

University of Groningen

On the molecular biology of telomeres

Stinus Ruiz de Gauna, Sonia

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Stinus Ruiz de Gauna, S. (2018). Ón the molecular biology of telomeres: Lessons from budding yeast. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

On the molecular biology of telomeres

Lessons from budding yeast

Sonia Stinus Ruiz de Gauna

On the molecular biology of telomeres - Lessons from budding yeast

The work presented in this thesis was conducted at the European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.

Printed by: ProefschriftMaken | www.proefschriftmaken.nl

ISBN (print version): 978-94-6380-078-5 ISBN (digital version): 978-94-6380-075-4

Copyright © 2018 by Sonia Stinus Ruiz de Gauna All rights reserved. No parts of this book may be reproduced or transmitted in any form or by any means without prior permission of the author.

On the molecular biology of telomeres

Lessons from budding yeast

PhD thesis

to obtain the degree of PhD at the University of Groningen on the authority of the Rector Magnificus Prof. E. Sterken and in accordance with the decision by the College of Deans.

This thesis will be defended in public on

Monday 3 December 2018 at 11.00 hours

by

Sonia Stinus Ruiz de Gauna

born on 18 April 1989 in Donostia - San Sebastián, Spain

Supervisor Prof. G. de Haan

Co-supervisor

Dr. M. Chang

Assessment Committee

Prof. M.A.T.M. van Vugt Prof. F. Foijer Prof. B. Luke

Chapter 1: Introduction	7
1. Telomeres	9
1.1. Structure of telomeres	9
1.2. Protection of Saccharomyces cerevisiae telomeres	10
1.2.1. Single-stranded telomeric DNA binding proteins	10
1.2.2. Double-stranded telomeric DNA binding proteins	11
1.2.3. Telomere-associated proteins	12
1.3. Regulation of telomere length	14
1.3.1. Telomere length regulation by homologous recombination	
mechanisms	14
1.4. Transcription at telomeres: telomere position effect and TERRA	15
1.5. Biology of mammalian telomeres	16
1.5.1. Telomere structure and composition of the shelterin complex	16
1.5.2. Regulation of telomere length	10
TERRA	18
2 G-quadrupleves	10
21 Role of G-auadruplexes in replication	20
2.2. Role of G-quadruplexes at telomeres	20
2.2.1 Telomerase regulation by G-quadruplexes	22
2.2.2. Telomere protection by G-quadruplexes	22
3. Thesis overview	23
Chapter 2: A sharp Pifl-dependent threshold separates D double-strand breaks from critically short telomeres	NA 25
Abstract	26
Introduction	27
Results	28
Identification of a Pif1-insensitivity threshold at DNA ends	28
A DSB-telomere transition also exists at chromosome ends	30
Pif1 is not inhibited by DNA damage kinases	33
Artificial telomerase recruitment does not outcompete Pif1	34
The DSB-telomere transition recapitulates the differential regulation of	Pif1
	36
Investigating the molecular trigger of the DSB-telomere transition	37
Cdc13 function influences the fate of DNA ends	38
Discussion	43
Methods	45
Supplementary data	50

Chapter 3: Telomerase regulation by the Pifl helicase – a lengthdependent effect? 61

Chapter 4: Investigating the role of G-quadruplexes at Saccharomyces cerevisiae telomeres 69

A 1	70
ADStract	/0
Introduction	71
Results	72
G-quadruplexes mediate a non-essential telomere protection function	72
<i>tlc1-tm</i> cells senesce very rapidly in the absence of telomerase	74
Telomerase-dependent telomere extension is dramatically increased	at <i>tlc1-tm</i>
telomeres	75
Telomere binding proteins are affected in <i>tlc1-tm</i> telomeres	76
Telomere homeostasis is altered in <i>tlc1-tm</i> cells	78
tlc1-tm repeats are not counted as telomeric sequence in terms of	telomere
length homeostasis	80
Discussion	81
Materials & methods	83
Supplementary data	88
Chapter 5: Discussion and future perspectives	91

A ~40 nt length threshold separates telomeres from DSBs92Development of the inducible STEX assay93Cdc13-independent telomerase recruitment to chromosome ends94Non-essential G-quadruplex-mediated telomere protection94Characterisation of a Rap1-free telomere95

Bibliography

Appendix

113

97

114
116
118
120
124
125
126