(
aσ + 0.5 · T, bσ + 0.5 ·∆2) (4.14)

where T is the number of data points, i.e. the length of y := (yT
1 , . . . ,yT

H)T, and
∆2 is the sum of the squared Mahalanobis distances:

∆2 :=
H∑
h=1

(yh −Xh(δ � β̃h−1))T(I + XhΣhXT
h)−1(yh −Xh(δ � β̃h−1)) (4.15)
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with β̃0 := 0, and β̃h = (Σ−1
h + XT

hXh)−1(Σ−1
h µh + XT

hyh) being the posterior
expectation ofβh (h ≥ 1), given the prior expectationsµh and the prior covariance
matrices Σh:

µh =
{

0 if h = 1
δ � β̃h−1 if h > 1

, Σh =
{
diag{λu1} if h = 1
diag{λcδ + λu(1− δ)} if h > 1

(4.16)
We now derive the full conditional distributions of λ−1

u and λ−1
c . From Equa-

tion (4.9) we get:

p(λ−1
u | . . .) ∝ p(λ−1

u ) · p(β1|σ2, λu, π, τ ) ·
H∏
h=2

p(βh|σ2, λu, λc, δ, β̃h−1, π, τ )

p(λ−1
c | . . .) ∝ p(λ−1

c ) ·
H∏
h=2

p(βh|σ2, λu, λc, δ, β̃h−1, π, τ )

Plugging in the prior densities of λ−1
u and λ−1

c and the results from Equa-
tions (4.10-4.12):

p(λ−1
u | . . .) ∝ (λ−1

u )au+ 1
2ku−1 · exp{−λ−1

u (bu + 1
2σ
−2D2

u)} (4.17)

where D2
u :=

k∑
i=0
β2

1,i +
H∑
h=2

∑
i:δi=0

β2
h,i and ku := (k + 1) + (H − 1) ·

∑k
i=0(1− δi)

is the number of uncoupled regression coefficients.

p(λ−1
c | . . .) ∝ (λ−1

c )ac+
kc
2 −1 exp{−λ−1

c (bc + 1
2σ
−2D2

c )} (4.18)

where D2
c :=

H∑
h=2

∑
i:δi=1

(βh,i− β̃h−1,i)2 and kc := (H − 1) ·
∑k
i=0 δi is the number

of coupled regression coefficients.3 From the shapes of the full conditionals in
Equations (4.17-4.18) it follows:

λ−1
u |(β1, . . . ,βH , σ

2, δ, π, τ ) ∼ GAM

(
au + ku

2 , bu + 1
2σ
−2D2

u

)
(4.19)

λ−1
c |(β1, . . . ,βH , σ

2, δ, π, τ ) ∼ GAM

(
ac + kc

2 , bc + 1
2σ
−2D2

c

)
(4.20)

For the marginal likelihood, with βh (h = 1, . . . ,H) and σ2 integrated out, we

3ku + kc = H · (k + 1) is the total number of coefficients; for each of H segments there are k + 1
coefficients.
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apply the rule from Section 2.3.7 of [5]:

p(y|λu, λc, δ, π, τ ) =
Γ(T2 + aσ)

Γ(aσ) · π−T/2 · (2bσ)aσ(
H∏
h=1

det(I + XhΣhXT
h)
)1/2 (4.21)

·(2bσ + ∆2)−(T2 +aσ)

where ∆2 and Σh (h = 1, . . . ,H) were defined in Equations (4.15-4.16).
Finally, we derive the full conditional distributions of the elements of the

vector δ = (δ0, . . . , δk). As δ0, . . . , δk are i.i.d. BER(p) distributed, we get from
Equation (4.9 and 4.21):

p(δi| . . .) ∝ p(y|λu, λc, δ, π, τ ) · p(δ) = p(y|λu, λc, δ, π, τ ) · pδi · (1− p)1−δi (4.22)

And since δi is binary, the full conditional is also a Bernoulli distribution:

δi|(λu, λc, {δj : j 6= i}, π, τ ,y) ∼ BER(θi) (4.23)

where

θi = p(δi = 1| . . .)
p(δi = 1| . . .) + p(δi = 0| . . .) = p(y|λu, λc, δδi←1, π, τ ) · p

1∑
j=0

p(y|λu, λc, δδi←j , π, τ ) · pj · (1− p)1−j

(4.24)

and δδi←j denotes the vector δ with δi being set to j ∈ {0, 1}.

4.1.3 Metropolis-Hastings sampling of the covariate and
changepoint set

When the covariates π and the segmentation τ are unknown, we can infer both
from the data. Recall that Y is the response, and let X1, . . . , Xn be a set of
potential covariates. D denotes a time series of equi-distant data points, indexed
t = 1, . . . , T . Each data point Dt contains a response observation yt and the
observations xt,1, . . . , xt,n of the covariates. We assume all covariate sets π ⊂
{X1, . . . , Xn} to be equally likely a priori, and as prior on the number of segments
H we take a Poisson distribution with parameter λ = 1, truncated to 1 ≤ H ≤ 10:

H ∼ POI(λ|1 ≤ H ≤ 10)

Subsequently we identify H segments with H − 1 changepoints, τ =
{τ1, . . . , τH−1} on the set S := {2, . . . , T −1}. Data pointDt is assigned to the h-th
segment if and only if τh−1 < t ≤ τh, where τ0 := 1 and τH := T . Following [21]
and [23] we assume that the changepoints are distributed like the even-numbered
order statistics of L := 2(H − 1) + 1 pairwise different points, being uniformly
distributed on S. This yields:

p(τ |H) = 1(
T−2

2(H−1)+1
) · H−1∏

h=0
(τh+1 − τh − 1) (4.25)
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For each combination of π and τ , the model from Subsection 4.1.1 can be applied.
The changepoint set τ yields a segmentation of the data points into H segments
with response vectors y1, . . . ,yH . The design matrices X1, . . . ,XH are built using
only the covariates from π. Using the marginal likelihood from Equation (4.21),
we obtain for the posterior distribution:

p(π, τ , λu, λc, δ|D) ∝ p(y|λu, λc, δ, π, τ ) · p(π) · p(τ |H) · p(H) · p(δ) · p(λu) · p(λc)
(4.26)

Given π and τ , the parameters λu, λc and the elements of δ can be re-sampled
from their full conditional distributions, as described in Subsection 4.1.1.4 Given
λu, λc, and δ, Metropolis-Hastings steps can be used to sample the covariate set
π and the changepoint set τ .

Moves on the covariate set: For sampling π from the posterior we implement
3 moves:

• Removal (R): We randomly select one Xi ∈ π and remove it from π. With
the covariate we also delete the corresponding element δi of δ.

• Addition (A): We randomly select one Xi /∈ π and add it to π. With the
covariate we also add a new element δi to δ. We flip a coin to determine the
value of δi.

• Exchange (E): We randomly select one Xi ∈ π and replace it by a randomly
selected Xj /∈ π. We remove δi from δ and add δj to δ. We flip a coin to
determine the value of δj .

Each move proposes to replace [π, δ] by [π∗, δ∗]. When randomly selecting the
move type, the acceptance probabilities are:

A([π, δ]→ [π∗, δ∗]) = min
{

1, p(y|λu, λc, δ
∗, π∗, τ )

p(y|λu, λc, δ, π, τ ) ·
p(π∗)
p(π) ·

p(δ∗)
p(δ) ·HR

}
(4.27)

where the Hastings Ratio HR depends on the move type:

HRR = |π|
n− |π∗|

· 0.5, HRA = n− |π|
|π∗|

· 2, HRE = 1 (4.28)

where n is the number of potential covariates, |.| denotes the cardinality, and the
factors 2 and 0.5 stem from flipping coins for the values of newly introduced
indicator variables.5

Moves on the changepoint set: For sampling τ we also implement 3 moves:

• Birth (B): Out of the set of all valid new changepoint locations B(τ ) we
randomly sample one element and propose to set a new changepoint at this
location. The new changepoint set τ ∗ contains H∗ = H + 1 segments.

4The parameters σ2 and β1, . . . ,βH are marginalized out in Equation (4.26). But they have to be
sampled, before sampling from the full conditionals of λu and λc in Equations (4.19-4.20).

5For p = 0.5 in Equation (4.8) the prior ratio p(δ?)/p(δ) cancels with the factors 2 and 0.5,
respectively.
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• Death (D): We randomly select one changepoint τ ∈ τ and delete it. The
new changepoint set τ ∗ contains H∗ = H − 1 segments.

• Reallocation (R): We randomly select one changepoint τj ∈ τ and propose
to re-allocate it to a randomly selected position in between the two sur-
rounding changepoints: τj−1 + 2, . . . , τj+1 − 2. This yields τ ∗, and H∗ = H .

When randomly selecting the move type, the acceptance probabilities are:

A([τ , H]→ [τ ∗, H∗]) = min
{

1, p(y|λu, λc, δ, π, τ
∗)

p(y|λu, λc, δ, π, τ ) ·
p(τ ∗|H∗)
p(τ |H) ·

p(H∗)
p(H) ·HR

}
(4.29)

where the Hastings Ratio HR depends on the move type:

HRB = |B(τ ∗)|
|τ |

, HRD = |τ ∗|
|B(τ )| , HRR = 1 (4.30)

where B(τ ) := {τ |2 ≤ τ ≤ T − 1 and |τj − τ | ≥ 2 for j = 1, . . . ,H − 1} is the
set of all valid new changepoint locations, given τ = {τ1, . . . , τH}, and |.| denotes
the cardinality.

4.1.4 MCMC sampling algorithm

Given data D we use Markov Chain Monte Carlo (MCMC) simulations
to generate a sample {π(w), τ (w), λ

(w)
u , λ

(w)
c , δ(w)}w=1,...,W from the posterior

p(π, τ , λu, λc, δ|D). In each iteration we re-sample the two parameters λu and λc
and one element of δ from their full conditional distributions (Gibbs sampling),
and we perform two Metropolis-Hastings moves; one on the covariate set π
and one on the changepoint set τ . Table 4.1 gives pseudo code for the MCMC
algorithm.

4.1.5 Learning dynamic Bayesian networks

Consider a N -by-(T + 1) data matrix D whose rows correspond to the vari-
ables Z1, . . . , ZN and whose columns correspond to equi-distant time points
t = 1, . . . , T + 1. Let Di,t denote the value of Zi at t. The variables can then
be identified with the nodes of a network, and we can learn how the variables
interact with each other. Temporal data are conventionally modelled with dy-
namic Bayesian networks (DBNs), where all dependencies are subject to a time
lag, usually of orderO = 1. An edge from node Zi to node Zj , Zi → Zj , indicates
that Dj,t+1 (Zj at t+ 1) depends on Di,t (Zi at t). Zi is then called a parent (node)
of Zj .

Because of the time lag, there is no acyclicity constraint in DBNs. Hence,
learning a DBN can be thought of as learning separately for each node Zj
a covariate set πj (j = 1, . . . , N ). In the j-th (piece-wise linear) regression
model Y := Zj is the response, and there are n := N − 1 potential covariates:
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{X1, . . . , Xn} := {Z1, . . . , Zj−1, Zj+1, . . . , ZN}. Each data point Dt (t = 1, . . . , T )
of the j-th regression model contains a response value yj = Dj,t+1 and the shifted
values of the potential covariates xt,1 := D1,t, . . . , xt,n := Dn,t.
Having a covariate set πj for each response Y := Zj , a network can be built by
merging the covariate sets: G := {π1, . . . , πN}. There is an edge from Xi to Xj if
and only if Xi ∈ πj .

4.1.6 Competing regression models (as building blocks for
NH-DBNs)

In this subsection we briefly outline alternative regression models, with which
NH-DBNs can be built. Like the proposed model, the models can be applied to
each variable separately to infer a network among N nodes, see Subsection 4.1.5
for details. To underline that the resulting NH-DBNs are highly competitive, we
note that [1] found that the homogeneous DBN and the uncoupled NH-DBN,
presented below, performed best among 15 state-of-the-art network reconstruc-
tion methods in a cross-method comparison on synthetic network data. The four
established (’published’) competitors for the newly proposed model are:

• HOMOGENEOUS DBN: The conventional homogenous DBN, as dis-
cussed in chapter 1, has no changepoints, H = 1. This model does neither
possess the δ vector nor the λc parameter. The regression coefficient vector
β1 applies to all data points.

• UNCOUPLED NH-DBN: This model corresponds to the model of [38], but
unlike in [38] it here does not allow for network changes among segments.
Our new model reduces to this model when setting δ = 0 and removing
the λc parameter. The segment-specific priors are: βh ∼ N(0, σ2λuI) (h =
1, . . . ,H). For H = 1 this model reduces to the homogeneous DBN.

• FULLY (SEQUENTIALLY) COUPLED NH-DBN: This model from [24]
couples all neighbouring regression coefficients with the same strength.
Our new model reduces to this model when setting δ = 1. The priors of the
regression coefficients are: β1 ∼ N(0, σ2λuI) and βh ∼ N(β̃h−1, σ

2λcI) for
h ≥ 2. For H = 1 this model reduces to the homogeneous DBN.

• GENERALIZED FULLY COUPLED NH-DBN: This model introduced in
chap-ter 3, generalizes the fully coupled NH-DBN. It introduces segment-
specific coupling parameters λhc :

βh ∼

{
N(0, λuσ2I) if h = 1
N(β̃h−1, λ

h
cσ

2I) if h = 2, . . . ,H

where λhc ∼ GAM(ac, bc) for h = 2, . . . , h. The coupling applies to all
regression coefficients, but the coupling strengths vary from segment to
segment. Under the constraint: λhc = λc for all h > 1, this model becomes
the fully coupled model.
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Input: The data D and the current instantiations of the covariate set π(w), the
changepoint set τ (w), the vector δ(w), and the parameters λ(w)

u and λ(w)
c .

MCMC iteration: w → w + 1:

• Re-sample a new noise variance parameter σ−2
� from

σ−2|(y1, . . . ,yH , λ(w)
u , λ

(w)
c , δ(w), π(w), τ (w)), see Equation (4.14).

• For h = 1, . . . ,H
– Re-sample the segment-specific regression coefficients vector β�h

from
βh|(yh, σ2

�, λ
(w)
u , λ

(w)
c , δ(w), π(w), τ (w)), see Equation (4.13).

• Sample from λ−1
u |(β

�
1, . . . ,β

�
H , σ

2
�, δ

(w), π(w), τ (w)), see Equation (4.19).
Invert the sampled value to obtain λ(w+1)

u

• Sample from λ−1
c |(β

�
1, . . . ,β

�
H , σ

2
�, δ

(w), π(w), τ (w)), see Equation (4.20).
Invert the sampled value to obtain: λ(w+1)

c

• Withdraw β�1, . . . ,β
�
H , and σ2

�.

• Randomly select one of the k+1 elements of the vector δ(w). Replace the
selected element δ(w)

i by a new value δ(w+1)
i where the latter is sampled

from
δi|(λ(w+1)

u , λ
(w+1)
c , {δ(w)

j : j 6= i}, π(w), τ (w),y), see Equation (4.23).

Replacing the element δ(w)
i of δ(w) by δ

(w+1)
i yields the new vector

δ(w+1).

• Metropolis-Hastings move on the covariate set π(w):
– Randomly select the move type (R, A or E), and propose to move

from [π(w), δ(w)] to [π∗, δ∗]. Accept the new state [π∗, δ∗] with the
acceptance probability given in Equation (4.27) with λu = λ

(w+1)
u ,

λc = λ
(w+1)
c , δ = δ(w+1), π = π(w), δ = δ(w).

– If the move is accepted, set: π(w+1) = π∗ and δ(w+1) = δ∗.
Otherwise set: π(w+1) = π(w) and δ(w+1) = δ(w).

• Metropolis-Hastings move on the changepoint set τ (w):
– Randomly select the move type (B, D or R), and propose to move

from [τ (w), H(w)] to [τ ∗, H∗]. Accept the new state [τ ∗, H∗] with
the acceptance probability given in Equation (4.29) using λu =
λ

(w+1)
u , λc = λ

(w+1)
c , δ = δ(w+1), π = π(w+1), τ = τ (w).

– If the move is accepted, set: τ (w+1) = τ ∗ and H(w+1) = H∗.
Otherwise set: τ (w+1) = τ (w) and H(w+1) = H(w).

Output: The re-sampled instantiations: π(w+1), τ (w+1), δ(w+1), λ(w+1)
u , and

λ
(w+1)
c .

Table 4.1: Pseudo code. The table summarizes one iteration (w → w + 1) of the
MCMC algorithm.
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We now introduce two more competitors which have not been proposed (pub-
lished) in the literature yet. Those models are similar to the proposed partially
edge-wise coupled NH-DBN:

• SWITCH (UNCOUPLED/COUPLED) NH-DBN: This model switches
between the uncoupled and the fully coupled NH-DBN. The regression
coefficient priors are:

βh ∼

{
N(0, λuσ2I) if δ? = 0 or h = 1
N(β̃h−1, λcσ

2I) if δ? = 1 and h > 1

where δ? ∼ BER(0.5), indicates the model. For δ? = 0 (δ? = 1) the
model is the uncoupled (fully coupled) NH-DBN. In a network domain for
each individual node either the uncoupled or the fully coupled modelling
approach is chosen.

• PARTIALLY SEGMENT-WISE COUPLED NH-DBN: This model intro-
duced in chapter 2, infers for each segment h > 1 whether it is uncoupled
from or coupled to the preceding one. The coupling (uncoupling) always
applies to all covariates. The priors are:

βh ∼

{
N(0, λuσ2I) if δ?h = 0
N(β̃h−1, λcσ

2I) if δ?h = 1
(h = 1, . . . ,H)

where δ?1 := 0, and δ?h ∼ BER(0.5) for h > 1. δ?h = 1 indicates that segment
h is coupled to segment h− 1, while δ?h = 0 indicates that it is uncoupled.
At each changepoint all regression coefficients stay either similar (δ?h = 1)
or get dissimilar (δ?h = 0). The vector δ = (δ1, . . . , δk+1)T is replaced by the
vector δ? = (δ?2 , . . . , δ?H)T. The switch NH-DBN model is nested within this
model. The switch model is obtained by imposing the constraint that for
each domain node either: δ?h = 0 for all h > 1 or: δ?h = 1 for all h > 1.

Figure 4.3 shows a graphical overview of the seven changepoint-segmented
sequentially coupled models. For each model it can be seen from the figure which
other models are nested within it.

The following two NH-DBNs are based on conceptually different approaches:

• HIDDEN MARKOV MODEL UNCOUPLED NH-DBN (HMM-DBN):
The HMM-DBN model from [22], uses the priors of the uncoupled NH-
DBN, βh ∼ N(0, σ2λuI) (h = 1, . . . ,H), but unlike the uncoupled NH-DBN,
it employs a Hidden Markov model (HMM) to allocate the individual data
points to components h = 1, . . . ,H . Since the set of data segmentations
that can be reached by changepoints is a subset of the segmentation space
of a Hidden Markov model, the HMM-DBN model can be thought of as a
generalization of the uncoupled NH-DBN, described above.
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PROPOSED HERE: PARTIALLY EDGE-WISE COUPLED NH-DBN

HOMOGENEOUS
DBN

FULLY 
COUPLED
NH-DBN

UNCOUPLED
NH-DBN

NODE-WISE
COUPLED/

UNCOUPLED
SWICH NH-

DBN

GENERALIZED
FULLY COUPLED NH-DBN

PARTIALLY 
SEGMENT-

WISE 
COUPLED 
NH-DBN

Figure 4.3: Overview of the changepoint-segmented sequentially coupled NH-
DBNs. For each model there is a plate covering the plates of the models that are
nested within it. The modelM1 is nested in the modelM2 if there are constraints
under which M2 reduces to M1; see main text for details. The four established
(published) competitors of the proposed model have black plates.

• GLOBALLY COUPLED NH-DBN: This model was proposed in [25]. It
ignores the order of the segments and introduces a new hierarchy:

βh ∼ N(m, λuσ
2I)

where m ∼ N(0, I) is a free hyperparameter, which allows for information
exchange. This model is conceptually different from the others. It replaces
the sequential by a global coupling scheme and does not contain any other
model as special case. Even for H = 1 it differs from the homogeneous
DBN, as it has a hyperprior on the prior expectation m.

In [22] the performances of various allocation models for the uncoupled NH-
DBN were compared, and it was found that the HMM-DBN performed best.
Marginally, we will therefore also compare the results of the sequentially coupled
NH-DBNs from Figure 4.3 with the results of the HMM-DBN model. For fixed
changepoints, the HMM-DBN is identical to the uncoupled NH-DBN; and we
then compare with the globally coupled NH-DBN instead.

4.1.7 Network reconstruction and convergence diagnostics

Edge scores: Given data D for a network domain with N variables Z1, . . . , ZN
we apply the regression model to each variable separately, see Subsection 4.1.5
for details.
For each Zi the MCMC algorithm in Table 4.1 outputs a sample as follows:
{π(w)

i , τ
(w)
i , λ

(w)
u,i , λ

(w)
c,i , δ

(w)
i }w=1,...,W from the i-th posterior distribution. We merge

the covariate sets to form a sample of graphs G(w) = {π(w)
1 , . . . , π

(w)
N }w=1,...,W ,

where the w-th graph G(w) has the edge Zi → Zj if Zi ∈ π(w)
j . For each edge
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Zi → Zj we compute the marginal edge posterior probability (score):

êi,j = 1
W

W∑
w=1

Ii→j(G(w)) where Ii→j(G(w)) =
{

1 if Xi ∈ π(w)
j

0 if Xi /∈ π(w)
j

(i, j ∈ {1, . . . n} : i 6= j)

Network reconstruction accuracy: If the true network is known, we evaluate
the network reconstruction accuracy in form of precision-recall curves. For
each ψ ∈ [0, 1] we extract the n(ψ) edges whose scores êi,j exceed ψ, and we
count the number of true positives T (ψ) among them. Plotting the precisions
P (ψ) := T (ψ)/n(ψ) against the recalls R(ψ) := T (ψ)/M , where M is the number
of edges in the true network, gives the precision-recall curve ([11]). We refer to
the area under the curve as AUC value.
[11] compared precision recall curves with Receiver Operator Characteristic
(ROC) curves and found that precision-recall curves tend to be more adequate.
For our applications we computed the areas under both types of curves and
observed very similar trends.

Potential Scale Reduction Factors (PSRFs): The MCMC convergence can
be monitored in terms of PSRFs; see, e.g. [7]. We perform H independent
MCMC simulations and for each simulation h we compute the score ê(h,s)

i,j of
edge Xi → Xj after 200s (s = 1, . . . , 500) iterations. Assuming a burn-in of 100s
iterations and thinning out by the factor 100, yields s samples and we compute
the “between-chain” and the “within-chain” variances:

Bs(i, j) = 1
H − 1

H∑
h=1

(ê(h,s)
i,j − e(.,s)

i,j )2

and

Ws(i, j) = 1
H(s− 1)

H∑
h=1

s∑
w=1

(Ii→j(G(w)
h )− ê(h,s)

i,j )2

where e[.,s]
i,j is the mean of ê(1,s)

i,j , . . . , ê
(H,s)
i,j , and Ii→j(G(w)

h ) is 1 if network w of
simulation h has the edge Xi → Xj , and 0 otherwise. After 200s iterations the
PSRF of the edge Xi → Xj is:

PSRFs(i, j) =
(1− 1

s )Ws(i, j) + (1 + 1
H )Bs(i, j)

Ws(i, j)
(4.31)

PSRFs near 1 indicate that the MCMC simulations are close to the stationary
distribution. We monitor the fraction of edges with PSRF < 1.01 against the
MCMC iterations 200s.
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4.2 Data

4.2.1 Synthetic RAF-pathway data
We use the synthetic data generation mechanism, described in [24]: For the RAF
pathway ([50]) with N = 11 nodes and M = 20 directed edges, we generate
data consisting of H = 4 segments with m data points each. For each node Zi
(i = 1, . . . , 11) its parents in πi are the covariates of a piece-wise linear regression
model:

zi,t+1 = βi,F (t),0 +
∑

j:Zj∈πi

βi,F (t),j · zj,t + ei,t (t = 1, . . . , 4m)

where zi,t denotes the value of node Zi at time point t, the noise values ei,t are
sampled from independent N(0, 0.052) distributions, and the regression coeffi-
cients are subject to temporal changes.6 In our setting the coefficients change after
m data points, so that F (t) = 1 + b(t− 1)/mc. For each node Zi there are |πi|+ 1
regression coefficients with H = 4 segment-specific values. For each segment h
we summarize the coefficients in a vector βi,h. For h = 1 we sample the elements
of βi,1 from a standard N(0, 1) Gaussian distribution and then re-normalize the
vector to Euclidean norm one: βi,1 ← βi,1/|βi,1|. We distinguish three scenarios:

• Coupled data: We keep the regression coefficients fixed among segments,
i.e. we set: βi,h = βi,1 (h = 2, . . . , 4). This refers to maximally coupled
(identical) network parameters.

• Uncoupled data: We set: βi,2 = −βi,1, βi,3 = βi,1, and βi,4 = −βi,1, so
that all network parameters switch the signs at changepoints. Neighbouring
segments h and h+ 1 have then very dissimilar network parameters.

• Partially edge-wise coupled data: There are
∑11
i=1(|πi|+ 1) = M + 11 = 31

regression coefficients. For each coefficient we flip a coin to decide whether
it stays constant or changes its sign from segment to segment. About 50%
of the parameters are then coupled, while the others are uncoupled.

For each scenario we generate 25 data sets with m = 5 (and m = 10) data points
per segment, i.e. 150 data sets in total. To each data set we add observational
noise using a signal-to-noise ratio of 3. For each node Zi we compute the stand-
ard deviation si of its values zi,1, . . . , zi,4m+1, and we then add to each zi,j the
realization of a N(0, θ2) distribution with variance θ2 = (si/3)2. Note that [24] ro-
tated the regression coefficient vectors at changepoints. The coupled (uncoupled)
scenario corresponds to the rotation angle α = 0◦ (α = 180◦) in [24].

4.2.2 Yeast gene expression data
By means of synthetic biology [8] designed a network with N = 5 genes and
M = 8 edges in S. cerevisiae (yeast); the true network is shown in Figure 4.9. With

6As in [24] the initial values zi,1 are sampled from N(0, 0.052) distributions.
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quantitative Real-Time Polymerase Chain Reaction (RT-PCR), [8] then measured
in vivo gene expression data: first under galactose- and then under glucose-
metabolism. For both carbon sources the network structure is identical, but
the strengths of the regulatory processes (i.e. the network parameters) change
with the carbon source ([8]). For each gene Zi, 16 measurements were taken in
galactose di1, . . . , di16 and 21 measurements were taken in glucose di,∗1 , . . . , di,∗21 ,
with 20 minutes intervals in between measurements. For both parts of the time
series the initial measurements di1 and di,∗1 were taken while extant glucose
(galactose) was washed out and new galactose (glucose) was supplemented.
We follow [24] and pre-process the data as follows: We withdraw the initial
measurements from the washing period, before we re-merge the two time series
parts. After a gene-wise zscore-standardization (to mean 0 and variance 1) we
build for each gene Zi the response vector y = (di3, . . . , di16, d

i,∗
3 , . . . , di,∗21 )T and

use the other genes Zj (j 6= i) as covariates. For explaining y we use the shifted
values: (dj2, . . . , d

j
15, d

j,∗
2 , . . . , dj,∗20 )T.

4.2.3 Arabidopsis gene expression data

The circadian clock in Arabidopsis thaliana synchronizes the plant metabolism
with the daily 24-h photo period (i.e. with the daily dark:light cycle), which is
caused by the rotation of the earth. The circadian clock is capable of anticipating
the external cycle and can thus optimize the gene regulatory processes w.r.t. the
expected (=entrained) photo period. Thereby the structure of the regulatory
network does not change, but the strengths of the gene interactions depend on
the entrained photo period. In four experiments (E1-E4) Arabidopsis plants were
entrained in different dark:light cycles, before data were collected every 2 or 4
hours under constant light:7

• E1: Dark:light entrainment: 12h:12h, then 12 measurements at 4h intervals.

• E2: Dark:light entrainment: 12h:12h, then 13 measurements at 4h intervals.

• E3: Dark:light entrainment: 10h:10h, then 13 measurements at 2h intervals.

• E4: Dark:light entrainment: 14h:14h, then 13 measurements at 2h intervals.

We concentrate on the N = 9 core clock genes: LHY, TOC1, CCA1, ELF4, ELF3,
GI, PRR9, PRR5, and PRR3, and we merge the data into one single time series
by arranging the individual data successively. For each of the four initial points
we do not have values for the potential covariates, so that we cannot use them as
response values.

7RNA was measured using Affymetrix microarrays and an RMA normalisation was applied. For
the technical details we refer to [16], [44], and [26].
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4.3 Hyperparameter and simulation settings

Figures 4.1-4.2 show a graphical presentation of the proposed model. To be
consistent with earlier studies we assume all covariate sets, π, containing up to 3
covariates to be equally likely, p(π) ∝ c, while p(π) = 0 if |π| > 3 (’fan-in restric-
tion’). For the inverse Gamma distributed parameters σ2, λu and λc we select the
shape and rate parameters: aσ = bσ = 0.005, ac = au = 2 and bc = bu = 0.2, as in
[38] and [24], respectively. Pre-simulations with different hyperparameters con-
firmed the trends reported in [24], namely robustness w.r.t. the hyperparameters.
To ensure a fair comparison we use the same hyperparameters for the competing
models. For the real-world applications we infer the segmentations of the time
series from the data. For the RAF pathway data we follow [24] and [25] and
assume the changepoints to be known so that we keep them fixed. For generating
posterior samples we run the MCMC algorithm, outlined in Table 4.1, for 100,000
(100k) iterations. Setting the burn-in phase to 50k and sampling every 100th
graph during the sampling phase, yields W = 500 samples from the posterior. As
described in Subsection 4.1.7, we used potential scale reduction factors (PSRFs)
to monitor convergence. For all data sets all PSRF’s were below 1.01 after 100k
iterations. Figure 4.4 shows the convergence monitors for the yeast and for the
Arabidopsis data, and the data-scenario-specific average fractions of coupled
edges for the synthetic RAF pathway data, as inferred with the new partially
edge-wise coupled NH-DBN.

4.4 Empirical results

4.4.1 Results on synthetic RAF-pathway data

On the synthetic RAF pathway data from Subsection 4.2.1 we compare the per-
formance of the new model with the established (‘published’) NH-DBNs: the
uncoupled, the fully sequentially coupled, and the fully globally coupled NH-
DBN, see Subsection 4.1.6 for details.8 Figure 4.5 shows the results: Neither the
uncoupled nor the fully sequentially coupled model yield a significantly better
network reconstruction accuracy than the proposed model for any scenario. But
there are scenarios where the proposed model significantly outperforms them:
The proposed model is significantly superior to the fully sequentially coupled
NH-DBN (to the uncoupled NH-DBN) for the partially edge-wise coupled and
for the uncoupled data (for the coupled data).

When comparing the proposed model with the globally coupled NH-DBN,
we see larger differences for all three scenarios: For the coupled data scenario
the globally coupled NH-DBN outperforms the proposed model (AUC differ-
ences: -0.04 (m = 10) and -0.12 (m = 5)), while the proposed model is clearly
superior to the globally coupled NH-DBN for the other two scenarios with four

8As we assume the changepoints to be known, the HMM-DBN here corresponds to the uncoupled
NH-DBN.
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AUC differences in between 0.19 and 0.22. This shows that the globally coupled
model imposes a very strong coupling on the segment-specific regression coeffi-
cients. Not surprisingly, this is advantageous for our coupled scenario, where
the coefficients stay constant over time, but the strong coupling becomes very
counter-productive when all (or about 50% of the) regression coefficients substan-
tially change from segment to segment. Like the fully sequentially coupled model,
the globally coupled NH-DBN model has no effective mechanism to uncouple
the regression coefficients. This shortcoming is more critical for the globally
coupled NH-DBN, as it has only one parameter, λu, regulating the variance of
the regression coefficient vectors. For uncoupled data λu has to take high values
what makes all priors diffuse. The fully sequentially coupled model has two
separate parameters, λu (for h = 1) and λc (for h > 1), and can keep at least the
λu parameter in a meaningful range, yielding an appropriate prior for the first
segment.

4.4.2 Results on yeast gene expression data

The yeast network was designed by means of synthetic biology and is known;
see Subsection 4.2.2. We can thus cross-compare the network reconstruction
accuracies on real in vivo gene expression data. In this benchmark study we
include all seven changepoint segmented sequentially coupled NH-DBNs from
Figure 4.3. With each model we run H = 10 independent MCMC simulations.
Each simulation yields edge scores êi,j for all potential edges. We arrange the
simulation-specific scores in vectors vm,h, where m indicates the model and h
the simulation. In addition we build the true vector v∗ whose entries are 1 if the
corresponding edge is present, or 0 otherwise. We then zscore-standardize all
vectors,9 and project them onto the first two principal components. Figure 4.6
shows the resulting PCA plot and a drendogram of the model-specific average
score vectors. For the drendogram we clustered the model-specific average score
vectors based on their Euclidean distances. The first two principal components
(PCs) explain 78% and 10% (together ≈ 90%) of the variance, so that the 2-
dimensional PCA plot conserves most of the information. Taking into account
that the first PC (eigenvalue λ1 = 1.94) has much more weight than the second PC
(eigenvalue λ2 = 0.24), the following trends can be seen from Figure 4.6: (i) The
model-specific simulations are always closely grouped together, i.e. independent
simulations yield similar edge scores what is a good indicator for convergence.
(ii) Nearest to the true network is the proposed model, while the homogenous
model has the furthest distance to the true network. The partially segment-wise
coupled model is 2nd nearest to the true network. (iii) The fully sequentially
coupled model and its generalization (with segment-specific coupling strengths)
yield similar edge scores, so that this generalization appears to have a minor
effect here. (iv) The points of the gene-wise switch and the partially coupled
NH-DBN are near to the uncoupled NH-DBN. We conclude that both NH-DBNs

9v← (v− v̄1)/s where v̄ and sv are the mean and the standard deviation of the elements of v.
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Figure 4.7: Network reconstruction accuracy for yeast. The left histogram shows the
precision-recall AUC values, averaged across H = 10 MCMC simulations, with error
bars indicating standard deviations. The right histogram shows the relative AUC
difference in favour of the proposed model, with error bars indicating the confidence
intervals of unpaired t-tests. The black bar refers to the proposed model. The bars to
the left (right) of the black bar refer to competing models; see Subsection 4.1.6 for an
overview.

infer the majority of genes to be uncoupled. From the drendogram it becomes
obvious that there are two clusters. In the first cluster the two fully coupled NH-
DBNs, which strictly enforce coupling, cluster with the homogeneous DBN. In the
second cluster the more flexible NH-DBNs, which feature effective mechanisms
to uncouple, cluster with the uncoupled NH-DBN.

Figure 4.7 shows the resulting network reconstruction accuracies in terms of
average precision-recall AUC values and AUC differences. The proposed edge-
wise coupled model, which has the minimal distance to the true network in the
PCA plot, yields the highest average AUC value and performs significantly better
than the six competing NH-DBNs. The AUC values and the PCA plot are in good
agreement: the AUC values consistently decrease with the distance to the true
network in the PCA plot. In addition, we also compare the performance of the
proposed model with the conceptually different ’HMM-DBN’ model from [22],
see Subsection 4.1.6 for a brief review. The HMM-DBN model, which replaces
the multiple changepoint process (CPS) of the uncoupled NH-DBN by a Hidden
Markov Model (HMM), here yields an average AUC value of 0.8033. The AUC
difference in favour of the proposed edge-wise coupled model is 0.049 (t-test
p-value: p < 0.01).

For the the proposed NH-DBN and its two competitors, the uncoupled and
the the fully coupled NH-DBN, we now average the model-specific edge scores
across the H = 10 simulations to extract for each model a concrete network
prediction with M = 8 edges (having the highest scores). Figure 4.8 shows
the true and the predicted networks. The predictions of the uncoupled and the
edge-wise coupled NH-DBN are similar. But the uncoupled NH-DBN assigns
its third highest score to the false edge GAL80 → ASH1, while the proposed
model assigns its six highest scores to true edges. The fully coupled NH-DBN
infers two different false positive edges, and the edge GAL4→ CBF1 gets the
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third highest score. The similarity of the uncoupled and the edge-wise coupled
prediction is consistent with the PCA plot in Figure 4.6, where the points of the
uncoupled and the edge-wise coupled models are close together while the points
of the coupled NH-DBN are apart. Figure 4.9 shows the resulting model-specific
precision-recall curves. The proposed model infers the highest scores for 6 true
edges, while the competing NH-DBNs have already a false positive among the
three highest-scoring edges, leading to reduced AUC values.

4.4.3 Results on Arabidopsis gene expression data

The absence of a gold standard for the circadian clock network in A. thaliana
renders an objective evaluation of the network reconstruction accuracy infeasible.
We therefore focus on the newly proposed model and use this application to illus-
trate that the partially edge-wise coupling mechanism allows for more biological
insight. Again we run H = 10 independent MCMC with the new model and we
average the simulation-specific marginal edge posterior probabilities. Onto the
scores we impose a threshold ψ such that 20 edges were extracted; the corres-
ponding threshold was around ψ = 2/3. Recalling that êi,j refers to covariate Xi

for response gene Zj , we then consider the corresponding sampled δi indicator
variables and estimate the posterior probabilities that the corresponding edge was
a mainly ’coupled’ (or ’uncoupled’) one. If the posterior probability p̂(δi = 1|D)
of the state ’coupled’ was double as likely as the probability p̂(δi = 0|D) of the
state ’uncoupled’, we call the edge a ’coupled’ edge. Correspondingly we call
edges ’uncoupled’ if p(δi = 0|D) > 2p(δi = 1|D), and we call edges ’mix edges’
if none of the conditions is satisfied. This way we could classify the 20 edges into
7 coupled, 7 uncoupled and 6 mix edges. The predicted network with different
edge symbols for the edge types is shown in Figure 4.10. As many genes of the
circadian clock network are co-regulated by the presence (or absence) of light, we
would argue that it is a reasonable finding that some of the interactions are stable
(’coupled’) under constant light condition. In the biological literature we could
find evidence for some features of our network. The most important key feature
of the circadian clock network is the feedback loop between LHY and TOC1.
This feedback is already known since [41] to play a central role in circadian regu-
lation (see also more recent works, e.g., [47]). Our new model does not only infer
this feedback loop but also indicates that the regulatory effect of LHY on TOC1
is stable, while the opposite regulatory effect of TOC1 on LHY is time-varying.
Focusing our evaluation on those two genes, we further found the following: The
regulatory effect of ELF3 on TOC1, e.g. reported in [43], is also time-varying,
while the edge from GI to TOC1, also reported in [43], is not. The edges from
ELF3 to LHY and from LHY to ELF4 have been reported in [33]. Our model
finds both edges and provides evidence that the regulatory effect of ELF3 on
LHY changes over time. Finally, for the effects of TOC1 on the PRR3 and PRR9
(which can be found in the network of [47]) our model switches between both
states ’coupled’ and ’uncoupled’ so that the regulatory effect cannot be specified
further.
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Figure 4.9: Precision-recall curves for yeast network. For the uncoupled, the fully
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networks in Figure 4.8 give the point (0.75, 0.75) (Recall: 75%, Precision: 75%).

4.5 Discussion and conclusions

We have proposed a new non-homogeneous dynamic Bayesian network (NH-
DBN) model with partially edge-wise coupled network parameters. A change-
point process is used to divide the temporal data into segments and the network
interaction parameters are assumed to change from segment to segment. Unlike
in the uncoupled NH-DBN, where all interaction parameters have to be learned
separately for each segment, and unlike the fully sequentially coupled NH-DBN,
which enforces all parameters to stay similar among segments, our new model
infers for each individual edge (i.e. ‘edge-wise’) whether the corresponding inter-
action parameter should be coupled or better stay uncoupled. Loosely speaking,
our new model combines features from the uncoupled and the coupled NH-DBN
and then follows the paradigm: ‘Let the data speak.’. It comprises the uncoupled
and the fully coupled NH-DBN as limiting cases: It effectively becomes the
uncoupled (coupled) NH-DBN model when it couples all edges (no edge at all).

In Subsections 4.4.1 and 4.4.2 we have empirically shown on synthetic RAF
pathway data and on a benchmark yeast gene expression time series that the
new model, overall, reaches a higher network reconstruction accuracy than
the competing NH-DBN models. In Subsection 4.4.2 we have used a principal
component analysis (PCA) and a cluster analysis to visualize (dis-)similarities
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Figure 4.10: Arabidopsis network. The figure shows a prediction which was obtained
with the proposed model. Morning (evening) genes are represented as white (grey)
nodes. We set the threshold ψ on the edge scores êi,j such that 20 edges were extracted.
Different edges indicate if the parameters were coupled (black) or uncoupled (grey) or
a mixture thereof (black dotted edges), see main text for further details.

between various related NH-DBN models. In Subsection 4.4.3 we have used the
new model to infer the circadian clock network in Arabidopsis thaliana. Unlike its
competitors, our new model here not only outputs a network prediction, but also
allows to distinguish between edges whose regulatory effects stay similar across
time and edges whose regulatory effects are subject to more substantial temporal
changes.

As the proposed ‘partial edge-wise parameter coupling’ concept is generic,
it can also be implemented for many related NH-DBN models. E.g. the (fully)
globally coupled NH-DBN model from [25] could be easily implemented in
an edge-wise globally coupled version. Also for NH-DBNs with time-varying
network structures the new concept can give an improvement. E.g. the NH-DBNs
presented in [49], [38] and [14] do not allow for any information-sharing w.r.t. the
network interaction parameters. The fully sequential ([24]) and the fully global
([25]) coupling scheme cannot be incorporated into those models, as the parent
node sets (i.e. the covariates) vary from segment to segment. Under the condition
that parameters associated with non-omnipresent edges (covariates) have to
stay ‘uncoupled’, the edge-wise coupling scheme could be directly transferred
to the NH-DBNs with time-varying network structures. The latter adaptation is
rather ad-hoc and, thus, most likely suboptimal. There might be more adequate
alternatives, whose development and exploration we leave for future research.

4.6 Appendix
Here we derive Equation (4.14) from Subsection 4.1.2. For notational convenience we here do not
make explicit that the (marginal) likelihoods depend on the covariate set π and the changepoint set τ .
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A standard rule for Gaussian integrals (see, e.g., Section 2.3.2 in [5]) is that:

y|β ∼ N (Xβ,Σ) where β ∼ N (µ,S)

implies y ∼ N (Xµ,Σ + XSXT) for the marginal distribution: p(y) =
∫
p(y,β) dβ. We use this

rule for computing the marginal distributions of yh, marginalized over βh, for our model:

p(yh|σ2, λu, λc, δ) =
∫

p(yh,βh|σ2, λu, λc, δ) dβh

=
∫

p(yh|βh, σ2, λu, λc, δ)p(βh|σ2, λu, λc, δ) dβh

With yh|(βh, . . .) ∼ N (Xhβh, σ
2I) and

βh|(. . .) ∼
{
N (δ � β̃0, σ

2diag{λu1}) if h = 1
N (δ � β̃h−1, σ

2diag{λcδ + λu(1− δ)}) if h > 1

where β̃0 := 0, so that δ � β̃0 = 0, the rule implies for the marginalisation over βh:

yh|(σ−2, λu, λc, δ)

∼
{
N (X1(δ � β̃0), σ2[I + X1diag{λu1}XT

1 ]) if h = 1
N (Xh(δ � β̃h−1), σ2[I + Xhdiag{λcδ + λu(1− δ)}XT

h]) if h > 1

As a function of σ−2 we have:

p(yh|σ−2, . . .) ∝ (σ−2)Th/2

· exp{−
1
2
σ−2(yh −Xh(δ � β̃h−1))T(I + XhΣhXT

h)−1(yh −Xh(δ � β̃h−1))}

where Th is the length of the vector yh and (cp. with Equation (4.16)):

Σh :=
{
diag{λu1} if h = 1
diag{λcδ + λu(1− δ)} if h > 1

As a function of σ−2 it follows for the product of the segment-specific marginal likelihoods:

H∏
h=1

p(yh|σ−2, λu, λc, δ) ∝ (σ−2)0.5·T exp{−0.5 · σ−2 ·∆2}

where ∆2 :=
∑H

h=1(yh −Xh(δ � β̃h−1))T(I + XhΣhXT
h)−1(yh −Xh(δ � β̃h−1)) (cp. Equa-

tion (4.15)) and T =
∑

Th is the no. of data points. Using the latter result, we obtain straightfor-
wardly:

p(σ−2|y1, . . . ,yH , λu, λc, δ) ∝

(
H∏
h=1

p(yh|λu, λc, δ, π, τ )

)
· p(σ−2) · p(λu) · p(λc) · p(δ)

∝ (σ−2)aσ+0.5·T−1 exp{−σ−2(bσ + 0.5 ·∆2)}

Equation (4.14):

σ−2|(y1, . . . ,yH , λu, λc, δ, π, τ ) ∼ GAM
(
aσ + 0.5 · T, bσ + 0.5 ·∆2

)
follows from the shape of the latter distribution.
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Chapter 5

Partially NH-DBNs based on
Bayesian regression models
with partitioned design
matrices

In many real-world applications, e.g. in systems biology, data are often collected
under different experimental conditions. That is, instead of one single (long) time
series that has to be segmented, there are K (short) time series. The data are
then intrinsically divided into K unordered components, and there is no need
for inferring the segmentation. In this situation, it is normally not clear a priori
whether the network parameters stay constant across components or whether they
vary from component to component. If the parameters stay constant, all data can
be merged and analysed with one single homogeneous DBN. If the parameters
are component-specific, then the data should be analysed by a NH-DBN. The
bottleneck of both approaches is that all parameters are assumed to be either
constant (DBN) or component-specific (NH-DBN). In real-world applications
there can be both types of parameters. E.g. if a variable Y is regulated by two
other variables, symbolically X1 → Y ← X2, then the interaction X1 → Y can
stay constant, while X2 → Y might be component-specific, e.g. for K = 2 and in
terms of a regression model:

E[Y |X1 = x1, X2 = x2] =
{
αx1 + βx2 if k = 1
αx1 + γx2 if k = 2

(5.1)

A DBN ignores that β and γ are different. A NH-DBN has to infer the same
parameter α two times separately. This increases the inference uncertainty, and is
thus critical when the available data are sparse.

No tailor-made model for the situation in (5.1) has been proposed yet. To fill
this gap, we propose a partially non-homogeneous dynamic Bayesian network

89
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(partially NH-DBN) model, which infers the best trade-off between a DBN and a
NH-DBN. The new partially NH-DBN model operates on the individual interac-
tions (network edges). For each interaction there is a parameter, and the model
infers from the data whether the parameter is constant or component-specific.
We implement the new model in a hierarchical Bayesian regression framework,
since this model class reached the highest network reconstruction accuracy in the
cross-method comparison by [1]. But we note that the underlying idea is generic
and could also be implemented in other frameworks, e.g. via L1-regularized
regression model (‘LASSO’).

Furthermore, in Section 5.1.5 we propose a Gaussian process (GP) based
method to deal with the problem of non-equidistant measurements. The standard
assumption for all NH-DBNs is that data are measured at equidistant time points.
For applications where this assumption is not fulfilled, we propose to use a GP to
predict the values at equidistant data points and to replace the non-equidistant
values by predicted equidistant values. We will make use of the GP method when
analysing the mTORC1 timecourse data in Section 5.3.4.

The work, presented in this chapter, has been accepted for publication (in
press) in Bioinformatics (2018) (see [59]).

5.1 Methods

DBNs and NH-DBNs are used to infer networks showing the regulatory interac-
tions among variables Z1, . . . , ZN . The interactions are subject to a time lag, so
that there is no need for an acyclic network structure. Hence, dynamic network
inference can be thought of as inferring the covariate sets for N independent
regression models. In the i-th model, Zi is the response and the remaining
N? := N − 1 variables Z1, . . . , Zi−1, Zi+1, . . . , ZN at time point t− 1 are used as
potential covariates for Zi at time point t. The goal is to infer a covariate set for
each Zi, and the system of covariate sets describes a network; see Section 5.1.6
for details. As the same regression model is applied to each Zi separately, we
describe it using a general notation, where Y is the response and X1, . . . , Xn are
the covariates.

5.1.1 Bayesian regression with partitioned design matrix

We consider a regression model with response Y and covariates X1, . . . , Xn. We
assume that data were measured under K experimental conditions, which we
refer to as K components. We further assume that the data for each component
k ∈ {1, . . . ,K} were measured at equidistant time points t = 1, . . . , Tk. Let yk,t
and xi,k,t denote the values of Y and Xi at the t-th time point of component
k. In dynamic networks, the interactions are subject to a time lag O, which is
usually set to one time point. That is, the values x1,k,t, . . . , xn,k,t correspond to
the response value yk,t+1. For each component k we build a component-specific
response vector yk and the corresponding design matrix Xk, where Xk includes
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a first column of 1’s for the intercept:

yk = (yk,2, . . . , yk,Tk)T, Xk =
(
1 x1,k . . . xn,k

)
where xi,k = (xi,k,1, . . . , xi,k,Tk−1)T

For each k we could assume a separate Gaussian likelihood:

yk ∼ NTk−1(Xkβk, σ
2
kI) (k = 1, . . . ,K) (5.2)

where I is the identity matrix, βk = (βk,0, βk,1, . . . , βk,n)T is the component-
specific vector of regression coefficients, and σ2

k is the component-specific noise
variance. Imposing independent priors on each pair {βk, σ2

k}, leads to K inde-
pendent models. Alternatively, we could merge the data y := (yT

1 , . . .yT
K)T and

X := (XT
1 , . . . ,XT

K)T and employ one model for the merged data:

y ∼ NT (Xβ, σ2I) where T :=
K∑
k=1

(Tk − 1) (5.3)

so that β = (β0, β1, . . . , βn)T would apply to all components.
When some covariates have a component-specific and other covariates have a

constant regression coefficient, both likelihoods (5.2) and (5.3) are suboptimal. For
this situation, we propose a new partially non-homogeneous regression model
that infers the best trade-off from the data. The key idea is to use a likelihood
with a partitioned design matrix.

For now, we assume that we know for each coefficient whether it is component-
specific or constant. Let the intercept and the first n1 < n coefficients stay constant
while the remaining n2 = n − n1 coefficients are component-specific. We then
have the regression equation:

yk,t+1 = β0 +
n1∑
i=1

βi · xi,k,t +
n∑

i=n1+1
βk,i · xi,k,t + εk,t+1

where εk,t+1 ∼ N (0, σ2), and the likelihood takes the form:

y ∼ NT (XBβB , σ
2I) (5.4)

where βB is a vector of (1 + n1 + K · n2) regression coefficients, and XB is a
partitioned matrix with T =

∑
(Tk − 1) rows and (1 + n1) + (K · n2) columns.

E.g. for K = 2 the matrix XB has the structure:(
1 x1,1 . . . xn1,1 xn1+1,1 . . . xn,1 0 . . . 0
1 x1,2 . . . xn1,2 0 . . . 0 xn1+1,2 . . . xn,2

)
,

where xi,k = (xi,k,2, . . . , xi,k,Tk−1)T, and βB is of the form:

((β0, β1, . . . , βn1), (βn1+1,1, . . . , βn,1), (βn1+1,2, . . . , βn,2))T
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The first subvector of βB is the vector β? := (β0, β1, . . . , βn1)T of the re-
gression coefficients that stay constant, and then there is a subvector βk :=
(βn1+1,k, . . . , βn,k)T for each component k with the component-specific regression
coefficients. For the noise variance parameter σ2 we use an inverse Gamma prior,
σ−2 ∼ GAM(a, b), and on β? we impose a Gaussian prior with zero mean vector:

β? ∼ Nn1+1(0, σ2λ2
?I) (5.5)

For the component-specific vectors β1, . . . ,βK we adapt the idea from [25], and
impose a hyperprior:

βk ∼ Nn2(µ, σ2λ2
�I) (k = 1, . . . ,K) and µ ∼ Nn2(µ0,Σ0) (5.6)

The hyperprior couples the vectors β1, . . . ,βK hierarchically and encourages
them to stay similar across components. Re-using the variance parameter σ2 in
(5.5-5.6) allows the regression coefficient vectors and the noise variance to be
integrated out in the likelihood, i.e. the marginal likelihood p(y|λ2

?, λ
2
�,µ) to be

computed analytically (see below). For λ2
? and λ2

� we also use inverse Gamma
priors:

λ−2
? ∼ GAM(α?, β?) and λ−2

� ∼ GAM(α�, β�)

The prior of βB = (βT
? ,β

T
1 , . . . ,β

T
K)T is a product of Gaussians:

p(βB |σ2, λ2
�, λ

2
?,µ) = p(β?|σ2, λ2

?) ·
K∏
k=1

p(βk|σ2, λ2
�,µ)

Given σ2, λ2
�, λ2

?, and µ, the Gaussians are independent, so that:

βB |(σ2, λ2
�, λ

2
?,µ) ∼ N1+n1+K·n2(µ̃, σ2Σ̃)

with: µ̃ = (0T,µT, . . . ,µT)T and Σ̃ =
(
λ2
?I? 0
0 λ2

�I�

)
where I? is the (n1 + 1)-dimensional and I� the (K · n2)-dimensional identity
matrix. We have for the posterior distribution:

p(βB , σ2, λ2
?, λ

2
�,µ|y) ∝ p(y|σ2,βB) · p(βB |σ2, λ2

�, λ
2
?,µ) . . . (5.7)

. . . · p(µ) · p(σ−2) · p(λ−2
? ) · p(λ−2

� )

A graphical model representation of the new regression model is provided in
Figure 5.1. The full conditional distributions (FCDs) of βB , σ2, λ2

?, λ2
� and µ can

be computed analytically, so that Gibbs-sampling can be applied to generate a
posterior sample. As the derivations are mathematically involved, we relegate
them to part A of the Appendix.



93 Chapter 5. Partially NH-DBNs based on Bayesian ...

The marginalization rule from Section 2.3.7 of [5] yields:

p(y|λ2
�, λ

2
?,µ) =

Γ(T2 + a)
Γ(a) · π

−T2 (2b)a

det(C)1/2 · . . .

. . . ·
(
2b+ (y−XBµ̃)TC−1(y−XBµ̃)

)−(T2 +a)
(5.8)

where T :=
K∑
k=1

(Tk − 1), and C := I + XBΣ̃XT
B .

5.1.2 Inferring the relevant covariates and their types
In typical applications, there is a set ofN? variables, and the subset of the relevant
covariates has to be inferred from the data. Each covariate can be either constant
(δ = 1) or component-specific (δ = 0). Let Π = {X1, . . . , Xn} be a subset of the
N? variables, and let δ = (δ0, δ1, . . . , δn)T be a vector of binary variables, where
δi indicates whether Xi has a constant (δi = 1) or component-specific (δi = 0)
regression coefficient. The first element, δ0, refers to the intercept.

The goal is then to infer the covariate set Π and the corresponding indicator
vector δ from the data. For any combination of Π and δ, the partitioned design
matrix XB = X

B,Π,δ can be built, and the marginal likelihood p(y|λ2
�, λ

2
?,µ,Π, δ)

can be computed with (5.8). We get for the posterior:

p(Π, δ, λ2
?, λ

2
�,µ|y) ∝ p(y|λ2

�, λ
2
?,µ,Π, δ) · p(Π) · p(δ|Π) · . . .
. . . · p(µ|Π, δ) · p(λ2

?) · p(λ2
�)

where p(µ|Π, δ) is a Gaussian, whose dimension is the number of component-
specific coefficients. For the covariate sets, Π, we follow [25] and assume a
uniform distribution, truncated to |Π| ≤ 3. The prior p(δ|Π) will be specified in
Section 5.1.4.
To generate samples from the posterior, we use a Markov Chain Monte Carlo
(MCMC) algorithm, which combines the Gibbs-sampling steps for βB , σ2, λ2

?, λ2
�

and µ with two blocked Metropolis Hastings (MH) moves. In the first MH move
the vector δ is sampled jointly with µ, and in the second MH move Π is sampled
jointly with δ and µ. As the implementation of the MCMC algorithm is involved,
we relegate the mathematical details to parts B and C of the Appendix.

5.1.3 Competing models
A homogeneous model merges all data, while a non-homogeneous model as-
sumes each component k to have specific parameters; see (5.2). The new partially
non-homogeneous model infers the best trade-off: Each regression coefficient can
be either constant or component-specific.
For a fair comparison, we also allow the non-homogeneous model to switch
between a homogeneous and a non-homogeneous state. However, like all models
that have been proposed so far, it operates on the covariate sets. All covariates
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y

σ2 σ−2 ∼ GAM(a, b)

a b
y ∼ NT (XBβB, σ

2I)

βB := (βT
⋆ ,β

T
1 , . . . ,β

T
K)

T

β⋆ ∼ Nn1+1(0, σ
2λ2

⋆I)

βk ∼ Nn2(µ, σ
2λ2
⋄I) ∀k

βB β⋆βk

k = 1, . . . , K

λ2
⋄ λ2

⋆

α⋄ β⋄ α⋆ β⋆

µ

µ ∼ Nn2(µ0,Σ0)

µ0

Σ0 λ−2⋆ ∼ GAM(α⋆, β⋆)

λ−2⋄ ∼ GAM(α⋄, β⋄)

Figure 5.1: Graphical model representation of the regression model with parti-
tioned design matrix. Variables that have to be inferred are in white circles. The
data and the fixed hyperparameters are in grey circles. The vector βB deterministically
depends on β? and β1, . . . ,βK . The vector βk in the plate is condition-specific.

have either component-specific (S = 0) or constant (S = 1) regression coefficients.
In our method comparison, we include:

• DBN: A homogeneous model that merges all data, see (5.3).

• NH-DBN: The NH-DBN model switches between two states. We have a
DBN for S = 1, and the likelihood takes the form of (5.2) for S = 0.

• coupled NH-DBN: This model from [25] is an NH-DBN that globally
couples the regression coefficients.

5.1.4 Specifying the covariate type prior

The NH-DBNs can switch between: ‘all covariates are constant’ (S = 1) vs. ‘all
covariates are component-specific’ (S = 0). Those states refer to δ = 1 and δ = 0
of the partially NH-DBN. To match the priors, we set:

p(S = 1)
p(S = 0) = p(δ = 1|Π)

p(δ = 0|Π) (5.9)

For Π = {X1, . . . , Xn}, δ contains n+ 1 binary elements, which we assume to be
independently Bernoulli distributed. To fulfill (5.9) the Bernoulli parameter must
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depend on n = |Π|. We get: p(δ = 1|Π) = θn+1
n and p(δ = 0|Π) = (1 − θn)n+1.

From (5.9) we obtain:

r := p(S = 1)
p(S = 0) = θn+1

n

(1− θn)n+1 ⇔ θn =
(

r

1 + r

)1/(n+1)

and p(δ|Π) = θ

n∑
i=0

δi

n · (1− θn)

n∑
i=0

(1−δi)

For mixture models it is often assumed that the number of components K̃ has a
Poisson distribution [21]. We truncate it to K̃ ∈ {1,K}:

p(S = 0) = q(K)
q(1)+q(K) and p(S = 1) = q(1)

q(1)+q(K)

where q(.) is the density of the Poisson distribution with parameter θ = 1.

5.1.5 Gaussian process smoothing for non-equidistant data

The regression models assume that the time lag O between the response value
yk,t+1 and the covariate values x1,k,t, . . . , xn,k,t is the same for all t. If the data
within a component k were measured at time points t1, . . . , tTk , with varying
distances Oi := ti − ti−1, the models lead to biased results. For this scenario, we
propose to replace the observed non-equidistant response values by predicted
equidistant response values. We propose the following Gaussian process (GP)
based method:

• Determine the lowest time lag O? = min{O2, . . . ,OTk}, where Oi := ti −
ti−1.

• Given the observed data points {(t, yk,t) : t = t1, . . . , tTk}, use a Gaussian
process to predict the whole curve {(t, yk,t)}t≥0.

• Extract the response values at the time points: t1 +O?, . . . , tTk +O?.

• Build the response vector and design matrix such that the values
x1,k,ti , . . . , xn,k,ti are used to explain the predicted response value ŷk,ti+O?
(i = 1, . . . , Tk). The new lag is then constant; Ot = O?.

A Gaussian process (GP) is a stochastic process {Yk,t}t≥0, here indexed by
time, such that every finite subset of the random variables has a Gaussian distri-
bution. A GP can be used to estimate a non-linear curve (t, yk,t)t≥0 from noisy
observations. We here assume the relationship:

yk,t = f(t) + εt

where εt ∼ N (0, σ2) is observational noise, and the non-linear function f(.) is
unknown. We estimate f(.) by fitting a GP to the observed data. The GP defines a
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distribution over the functions f(.), which transforms the input (t1, . . . , tTk) into
output (yk,t1 , . . . , yk,tTK ), such that

(Yk,t1 , . . . , Yk,tTK )T ∼ NTk(0,K + σ2I) (5.10)

where I is the identity matrix, and the elements of the Tk-by-Tk covariance matrix
K are defined through a kernel function: Ki,j = ξ2 · k(ti, tj) with signal variance
parameter ξ2. The kernel function k(., .) is typically chosen such that similar
inputs ti and tj yield correlated variables Yti and Ytj . A popular and widly used

kernel is the squared exponential kernel with: k(ti, tj) = exp(− 1
2 ·

(ti−tj)2

l2 ) where
l is the length scale. The predictive expectation ŷk,t for t ≥ 0 is:

ŷk,t = Kt · (K + σ2I)−1 · y (5.11)

where Kt := ξ2(k(t, t1), . . . , k(t, tTk))T and y := (yt1 , . . . , yTK )T.
Before inferring the GP, we standardize y to mean 0. We impose log-uniform

priors on σ2, ξ2 and l. We compute the maximum a posteriori (MAP) parameter
estimates and plug them into (5.11). This way, we can get predictions for the
response values ŷk,t for t ∈ {t1 +O?, . . . , tTk +O?}.

5.1.6 Learning topologies of regulatory networks

Assume that the variables Z1, . . . , ZN interact with each other in form of a net-
work and that data were collected under K conditions and that the conditions
influence some of the interactions. Let Dk denote the N -by-Tk data matrix which
was measured under condition k. The rows of Dk correspond to the variables
and the columns of Dk correspond to Tk time points. Di,k,t denotes the value of
Zi at time point t under condition k.

The goal is to infer the network structure. Interactions for temporal data
are usually modelled with a time lag, e.g. of order O = 1. An edge, Zj → Zi,
indicates that Zj has an effect on Zi in the following sense: For all k the value
Di,k,t+1 (Zi at t+ 1) depends on Dj,k,t (Zj at t).

There is no acyclicity constraint, and DBN inference can be thought of as
inferring N separate regression models and combining the results. In the i-
th model Y := Zi is the response. The remaining N? := N − 1 variables
Z1, . . . , Zi−1, Zi+1, . . . , ZN are the potential covariates. For each Y := Zi we
infer a covariate set Πi, and the covariate sets Π1, . . . ,ΠN describe a network N .
There is the edge Zj → Zi in the network N if and only if Zj ∈ Πi.

We can thus apply the partially non-homogeneous model to each Y =
Zi separately, to generate posterior samples. We extract the covariate sets,
Π(1)
i , . . . ,Π(R)

i (i = 1, . . . , N ), and we merge them to a network sample
N (1), . . . ,N (R). The r-th network N (r) possesses the edge Zj → Zi if and only if
Zj ∈ Π(r)

i . For each edge Zj → Zi we can then estimate its marginal posterior
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Figure 5.2: Average scores (posterior probabilities). In each histogram, the dark grey
bars refer to the scores of the true covariates, and the light grey bars refer to the
irrelevant variables. Covariate values were generated via autoregressive [AR] (top)
and moving average [MA] processes (bottom). The left histograms show the scores of
a standard regression (without GP processing). The left histograms show the scores
when the proposed GP method is used. Error bars indicate standard deviations.

probability (‘score’):

ŝj,i = 1
R

R∑
r=1

Ij→i(N (r)) where Ij→i(N (r)) =
{

1 if Zj ∈ Π(r)
i

0 if Zj /∈ Π(r)
i

When the true network is known, we can evaluate the network reconstruction
accuracy with precision-recall curves. For each ψ ∈ [0, 1] we extract the n(ψ)
edges whose scores ŝj,i exceed ψ, and we count the number of true positives
T (ψ) among them. Plotting the precisions P (ψ) := T (ψ)/n(ψ) against the recalls
R(ψ) := T (ψ)/M , where M is the number of edges in the true network, gives the
precision-recall curve ([11]). We refer to the area under the curve as AUC value.
The higher the AUC, the higher the reconstruction accuracy.

5.2 Implementation

For the inverse Gamma distributed parameters (σ2, λ2
?, λ2
�) we use shape and rate

parameters from earlier works, e.g. in [38] and [25]: σ−2 ∼ GAM(0.005, 0.005)
and λ−2

? , λ−2
� ∼ GAM(2, 0.2) and for the hyperprior on µ we use µ0 = 0 and
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Σ0 = I. Other settings led to comparable results what indicates robustness
w.r.t. those hyperparameters. To ensure a fair comparison we use the same
hyperparameters for the competing models; cf. Section 5.1.3.

For generating posterior samples, we run the MCMC algorithm from Sec-
tion 5.1.2 for 100,000 (100k) iterations. We set the burn-in phase to 50k and we
sample every 100th graph during the sampling phase. This yields R = 500 pos-
terior samples for each response Y = Zi. We merge the individual covariate
sets Π(r)

i (i = 1, . . . , N ; r = 1, . . . , R) to a network sample N (1), . . . ,N (R), as
explained in Section 5.1.6. For each edge Zj → Zi we then compute its edge score
ŝj,i.

We used potential scale reduction factors (PSRFs) to monitor convergence
([7]). We monitored the fractions of edges which fulfilled PSRF < 1.01 against
the MCMC iterations. For all data sets all edge-specific PSRF’s were below 1.01
after 100k iterations.

The computational costs for 100k MCMC iterations are moderate when a
computer cluster is available. The computational advantage is that the task to
infer a network with N nodes can be subdivided into N independent regression
tasks (cf. Section 5.1.6), and the simulations can run in parallel. With our Matlab
implementation 100k iterations take 5-10 minutes. We implement the GP method
with the squared exponential kernel and used the Matlab package ‘GPstuff’ [64] to
numerically determine the MAP estimates of the parameters via scaled conjugate
gradient optimization. We also tested other kernels, such as the Matern 3/2 and
5/2 kernel, and for them we obtained very similar results.

5.3 Data and empirical results

5.3.1 Pre-study on Gaussian Process smoothing
Our first objective is to provide empirical evidence that the proposed GP method
from Section 5.1.5 can yield substantial improvements. To this end, we generate
values for 10 autoregressive (AR) variables:

Xi,t = ηXi,t−1 + εi,t (t = 0, 1, . . . , 120; i = 1, . . . , 10) (5.12)

where εi,t ∼ N(0, 0.52), and X1 and X2 are covariates for:

Yt+1 = β0 + β1X1,t + β2X2,t + εy,t+1 (5.13)

where εy,t+1 ∼ N(0, 0.012).
In a second scenario we replace (5.12) by moving averages (MA):

Xi,t =
t∑

j=t−q
εi,j (t = 0, 1, . . . , 120; i = 1, . . . , 10) (5.14)

where εi,t ∼ N(0, (q + 1)−1), so that Xi,t ∼ N(0, 1).
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Figure 5.4: Network reconstruction accuracy for yeast gene expression data. The
histogram shows the average precision-recall AUC values, averaged across 25 MCMC
simulations, with error bars indicating standard deviations. The AUCs are: 0.61 (DBN),
0.69 (NH-DBN), 0.81 (coupled NH-DBN) and 0.87 (new NH-DBN). All three AUC
differences are significant in terms of 2-sided t-tests (p < 10−3). Right: The true yeast
network [8].

We generate data for both scenarios (AR and MA) with different para-
meter settings (β0, β1, β2) in (5.13) and η in (5.12), respective q in (5.14). We
thin the data out and keep only the observations at the time points t ∈
{0, 1, 3, 5, 10, 15, 30, 45, 60, 120}, as the same time points were measured for the
mTORC1 data; see Section 5.3.4. The standard regression approach uses the
covariate values at ti for explaining Y at ti+1, although the time lag steadily
increases. The Gaussian Process (GP) method from Section 5.1.5 predicts the
response values at ti + O?, and replaces yti+1 (observed Y at ti+1) by ŷti+O?

(predicted Y at ti +O?), where O? = 1.
With both approaches we run MCMC simulations on each data set, and from

the MCMC samples we compute for each covariate Xi the score that Xi is a
covariate for Y . Our results show that the proposed GP method finds the true
covariates X1 and X2, while the standard approach cannot clearly distinguish
them from the irrelevant variables X3, . . . , X10. Figure 5.2 shows histograms of
the average covariate scores for AR data with βi = 1 and η = 1, and for MA data
with βi = 1 and q = 5.

5.3.2 Pre-study on synthetic RAF-pathway data
The RAF pathway, see [50], consists of N = 11 nodes and 20 directed edges; see
Figure 5.3. We generate data with K = 2 components and Tk = 10 data points
each. The parent nodes of each node Zi build its covariate set Πi. We assume a
linear model with component-specific regression coefficients:

zi,k,t+1 = βik,0 +
∑

j:Zj∈Πi

βik,j · zj,1,t + eik,t (k = 1, 2)
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where zi,k,t denotes the value of node Zi at time point t in component k, and βik,j
is the regression coefficient for Zj → Zi in component k. The noise values eik,t and
the initial values zi,k,1 are sampled from independent N(0, 0.052) distributions.
For Zi there are 2(|Πi|+ 1) component-specific regression coefficients. For each
Zi we collect them in two vectors βik (k = 1, 2), and we sample the elements
of βik from N(0, 1) Gaussian distributions. We then re-normalize the vectors to
Euclidean norm one: βik ← βik/|β

i
k| (k = 1, 2). We distinguish six scenarios:

• (S1) Identical: We withdraw βi2 and assume that the same regression coef-
ficients apply to both components. We set: βi2 = βi1 for all i.

• (S2) Identical signs (correlated): We enforce the coefficients to have the
same signs, i.e. we replace βi2,j by: βi2,j := sign(βi1,j) · |βi2,j | for all i and j .

• (S3) Uncorrelated: We use the vectors βik for component k (k = 1, 2). The
component-specific coefficients βi1,j and βi2,j are then uncorrelated for all i
and all j.

• (S4) Opposite signs (negatively correlated): We withdraw the vector βi2
and we set: βi2,j = (−1) · βi1,j . The coefficients βi1,j and βi2,j are then
negatively correlated.

• Mixture of (S1) and (S3): We assume that 50% of the coefficients are
identical for both k, while the other 50% are uncorrelated. We randomly
select 50% of the coefficients and set: βi2,j = βi1,j . The other 50% of the
coefficients stay unchanged (uncorrelated).

• Mixture of (S1) and (S4): We withdraw βi2 and we assume that 50% of the
coefficients are identical for both k, while the other 50% have an opposite
sign. We randomly select 50% of the coefficients and set: βi2,j = βi1,j . For
the other coefficients we set βi2,j = (−1) · βi1,j .

For each scenario we generate 25 data sets. We then analyse every data set
with each model. Figure 5.3 shows the average AUC values for reconstructing
the RAF pathway. Only for scenario (S1), where all coefficients are constant, the
models perform equally well. For (S2)-(S6) the homogeneous DBN is substantially
worse than the NH-DBNs. The coupled NH-DBN is slightly superior to the (non-
coupled) NH-DBN. The proposed partially NH-DBN yields the highest average
AUC scores.

5.3.3 Reconstructing the yeast gene network topology

By means of synthetic biology, [8] designed a network with N = 5 genes in S.
cerevisiae (yeast); Figure 5.4 shows the true network. With quantitative Real-Time
Polymerase Chain Reaction, [8] then measured in vivo gene expression data:
under galactose- (k = 1) and glucose-metabolism (k = 2). T1 = 16 measure-
ments were taken in galactose and T2 = 21 in glucose. The data have become a
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Protein Full name Sites
mTOR mammalian target of rapamycin pS2481, pS2448
PRAS40 proline-rich AKT/PKB substrate 40 kDa pT246, pS183
AKT Protein kinase B pT308, pS473
IRS1 insulin receptor substrate 1 pS636
IR-beta insulin receptor beta pY1146
AMPK AMP-dependent protein kinase pT172
TSC2 tuberous sclerosis 2 protein pS1387
p70-S6K Ribosomal protein S6 kinase beta-1 pT389

Table 5.1: mTORC1 timecourse data. Overview to the eight proteins and the eleven
measured phosporylation sites.

benchmark application, as the network reconstruction accuracies can be cross-
compared on real in vivo gene expression data. Figure 5.4 shows the results, and
again a clear trend can be seen: The homogeneous DBN yields the lowest AUC
value. The non-homogeneous model (NH-DBN) yields higher AUCs and can
be further improved by coupling the regression coefficients (coupled NH-DBN).
The proposed partially NH-DBN reaches the highest network reconstruction
accuracy. The results are thus consistent with the results for the RAF-pathway
data in Section 5.3.2.

5.3.4 Reconstructing the topology of the mTOR complex 1
(mTORC1) network

The mammalian target of rapamycin complex 1 (mTORC1) is a serine/threonine
kinase which is evolutionary conserved and essential in all eukaryotes [52]. mT-
ORC1 is at the center of a multiply wired, complex signalling network, whose
topology is well studied and contains several well-characterised feedback loops
[52]. Hence, we used the mTORC1 network as a surrogate based on which we
can objectively evaluate the predictive power of our partially NH-DBN model for
learning network structures. The signalling network converging on mTORC1 is
built by kinases, which inactivate or activate each other by phosphorylation. Thus,
a protein can be phosphorylated at one or several sites, and the phosphoryla-
tions at these positions determine its activity. Signaling through the mTORC1
network is elicited by external signals like insulin or amino acids. [10] relatively
quantified 11 phosphorylation states of 8 key proteins across the mTORC1 sig-
nalling network by immunoblotting; for an overview see Table 5.1. Dynamic time
course data were obtained under two experimental conditions, namely upon
stimulation with amino acids only (k = 1), and with amino acids plus insulin
(k = 2). The phosphorylation states were measured at Tk = 10 time points:
t = 0, 1, 3, 5, 10, 15, 30, 45, 60, 120 minutes, so that the time lag increases from 1 to
60. We therefore apply the Gaussian Process method from Section 5.1.5 to predict
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Figure 5.5: Predicted mTORC1 network topology. The 12 interactions whose scores
exceeded the threshold ψ = 0.5; edges are labelled with their scores. The 5 edges with
scores higher than ψ = 0.8 are represented in bold. The displayed interactions all had
a higher posterior probability for being in the non-homogeneous state (δ = 1).

equidistant response values, before analysing the data with the proposed par-
tially NH-DBN. The 12 edges with scores higher than ψ = 0.5 yield the network
topology shown in Figure 5.5. A literature review shows that 11 out of the 12
edges have been reported earlier.

We focus first on the five interactions with the highest scores ψ > 0.8. Two out
of these five interactions are enzyme-substrate relationships: p70-S6K is a kinase
which is directly activated by mTORC1 through phosphorylation at threonine
389 [p70-S6K-pT389] [52]. Thus, p70-S6K-pT389 represents a direct readout of
mTORC1 activity. p70-S6K phosphorylates IRS1 at serine 636, [IRS1-pS636] [63]
and mTOR at serine 2448 [mTOR-pS2448] [13], and both edges are correctly
identified by our model [p70-S6K-pT389→IRS1-pS636, p70-S6K-pT389→mTOR-
pS2448]. Two other interactions with a high score are between AKT-pT308↔AKT-
pS473. The two phosphorylations are predicted by our model to influence each
other, and a positive feedback between phosphorylation events on S473 and
T308 of AKT has indeed been demonstrated biochemically [42]. Another high
score prediction is between IRS1-pS636 and p70-S6K-pT389 [IRS1-pS636→p70-
S6K-pT389]. Phosphorylation at S636 inhibits IRS1, thereby leading to inhibition
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of mTORC1 and its substrate p70-S6K-T389 [63]. Thus, the negative feedback
between IRS1-pS636 and p70-S6K-pT389 explains the learned edge between them
[IRS1-pS636→p70-S6K-pT389]. In addition, IRS1 inhibition by phosphorylation
at S636 results in reduced phosphorylation of AKT at threonine 308, which is
in agreement with the learned edge between IRS1-pS636 and AKT-pT308 [IRS1-
pS636→AKT-pT308].

We could also find evidence for 6 of the remaining 7 edges with scores in
between 0.5 and 0.8. PRAS40 is an endogenous mTORC1 inhibitor [52]. The edge
from PRAS40-pT246 to PRAS40-pS183 corresponds to a well-described mech-
anism of PRAS40 regulation: AKT phosphorylates PRAS40 at T246 [PRAS40-
pT246], which allows subsequent phosphorylation of PRAS40-S183 by mTORC1
[45]. This interaction is accurately resembled by our model [PRAS40-pT246→
PRAS40-pS183]. PRAS40’s double phosphorylation dissociates PRAS40 from
mTORC1, leading to its derepression [45]. This mechanism is resembled by the
edge between PRAS40-S183 and mTOR-S2481 [PRAS40-pS183→mTOR-pS2481],
the latter being an autophosphorylation site which directly monitors mTOR activ-
ity [61]. Furthermore, the model suggests an edge between p70-S6K-pT389 and
PRAS40-pS183 [p70-S6K-pT389→PRAS40-pS183]. Both are mTORC1 substrate
sites [45, 52] and are therefore often targeted in parallel. The only predicted
edge for which there is to the best of our knowledge no literature evidence is
between mTOR-pS2448 and TSC2-pS1387 [mTOR-pS2448→TSC2-pS1387]. TSC2
is activated by phosphorylation at S1387 and inhibits mTORC1 [30]. Our model
prediction that mTORC1 - when phosphorylated at S2448 by p70-S6K - regulates
TSC2 remains to be experimentally tested.

5.4 Discussion and conclusions

We propose a new partially non-homogeneous dynamic Bayesian network (par-
tially NH-DBN) model for learning network structures. When data are measured
under different experimental conditions, it is rarely clear whether the data can be
merged and analysed within one single model, or whether there is need for a NH-
DBN model that allows the network parameters to depend on the condition. The
new partially NH-DBN has been designed such that it can infer the best trade-off
from the data. It infers for each individual edge whether the corresponding inter-
action parameter is constant or condition-specific. Our applications to synthetic
RAF pathway data as well as to yeast gene-expression data have shown that the
partially NH-DBN model improves the network reconstruction accuracy. We
have used the partially NH-DBN model to predict the structure of the mTORC1
signalling network. As the measured mTORC1 data are non-equidistant, we have
applied a Gaussian process (GP) based method to predict the missing equidistant
values. Results on synthetic data (see Section 5.3.1) show that the proposed
GP-method (see Section 5.1.5) can lead to substantially improved results.

All but one of the predicted interactions across the mTORC1 network are reflec-
ted in experiments reported in the biological literature. [10] built an ODE-based
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dynamic model which allows to predict signalling responses to perturbations.
Like for many ODE-based models, the topology of this model was defined by
the authors, based on literature-knowledge. The ODE model simulations could
reproduce the measured mTORC1 timecourse data. Interestingly, all the connec-
tions predicted by our new partially NH-DBN model form part of the core model
by [10]. Hence, we present an alternative unsupervised learning approach, in
which the topology of signalling networks is inferred directly from the data. The
new model is thus a complementary tool that enhances dynamic model building
by predicting the network’s topology in a purely data-driven manner.

5.5 Appendix

5.5.1 Part 0 - Summary from this chapter
For the posterior of the proposed partly non-homogeneous dynamic Bayesian network (partly NH-
DBN) model we have:

p(βB , σ2, λ2
?, λ

2
�,µ|y) ∝ p(y|σ2,βB) · p(βB |σ2, λ2

�, λ
2
?,µ) · p(µ) · p(σ−2)

·p(λ−2
? ) · p(λ−2

� ) (5.15)

and the model likelihood is given by:

y ∼ N (XBβB , σ
2I)

where βB is a vector of (1 +n1 +K ·n2) regression coefficients, and XB is a partitioned matrix with∑
(Tk − 1) rows and (1 + n1) + (K · n2) columns. E.g. for K = 2, when the intercept and the first

n1 < n coefficients stay constant while the remaining n2 = n−n1 coefficients are component-specific,
the matrix XB has the structure:

XB =
(

1 x1,1 . . . xn1,1 xn1+1,1 . . . xn,1 0 . . . 0
1 x1,2 . . . xn1,2 0 . . . 0 xn1+1,2 . . . xn,2

)
,

In this chapter we have shown that βB has a Gaussian prior:

βB |(σ2, λ2
�, λ

2
?,µ) ∼ N (µ̃, σ2Σ̃) with: µ̃ =


0
µ
...
µ

 and Σ̃ =
(
λ2
?I? 0
0 λ2

�I�

)
where I? is the (n1 + 1)-dimensional identity matrix, and I� is the (K · n2)-dimensional identity
matrix.

Moreover, we have imposed the following inverse Gamma priors:

σ−2 ∼ GAM(a, b) and λ−2
? ∼ GAM(α?, β?) and λ−2

� ∼ GAM(α, β)

When deriving the full conditional distributions we will use the relationship:

XB · µ̃ = X‡B · µ where = X‡B :=


xn1+1,1 . . . xn,1
xn1+1,2 . . . xn,2

... . . .
...

xn1+1,K . . . xn,K

 (5.16)
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5.5.2 Part A - Deriving the full conditional distributions
A sample from the posterior distribution in Equation (5.15) can be generated by Markov Chain Monte
Carlo (MCMC) simulations. In this subsection we derive the full conditional distributions (FCDs) for
the model parameters: βB , λ2

?, and λ2
�. For σ2 and µwe implement collapsed Gibbs sampling moves.

In collapsed Gibbs sampling steps some of the other variables are integrated out in analytically from
the FCDs. Collapsed Gibbs sampling steps are known to be more efficient than standard Gibbs
sampling steps. Within a Gibbs MCMC sampling scheme all parameters are iteratively resampled
from their FCDs or by a collapsed Gibbs sampling step.

The densities of the FCDs are proportional to the factorized joint density in Equation (5.15). From
the shape of the densities we conclude what the full conditional distributions (FCDs) are.

For the full conditional distribution of βB we obtain:

FCD(βB) ∝ p(y|σ2,βB) · p(βB |σ
2, λ2
�, λ

2
?,µ)

∝ exp{−1
2(y−XBβB)T(σ2I)−1(y−XBβB)}

· exp{−1
2(βB − µ̃)T(σ2Σ̃)−1(βB − µ̃)}

∝ exp{−1
2 · β

T
B

(
σ−2[Σ̃−1 + XT

BXB ]
)
βB + βT

B

(
σ−2(Σ̃−1

µ̃+ XT
By)
)
}

and from the shape of the latter density we conclude:

βB |(σ2, λ2
�, λ

2
?,µ) ∼ N

(
[Σ̃−1 + XT

BXB ]−1(Σ̃−1
µ̃+ XT

By) , σ2[Σ̃−1 + XT
BXB ]−1

)
(5.17)

For the full conditional distributions of λ2
� and λ2

? we get:

FCD(λ2
�) ∝ p(λ−2

� ) · p(βB |σ2, λ2
�, λ

2
?,µ)

∝ p(λ−2
� ) ·

K∏
k=1

p(βk|σ2, λ2
�)

∝ (λ−2
� )α+Kn2

2 −1 · exp{−λ−2
� (β +

1
2
σ−2

K∑
k=1

(βk − µ)T(βk − µ))}

FCD(λ2
?) ∝ p(λ−2

? ) · p(βB |σ2, λ2
�, λ

2
?,µ)

∝ p(λ−2
? ) · p(β?|σ2, λ2

?)

∝ (λ−2
? )α?+n1

2 −1 · exp{−λ−2
? (β? +

1
2
σ−2βT

?β?)}

and from the shapes of the densities it follows for the FCDs:

λ−2
� |(σ2,βB , λ

2
?,µ) ∼ GAM

(
α+

Kn2

2
, β +

1
2
σ−2

K∑
k=1

(βk − µ)T(βk − µ)

)
λ−2
? |(σ2,βB , λ

2
�,µ) ∼ GAM

(
α? +

n1

2
, β? +

1
2
σ−2βT

?β?

)
(5.18)

For the noise variance parameter σ2 we implement a collapsed Gibbs sampling step with βB
integrated out. We have:

p(y|σ2, λ2
�, λ

2
?) =

∫
p(y,βB |σ2, λ2

�, λ
2
?)dβB =

∫
p(y|βB , σ2) · p(βB |σ2, λ2

�, λ
2
?)dβB

From a standard rule for Gaussian integrals (see, e.g., Section 2.3.2 in [5]):

y|β ∼ N (Xβ,Σ) with β ∼ N (µ,S) implies y ∼ N (Xµ,Σ + XSXT)
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It follows:
y|(σ2, λ2

�, λ
2
?) ∼ N (XBµ̃, σ

2[I + XBΣ̃XT
B ]) (5.19)

This yields:

p(σ2|y, λ2
�, λ

2
?,µ) ∝ p(y|σ2, λ2

�, λ
2
?) · p(σ−2)

∝ (σ−2)0.5
∑

(Tk−1)

· exp{−0.5(y−XBµ̃)Tσ−2[I + XBΣ̃XT
B ]−1(y−XBµ̃)}

·(σ−2)a−1 exp{−bσ−2}

The shape of the density implies the collapsed Gibbs sampling step:

σ−2|(y, λ2
�, λ

2
?,µ) ∼ GAM(

a+
∑

(Tk − 1)
2

, b+
1
2

(y−XBµ̃)T[I + XBΣ̃XT
B ]−1(y−XBµ̃)

)
For the FCD of µ we also use a collapsed Gibbs sampling step with βB integrated out (cf. Equa-
tion (5.19)) and we use that XB · µ̃ = X‡B · µ (cf. Equation (5.16))

FCD(µ) ∝ p(y|σ2, λ2
�, λ

2
?) · p(µ)

∝ exp{−0.5σ−2(y−XBµ̃)Tσ−2[I + XBΣ̃XT
B ]−1(y−XBµ̃)}

· exp{−0.5µTµ}

∝ exp{−0.5µT
(
(X‡B)T(σ−2[I + XBΣ̃XT

B ]−1)X‡B + I
)
µ . . .

. . .+ µT(X‡B)T(σ−2[I + XBΣ̃XT
B ]−1)y}

The latter density is proportional to the density of a Gaussian, so that it follows for the FCD:

µ|(λ2
�, λ

2
?, σ

2) ∼ N (µ‡,Σ‡) (5.20)

where

Σ‡ = (X‡B)T(σ−2[I + XBΣ̃XT
B ]−1X‡B + I)−1 (5.21)

µ‡ = Σ‡ · (X‡B)T(σ−2[I + XBΣ̃XT
B ]−1)y (5.22)

An important model property is that the marginal likelihood, with βB and σ2 integrated out,
can be computed. The marginalization rule from Section 2.3.7 of [5] yields:

p(y|λ2
�, λ

2
?,µ) =

Γ(T2 + a)
Γ(a)

·
π−

T
2 (2b)a

det(C)1/2

(
2b+ (y−XBµ̃)TC−1(y−XBµ̃)

)−(T2 +a)
(5.23)

where T :=
K∑
k=1

(Tk − 1), and C := I + XBΣ̃XT
B .

5.5.3 Part B - Blocked Metropolis Hastings moves for inferring
the covariate set and the covariate types

We note that the indicator vector δ depends on the covariate set Π, as it contains one indicator variable
for each covariate in Π. Moreover, the expression XB , µ, Σ̃, µ̃ and C all depend on both Π and δ,
though we do not make that explicit in our notation.

As described in this chapter, given the covariate set Π and the corresponding indicator vec-
tor δ, the partitioned design matrix XB = XB,Π,δ can be built, and the marginal likelihood
p(y|λ2

�, λ
2
?,µ,Π, δ) can be computed with Equation (5.23). We obtain as posterior distribution for

the extended model (and with σ2 and βB integrated out):

p(Π, δ, λ2
?, λ

2
�,µ|y) ∝ p(y|λ2

�, λ
2
?,µ,Π, δ) · p(Π) · p(δ|Π) · p(µ|Π, δ) · p(λ2

?)
·p(λ2

�) (5.24)
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where p(µ|Π, δ) is a Gaussian, whose dimension is the number of component-specific coefficients,
p(Π), is a uniform distribution, truncated to the maximal cardinality |Π| ≤ 3, and p(δ|Π) has been
specified in Section 5.1.4.

We implement two Metropolis Hastings moves, and we use the concept of blocking ([40]).
Blocking is a technique by which variables are not sampled separately, but are merged into blocks
that are sampled together. We form two blocks, grouping δ with µ, and grouping Π with δ and µ.
The vector δ is then always sampled jointly with µ, and Π is always sampled jointly with δ and µ.

First Metropolis Hastings move:
Each move on [δ,µ] randomly selects one δi of δ and proposes to switch its value, i.e to replace δi by
1− δi. This yields a new candidate vector δ•, for which we re-sample µ• from its full conditional
distribution in Equation (5.20). The acceptance probability for the move is:

A([δ,µ]→ [δ•,µ•]) = min
{

1, p(y|λ
2
�, λ

2
?,µ•,Π, δ•)

p(y|λ2
�, λ2

?,µ,Π, δ) ·
p(δ•|Π)
p(δ|Π) ·

p(µ•|Π, δ•)
p(µ|Π, δ) ·H

}
(5.25)

where the Hastings ratio H is equal to the ratio of full conditional densities:

H =
p(µ|λ2

�, λ
2
?, σ

2,Π, δ)
p(µ•|λ2

�, λ
2
?, σ2,Π, δ•)

Second Metropolis Hastings move:
For sampling [Π, δ,µ] we implement 3 moves on the covariate set Π, which are accompanied by
updates of δ and µ. Each move proposes to replace [Π, δ,µ] by a new triple [Π•, δ•,µ•]

• In the deletion move (D) we randomly select one covariate X ∈ Π, and we propose to remove
this covariate from Π. This yields Π•. Removing X makes the corresponding element δ from
δ redundant, so that we remove it as well to obtain δ•.

• In the addition move (A) we randomly select one covariate X /∈ Π, and we propose to add
this covariate to Π. This yields Π•. We flip a coin to determine the type (δ ∈ {0, 1}) of the
new covariate. Adding the element δ to δ yields δ•.

• In the exchange move (E) we randomly select one covariate X• ∈ Π, and we propose to
replace X• by a randomly selected new covariate X /∈ Π. This yields Π•. We then flip a coin
to determine the type (δ ∈ {0, 1}) of the new covariate. By removing the element δ• from δ
and adding the element δ to δ, we obtain δ•.

Each sub-move (D, A and E) yields a pair [Π•, δ•], which we complete to a triple by sampling a
new µ•, conditional on Π• and δ•, from the full conditional distribution in Equation (5.20). When
randomly selecting the move type (D, A or E) the acceptance probability is:

A([Π, δ,µ], [Π•, δ•,µ•]) =

min
{

1, p(y|λ
2
�, λ

2
?,µ•,Π•, δ•)

p(y|λ2
�, λ2

?,µ,Π, δ) · p(Π•)
p(Π) ·

p(δ•|Π•)
p(δ|Π) ·

p(µ•|Π•, δ•)
p(µ|Π, δ) ·H

}
(5.26)

where the Hastings-Ratio H is equal to:

H =
p(µ|λ2

�, λ
2
?, σ

2,Π, δ)
p(µ•|λ2

�, λ
2
?, σ2,Π•, δ•)

·HR

and the factor HR is move-specific (D, A and E):

HRD =
|Π|

N? − |Π•|
· 0.5, HRA =

N? − |Π|
|Π•|

· 2, HRE = 1 (5.27)

where N? is the number of potential covariates, |.| denotes the cardinality, and the factors 2 and 0.5
stem from flipping a coin to determine the type (δ ∈ {0, 1}) of a new covariate X .
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5.5.4 Part C - The Markov Chain Monte Carlo (MCMC) infer-
ence algorithm

To generate samples from the posterior distribution in Equation (5.24), we use a Markov Chain Monte
Carlo (MCMC) algorithm, which combines the Gibbs-sampling steps from part A with the Metropolis
Hastings steps from part B. We initialize all entities, e.g. Π = {}, δ = (δ0) = (0), µ = 0, λ2

� = 1,
λ2
? = 1, before we iterate among seven sampling steps:

Gibbs part: Given Π and δ, we re-sample the parameters σ2, β, λ2
�, λ2

?, and µ. Although
the parameters σ2 and βB can be marginalized out, and thus do not appear in the posterior in
Equation (5.24), the FCDs of λ2

� and λ2
?, and µ depend on them. Therefore σ2 and βB have to be

sampled too, but they can be withdrawn after sampling step (5). The Gibbs sampling steps have been
derived in part A of this Appendix. Each step updates one parameter, and the subsequent steps are
then always conditional on the newest parameter combination:

(1) σ−2|(y, λ2
�, λ

2
?,µ) ∼

GAM

(
a+

∑
(Tk−1)

2 , b+ 1
2 (y−XBµ̃)Tσ−2[I + XBΣ̃XT

B ]−1(y−XBµ̃)
)

(2) βB |(σ2, λ2
�, λ

2
?,µ) ∼ N

(
[Σ̃−1 + XT

BXB ]−1(Σ̃−1
µ̃+ XT

By) , σ2[Σ̃−1 + XT
BXB ]−1

)
(3) λ−2

� |(σ2,βB , λ
2
?,µ) ∼ GAM

(
α+ Kn2

2 , β + 1
2σ
−2
∑K

k=1(βk − µ)T(βk − µ)
)

(4) λ−2
? |(σ2,βB , λ

2
�,µ) ∼ GAM

(
α? + n1

2 , β? + 1
2σ
−2βT

?β?
)

(5) µ|(λ2
�, λ

2
?, σ

2) ∼ N (µ‡,Σ‡); see Equations (5.20-5.22).

Metropolis-Hastings part: Withdraw σ2 and βB , and keep λ2
�, λ2

? and µ. Perform the two
blocked Metropolis-Hastings moves from part B:

(6) We propose to replace [δ,µ] by [δ•,µ•], and we accept the new pair with the probability
given in Equation (5.25). If accepted, we replace [δ,µ] by [δ•,µ•], otherwise we leave [δ,µ]
unchanged.

(7) We propose to replace [Π, δ,µ] by [Π•, δ•,µ•], and we accept the new triple with the probab-
ility given in Equation (5.26). If accepted, we replace [Π, δ,µ] by [Π•, δ•,µ•], otherwise we
leave [Π, δ,µ] unchanged.

The MCMC algorithm generates a posterior sample:

{Π(w), δ(w), λ2
?,(w), λ

2
�,(w),µ

(w)} ∼ p(Π, δ, λ2
?, λ

2
�,µ|y) (w = 1, . . . ,W ) (5.28)

As described in this chapter, we run the MCMC algorithm for W = 100, 000 (W = 100k) iterations.
We set the burn-in phase to 50k and we sample every 100th graph during the sampling phase. This
yields R = 500 posterior samples for each response Y .
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Chapter 6

Comparative evaluation of
various frequentist and
Bayesian non-homogeneous
Poisson counting models

The Poisson distribution is one of the most popular statistical standard tools for
analysing (homogeneous) count data, i.e. integer-valued samples. For modelling
non-homogeneous count data, e.g. time series where the number of counts
depends on time and hence systematically differs over time, various extensions
of the standard Poisson model have been proposed and applied in the literature.
More appropriate non-homogeneous Poisson models can be easily obtained by
embedding the standard Poisson model into other statistical frameworks, such
as changepoint models (CPS), finite mixture models (MIX), or hidden Markov
models (HMM). The three aforementioned modelling approaches have become
very popular statistical tools throughout the years for the following three reasons:
(i) First, each of the three modelling approaches is of a generic nature so that it can
be combined with a huge variety of statistical distributions and models to extend
their flexibilities. (ii) Second, the statistical methodology behind those generic
models is rather simple, described in lots of textbooks on Statistics and the model
inference is feasible. (iii) Third, the three approaches can be easily formulated
and implemented in both conceptual frameworks: the standard ’frequentist’
framework and the Bayesian framework.

Despite this popularity, the performances of the resulting non-homogeneous
models have never been systematically compared with each other in the statistical
literature. This chapter tries to fill this gap and presents a comparative evaluation
study on non-homogeneous Poisson count data, for which those three well-
known statistical models (changepoint models, mixture models and hidden

111
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Markov models) are implemented in both conceptual frameworks: the frequentist
framework and the Bayesian framework.
More precisely, for the evaluation study the standard homogeneous Poisson
model (HOM) and three non-homogeneous variants thereof, namely a Poisson
changepoint model (CPS), a Poisson free mixture model (MIX), and a Poisson
hidden Markov model (HMM) are implemented in a frequentist as well as in a
Bayesian framework. The goal of the presented study is to systematically cross-
compare the performances. Thereby the focus is not only on cross-comparing
the generic modelling approach for non-homogeneity (CPS, MIX and HMM), but
also on comparing the frequentist model instantiations with the Bayesian model
instantiations. The study is performed on various synthetic data sets as well as on
real-world taxi pick-up counts, extracted from the recently published New York
City Taxi (NYCT) database. In all presented applications it is assumed that the
Poisson parameter does not depend on any external covariates so that the changes
are time-effects only. That is, the non-stationarity is implemented intrinsically by
temporal changepoints, at which the Poisson process spontaneously changes its
values.

Within this introductory text no literature references have been given, since
detailed descriptions of all those generic statistical concepts, mentioned so far,
can be found in many standard textbooks on Statistics, and therefore, in principle,
will be familiar for most of the readers. However, in Section 6.1, where the models
are described and mathematically formulated, explicit literature references will
be provided for all models under comparison.

The work, presented in this chapter, has been published in Computational
Statistics (2016) (see [28]).

6.1 Methods

6.1.1 Mathematical notations

Let D denote a n-by-T data matrix, whose columns refer to equidistant time
points, t ∈ {1, . . . , T}, and whose rows refer to independent counts, i ∈ {1, . . . , n},
which were observed at the corresponding time points. The element di,t in the
i-th row and t-th column of D is the i-th count, which was observed at the t-th
time point. Let D.,t := (d1,t, . . . , dn,t)> denote the t-th column of D, where “>”
denotes vector transposition. D.,t is then the vector of the n observed counts for
time point t.

Assume that the time points 1, . . . , T are linked to K Poisson distributions
with parameters θ1, . . . , θK . The T time points can then be assigned to K com-
ponents, which represent the K Poisson distributions. More formally, let the
allocation vector V = (v1, . . . , vT )> define an allocation of the time points to com-
ponents, where component k represents a Poisson distribution with parameter
θk. vt = k means that time point t is allocated to the k-th component and that the
observations at t stem from a Poisson distribution with parameter θk (t = 1, . . . , T
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and k = 1, . . . ,K). Note that the n independent counts within each column are
always allocated to the same component, while the T columns (time points) are
allocated to different components. Define D[k] to be the sub-matrix, containing
only the columns of D that are allocated to component k.

The probability density function (pdf) of a Poisson distribution with parameter
θ > 0 is:

p(x|θ) = θx · exp{−θ}
x! (6.1)

for x ∈ N0. Assuming that all counts, allocated to k, are realisations of independ-
ently and identically distributed (iid) Poisson variables with parameter θk, the
joint pdf is given by:

p(D[k]|θk) =
T∏
t=1
I{vt=k}(t) · p(D.,t|θk) (6.2)

where I(t){vt=k}(t) indicates whether time point t is allocated to component k,
and

p(D.,t|θk) =
n∏
i=1

p(di,t|θk) = (θk){
∑n

i=1
di,t} · exp{−n · θk}

d1,t! · . . . · dn,t!
(6.3)

is the joint pdf of the counts in the t-th column of D. Given the allocation vector
V, which allocates the data into K sub-matrices D[1], . . . ,D[K], and independent
component-specific Poisson distributions with parameters θ1, . . . , θK , the joint
pdf of D is:

p(D|V,θ) =
K∏
k=1

p(D[k]|θk) (6.4)

where θ := (θ1, . . . , θK)>, and p(D[k]|θk) was defined in Eq. (6.2).
Now assume that the allocation vector V is known and fixed, while the
component-specific Poisson parameters are unknown and have to be inferred
from the data D.
Following the frequentist paradigm, the parameters can be estimated by the
Maximum Likelihood (ML) approach. The ML estimators which maximise the
log-likelihood

l(θ|V,D) := log{p(D|V,θ)} (6.5)

are given by θ̂ = (θ̂1, . . . , θ̂K)>, where θ̂k is the empirical mean of all counts in
D[k]. Assuming that Tk time points are allocated to component k, the matrix D[k]

contains Tk · n counts and

θ̂k = 1
n · Tk

T∑
t=1
I{vt=k}(t)

n∑
i=1

di,t (6.6)
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In a Bayesian setting the Poisson parameters in θ are assumed to be random
variables as well, and prior distributions are imposed on them. The standard
conjugate prior for a Poisson model with parameter θk > 0 is the Gamma distri-
bution:

p(θk|a, b) = ba

Γ(a) · (θk)a−1 exp{−θk · b} (6.7)

where a is the shape and b is the rate parameter. Due to standard conjugacy argu-
ments, for each component k the posterior distribution is a Gamma distribution
with parameters ã = a+ ξ[k] and b̃ = b+ n · Tk

p(θk|D[k]) = (b+ n · Tk)a+ξ[k]

Γ(a+ ξ[k])
· (θk)a+ξ[k]−1 exp{−θk · (b+ n · Tk)} (6.8)

where ξ[k] is the sum of all n · TK elements of the n-by-Tk (sub-)matrix D[k]. The
marginal likelihood can be computed in closed-form:

p(D[k]|a, b) =
∫ ∞

0
p(D[k]|θk)p(θk|a, b)dθk (6.9)

= ba

Γ(a) ·
1∏Tk

t=1
∏n
i=1(d[k]

i,t )!
· Γ(a+ ξ[k])

(Tk · n+ b)ξ[k]+a

where d[k]
i,t is the element in the i-th row and t-th column of D[k].

Imposing independent Gamma priors on each component k ∈ {1 . . . ,K} induced
by the allocation vector V, the marginal likelihood for the complete data matrix
D is:

p(D|V) =
K∏
k=1

p(D[k]|a, b) (6.10)

where the dependence on the fixed hyperparameters a and b on the left hand side
of the last equation was suppressed.

So far it has been assumed that the allocation vector V is known and fixed,
although V will be unknown for many real-world applications so that V also
has to be inferred from the data D. The next section is therefore on the allocation
vector inference.

6.1.2 Allocation vector inference
The standard frequentist Poisson or Bayesian Poisson-Gamma model assumes
that the data are homogeneous so that all time points t = 1, . . . , T always belong
to the same component; i.e. K = 1 and V = (1, . . . , 1)>. These models are
referred to as the homogeneous (HOM) models. The HOM model is not adequate
if the number of counts varies over time, and non-homogeneous Poisson mod-
els, which infer the underlying allocation, have to be used instead. Prominent
approaches to model non-homogeneity include: multiple changepoint processes
(CPS), finite mixture models (MIX), and hidden Markov models (HMM). CPS
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impose a set of changepoints which divide the time series 1, . . . , T into disjunct
segments. Although this is a very natural choice for temporal data, the disadvant-
age is that the allocation space is restricted, as data points in different segments
cannot be allocated to the same component; i.e. a component once left cannot be
revisited. E.g. for T = 6 the true allocation V = (1, 1, 2, 2, 2, 1)> cannot be mod-
elled and the best CPS model approximation might be: VCPS = (1, 1, 2, 2, 2, 3)>.
The MIX model, on the other hand, is more flexible, as it allows for a free alloca-
tion of the time points so that V is part of the configuration space. But MIX does
not take the temporal ordering of the data points into account. It treats the T
time points as interchangeable units. This implies in the example above that all
allocation vectors, which allocate T1 = 3 time points to component k = 1 and
T2 = 3 time points to component k = 2, are always equally supported a priori;
including unlikely allocations, such as: V? = (1, 2, 1, 2, 1, 2)>.
A compromise between CPS and MIX is the hidden Markov model (HMM).
HMM allows for an unrestricted allocation vector configuration space, but unlike
MIX it does not ignore the order of the time points. A homogeneous first-order
HMM imposes a (homogeneous) Markovian dependency among the components
v1, . . . , vT of V so that the value of vt depends on the value of the preceding
time point vt−1, and the homogeneous state-transition probabilities can be such
that neighbouring points are likely to be allocated to the same component, while
components once left can be revisited. The aforementioned Poisson models, can
be implemented in a frequentist as well as in a Bayesian framework, yielding 8
non-homogeneous Poisson models in total, see Table 6.1 for an overview.

6.1.3 The frequentist framework

The learning algorithms for the non-homogeneous frequentist models learn the
best-fitting model for each number of components K, and the goodness of fit
increases in K. Restricting K to be in between 1 and KMAX , for each approach
(CPS, MIX and HMM) the best fitting model with K components, symbolically
MK , can be learn from the data D. The Bayesian Information criterium (BIC), pro-
posed by [53], is a well-known model selection criterium and balances between
the goodness of fit and model sparsity. According to the BIC, among a set of
models {M1, . . . ,MKMAX}, the one with the lowest BIC value is considered the
most appropriate one with the best trade-off (fit vs. sparsity). Given the n-by-T
data set matrix D, and modelsMK with K components and qMK

parameters
(K = 1, . . . ,KMAX ), the BIC ofMK is defined as

BIC(MK) = −2 · log{p(D|MK)}+ qMK
· log(n · T ) (6.11)

where n ·T is the number of data points in D, and forK = 1 each of the three non-
homogeneous model becomes the homogeneous modelM1 (see Section 6.1.3).
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The homogeneous frequentist Poisson model (FREQ-HOM)

The homogeneous modelM1 assumes that the counts stay constant over time,
i.e. that there is only one single component, K = 1, and that the allocation
vectors assign all data points to this component, i.e. V = 1 = (1, . . . , 1)>. Hence,
D[1] = D and according to Eq. (6.6), the maximum likelihood (ML) estimator of
the single (qM1 = 1) Poisson parameter θ := θ1 is the empirical mean of all T · n
data points in D.

The frequentist changepoint Poisson model (FREQ-CPS)

A changepoint model uses a changepoint set of K − 1 changepoints, C =
{c1, . . . , cK−1}, where 1 ≤ c1 < . . . < cK < T , to divide the time points
1, . . . , T into K disjunct segments. Time point t is assigned to component k
if ck−1 < t ≤ ck, where c0 = 0 and cK = T are pseudo changepoints. This
means for the t-th element, vt, of the allocation vector, VC , implied by C: vt = k
if ck−1 < t ≤ ck. A changepoint set C with K − 1 changepoints implies a
segmentation D[1], . . . ,D[K] of the data matrix D, and the ML estimators θ̂k
for the segment-specific Poisson parameters θk can be computed with Eq. (6.6).
The model fit can be quantified by plugging the ML estimators θ̂ into the log-
likelihood in Eq. (6.5):

l(θ̂C |VC ,D) := log{p(D|VC , θ̂C)} (6.12)

where VC is the allocation vector implied by C, and θ̂C is the vector of ML
estimators. The best fitting set of K − 1 changepoints, CK , i.e. the set maxim-
ising Eq. (6.12), can be found recursively by the segment neighbourhood search
algorithm. This algorithm, proposed by [4], employs dynamic programming
to find the best fitting changepoint set with K − 1 changepoints for each K
(2 ≤ K ≤ KMAX ). The algorithm is outlined in Section 6.8.1 of the Appendix.
The best changepoint modelMK̂ minimises the BIC in Eq. (6.11), and the output
of the algorithm is the corresponding allocation vector V̂CPS and the segment-
specific ML-estimators θ̂CPS := θ̂CK̂ .

The frequentist finitite mixture Poisson model (FREQ-MIX)

In a frequentist finite mixture model with K components the time points 1, . . . , T
are treated as interchangeable units from a mixture of K independent Poisson
distributions with parameters θ1, . . . , θK and mixture weights π1, . . . , πK , where
πk ≥ 0 for all k, and

∑K
k=1 πk = 1. The columns D.,t of the data matrix D are

then considered as a sample from this Poisson mixture distribution with pdf:

p(D.,t|θ,π) =
K∑
k=1

πk · p(D.,t|θk) (6.13)
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where θ = (θ1, . . . , θK)> is the vector of Poisson parameters, π = (π1, . . . , πK)>
is the vector of mixture weights, and p(D.,t|θk) can be computed with Eq. (6.3).
The maximisation of Eq. (6.13) in the parameters (θ,π) is analytically not feasible
so that the ML estimates have to be determined numerically. For mixture distribu-
tions this can be done with the Expectation Maximisation (EM) algorithm ([12]).
The mathematical details of the EM algorithm are provided in Section 6.8.1 of the
Appendix. The best mixture modelMK̂ minimises the BIC in Eq. (6.11), where
qK = K+(K−1) is the number of Poisson and (free) mixture weight parameters.1

The output of the EM-algorithm is the best number of components K̂MIX , the
corresponding T -by-K̂MIX allocation probability matrix ∆̂MIX , whose elements
∆t,k are the probabilities that time point t belongs to component k, and the vector
of ML estimators θ̂MIX .

The frequentist Hidden Markov Poisson model (FREQ-HMM)

The key assumption of a hidden Markov model (HMM) with K components
(’states’) is that the (unobserved) elements v1, . . . , vT of the allocation vector V
follow a (homogeneous) first-order Markovian dependency. That is, {vt}t=1,...,T
is considered a homogeneous Markov chain of order τ = 1 with the state space
S = {1, . . . ,K}, the initial distribution Π = (π1, . . . , πK), where πk ≥ 0 is the
probability that v1 is equal to k, and the K-by-K transition (probability) matrix A,
whose elements ai,j ≥ 0 are the transition probabilities for a transition from state
i to state j: ai,j = P (vt+1 = j|vt = i) for all t ∈ {1, . . . , T −1}.2 Assume that there
are K state-dependent Poisson distributions so that each state k ∈ {1, . . . ,K}
corresponds to a Poisson distribution with parameter θk. The data matrix D is
then interpreted as a sequence of its T columns, D.,1, . . . ,D.,T , and vt = k means
that column D.,t is a vector of n realisations of the k-th Poisson distribution with
parameter θk. Mathematically, this means:

p(D.,t|vt = k) = p(D.,t|θk) (6.14)

where p(D.,t|θk) was defined in Eq. (6.3). The Hidden Markov model is now
fully specified and has the unknown parameters Π, A and θ = (θ1, . . . , θK)>.
For given parameters (Π,A,θ), the distribution of the unknown (’hidden’) state
sequence v1, . . . , vT can be inferred recursively with the foward and backward
algorithm. And by combining the forward and backward algorithms with the EM
algorithm, the best HMM modelMK̂ , which minimises the BIC in Eq. (6.11), can
be numerically determined. The details of the inference procedure are provided
in Section 6.8.2 of the Appendix. For a HMM model with K components the
total number of parameters is qK = K + (K − 1) + (K2 − K), i.e. the sum
of the Poisson parameters, the free initial probability parameters and the free
transition probability parameters.3 The output of the EM algorithm, as described

1The K mixture weights fulfil:
∑K

k=1 πk = 1.
2It holds:

∑K

k=1 πk = 1, and
∑K

j=1 ai,j = 1 for all i.
3Note that:

∑K

k=1 πk = 1, and
∑K

l=1 ak,l = 1 for k = 1, . . . ,K.
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in Section 6.8.2 of the Appendix, is the best number of components K̂HMM ,
the corresponding T -by-K̂HMM allocation probability matrix ∆̂HMM , whose
elements ∆t,k are the probabilities that time point t belongs to component k, and
the ML-estimators θ̂HMM .

6.1.4 The Bayesian framework
The Bayesian models employ a Poisson-Gamma model, for which the marginal
likelihood p(D|V) can be computed with Eq. (6.10). While the homogeneous
model, described in Section 6.1.4, keeps K = 1 fixed, the three non-homogeneous
models have to infer K and the unknown allocation vector V. In a Bayesian
framework this means that prior distributions have to be imposed on V and K.
The three non-homogeneous models, described below, assume that the joint prior
distribution can be factorized, p(V,K) = p(V|K) · p(K), and impose on K a trun-
cated Poisson distribution with parameter λ and the truncation 1 ≤ K ≤ KMAX

so that p(K) ∝ λK · exp{−λ} · (K!)−1.
Subsequently, the prior on V is specified conditional on K. The marginal like-
lihood p(D|V) and the two prior distributions p(K) and p(V|K) together fully
specify the Bayesian model, and Markov Chain Monte Carlo (MCMC) simulations
are used to generate samples (V(1),K(1)), . . . , (V(R),K(R)) from the posterior
distribution:

p(V,K|D) ∝ p(D|V) · p(V|K)(K) (6.15)

The Bayesian models, described below, differ only by the conditional prior
p(V|K).

The homogeneous Bayesian Poisson-Gamma model (BAYES-HOM)

The homogeneous Bayesian model assumes that the counts do not vary over
time, so that K = 1 and V = (1, . . . , 1)> =: 1 and D[1] = D. According to
Eqns. (6.9-6.10), the marginal likelihood of the BAYES-HOM model is then given
by

p(D[1]|V = 1) =
∫ ∞

0
p(D|θ)p(θ|a, b)dθ

= ba

Γ(a) ·
1∏T

t=1
∏n
i=1(di,t)!

· Γ(a+ ξ)
(T · n+ b)ξ+a

where di,t is the element in the i-th row and t-th column of D, and ξ is the sum of
all n · T elements of D.

The Bayesian changepoint Poisson-Gamma model (BAYES-CPS)

There are various possibilities to implement a Bayesian changepoint model, and
here the classical one from [21] is used. The prior on K is a truncated Poisson
distribution, and eachK is identified withK−1 changepoints c1, . . . , cK−1 on the
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discrete set {1, . . . , T − 1}, where vt = k if ck−1 < t ≤ ck, and c0 := 1 and cK := T
are pseudo changepoints. Conditional on K, the changepoints are assumed to be
distributed like the even-numbered order statistics of L := 2(K − 1) + 1 points
uniformly and independently distributed on {1, . . . , T − 1}. This implies that
changepoints cannot be located at neighbouring time points and induces the
prior distribution:

P (V|K) = 1(
T − 1

2(K − 1) + 1

) K−1∏
k=0

(ck+1 − ck − 1) (6.16)

The BAYES-CPS model is now fully specified and K and V can be sampled from
the posterior distribution p(V,K|D), defined in Eq. (6.15), with a Metropolis-
Hastings MCMC sampling scheme, based on changepoint birth, death and re-
allocation moves ([21]).
Given the current state at the r-th MCMC iteration: (V(r),K(r)), where V(r) can
be identified with the changepoint set: C(r) = {c1, . . . , cK(r) − 1}, one of the three
move types is randomly selected (e.g. each with probability 1/3) and performed.
The three move types (i-iii) can be briefly described as follows:
(i) In the changepoint reallocation move one changepoint cj from the current
changepoint set C(r) is randomly selected, and the replacement changepoint is
randomly drawn from the set {cj−1 + 2, . . . , cj+1 − 2}. The new set C? gives the
new candidate allocation vector V?; the number of components stays unchanged:
K? = K(r).
(ii) The changepoint birth move randomly draws the location of one single new
changepoint from the set of all valid new changepoint locations:

B† :=
{
c ∈ {1, . . . , T − 1} : |c− cj | > 1∀j ∈

{
1, . . . ,K(r) − 1

}}
(6.17)

Adding the new changepoint to C(r) yields K? = K(r) + 1, and the new set C?,
which yields the new allocation vector V?.
(iii) The changepoint death move is complementary to the birth move. It ran-
domly selects one of the changepoints from C(r) and proposes to delete it. This
gives the new changepoint set C? which yields the new candidate allocation
vector V?, and K? = K(i) − 1.
For all three moves the Metropolis-Hastings acceptance probability for the new
candidate state (V?,K?) is given by A = min{1, R}, with

R = p(D|V?)
p(D|V(r))

· p(V?|K?)p(K?)
p(V(r)|K(r))p(K(r))

·Q (6.18)

where Q is the Hastings ratio, which can be computed straightforwardly for each
of the three move types (see, e.g., [21]). If the move is accepted, set V(r+1) = V?

and K(r+1) = K?, or otherwise leave the state unchanged: V(r+1) = V(r) and
K(r+1) = K(r).
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The Bayesian finite mixture Poisson-Gamma model (BAYES-MIX)

Here, the Bayesian finite mixture model instantiation and the Metropolis Hastings
MCMC sampling scheme proposed by [46] is employed. The prior on K is a
truncated Poisson distribution, and conditional on K, a categorical distribution
(withK categories) and probability parameters p = (p1, . . . , pK)> is used as prior
for the allocation variables v1, . . . , vT ∈ {1, . . . ,K}. That is,

∑K
k=1 pk = 1 and

p(vt = k) = pk. The probability of the allocation vector V = (v1, . . . , vT )> is then
given by:

p(V|p) =
K∏
k=1

(pk)nk (6.19)

where nk = |{t ∈ {1, . . . , T} : vt = k}| is the number of time points that are
allocated to component k by V. Imposing a conjugate Dirichlet distribution
with parameters α = (α1, . . . , αK)> on p and marginalizing over p, yields the
closed-form solution:

p(V|K) =
∫
p(V|p)p(p|α)dp =

Γ(
∑K
k=1 αk)

Γ(
∑K
k=1(nk + αk))

K∏
k=1

Γ(nk + αk)
Γ(αk) (6.20)

The BAYES-MIX model is now fully specified, and the posterior distribution is
invariant to permutations of the components’ labels if: αk = α. A Metropolis-
Hastings MCMC sampling scheme, proposed by [46] and referred to as the
“allocation sampler”, can be used to generate a sample from the posterior distribu-
tion in Eq. (6.15). The allocation sampler consists of a simple Gibbs move and five
more involved Metropolis-Hastings moves. Given the current state at the r-th
iteration: (V(r),K(r)) the Gibbs move keeps the number of components fixed,
K(r+1) = K(r), and just re-samples the value of one single allocation variable
v

(r)
t from its full conditional distribution. This yields a new allocation vector

V(r+1) with a re-sampled t-th component v(r+1)
t . As this Gibbs move has two

disadvantages, [46] propose to use five additional Metropolis Hastings MCMC
moves. (i) As the Gibbs move yields only very small steps in the allocation vector
configuration space, [46] propose three additional Metropolis Hastings MCMC
moves, referred to as the M1, M2 and M3 move, which also keep K(r) fixed but
allow for re-allocations of larger sub-sets of the allocation variables v(r)

1 , . . . , v
(r)
T .

(ii) As neither the Gibbs move nor the M1-M3 moves can change the number of
components, [46] also propose a pair of moves, referred to as the Ejection- and
Absorption move, which generate a new or delete an existing component, so that
K(r+1) = K(r) + 1 or K(r+1) = K(r) − 1, respectively. The technical details of the
moves can be found in [46].

The Bayesian Hidden Markov Poisson-Gamma model (BAYES-HMM)

The focus is on a Bayesian hidden Markov model instantiation, which was re-
cently proposed in [22] in the context of non-homogeneous dynamic Bayesian
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network models. The prior on K follows a truncated Poisson distribution, and
for each K a HMM model with K states is used to model the allocation vec-
tor V. To this end, V is identified with the temporally ordered sequence of its
components: v1, . . . , vT , and it is assumed that the latter sequence describes a
homogeneous first order Markov chain with a uniform initial distribution and a
K-by-K transition matrix A.

Let al,k be the element in the l-th row and k-th column of the transition matrix
A. al,k is then the probability for a transition from component l to component k,
and

∑K
k=1 al,k = 1. For a homogeneous Markov chain this means: al,k = P (vt =

k|vt−1 = l,A,K) for all t, and hence:

p(V|A,K) = p(v1, . . . , vT |A,K) = p(v1|K)
T∏
t=2

p(vt|vt−1,A,K) (6.21)

= 1
K

K∏
k=1

K∏
l=1

(al,k)nl,k

where nl,k = |{t ∈ {2, . . . , T} : vt = k ∧ vt−1 = l}| is the number of transitions
from l to k in the sequence v1, . . . , vT .

Each row Al,. of the transition matrix A defines the probability vector of
a categorical random variable (with K categories), and on each vector Al,. an
independent Dirichlet distribution with parameter vector αl = (αl,1, . . . , αl,K)>
can be imposed:

p(Al,.|αl) =
∏K
k=1 Γ(αl,k)

Γ(
∑K
k=1 αl,k)

K∏
k=1

(al,k)αl,k−1 (6.22)

Marginalizing over the transition matrix A in Equation (6.21), i.e. margin-
alizing over the row vectors A1,., . . . ,AK,., where each row vector Al,. has an
independent Dirichlet prior, defined in Eq. (6.22), gives the marginal distribution:

p(V|K) =
∫

A1,.

. . .

∫
AK,.

p(V|A,K)
{

K∏
l=1

p(Al,.|αl)
}
dA1,. . . . dAK,. (6.23)

Inserting Eq. (6.21) into Equation (6.23) yields:

P (V|K) = 1
K

K∏
l=1

(∫
Al,.

P (Al,.|αl)
K∏
k=1

(al,k)nl,k dAl,.

)
(6.24)

The inner integrals in Eq. (6.23) correspond to Multinomial-Dirichlet distributions,
which can be computed in closed form:

P (V|K) = 1
K

K∏
l=1

Γ(
∑K
k=1 αl,k)

Γ(
∑K
k=1 nl,k + αl,k)

K∏
k=1

Γ(nl,k + αl,k)
Γ(αl,k) (6.25)
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The BAYES-HMM model is now fully specified, and with αl,k = α in Eq. (6.22)
the marginal distribution P (V|K) in Equation (6.25) is invariant to permutations
of the states’ labels.

In principle, the allocation sampler from [46] from Section 6.1.4 can also be
used to generate a sample from the posterior distribution in Eq. (6.15). How-
ever, the allocation sampler moves have been developed for finite mixture mod-
els, where data points are treated as interchangeable units without any order.
Hence, the allocation sampler moves are sub-optimal when a Markovian depend-
ency structure among temporal data points is given. In [22] it has been shown
that the performance of the allocation sampler can be significantly improved in
terms of convergence and mixing by including two new pairs of complementary
Metropolis-Hastings moves. These two pairs of moves, referred to as the ’inclu-
sion and exclusion moves’ and the ’birth and death moves’ in [22], exploit the
temporal structure of the data points. A detailed description of these moves can
be found in [22].

6.2 Validation

Table 6.1 gives an overview to the models from Section 6.1, and Table 6.2 shows
the outputs of those models. The outputs range from a scalar ML estimate (FREQ-
HOM) to an MCMC sample of allocation vectors (e.g. BAYES-HMM). For each
model the output inferred from D can be used to estimate the probability of a
new validation data set D̃. Assume that in addition to the n-by-T data matrix
D from Section 6.1.1, another ñ-by-T data matrix D̃ is given and that the time
points 1, . . . , T in D and D̃ can be mapped onto each other.

Each non-homogeneous Bayesian model with K components and allocation
vector V inferred from D can then be used to subdivide the new data matrix
D̃ into submatrices D̃[1], . . . , D̃[K], and the predictive probability for the k-th
sub-matrix D̃[k] is:

p(D̃[k]|D[k]) =
∫ ∞

0
p(D̃[k]|θk)p(θk|D[k])dθk (6.26)

= b̃ã

Γ(ã) ·
1∏Tk

t=1
∏ñ
i=1(d̃[k]

i,t )!
· Γ(ã+ ξ̃[k])

(Tk · ñ+ b̃)ξ̃[k]+ã

where Tk is the number of columns allocated to k, ã = a+ ξ[k] and b̃ = b+ n · Tk
are the posterior parameters, defined above Eq. (6.8), ξ̃[k] is the sum of all ñ · Tk
elements of the ñ-by-Tk sub-matrix D̃[k], and d̃

[k]
i,t is the element in the i-th row

and t-th column of D̃[k].
The (logarithmic) predictive probability of D̃ conditional on K and V is then
given by:

log{p(D̃|D,V,K)} =
K∑
k=1

log{p(D̃[k]|D[k])} (6.27)
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For the homogeneous Bayesian model with K = 1, D[1] = D, and D̃[1] = D̃,
the predictive probability of D̃ can be computed analytically. For each non-
homogeneous Bayesian model M an MCMC simulation generates a sample
{V(r),K(r)}r=1,...,R from the posterior distribution p(K,V|D) in Eq. (6.15), and
the predictive probability of modelM can be approximated by:

log{p(D̃|D,M)} ≈ 1
R

R∑
r=1

log{p(D̃|D,V(r),K(r))} (6.28)

For the frequentist models it can be proceeded similarly: After data matrix D
has been used to learn a model and its ML-estimates, the probability of the new
data matrix D̃, given the model and the ML estimates learnt from D, is a measure
which corresponds to a Bayesian predictive probability. The homogeneous model
and the changepoint model both output concrete values for K̂ and V̂, and:

log{p(D̃|K̂, V̂, θ̂)} =
K̂∑
k=1

log{p(D̃[k,V̂]|θ̂k)} (6.29)

where K̂, V̂, and θ̂ are those values inferred from the training data D, D̃[k,V̂] is
the k-th submatrix of the validation data D̃ implied by V̂, and p(D̃[k,V̂]|θ̂k) can
be computed with Eq. (6.2).4 FREQ-MIX and FREQ-HMM both infer the number
of components K̂ and the Poisson parameters θ̂ but no concrete allocation vector.
They infer a K̂-by-T matrix ∆̂, whose elements ∆̂k,t are the probabilities that
time point t is allocated to component k, symbolically ∆̂k,t = p̂(vt = k|D). The
probability of the new data set D̃ is then given by:

log{p(D̃|K̂, ∆̂, θ̂)} =
T∑
t=1

log{
K̂∑
k=1

∆̂k,t · p(D̃.,t|θ̂k)} (6.30)

6.3 Data

6.3.1 Synthetic data

Synthetic count data matrices are generated as follows: Let V? = (v?1 , . . . , v?T )>
be the true allocation vector, which allocates each time point t ∈ {1, . . . , T} to a
component k ∈ {1, . . . ,K?}, where v?t = k means that t is allocated to k. Given
V?, n-by-T data set matrices D? can be obtained by sampling each matrix element
d?i,t independently from a Poisson distribution with parameter θv?t (i = 1, . . . , n
and t = 1, . . . , T ).

The focus of the study is on different allocation vectors V? with different
component-specific Poisson parameters θ1, . . . , θK? . Let P? = (p1, . . . , pT ) denote

4For the homogeneous model it holds: K̂ = 1 and D̃[1,V̂] = D̃.
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a row vector whose element pt is the Poisson parameter for time point t. That
is, pt = λ means that V? allocates time point t to a component with Poisson
parameter θv?t = λ. The row vector P? will be referred to as the vector of Poisson
parameters.

Let sm denote a row vector of length m, whose elements are all equal to s ∈ N,
sm = (s, . . . , s). The situation, where an allocation vector V? allocates T = 4 ·m
time points to K? = 4 equidistant coherent segments of length m, with the four
component-specific Poisson parameters θ1 = 1, θ2 = 5, θ3 = 3, and θ4 = 8, can
then be defined compactly:

P? = (1, . . . , 1︸ ︷︷ ︸
m−times

, 5, . . . , 5︸ ︷︷ ︸
m−times

, 3, . . . , 3︸ ︷︷ ︸
m−times

, 8, . . . , 8︸ ︷︷ ︸
m−times

) =: (1m,5m,3m,8m)

For the situation where the allocation vector follows a free mixture model,
e.g., by allocating T = 2 · m time points to K? = 2 components with Poisson
parameters θ1 = 1 and θ2 = 5, let P? = MIX(1m,5m) denote that P? is a row
vector whose elements are a random permutation of the elements of the vector
(1m,5m).

With regard to the real-world Taxi data, described in Section 6.3.2, each data
matrix D is built with T = 96 columns (time points) and n ∈ {1, 2, 4, 8, 16} rows
(independent samples per time point). An overview to the allocation schemes
(vectors of Poisson parameters), employed in the comparative evaluation study,
is given in Table 4 of the Appendix. For each of the four allocation scenarios
(HOM, CPS, MIX, and HMM) two different vectors of Poisson parameters are
considered. Data matrices are built with a varying no. of rows n ∈ {1, 2, 4, 8, 16}
and T = 96 columns. For each of the resulting 4 · 2 · 5 = 40 combinations, 25
independent data matrix instantiations are generated, i.e. 1000 data matrices in
total. Subsequently, for each of those 1000 data matrix instantiations a ñ-by-T
validation data matrix with ñ = 30 and T = 96 is sampled the same way (using
the same vector of Poisson parameters).5

6.3.2 The New York City Taxi (NYCT) data from 2013

Through a ’Freedom of Information Law’ request from the ’New York City Taxi
and Limousine Commission’ a dataset, covering information of about 700 million
taxi trips in New York City (USA) from the calendar years 2010-2013, was pub-
lished and stored by the University of Illinois ([15]). In the NYCT database, for
each trip various details are provided; e.g. (i) the number of transported passen-
gers, (ii) the pick-up and drop-off dates and daytimes, (iii) the GPS coordinates,
where the passenger(s) were picked up and dropped off.6 In this paper the focus
is on the pick-up dates and daytimes of about 170 million taxi rides in the most
recent year 2013, so that only a fractional amount of the data is used. Each pick-up
is interpreted as a ’taxi call’, so that it can be analysed how the number of taxi

5Note that T and ñ have been set in accordance with the NYCT data, described in Section 6.3.2.
6The NYCT data can be downloaded from: http://dx.doi.org/10.13012/J8PN93H8
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Figure 6.1: New York City Taxi pick-up time series. To shed some light onto the variability
of the daily profiles, the upper panel shows the time series of the first 4 Mondays in 2013. The
lower panel shows the seven weekday averages in 2013. Three weekdays with slightly deviating
profiles have been highlighted: Sunday (bold black), Saturday (grey), and Friday (dotted black).

calls varies over the daytime. The data preparation can be summarised as follows:
For each of about 170 million taxi rides from 2013 the pick-up date and daytime
are extracted and down-sampled by a factor of 1000 (by randomly selecting 0.1%
of the extracted samples), before all entries corresponding to US holidays are
withdrawn.7 Subsequently, there remain 169,596 date-and-time entries, which
subdivide onto the 7 weekdays as indicated in Table 6.7 of the Appendix. Dis-
cretising the daytimes into T = 96 equidistant time intervals8, each covering 15
minutes of the 24-hour day, and binning the pick-up times of each individual day
into the T = 96 time intervals, gives a 355-by-96 data matrix D, whose elements
di,t are the number of taxi pick-ups (or taxi calls) on the i-th day in time interval
t. Since the seven weekdays might show different patterns, the data set matrix
D is subdivided into seven nw-by-T sub-matrices Dw (w = 1, . . . , 7), where w
indicates the weekday, and nw ∈ {46, 50, 51, 52} varies with the weekdays (see
Table 6.7 of the Appendix). Figure 6.1 shows the number of Taxi calls for the first
four Mondays in 2013 and the weekday averages.
In the study the weekdays are analysed separately, as they are likely to show
different patterns. For each weekday n ∈ {1, 2, 4, 8, 16} rows (days) are randomly
selected from Dw, before ñ = 30 of the remaining nw − n rows are randomly
selected to build a validation data matrix. Repeating this procedure 5-times inde-
pendently yields 150 data matrix pairs Dw,n,u and D̃w,ñ,u, where w ∈ {1, . . . , 7}

7The following US holidays in 2013 are excluded: Jan 1 (New Year’s Day), Jan 21 (Martin Luther
King), Feb 18 (Presidents’ Day), May 27 (Memorial Day), Jul 4 (Independence Day), Sep 2 (Labor Day),
Oct 14 (Columbus Day), Nov 11 (Veterans Day), Nov 28 (Thanksgiving Day) and Dec 25 (Christmas
Day).

8The time information is provided in seconds in the format: hh-mm-ss, ranging from 00-00-00
(midnight) to 23-59-59 (last second of the day).
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indicates the weekday, n ∈ {1, 2, 4, 8, 16} and ñ = 30 indicate the number of rows
of Dw,n,u and D̃w,ñ,u, and u ∈ {1, . . . , 5} indicates the replicate. Each Dw,n,u is a
n-by-96 matrix and each D̃w,n,u is a 30-by-96 matrix.9

6.4 Simulation Details

For all models the maximal number of components is set to KMAX = 10. In
the Gamma priors, see Eq. (6.7), both hyperparameters a and b are set to 1 so
as to obtain rather uninformative priors. In terms of equivalent sample sizes
this setting corresponds to one (b = 1) additional pseudo observation with one
single taxi call (a = 1) for each component. The hyperparameter of the truncated
Poisson prior on the number of components of the non-homogeneous Bayesian
models is set to λ = 1, meaning that a priori only one single component is
expected (K = 1). Furthermore, all hyperparameters of the Dirichlet priors of
the BAYES-MIX and the BAYES-HMM model are set to 1. That is, it was set
α = 1 above Eq. (6.20) and αl = 1 (l = 1, . . . ,K) in Eq. (6.22). In terms of
equivalent samples sizes this can be interpreted as one pseudo count per mixture
component (BAYES-MIX) or transition (BAYES-HMM), respectively. The two
homogeneous models (FREQ-HOM and BAYES-HOM) as well as the frequentist
changepoint model (FREQ-CPS) always output deterministic solutions. The
EM-algorithm, which is used for inferring the FREQ-MIX and the FREQ-HMM
model, can get stuck in local optima. Therefore, the EM algorithm is run 10 times
independently for each data set with different randomly sampled initialisations of
the Poisson parameters. ε = 0.001 is used for the stop-criterion (see Tables 6.4-6.5
in the Appendix). For each K the output with the highest maximal likelihood
value was selected, while the other EM algorithm outputs were withdrawn.10

(The maximal likelihood value was typically reached several times, suggesting
that running the EM algorithm 10 times is sufficient for the analysed data.)
The non-homogeneous Bayesian models are inferred with MCMC simulations,
and a pre-study was performed to determine the required number of MCMC
iterations. This pre-study was based on eight data sets with n = 16, one from
each of the 8 allocation scenarios shown in Table 6.6 of the Appendix. On each
of these data sets 5 independent MCMC simulations with different allocation
vector initialisations were performed. Trace-plot diagnostics of the quantity:
log(Likelihood)+log(Prior), which is proportional to the log posterior probability,
as well as scatter plots of the pairwise co-allocation probabilities, p̂(vt1 = vt2 |D)
for t1, t2 ∈ {1, . . . , T}, indicated that the following MCMC simulation setting is
sufficient: The burn-in phase is set to 25,000 MCMC iterations, before R = 250
equidistant samples are taken from the subsequent 25,000 MCMC iterations
(sampling phase).

9Note that the same number of validation samples (ñ = 30) is sampled for each n to ensure that
the predictive probabilities p(D̃w,ñ,u|Dw,n,u) are comparable for different n.

10Note that the mixture weights and the transition probabilities were always initialised uniformly,
i.e. πk = 1/K (FREQ-MIX) and ai,j = 1/K (FREQ-HMM).



129 Chapter 6. Comparative evaluation of frequentist and Bayesian ...

6.5 Comparative Evaluation Study

First, the synthetic data from Section 6.3.1 are analysed with the eight models
listed in Tables 6.1-6.2. The first finding is that the homogeneous models (FREQ-
HOM and BAYES-HOM) yield substantially lower predictive probabilities than
the non-homogeneous models for the non-homogeneous data. This is not unex-
pected, as the homogeneous models can per se not deal with non-homogeneity
(e.g. changepoint-segmented data). For clarity of the plots, the results of the
homogeneous models are therefore left out whenever their inclusion would have
led to substantially different scales.

Figures 6.2-6.4 show histograms of the average log predictive probability
differences with separate histograms for the Bayesian and the frequentist models.
Here, the four models (HOM, CPS, MIX and HMM) are compared independently
within the Bayesian and within the frequentist framework without comparing the
two paradigms (Bayesian vs. frequentist). In each histogram the models being
most consistent with the data (i.e. being most consistent with the data generation
process), are used as ’reference’ models.11 In a complementary study the four
Bayesian models and the four frequentist models are compared in a pairwise
manner. In Figures 6.5-6.6 for each of the four models (HOM, CPS, MIX and
HMM) the average log predictive probability differences (’Bayesian results minus
frequentist results’) are plotted against the average log predictive probability of
the Bayesian and the frequentist results. The curves (’differences vs. means’) are
known as ’Tukey mean-difference’ or ’Bland-Altman’ plots, see [9] or [6].

(Global trends, Figures 6.2-6.4): Before studying the individual results in
more detail, two global trends become obvious. Figures 6.2-6.4 show that the
predictive probability differences between the non-homogeneous models get
consistently lower as the number of samples n per time point t increases. The
only exception appears for the mixture data (panels (b) in Figures 6.2-6.3), as
the changepoint models (BAYES-CPS and FREQ-CPS) can per se not deal with
mixture allocations, even when the sample size n is large. That is, for sufficiently
informative data each non-homogeneous model can approximate all kinds of non-
homogeneity, unless there is a clear mismatch between the dependency structure
in the data and the inference model, as observed for the CPS models on mixture
data. The second global finding from Figures 6.5-6.6 is that the pairwise differ-
ences between the Bayesian and the frequentist models consistently converge
towards zero as the number of samples n increases. That is, asymptotically for
all four models the Bayesian variant and the frequentist variant perform equally
well for all data scenarios.

(Homogeneous data, Figure 6.4): The differences in the log predictive probab-
ilities are relatively low, except for the frequentist changepoint model (FREQ-CPS).
That is, for homogeneous data only FREQ-CPS overfits the data for low sample

11For example the changepoint models (FREQ-CPS and BAYES-CPS) are used as references
for the two changepoint-segmented data scenarios: P? = (1m,2m,3m,4m) and P? =
(1m,2m,3m,4m,5m,6m).
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(a) P? = (1m,2m,3m,4m). Left: CPS-MIX, right: CPS-HMM.
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(b) P? = MIX(1m,5m). Left: MIX-CPS, right: MIX-HMM.
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Figure 6.2: Cross-method comparison on synthetic data - Part 1/3. Panels (a-c) show histo-
grams of the average log predictive probability differences for three non-homogeneous allocation
scenarios with error bars representing standard deviations. In each panel (a-c) the upper row
refers to the Bayesian models while the bottom row refers to the frequentist models. In each
panel the differences between the reference (= most consistent with the data) model and the other
two non-homogeneous models are shown. The homogeneous models led to substantially lower
predictive probabilities and the results are therefore not shown. From left to right the sample size
n increases and the scale of the y-axis changes.
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Figure 6.3: Cross-method comparison on synthetic data - Part 2/3. See caption of Figure 6.2.
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Figure 6.4: Cross-method comparison on synthetic data - Part 3/3. The two panels
(a-b) show histograms of the average log predictive probability differences for the
two homogeneous data scenarios. In both panels the upper (lower) row refers to the
Bayesian (frequentist) models and the sample size n increases from left to right. In
each panel the differences between the homogeneous (HOM) model and the three non-
homogeneous models (CPS, MIX and HMM) are shown. Note that the FREQ-HMM
model results never differed from the FREQ-HOM results and that the scales of the
y-axis differ.

sizes n, while the other non-homogenous models are never inferior to the homo-
geneous reference models. A further analysis (results not shown) reveals that
FREQ-CPS yields low predictive probabilities, as it tends to impose too many
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changepoints. For low sample sizes n, single columns (or coherent sequences
of columns) can – by chance – have exceptional large values. Unlike the relat-
ively robust Bayesian variant (BAYES-CPS), the frequentist changepoint model
(FREQ-CPS) separates (or ’cuts out’) those columns by setting two surrounding
changepoints. The Bayesian changepoint variant appears to have a more effective
penalty against over-fitting and does not allow for changepoints at neighbouring
positions so that single columns cannot be ’cut out’.

(Changepoint-segmented data, panels (a) in Figures 6.2-6.3): For all sample
sizes n the Bayesian changepoint model (BAYES-CPS) performs significantly
better than the Bayesian mixture model (BAYES-MIX) and the Bayesian hidden
Markov model (BAYES-HMM). The differences to the reference model (BAYES-
CPS) show that BAYES-MIX performs consistently worse than BAYES-HMM. The
reason becomes obvious from Figure 6.8 in Section 6.6: BAYES-HMM approxim-
ates the underlying allocation better than BAYES-MIX, as BAYES-HMM – unlike
BAYES-MIX – does not ignore the temporal order of the data points. For the
frequentist models, the trend on changepoint-segmented data is slightly different:
For small n ≤ 2 there is no difference in the performance of the non-homogeneous
models. Only for n ≥ 4 the changepoint model (FREQ-CPS) performs better than
its competitors. Thereby the mixture model (FREQ-MIX) performs better than the
hidden Markov model (FREQ-HMM) for n ≥ 4. Figure 6.9 in Section 6.6 suggests
that this can be explained as follows: FREQ-MIX possesses fewer parameters
than FREQ-HMM (see Table 6.1) so that its BIC-penalty is lower (see Figure 6.9).
Consequently, FREQ-MIX can approximate the underlying segmentation better
than FREQ-HMM. For low n ≤ 2 there is no difference between FREQ-CPS and
the other models, as the frequentist changepoint model (FREQ-CPS) tends to
overfit the data, as discussed above (see homogeneous data) and demonstrated
in Section 6.6 (see Figure 6.10).

(Free-mixture data, panels (b) in Figures 6.2-6.3): The Bayesian and the
frequentist models show very similar trends. The changepoint models (CPS) are
substantially outperformed by the free mixture reference models (MIX), while
the hidden Markov models (HMM) are competitive to the mixture models (MIX).
Only for small n ≤ 2 FREQ-HMM appears to be slightly inferior to FREQ-MIX.
Figure 6.9 in Section 6.6 suggests that this is due to the higher BIC-penalty of
the FREQ-HMM model. However, for the scenario MIX(1m,5m) and n = 1 the
increased BIC-penalty turns out to be advantageous for FREQ-HMM. Unlike
FREQ-HMM, FREQ-MIX tends to overfit the data with n = 1 by re-allocating
outliers (columns with large values) to additional components.

(Hidden-Markov data, panels (c) in Figures 6.2-6.3): Among the Bayesian
models, the mixture model (BAYES-MIX) is clearly outperformed by the hidden
Markov model (BAYES-HMM) for low sample sizes n ≤ 4. For larger sample sizes
n ≥ 8 the differences decrease. The Bayesian changepoint model (BAYES-CPS)
is competitive to BAYES-HMM, as it approximates the underlying dependency
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(b) Changepoint data. Left: P? = (1m, · · · ,4m), right: P? = (1m, · · · ,6m).
Figure 6.5: Tukey mean-difference plots to compare the performances of the fre-
quentist and the Bayesian models on synthetic data - Part 1/2. The two panels show
the average log predictive probability differences for the homogeneous data (a) and
for the changepoint segmented data (b). In the four plots for each of the four mod-
els (HOM, CPS, MIX and HMM) the log predictive probability differences (Bayesian
- frequentist) have been plotted against the average log predictive probabilities (of
Bayesian and frequentist). The five symbols on each line correspond to the values
obtained for the five sample sizes n ∈ {1, 2, 4, 8, 16}.

structure by additional changepoints; see Figure 6.8 in Section 6.6.12 For the
frequentist models a complementary trend can be observed: The changepoint
model (FREQ-CPS) is consistently inferior to the reference model (FREQ-HMM),
while the mixture model (FREQ-MIX) is competitive for all n. Again FREQ-

12Note that the selected Poisson means (θ1 = 1 and θ = 5) yield components with very dissim-
ilar values. This makes it easy for the changepoint model to distinguish them and to approxim-
ate the non-stationarity by setting an increased number of changepoints, e.g. 3 changepoints for
(1m,5m,1m,5m).
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(b) Hidden Markov data. Left: P? = (1m,5m,1m,5m), right: P? =
(1m,5m,1m,5m,1m,5m).

Figure 6.6: Tukey mean-difference plots to compare the performances of the fre-
quentist and the Bayesian models on synthetic data - Part 2/2. The two panels show
the average log predictive probability differences plotted against the average log pre-
dictive probabilities for the mixture data (a) and for the hidden Markov model data
(b); for further details see caption of Figure 6.5.

CPS tends to overfit the data (by cutting out columns with large realisations
by surrounding changepoints), see Figure 6.8 in Section 6.6. The disadvantage
of FREQ-MIX, to ignore the temporal order of the data points, appears to be
compensated by its relatively low BIC-penalty (see Figure 6.9 in Section 6.6).

Bayesian versus frequentist: The Tukey-mean-difference plots of the pair-
wise predictive probability differences between the four Bayesian and the four
frequentist models in Figures 6.5-6.6 show that both paradigms yield nearly
identical results for large sample sizes (n ≥ 8), while significant differences can be
observed for small sample sizes n. Most remarkably are the following two trends:



6.5. Comparative Evaluation Study 136

samples n per time point

1 2 4 8 16

A
V

E
R

A
G

E
 P

R
E

D
IC

T
T

IV
E

 P
R

O
B

A
B

IL
IT

Y

-7800

-7600

-7400

-7200

-7000

-6800

-6600

-6400

-6200
BAYESIAN APPROACHES

homogeneous

changepoints

free mixture

hidden Markov

samples n per time point

1 2 4 8 16

A
V

E
R

A
G

E
 P

R
E

D
IC

T
IV

E
 P

R
O

B
A

B
IL

IT
Y

-7800

-7600

-7400

-7200

-7000

-6800

-6600

-6400

-6200
FREQUENTIST APPROACHES

AVERAGE OF FREQ AND BAYES

-6900 -6800 -6700 -6600 -6500 -6400 -6300D
IF

F
E

R
E

N
C

E
 B

A
Y

E
S

 -
 F

R
E

Q

-800

-600

-400

-200

0

200

400
BAYESIAN vs. FREQUENTIST

reference line

changepoints

free mixture

hidden Markov

Figure 6.7: Results for the New York City Taxi data. In the upper plots the average
log predictive probabilities (averaged across 35 data sets; i.e. 5 randomly sampled data
instantiations per weekday) of the Bayesian models (upper left) and the frequentist
models (upper right) have been plotted against the number of samples n per time
point t. In the lower plot for each of the three non-homogeneous models (CPS, MIX
and HMM) the average log predictive probability differences (BAYES-FREQ) have
been plotted against the average log predictive probability of FREQ and BAYES. The
five symbols on each line correspond to the values obtained for the sample sizes
n ∈ {1, 2, 4, 8, 16}. In the lower plot the Bayesian (frequentist) model is superior when
the curve/symbol is above (below) the reference line.

(i) Except for the mixture data (panel (a) in Figure 6.6), for low sample sizes
n the Bayesian changepoint model (BAYES-CPS) is superior to the frequentist
changepoint model (FREQ-CPS). (ii) Except for the homogeneous data (panel
(a) in Figure 6.5), the frequentist hidden Markov model (FREQ-HMM) and espe-
cially the frequentist mixture model (FREQ-MIX) are superior to their Bayesian
counterparts (BAYES-HMM and BAYES-MIX). The reason for the superiority
of the Bayesian changepoint model (BAYES-CPS) is that the frequentist variant
(FREQ-CPS) has a clear tendency towards over-fitting for uninformative data
(for low n); see Figures 6.8 and 6.10 in Section 6.6 for more details. Unlike the
Bayesian changepoint-model instantiation, FREQ-CPS infers only one single al-
location vector (changepoint set) without any model-averaging. The low number
of parameters of FREQ-CPS (see Table 6.1) yields a relatively low BIC-penalty.



137 Chapter 6. Comparative evaluation of frequentist and Bayesian ...

Single columns of the data matrix, which by chance have larger values than the
other columns, can be ’cut out’ so that the FREQ-CPS model is very susceptible
to over-fitting. On the other hand, the superiority of the frequentist mixture
(FREQ-MIX) and the frequentist hidden Markov model (FREQ-HMM) over its
Bayesian counterparts can be explained by the Multinomial-Dirichlet prior on
the allocation vector. Both Bayesian models (BAYES-MIX and BAYES-HMM)
employ Multinomial-Dirichlet priors for the allocation vectors, which can yield
very strong prior penalties for non-homogeneous allocation vectors. As shown
in Figure 6.9 in Section 6.6, BAYES-MIX is strongly penalized for all forms of
non-homogeneity and BAYES-HMM is strongly penalized for mixture allocation
vectors. This bottleneck of the Multinomial-Dirichlet prior for allocation vec-
tors has already been analysed and discussed in [27] and renders the Bayesian
model variants inappropriate for small samples sizes n, i.e. for uninformative
data, where the effect of the likelihood is small compared to the effect of the
Multinomial-Dirichlet prior.

The New York City Taxi (NYCT) data: The results are shown in Figure 6.7.
The top plots shows the average log predictive probabilities for the Bayesian mod-
els (left) and the frequentist models (right) for different sample sizes n. The lower
panel provides Tukey mean-difference plots to visualise the pairwise differences
between the Bayesian and the frequentist models. The upper plots show that the
homogeneous models (FREQ-HOM and BAYES-HOM) perform show the worst
performance on the NYCT data. This is not unexpected, as Figure 6.1 shows that
the Taxi pick-up data are clearly non-stationary. Among the Bayesian models,
the changepoint-model (BAYES-CPS) performs best for all sample sizes n, and
asymptotically (i.e. as n increases) the non-homogeneous Bayesian models per-
form equally well. Among the frequentist models the mixture model (FREQ-MIX)
shows the best performance. For n = 1 FREQ-MIX and FREQ-HMM perform
approximately equally well, while FREQ-CPS performs significantly worse. For
n = 2 the FREQ-MIX model performs better than both competitors. For larger
n (n ≥ 4) FREQ-MIX and FREQ-CPS perform equally well, while FREQ-HMM
performs slightly worse. The Tukey mean-difference plot in the bottom of Fig-
ure 6.7 shows that the Bayesian and frequentist models asymptotically perform
equally well. For the lower samples sizes n the trends are consistent with the
earlier observations for the synthetic data. The Bayesian changepoint model
(BAYES-CPS) is superior to its frequentist counterpart (FREQ-CPS), while the
opposite trend can be observed for the mixture and the hidden Markov model.
The p-values of two-sided one-sample t-tests for the predictive probability dif-
ferences between the best Bayesian model (BAYES-CPS) and the best frequentist
model (FREQ-MIX) are computed to determine whether the performances differ
significantly for any n. Given the relatively small t-test sample size of nd = 7
weekdays13, the five p-values (for n = 1, 2, 4, 8, 16) are higher than the standard
level α = 0.05, indicating that the best Bayesian and the best frequentist model

13That is one (average) predictive probability difference per weekday; the differences for the 5 data
replicates per weekday are averaged, as they are very similar to each other.
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are performing approximately equally well on the NYCT data.14

6.6 Further model diagnostics

This section provides additional diagnostic plots for the synthetic data, ana-
lyzed in Section 6.5. The goal is to shed more light onto the relative merits
and shortcomings of the models under comparison and to derive some con-
clusions of general validity. Since the predictive probabilities differed most
significantly for sparse data, the focus of this section is on time series with only
n = 1 observation per time point. The first analysis investigates to which ex-
tent the non-homogeneous models are capable of inferring the true underlying
allocation vectors. To this end, for three of the allocation scenarios, namely
(1m,2m,3m,4m), (1m,5m,1m,5m,1m,5m), and MIX(1m,5m), the average prob-
abilities, p(vs = vt|D), that two time points s and t are allocated to the same
component, are computed. The two panels of Figure 6.8 show heatmap represent-
ations of those connectivity probabilities for the Bayesian and for the frequentist
model variants. The heatmaps show the following trends: (1st rows, CPS data):
The MIX models fail to infer the true allocation; the time points are not suffi-
ciently separated and the heatmaps appear unstructured. The HMM models
perform better and their heatmaps show that the first time points and the last
time points both build connected segments; only the centre changepoint is im-
properly inferred. The heatmaps of the CPS models are very similar to the true
heatmap. Although the centre changepoint is a little bit diffuse, it can be seen
that the data consist of 3-4 connected segments. (2nd rows, HMM data): The
HMM models reconstruct the true allocation almost perfectly, while the CPS
models segment the data into too many segments (K = 6). This is the reason
why changepoint-based models are inappropriate for HMM data. As discussed
earlier, CPS models cannot re-visit components once left so that HMM alloca-
tions are not in their allocation vector configuration spaces. CPS-models have
to approximate HMM allocations by setting additional changepoints; this is the
reason for their suboptimal performances on HMM data. The mixture models,
in principle, infer the right trends. But it can be seen from the heatmaps that
the separations between the components are weaker than those of the HMM
models. (3rd rows, MIX data): The CPS models fail to infer the segmentation of
the mixture data. The HMM and the MIX models perform approximately equally
well and correctly divide the time points into K = 2 components, though the
inferred separations appear to be slightly too weak. (BAYESIAN vs. FREQ): The
heatmaps of the Bayesian and the frequentist model variants are very similar,
except for the heatmaps of the changepoint-models on mixture data (see bottom
rows, 2nd columns in Figure 6.8). While CPS-BAYES does not separate the time
points, the frequentist counterpart (CPS-FREQ) shows the opposite behaviour:
CPS-FREQ separates the time points into (too) many short segments.

14P-values: p = 0.30 (n = 1), 0.53 (n = 2), p = 0.96 (n = 4), p = 0.45 (n = 8), and p = 0.72
(n = 16).
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(a) Heatmaps of Bayesian model variants.
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(b) Heatmaps of frequentist model variants.

Figure 6.8: Heatmap representations of the inferred connectivity structures for the
non-homogeneous models. Panel (a) refers to the Bayesian models, panel (b) to
the frequentist models. Both panels are arranged as 3-by-4 matrices with rows
corresponding to the true allocation vectors: CPS: (1m,2m,3m,4m) (top), HMM:
(1m,5m,1m,5m,1m,5m) (centre), and MIX: MIX(1m,5m) (bottom). The first columns
show the true connectivity structures, and columns 2-4 correspond to the three non-
homogeneous models: CPS, HMM, and MIX. The heatmaps give the inferred prob-
abilities p(vs = vt|D) of two points s and t belonging to the same component. The
probabilities are represented by a grey shading, where white corresponds to 1, and
black corresponds to 0. The axes refer to the T = 96 time points. All connectivity prob-
abilities p(vs = vt) are averaged over 25 data instantiations with n = 1 observation
per time point. The time points of the MIX data in the last rows have been ordered
w.r.t. the two mixture components.
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Overall, the findings are in agreement with the results from Section 6.5: The
heatmaps in Figure 6.8 confirm that the HMM models can properly infer HMM
data and mixture data while their performances on changepoint-segmented data
are suboptimal (the changepoints are not properly inferred). The CPS models
and the MIX models completely fail for certain allocation scenarios: The CPS
model cannot deal with mixture data and can only approximate the segment-
ation of HMM data by setting too many changepoints. The mixture models,
which do not exploit the temporal order of the data points, are inappropriate for
changepoint-segmented data. Another finding is the difference between the two
changepoint models: CPS-BAYES and CPS-FREQ. For mixture data CPS-BAYES
infers ’undercomplex’ allocations with too few changepoints (mostly K = 1),
while CPS-FREQ infers ’overcomplex’ allocations with too many changepoints
(even the maximum of K = 10 changepoints is reached). The latter finding sug-
gests that the frequentist changepoint model has a tendency towards overfitting
the data by setting too many changepoints.

A comparison of the penalty terms for the true allocations is given in Fig-
ure 6.9. The top row of Figure 6.9 shows the BIC-penalties of the frequentist
models, the bottom row shows the Bayesian (log) prior probability penalties.
(CPS data and HMM data): The penalties of the frequentist and the Bayesian
models are comparable except for the MIX model. For both types of data the pen-
alties of the Bayesian mixture model are substantially higher than the penalties
of its frequentist counterpart. (MIX data): The CPS model cannot infer the true
mixture allocations. The Bayesian HMM model and the Bayesian MIX model are
penalized significantly stronger than their frequentist counterparts. (MIX-BAYES
vs. HMM-BAYES): The bottom row of Figure 6.9 shows that the penalties of
HMM-BAYES and MIX-BAYES are nearly identical for mixture data, while MIX-
BAYES has substantially higher penalties for CPS data and MIX data. That is, the
Bayesian mixture model (MIX-BAYES) is ’over-penalized’ for non-mixture data.
The last diagnostic compares the performances of the Bayesian and the frequentist
models with respect to over-fitting issues. To this end, certain ’features’ of the
’best’ inferred models (FREQ-models minimising the BIC score; BAYES-models
with the highest posterior score) are compared with the corresponding ’features’
of the true models, i.e. models which are based on the true allocation vectors.
The ’features’ are: (i) the scores, (ii) the (marginal) likelihood values, (iii) the
prior penalty terms, and (iv) the predictive probabilities for new data. Figure 6.10
gives scatter plots in which the features of the best inferred models are plotted
against the features of the true models. The scatter plots can be interpreted
as follows: Symbols are above (below) the diagonal when the feature of the
best inferred model is higher (lower) than the feature of the true model. (Fig-
ure 6.10(a), changepoint-divided data): The best inferred models yield higher
scores and higher likelihoods than the true models. That is, both models vari-
ants (BAYES and FREQ) fit the data better than the true models. But the scatter
plot of the penalty terms show that the Bayesian CPS model consistently infers
’under-penalized’ models (i.e. models with too few changepoints) while the
frequentist CPS model also infers ’over-penalized’ models (i.e. models with too
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many changepoints). The scatter plot of the predictive probabilities shows the
implication. The inferred models are inferior to the true models (all symbols
are below the diagonal), but the predictive probabilities of the ’under-complex’
CPS-BAYES model are better than those of the ’over-complex’ CPS-FREQ model.
Thereby the most ’over-complex’ CPS-FREQ models yield the lowest predictive
probabilities. This clearly shows that the frequentist changepoint model is more
susceptible to over-fitting than its Bayesian counterpart. (Figure 6.10(b), mixture
data): The upper panels show that MIX-FREQ again consistently overfits the
data, while the MIX-BAYES model sometimes yields lower likelihoods than the
true model (see diamond symbols in the upper right panel). The scatter plot of
the penalty term shows that MIX-BAYES infers ’undercomplex’ models (with
too few mixture components) for scenario (V2, mixture with K = 4 components)
and sometimes for scenario (V1, mixture with K = 2 components). This suggests
that MIX-BAYES overpenalizes the complexity of the allocation vectors, so that
’undercomplex’ models are inferred. This explains why MIX-FREQ is superior
to the over-penalized (and thus ’undercomplex’) MIX-BAYES model (see scatter
plot of the predictive probabilities). Figure 6.11 in the Appendix shows the same
diagnostics for time series with n = 16 data points per time point. The results
show that those issues of under- and over-penalisation diminish/disappear as
the data get more informative.

Summary: The additional diagnostics, shown in Figures 6.8-6.10, confirm
four of the empirical findings from Section 6.5.

(1) In Section 6.5 the CPS-models showed suboptimal performances for HMM
and MIX data. Figure 6.8 shows that CPS models are inferior to HMM mod-
els for both types of data because the true allocations are not part of their
allocation vector configuration spaces. Only for changepoint segmented
data, where the HMM models do not properly infer the true allocation, the
CPS models are superior to the HMM models.

(2) In Section 6.5 the MIX-models showed suboptimal performances for CPS
and HMM data. Figure 6.8 shows that the MIX models cannot properly
infer CPS and HMM allocations, while the HMM models show moderate
performances for all types of data.

(3) In Section 6.5 the Bayesian mixture model (MIX-BAYES) was found to be
inferior to its frequentist counterpart (MIX-FREQ). As seen from Figures 6.9-
6.10, the Bayesian mixture variant is over-penalised. This renders the
frequentist HMM model preferable to the Bayesian mixture model.

(4) In Section 6.5 it was also found that the Bayesian CPS model is superior to
its frequentist counterpart (CPS-FREQ). As seen from Figure 6.10(a), the
frequentist changepoint model tends to overfit the data. This renders the
Bayesian changepoint model preferable to the frequentist CPS model.
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(a) Changepoint models on changepoint data with n=1.
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(b) Mixture models on mixture data with n=1.

Figure 6.10: Comparing the best scoring models with the ’true’ models. Panel (a) shows
diagnostics for the changepoint models (CPS-FREQ and CPS-BAYES) on changepoint-segmented
data: (1m,2m,3m,4m) (circles) and (1m,2m,3m,4m,5m,6m) (diamonds). Panel (b) shows
diagnostics for the mixture models (MIX-FREQ and MIX-BAYES) on mixture data: MIX(1m,5m)
(circles) and MIX(1m,2m,4m,8m) (diamonds). In both panels there are 4 scatter plots, in which
features of the ’best’ models (BAYES: highest posterior, FREQ: best BIC) are plotted against the
corresponding features of the ’true’ models, using the true allocations. Symbols that refer to
Bayesian models are white-colored, the frequentist symbols are grey-colored. Upper left: scores
vs. scores (BAYES: log(likelihood+prior), FREQ: BIC value); upper right: log-likelihood vs. log-
likelihood; lower left penalty vs. penalty (BAYES: log(prior), FREQ: BIC-penalty); and lower
right: predictive probability vs. predictive probability. Compare to Figure 6.11 of Appendix.
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6.7 Discussion and conclusions

In this chapter the results of a comparative evaluation study on eight (non-)
homogeneous models for (Poisson) count data were presented. The study was
performed on various synthetic data sets and on taxi pick-up counts, extracted
from the recently published New York City Taxi (NYCT) database, described in
Section 6.3. For the study the standard homogeneous Poisson model (HOM) and
three non-homogeneous Poisson models, namely a changepoint model (CPS),
a free mixture model (MIX) and a hidden Markov model (HMM), were imple-
mented following the frequentist paradigm (FREQ) and the Bayesian paradigm
(BAYES); see Tables 6.1-6.2 in Section 6.1 for an overview. The empirical findings
from Section 6.5-6.6 suggest the following conclusions:
Asymptotically, i.e. for sufficiently informative data (here: quantified in terms of
the sample size n per time point t), there is no difference between the paradigms.
The Bayesian and the frequentist models perform equally well. For less informat-
ive data (here: for small n) there are significant differences, as described in more
detail below. While the homogeneous model variants (FREQ-HOM and BAYES-
HOM) cannot deal with non-homogeneity, the non-homogeneous models, except
for the frequentist changepoint model (FREQ-CPS), do not overfit homogeneous
data. Thus, it can be recommended applying non-homogeneous approaches, even
if the data might be homogeneous. Moreover, if the data is informative enough, in
both frameworks (Bayesian and frequentist) all three non-homogeneous models
can approximate all kinds of non-homogeneity, unless there is a clear mismatch
between the model and the underlying data. E.g. in Section 6.5-6.6 it was found
that the changepoint models (FREQ-CPS and BAYES-CPS) perform badly for
mixture data. The hidden Markov models (FREQ-HMM and BAYES-HMM) ap-
pear to be superior to the mixture models (FREQ-MIX and BAYES-MIX), since
they are competitive on free-mixture data, and superior on hidden Markov and
changepoint-segmented data.15 In a pairwise comparison of the four Bayesian
and the four frequentist models it was found for less informative data (here: small
n) that the Bayesian changepoint model (BAYES-CPS) is superior to its frequentist
counterpart (FREQ-CPS), while the opposite trend could be observed for the
mixture model and the hidden Markov model. The superiority of the Bayesian
changepoint model (BAYES-CPS) over the frequentist variant (FREQ-CPS) is due
to the fact the the frequentist model variant is very susceptible to over-fitting
(see Figure 6.10(a) in Section 6.6). The inferiority of the Bayesian free mixture
model (BAYES-MIX) and the Bayesian hidden Markov (BAYES-HMM) model
to their frequentist counterparts is caused by the allocation vector priors. Both
Bayesian models employ the Multinomial-Dirichlet prior, which is known to
impose a very strong penalty on non-homogeneous allocations (see Figure 6.9
in Section 6.6), rendering the Bayesian variants inappropriate for less informat-
ive data sets (here: for small samples sizes n) than the two frequentist variants

15Though still worse than the changepoint models (FREQ-CPS and BAYES-CPS), which can be seen
as reference models for changepoint-segmented data.
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FREQ-MIX and FREQ-HMM (see, e.g., Figure 6.10(b)).
For the real-world New York City Taxi (NYCT) data very similar trends

could be observed. For sufficiently informative data (here: for large n) all non-
homogeneous models led to approximately identical results, and for uninform-
ative data (here: for small n) it was found that the Bayesian changepoint model
(BAYES-CPS) performs better than its frequentist counterpart, while the frequent-
ist mixture model (FREQ-MIX) performs better than its Bayesian counterpart
(see Figure 6.7). It was also found that the performances of the best Bayesian
model (BAYES-CPS) and the best frequentist model (FREQ-MIX) do not differ
significantly for any n. Finally, it should be noted that potential ’overdispersion’
problems (i.e. potential violations of the Poisson model assumption) were not
taken into account within the presented study. Unlike for the synthetic data,
where all data points were actually sampled from Poisson distributions so that
over-dispersion problems could not arise, overdispersion could have been present
for the real-world NYCT data application. Therefore, the (undispersed) models,
considered here, might have been suboptimal for the NYCT data and better
results could perhaps have been obtained by taking the potential over-dispersion
properly into account; e.g. by replacing the Poisson distribution by the more
flexible negative binomial distribution or by applying more advanced Poisson
model approaches.
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6.8 Appendix

6.8.1 Details on the segment neighbourhood search algorithm
for the changepoint Poisson model

Let D[s:t] define the data subset containing the data points for the successive time points from s to t.
In a first step for all pairs of time points s, t ∈ {1, . . . , T} with s ≤ t a cost function Ψ(D[s:t])1 has to
be pre-computed, where the subscript ’1’ indicates that the segment from s to t builds one component.
(That is, there is no changepoint in between s and t, and only the time points from s to t belong to this
component.) As the goal is to maximise Eq. (12), while the segment neighbourhood search algorithm
is usually formulated such that it minimises a cost function, the negative of the contribution of the
data segment D[s:t] to the log-likelihood can be used as cost function:

Ψ(D[s:t])1 := (−1) · log{p(D[s:t]|θ̂[s:t])}

where θ̂[s:t] is the ML estimator for the Poisson parameter of the segment D[s:t], which can be
computed with Eq. (6), while p(D[s:t]|θ̂[s:t]) can be computed using Eq. (2). To determine the
best changepoint sets CK := {cK1 , . . . , cKK−1} subdividing the data into K subsets for each K ∈
{2, . . . ,KMAX}, the recursive SNS algorithm proceeds as outlined in the pseudo code, provided in
Table 6.3.

• Pre-Computation: For all s, t ∈ {1, . . . , T} with s ≤ t pre-compute the cost function
Ψ(D[s:t])1 := (−1) · log{p(D[s:t]|θ̂[s:t])} for the segment s, . . . , t.

• Start the SNS algorithm: For K = 2, . . . ,KMAX :

– For s = 2, . . . , T
compute Ψ(D[1:s])K = minν∈{1,...,s−1}{Ψ(D[1:ν])K−1 + Ψ(D[(ν+1):s])1}.

– Set: cK1 := argminν∈{1,...,T−1}{Ψ(D[1:ν])K−1 + Ψ(D[(ν+1):T ])1}.

– If K ≥ 3 continue as follows:
For i = 2, . . . ,K − 1:

Set cKi := argminν∈{K−2,...,cK
i−1−1}{Ψ(D[1:ν])K−i−1 + Ψ(D[(ν+1):cKi−1])1}.

Output: ForK = 2, . . . ,KMAX output the best changepoint set withK−1 changepoints
CK := {cK1 , . . . , cKK−1)} that minimises Eq. (12) of this chapter. For this changepoint

set the model fit, quantified by Eq. (12) of this chapter, is l(θ̂CK |VCK ,D) = (−1) ·
Ψ(D[1:T ])K .

Table 6.3: Pseudo-code for the segment neighbourhood search algorithm. The algorithm
infers the best changepoint segmentations with K = 1, . . . , (KMAX − 1) changepoints and was
proposed by [4]; see the chapter for further details.
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For eachK = 2, . . . ,KMAX perform the EM algorithm for a Poisson finite mixture model with
K components:

• Initialise the Poisson parameter vector θ = (θ1, . . . , θK)T and the mixture weights vector
π = (π1, . . . , πK)T with θ(1) and π(1).

• Inner loop: For i = 1, 2, 3, . . .
- E-step: Compute E[l(θ|V,D)|D, θ(i),π(i)], defined in Eq. (6.32).
- M-step: Maximsise E[l(θ|V,D)|D, θ(i),π(i)] in θ and π. This gives the updated para-
meter vectors π(i+1) and θ(i+1), whose elements were defined in Eqns. (6.34-6.35).
- Check the stop criterion:

If |θ(i+1)−θ(i)|2 :=
√∑K

k=1(θ(i+1)
k

− θ(i)
k

)2 < ε, where ε is a small pre-defined value,

stop the iterations and output the parameter vectors πK := π(i+1) and θK := θ(i+1)

as well as ∆̂K
k,t := ∆̂(i+1)

k,t
, where the expected values of the allocation variables can be

computed with Eq. (6.33).
Else perform the next iteration, i.e. increment i.

Table 6.4: Pseudo-code for the EM algorithm for the Poisson finite mixture model. An al-
gorithm to infer the ML-estimators of the Poisson mixture models with K = 2, . . . ,KMAX

mixture components, see the chapter for further details.

6.8.2 Details on the EM algorithm for the finite mixture Poisson
model

First assume that the allocation vector V = (v1, . . . , vT )T was known, and re-write the log-likelihood
given in Eq. (5) of this chapter as follows:

l(θ|V,D) =
T∑
t=1

K∑
k=1

∆k,t · log{p(D.,t|θk)} (6.31)

where ∆k,t is a indicator variable which indicates whether time point t is allocated to component k
or not, i.e. ∆k(t) = 1 if vt = k and ∆k(t) = 0 if vt 6= k. The EM algorithm was introduced by [12] to
maximise (log-)likelihoods for incomplete data, i.e. data with missing values. Here, the allocation
vector is unknown (’missing’), i.e. the values of the indicator variables ∆k,t are missing, and the
goal is to maximise Eq. (6.31) in θ. The EM algorithm proceeds as follows: After initialisation of the
parameters, e.g. by θ(1) and π(1), the Expectation (E) and the Maximisation (M) steps are performed
iteratively, until convergence is reached. The E-step calculates the expectation of Eq. (6.31) given
the current instantiation of the parameters θ(i) and π(i) and conditional on the observed data D,
before the M-step maximises the expectation of Eq. (6.31) w.r.t. the parameters θ and π to obtain new
parameter instantiations θ(i+1) and π(i+1).

Since the E-step computes the expectation of Eq. (6.31) conditional on the data D and the current
parameter vectors θ(i) and π(i), symbolically

E[l(θV|V,D)|D, θ(i),π(i)],

the expectation is only taken w.r.t. the indicator variables ∆k,t. This yields:

E[l(θ|V,D)|D, θ(i),π(i)] =
T∑
t=1

K∑
k=1

E[∆k,t|D, θ(i),π(i)] · log{p(D.,t|θk)} (6.32)
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and it can be easily shown that

E[∆k,t|D, θ
(i)
V ] =

π
(i)
k
· p(D.,t|θ(i)

k
)∑K

l=1 π
(i)
l
· p(D.,t|θ(i)

l
)

=: ∆̂(i+1)
k,t

(6.33)

where p(D.,t|θ(i)
k

) can be computed with Eq. (3) of this chapter.

Subsequently, the M-step maximises Eq. (6.32) in the parameter vectors θ and π. This yields
parameter updates: θ(i+1) = (θ(i+1)

1 , . . . , θ
(i+1)
K )T and π(i+1) = (π(i+1)

1 , . . . , π
(i+1)
K )T, where

π
(i+1)
k

=
1
T

T∑
t=1

E[∆k(t)|D, θ(i)
V ] =

1
T

T∑
t=1

∆̂(i+1)
k,t

(6.34)

is the expected fraction of time points being allocated to component k, and

θ
(i+1)
k

=

∑T

t=1{
∑n

j=1 d.,t} · p(D.,t|θ(i)
k

)∑T

t=1 ·p(D.,t|θ(i)
k

)
(6.35)

where
∑n

j=1 d.,t is the sum of the elements in the t-th row of the data matrix D. (Note that the
mixture model allocates the T columns of D, symbolically D.,1, . . . ,D.,T , to K mixture components
and that each column D.,t contains realisations d1,t, . . . , dn,t of n iid Poisson variables.)
Iterating the E- and the M-step until convergence is reached, yields the ML estimators. As the algoritm
can be get stuck in local optima, it should be run several times with different initialisations θ(1) and
π(1). Pseudo code for computing the ML-estimators for each K = 2, . . . ,KMAX is provided in
Table 6.4.

For each K = 2, . . . ,KMAX perform the EM algorithm for a Poisson hidden Markov model
with K states:

• Initialise the Poisson parameter vector θ = (θ1, . . . , θK)T, the transition matrix A, and
the initial distribution Π(1) = (π1, . . . , πK)T with θ(1), A(1), and Π(1).

• Inner loop: For i = 1, 2, 3, . . .
- E-step: Compute E[l(Π,A, θ|V,D)|D,Π(i),A(i), θ(i)], defined in Eq. (6.40).
- M-step: Maximise E[l(Π,A, θ|V,D)|D,Π(i),A(i), θ(i)] in θ, A and Π. This gives the
updated parameter vectors θ(i+1), A(i+1) and Π(i+1), whose elements were defined in
Eqns. (6.42-6.43).
- Check the stop criterion:

If |θ(i+1) − θ(i)|2 :=
√∑K

k=1(θ(i+1)
k

− θ(i)
k

)2 < ε, where ε is a small pre-defined

value, stop the iterations and output the vectors ΠK := Π(i+1), AK = A(i+1), and
θK := θ(i+1) as well as ∆̂K

k,t := ∆̂(i+1)
k,t

, which can be computed with Eq. (6.41).
Else perform the next iteration, i.e. increment i.

Table 6.5: Pseudo-code for the EM algorithm for the Poisson Hidden Markov model. An
algorithm to infer the ML-estimators of the Poisson hidden Markov models with K =
2, . . . ,KMAX states (components), see the chapter for further details.

6.8.3 Details on the Hidden Markov model inference
Given the parameters Π, A and θ define for t = 1, . . . , T the forward probability αt(k) to be the joint
pdf of the data sequence D.,1, . . . ,D.,t and state k at time point t (vt = k):

αt(k) := P (D.,1, . . . ,D.,t, vt = k|Π,A, θ)
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For t = 1 it holds: α1(k) = P (D.,1, v1 = k|Π,A, θ) = πk · p(D.,1|θk), and the remaining forward
probabilities can be computed recursively with the forward algorithm.
For t = 2, . . . , T :

αt(k) =

(
K∑
l=1

αt−1(l) · al,k

)
· p(D.,t|θk) (6.36)

Similarly, the backward probabilities can be defined as:

βt(k) := P (D.,t+1, . . . ,D.,T |vt = k,Π,A, θ)

and the backward algorithm computes the backward probabilities recursively.
For t = T − 1, . . . , 1:

βt(k) =
K∑
l=1

al,k · p(D.,t+1|θl) · βt+1(l) (6.37)

where βT (k) = 1 for all k serves as initialisation. The so called ’forward-backward formula’, which
holds true for all t ∈ {1, . . . , T}, can then be used to compute the marginal (marginalized over all
possible state sequences v1, . . . , vT ) probability of the data D:

P (D|Π,A, θ) = P (D1, . . . ,DT |Π,A, θ) =
K∑
k=1

αt(k) · βt(k) (6.38)

Unfortunately, the maximisation of Eq. (6.38) in the parameters (Π,A, θ) is analytically not feasible
so that the ML estimates have to be determined numerically. Like for the frequentist finite mixture
model, the EM algorithm can be used.
To this end, assume that the allocation vector V = (v1, . . . , vT )T was known, and re-write the HMM
log-likelihood:

l(Π,A, θ|V,D) =
T∑
t=1

K∑
k=1

∆k,t · log{p(D.,t|θk)} (6.39)

where ∆k,t is a indicator variable with ∆k(t) = 1 if vt = k and ∆k(t) = 0 if vt 6= k. As the values of
the indicator variables ∆k,t are missing, the EM algorithm is used for maximisation. After initial-
isation, say (Π(1),A(1), θ(1)), the M-step and the E-step are performed iteratively till convergence
is reached. In the i-th iteration the E-step calculates the expectation of Eq. (6.39) conditional on the
data D and the current parameters (Π(1),A(1), θ(1)), so that the expectation is only taken w.r.t. the
∆k,t’s:

E[l(Π,A, θ|V,D)|D,Π(i),A(i), θ(i)] =
T∑
t=1

K∑
k=1

E[∆k,t|D,Π(i),A(i), θ(i)] · log{p(D.,t|θk)}

(6.40)
and it can be easily shown that

E[∆k,t|D,Π(i),A(i), θ(i)] =
α

(i)
t (k) · β(i)

t (k)
P (D|Π(i),A(i), θ(i))

=: ∆̂(i+1)
k,t

(6.41)

where α(i)
t (k) and β(i)

t (k) can be computed with the forward and the backward algorithm, using the
current parameter instantiations Π(i), A(i), and θ(i) in Eqns. (6.36) and (6.37), and the denominator
can be computed by plugging α(i)

t (k) and β(i)
t (k) into Eq. (6.38).

The M-step then maximises Eq. (6.40) in the parameters (Π,A, θ) to obtain updated parameters
(Π(i+1),A(i+1),

θ(i+1)), whose elements are given by:

π
(i+1)
k

=
α

(i)
1 (k) · β(i)

1 (k)∑K

l=1 α
(i)
T (l)

(6.42)
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a
(i+1)
l,k

=

∑T−1
t=1 α

(i)
t (l) · al,k · p(D.,t+1|θ(i)

k
) · β(i)

t+1(k)∑T−1
t=1 α

(i)
t (l)β(i)

t (l)

θ
(i+1)
k

=

∑T

t=1 α
(i)
t (k) · β(i)

t (k) · {
∑n

i=1 di,t}∑T

t=1 α
(i)
t (k) · β(i)

t (k)
(6.43)

Iterating the E- and the M-step until convergence is reached, yields the ML estimators of the hidden
Markov model. As before, to avoid getting stuck in local optima, the algorithm should be run
several times with different initialisations. Pseudo code for computing the ML-estimators for each
K = 2, . . . ,KMAX is provided in Table 6.5.
The application of the forward and backward algorithms can lead to serious underflow problems
(i.e. to too low probabilities). These issues can be solved easily by re-scaling. For the empirical data
analyses in this chapter the scaling procedure from [39] was implemented to protect against numerical
underflows.

6.8.4 Additional tables and figures
This section of the supplementary material provides two additional tables (Tables 4-5) for Section 4 of
this chapter.

Allocation scenario Variant no. 1: P?1 Variant no. 2: P?2

Homo-
geneous (196) (596)

time points
Change-

point (124,224,324,424) (116,216,316,416,516,616)
segmented

Finite
mixture MIX(148,548) MIX(124,224,424,824)
model

Hidden
Markov (124,524,124,524) (116,516,116,516,116,516)
model

Table 6.6: Overview to the eight allocation schemes, employed in the comparative evaluation
study. For each of the four allocation scenarios (HOM, CPS, MIX, and HMM) two different vectors
of Poisson parameters (P?1 and P?2) are considered; see Section 4.1 for further details.

Weekday Sunday Monday Tuesday Wednesday Thursday Friday Saturday
no. of these

weekdays in 2013 n1 = 52 n2 = 46 n3 = 52 n4 = 51 n5 = 50 n6 = 52 n7 = 52
without holidays

extracted no.
of entries from 23147 20127 24215 24551 25025 26291 26240
that weekday

Table 6.7: Summary of the extracted New York City Taxi (NYCT) data. The table gives the
number of non-holiday weekdays in 2013, and the total number of the extracted taxi ride pick-up
date-and-time entries per weekday. See Section 4.2 of this chapter for further details.
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(a) Changepoint models (FREQ and BAYES) on changepoint data with n=16.

true allocation

-3100 -3000 -2900 -2800 -2700 -2600

in
fe

rr
e
d
 a

llo
c
a
ti
o
n

-3100

-3000

-2900

-2800

-2700

-2600
Likelihood+Prior/Penalty (n=16)

FREQ (K=2)

BAYES (K=2)

FREQ (K=4)

BAYES (K=4)

true allocation

-3100 -3000 -2900 -2800 -2700 -2600

in
fe

rr
e
d
 a

llo
c
a
ti
o
n

-3100

-3000

-2900

-2800

-2700

-2600
Likelihood (n=16)

true allocation

-150 -100 -50 0

in
fe

rr
e
d
 a

llo
c
a
ti
o
n

-150

-100

-50

0
Prior/Penalty (n=16)

true allocation

-7500 -7000 -6500 -6000 -5500 -5000 -4500

in
fe

rr
e
d
 a

llo
c
a
ti
o
n

-7500

-7000

-6500

-6000

-5500

-5000

-4500
Predictive (n=30)

(b) Mixture models (FREQ and BAYES) on mixture data with n=16.

Figure 6.11: Comparing the best inferred models with the true models for time series with
n=16 data points per time point. This figure corresponds to Figure 6.10 of this chapter. Unlike in
Figure 6.10 of this chapter, the performances of the best inferred models and the true models are
here compared for more informative data, i.e. for time series with n = 16 data points per time
point. See caption of Figure 6.10 in this chapter for further details.
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Summary

One statistical challenge in many fields is to infer network topologies of inter-
acting units from time series data. One class of statistical models, which has
been widely applied to deal with this task, is dynamic Bayesian network models
(DBNs). The underlying assumption of the conventional DBNs is that the un-
derlying process is a homogeneous Markov process, so that DBNs do not allow
the network parameters to change in time. Therefore, DBNs cannot deal with
non-homogeneous and non-stationary regulatory processes, which arise in many
important real world applications.

Recently, non-homogeneous dynamic Bayesian network models (NH-DBNs)
have been introduced and become an important statistical tool to relax this re-
strictive assumption. NH-DBNs have been implemented with various allocation
models to divide the temporal data into disjoint data subsets. Those models
infer the data segmentation, the joint network structure and the segment- or
component-specific interaction parameters from the data.

In this thesis we have focused on improving changepoint (CPS) divided NH-
DBNs which have become the most widely applied NH-DBNs to model complex
systems. These models infer changepoints which divide the data into disjoint
segments and the segment-specific network parameters are learned for each
segment separately. In many real world applications these NH-DBNs divide a
time series into even shorter segments. Learning the network parameters for each
segment separately (‘uncoupled’ NH-DBN models), leads to over flexibility and
inflated inference uncertainties. Moreover, these models do not incorporate the
reasonable prior assumption that neighboring segments are often more likely to
have similar network interaction parameters than distant segments. To address
these bottlenecks, Bayesian models with coupling mechanisms between the
segment-specific parameters have been proposed.

Bayesian models with parameter coupling can lead to significantly improved
network reconstruction accuracies when the segment-specific parameters are
similar. However, recently we have found that coupling can become counter-
productive when the segment-specific parameters are dissimilar. The reason for
that is that neither the sequential nor the global coupling scheme has an effective
mechanism for uncoupling. For many real-world applications this is a constraint.
We have addressed these bottlenecks in this thesis by introducing four novel
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NH-DBNs.
Another scenario corresponded to many real-world applications, happens

when time series data are often collected under different experimental conditions.
That is, instead of one single time series, which can be divided into segments with
natural temporal order, there areK (short) time series with no natural order. They
are exchangeable units and there is no need for inferring the segmentation. In this
situation it is often unclear a priori whether the network parameters are actually
component-specific or whether they are constant across components. Whereas in
real-world applications there can be both types of parameters simultaneously. We,
therefore, have addressed this problem by introducing novel partially NH-DBNs
based on Bayesian regression models with partition design matrix.

In chapter 1 we have given an introduction and an overview to existing
network models and we have outlined this thesis.

In chapter 2, we have proposed two new models based on piecewise Bayesian
regression models: The partially segment-wise coupled NH-DBN model and
the generalized fully sequentially coupled model. Our empirical results have
shown that the partially coupled model leads to improved network reconstruction
accuracies. For the generalized coupled model we have not seen consistent
improvements over the fully coupled NH-DBN model.

In chapter 3, we have therefore refined the generalized fully sequentially
coupled model. For the refined model with a hyperprior onto the second hy-
perparameter of the coupling parameter prior we have seen improved network
reconstruction accuracies.

In chapter 4, we have presented a novel NH-DBN model with partially edge-
wise coupled segment-specific network parameters. This model operates on the
individual edges. Instead of enforcing all edges to be coupled, our model operates
edge-wise and infers for each individual edge from the data whether the associ-
ated parameters should be coupled or stay uncoupled across all segments. We
have empirically shown on yeast gene expression time series that the new model
reaches a highest network reconstruction accuracy. For Arabidopsis thaliana gene
expression data, we have shown that our new model not only outputs a network
prediction, but also allows to distinguish between edges whose regulatory effects
stay similar across time and edges whose regulatory effects are subject to more
substantial temporal changes.

In chapter 5, we have introduced a partially NH-DBN model, which is ef-
fectively a Bayesian regression model with partitioned design matrix. The new
model aims to infer the best trade-off between a homogeneous model and a
non-homogeneous model. For each network interaction there is a parameter,
and the new model infers from the data whether this parameter is constant or
whether it varies among segments. We, moreover, have proposed to employ a
Gaussian process based approach to deal with non-equidistant measurements.
Our applications to yeast data have shown that the new model improves the
network reconstruction accuracy. We have used the new model to reconstruct
the topologies of the mTORC1 data. The inferred network topologies showed
features that are consistent with the biological literature.
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Chapter 6 has been on a comparative evaluation study on popular non-homo-
geneous Poisson models for count data. For this study the standard homogeneous
Poisson model (HOM) and three non-homogeneous variants, namely a Poisson
changepoint model (CPS), a Poisson free mixture model (MIX), and a Poisson
hidden Markov model (HMM) have been implemented in both frequentist and
Bayesian framework.The first major objective has been cross-comparing the per-
formances of the four aforementioned models independently for both modelling
frameworks (Bayesian and frequentist). Subsequently, a pairwise comparison
between the four Bayesian and the four frequentist models has been performed
to elucidate to which extent the results of the two paradigms (‘Bayesian versus
frequentist’) differ.
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Samenvatting

Eén van de statistische uitdagingen in veel onderzoeksgebieden is het uit tijd-
seriedata afleiden van de topologie van netwerken van op elkaar inwerkende
eenheden. Een klasse van statistische modellen die veel toegepast wordt om met
deze opgave om te gaan, is de klasse van dynamische Bayesiaanse netwerkmo-
dellen (DBN’s). De onderliggende aanname van conventionele DBN’s is dat het
onderliggende proces een homogeen Markov proces is, zodat voor DBN’s de
netwerkparameters niet mogen veranderen in de tijd. Daardoor kunnen DBN’s
niet omgaan met niet-homogene en niet-stationaire regelgevende processen, die
voorkomen in veel belangrijke toepassingen in de werkelijkheid.

Onlangs zijn niet-homogene dynamische Bayesiaanse netwerkmodellen (NH-
DBN’s) geïntroduceerd, welke een belangrijk statistisch hulpmiddel zijn gewor-
den om deze beperkende veronderstelling te omzeilen. NH-DBN’s zijn geïmple-
menteerd met verschillende toewijzingsmodellen om de tijdseriedata te verdelen
in afzonderlijke dataverzamelingen. Deze modellen leiden de datasegmenta-
tie, de gezamenlijke netwerkstructuur en de segment- of componentspecifieke
interactieparameters uit de data af.

In dit proefschrift hebben we ons gefocust op het verbeteren van changepoint
(CPS) verdeelde NH-DBN’s; dit zijn de NH-DBN’s die het meest toegepast wor-
den om complexe systemen te modelleren. Deze modellen leiden changepoints
af die de data verdelen in afzonderlijke segmenten en de segmentspecifieke net-
werkparameters worden voor elk segment apart geleerd. In veel toepassingen
in de werkelijkheid verdelen deze NH-DBN’s een tijdserie in nog kortere seg-
menten. Het leren van de netwerkparameters voor elk segment afzonderlijk
(‘ontkoppelde’ NH-DBN-modellen) leidt tot te grote flexibiliteit en opgedreven
inferentieonzekerheden. Bovendien, deze modellen bevatten niet de redelijke
aanname vooraf dat naburige segmenten vaak meer kans hebben op vergelijkbare
netwerkinteractieparameters dan segmenten ver van elkaar. Om deze knelpunten
aan te pakken zijn Bayesiaanse modellen met koppelingsmechanismen tussen de
segmentspecifieke parameters voorgesteld.

Bayesiaanse modellen met parameterkoppeling kunnen leiden tot significant
verbeterde nauwkeurigheden van netwerkreconstructies wanneer de segment-
specifieke parameters vergelijkbaar zijn. Onlangs hebben we echter ontdekt dat
koppeling contraproductief kan worden wanneer de segmentspecifieke parame-
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ters verschillend zijn. De reden daarvoor is dat zowel het sequentiële als het
globale koppelingsschema geen effectief mechanisme voor ontkoppeling heeft.
Dit is voor veel echte toepassingen een beperking. We hebben deze knelpunten
in dit proefschrift aangepakt door vier nieuwe NH-DBN’s te introduceren.

Een ander scenario, dat overeenkomt met veel werkelijke toepassingen, komt
voor wanneer tijdseriedata vaak wordt verzameld onder verschillende experi-
mentele omstandigheden. Hierbij zijn er, in plaats van één enkele tijdserie die
verdeeld kan worden in segmenten met een normale tijdsorde,K (korte) tijdseries
zonder normale orde. Dit zijn inwisselbare eenheden en er is geen noodzaak
om de segmentatie af te leiden. In deze situatie is het a priori vaak onduidelijk
of de netwerkparameters werkelijk componentspecifiek zijn of dat zij constant
zijn voor alle componenten. In echte toepassingen daarentegen, kunnen beide
soorten parameters tegelijkertijd voorkomen. We hebben daarom dit probleem
aangepakt door nieuwe gedeeltelijke NH-DBN’s te introduceren, gebaseerd op
Bayesiaanse regressiemodellen met partitieontwerpmatrix.

In hoofdstuk 1 hebben we een introductie en een overzicht van de bestaande
netwerkmodellen gegeven. Ook hebben we in hoofdlijnen aangegeven waar dit
proefschrift over gaat.

In hoofdstuk 2 hebben we twee nieuwe modellen geboden, gebaseerd op
stuksgewijs Bayesiaanse regressiemodellen, namelijk het gedeeltelijk segmentge-
wijs gekoppeld NH-DBN-model en het gegeneraliseerde, volledig sequentieel
gekoppelde model. Onze empirische resultaten laten zien dat het gedeeltelijk ge-
koppelde model leidt tot een verbeterde nauwkeurigheid van netwerkreconstruc-
ties. Voor het gegeneraliseerde gekoppelde model hebben we geen consequente
verbeteringen gezien ten opzichte van het volledig gekoppelde NH-DBN-model.

In hoofdstuk 3 hebben we daarom het gegeneraliseerde, volledig sequenti-
eel gekoppelde model verfijnd. Voor het verfijnde model met een hyperprior
distributie op de tweede hyperparameter van de a priori-distributie van de
koppelingsparameter zien we een verbetering in de nauwkeurigheid van net-
werkreconstructies.

In hoofdstuk 4 hebben we een nieuw NH-DBN-model gepresenteerd met
gedeeltelijk zijdegewijs gekoppelde en segment-specifieke netwerkparameters.
Dit model werkt op de individuele zijden. In plaats van alle randen te forceren ge-
koppeld te zijn, werkt ons model zijdegewijs en leidt het voor elke afzonderlijke
zijde uit de data af of de bijbehorende parameters gekoppeld moeten worden of
juist in alle segmenten ontkoppeld moeten blijven. Dit nieuwe model heeft ook
het ongekoppelde en het gekoppelde NH-DBN als limietgevallen. We hebben
empirisch aangetoond op gist-genexpressie tijdseries dat het nieuwe model een
hoogste nauwkeurigheid van netwerkreconstructie behaald. Voor Arabidopsis
thaliana-genexpressiedata laten we zien dat ons nieuwe model niet alleen een net-
werkvoorspelling geeft, maar ook onderscheid kan maken tussen zijden waarvan
de regulerende effecten gelijk blijven in de tijd en zijden waarvan de regulerende
effecten meer substantiële veranderingen in de tijd ondergaan.

In hoofdstuk 5 hebben we een gedeeltelijk NH-DBN-model geïntroduceerd,
dat in feite een Bayesiaans regressiemodel is met partitieontwerpmatrix. Het
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nieuwe model beoogt de beste afweging te maken tussen een homogeen model
en een niet-homogeen model. Voor elke netwerkinteractie is er een parameter en
het nieuwe model leidt uit de data af of deze parameter constant is of tussen seg-
menten varieert. Daarnaast stellen we voor om een Gaussisch proces gebaseerde
benadering te gebruiken om niet-equidistante metingen te kunnen verwerken.

Door dit nieuwe model toe te passen op gistdata hebben we aangetoond
dat het de nauwkeurigheid van netwerkreconstructies verbetert. We hebben
het nieuwe model gebruikt om de topologieën van de mTORC1-data te recon-
strueren. De afgeleide topologieën van netwerken vertoonden kenmerken die
overeenkomen met de biologie-literatuur.

Hoofdstuk 6 ging over een vergelijkend evaluatieonderzoek naar populaire
niet-homogene Poisson-modellen voor count data. Voor dit onderzoek zijn het
standaard homogene Poisson model (HOM) en drie niet-homogene varianten,
namelijk een Poisson changepoint-model (CPS), een Poisson free-mixture-model
(MIX) en een Poisson hidden-Markov-model (HMM), geïmplementeerd in zowel
een frequentistisch als een Bayesiaans kader. Het eerste hoofddoel is het onaf-
hankelijk vergelijken van de prestaties van de vier bovengenoemde modellen
voor beide modelleringskaders (Bayesiaans en frequentistisch). Daarna voeren
we een paarsgewijze vergelijking uit tussen de vier Bayesiaanse en de vier fre-
quentistische modellen om op te helderen in hoeverre de resultaten van de twee
paradigma’s (‘Bayesiaans versus frequentistisch’) verschillen.
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