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Abstract
Motivated by recent applications of Carroll symmetries we investigate, using
the method of nonlinear realizations, the geometry of flat and curved (AdS)
Carroll space and the symmetries of a particle moving in such a space both in
the bosonic as well as in the supersymmetric case. In the bosonic case we find
that the Carroll particle possesses an infinite-dimensional symmetry which
only in the flat case includes dilatations. The duality between the Bargmann
and Carroll algebra, relevant for the flat case, does not extend to the curved
case. In the supersymmetric case we study the dynamics of the  = 1 AdS
Carroll superparticle. Only in the flat limit we find that the action is invariant
under an infinite-dimensional symmetry that includes a supersymmetric
extension of the Lifshitz Carroll algebra with dynamical exponent z = 0. We
also discuss in the flat case the extension to  = 2 supersymmetry and show
that the flat  = 2 superparticle is equivalent to the (non-moving)  = 1
superparticle and that therefore it is not BPS unlike its Galilei counterpart. This
is due to the fact that in this case kappa-symmetry eliminates the linearized
supersymmetry. In an appendix we discuss the  = 2 curved case in three-
dimensions only and show that there are two  = 2 theories that are physi-
cally different.

Keywords: superparticle, Carroll algebra, kappa-symmetry

1. Introduction

Space–time symmetries have played a central role in the understanding of various physical
theories such as Newtonian gravity, Maxwell’s electromagnetism, special relativity, general
relativity, strings and supergravity. Most of these models are based on relativistic symmetries.
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An example of a model with non-relativistic symmetries is Newtonian gravity which is based
on the Galilei symmetries. Such non-relativistic symmetries arise when the velocity of light is
sent to infinity.

A formulation of non-relativistic gravity that is invariant under diffeomorphisms was
introduced by Cartan [1], see also [2–6]. This so-called Newton–Cartan gravity can be
reformulated as a gauge theory of the Bargmann algebra [7, 8]. The interest in Galilean-
invariant theories with diffeomorphism invariance has increased recently due to their relation
with condensed matter systems [9–11], see also [12, 13] and references therein. Galilean-
invariant theories have also appeared recently in studies of Lifshitz holography [14, 15].

Other non-relativistic theories such as non-relativistic superstrings and superbranes have
been studied as special points in the parameter space of M-theory [16, 17]. Non-relativistic
strings have also attracted attention due to the fact that they appear as a possible soluble sector
within string theory or M-theory [18, 19].

A less well known example of a non-relativistic symmetry are the Carroll symmetries
which arise when the velocity of light is sent to zero [20]. In this sense the Carroll symmetries
are the opposite to the Galilei symmetries. This can also be seen by looking at the light cone
which in the Carroll case, at each point of spacetime, collapses to the time axis whereas in the
Galilei case it coincides with the space axis.

In physical systems Carroll symmetries appeared for the first time in the strong coupling
limit of general relativity when a flat spacetime solution is considered [21]. Recently, it has
been proven that the asymptotic symmetry of asymptotically flat spacetimes, the so-called
BMS symmetry [22–24], is isomorphic to a conformal extension of the Carroll symmetries
[25]. In particular, it has been shown that the Carroll group can be viewed as a subgroup of
the Poincaré group in +D 1, 1( ) dimensions. The same reference also studies non-Ein-
steinian electrodynamics in the Carroll limit and gives an example where both Galilean and
Carrollian symmetries coexist in a non-relativistic D-dimensional Chaplygin gas. More
recently, it has been proposed that the BMS group is relevant to understand the holography in
asymptotically flat space times [26–30].

Some studies have shown that the Carroll group plays an essential role in the phenomenon
of tachyon condensates in string theory [31]. Sen [32] had a remarkable insight into the nature of
the open bosonic string tachyon. He pointed out that a space-filling D-brane is unstable in the
bosonic theory, as it does not carry any conserved charge, and he suggested that the open
bosonic string tachyon should be interpreted as the instability mode of the D-brane. This led him
to conjecture that the open string field theory could be used to precisely determine a new vacuum
for the open string, namely one in which the D-brane is annihilated through condensation of the
tachyonic unstable mode [33]. It turns out that the open string excitations are subject to a time-
like half line collapsed lightcone which corresponds to the Carroll limit [34].

Other recent developments are that Carroll symmetries allow to build a fully covariant
formalism for warped conformal field theories (WCFTs), i.e.the simplest field theories
without Lorentz invariance that can be described holographically, in curved spaces [35]. A
procedure to gauge the Carroll algebra is given in [35, 36], and in [36–38] one can find
constructions of more general Carroll geometries and associated Carroll structures that are out
of the scope of this paper.

A systematic investigation of the possible relativity groups4 was initiated by Bacry and
Lévy-Leblond [39]. They showed that all these groups can be obtained by a contraction of the

4 A relativity group is an invariance group of a physical theory that contains the generators of special relativity: time
translations, spatial translations, boosts and spatial rotations.
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anti-de Sitter (AdS) and de Sitter (dS) groups5. As figure 1 shows there are three different
types of contractions: the non-relativistic limit  ¥c of the AdS group leads to the Newton–
Hooke (NH) group. The flat limit  ¥R leads to the Poincaré (P) group and the ultra-
relativistic limit c 0 leads to the AdS-Carroll (AC) group [20]6. In a second stage, the flat
limit of the AC group and the ultra-relativistic limit of the Poincaré group leads to the Carroll
(C) group while the non-relativistic limit of the Poincaré group and the flat limit of the NH
group leads to the Galilean (G) group.

All the algebras corresponding to the groups given in figure 1 contain the same com-
mutators involving spatial rotations. These commutators are given by

h h= -M M M M, 2 2 , 1.1ab cd a c d b b c d a[ ] ( )[ ] [ ]

d d= =M P P M K K, 2 , , 2 , 1.2ab c c b a ab c c b a[ ] [ ] ( )[ ] [ ]

where = ¼ -a D1, , 1, for a D-dimensional space–time. The Galilean algebra can extended
with a central charge generator Z to the so-called Bargmann algebra [40]. It has been recently
shown that there is a duality between this Bargmann algebra and the Carroll algebra by the
exchange of Z and the generator of time translations H [37]. Note that this duality does not
extend to a duality between the NH and AC algebras. This is due to the expression for the
commutator P P,a b[ ], see table 1.

Figure 1. The figure displays the different contractions of the AdS group. The different
abbreviations are explained in the text.

Table 1. This table gives an overview of the algebras of the relativity groups that we
consider in this paper.

P K,a b[ ] H K, a[ ] H P, a[ ] P P,a b[ ] K K,a b[ ]

AdS d Hab Pa - K
R a
1
2 M

R ab
1
2 Mab

Poincaré d Hab Pa 0 0 Mab

Newton–Hooke d Zab Pa - K
R a
1
2 0 0

AdS-Carroll d Hab 0 - K
R a
1
2 M

R ab
1
2 0

Galilei d Zab Pa 0 0 0
Carroll d Hab 0 0 0 0

5 In this paper we will only consider the AdS case.
6 Bacry and Lévy-Leblond [39] call this algebra the para-Poincaré algebra.
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The aim of this paper is to study the general structure of the Carroll symmetries along the
same lines as this has been done for the Galilean symmetries. This will be done in two stages.
As a first step we will study the geometry of the empty Carroll space considering the coset

=G H AC HomAC, where Hom AC is the homogeneous part of the AC algebra. In a
second step we will put a particle in this Carroll space and construct an action describing its
dynamics.

More specifically, in the first part of this paper we consider the bosonic AC algebra. In
particular, we will construct the action of a particle invariant under the symmetries
corresponding to this algebra using the method of nonlinear realizations [41, 42]. This so-
called AC particle reduces, in the limit that the AdS radius goes to infinity, to the Carroll
particle that we studied in our previous paper [43]. A characteristic feature of the free Carroll
particle is that it does not move [37, 43, 44]7. As we will see the AC particle does not move,
but unlike the Carroll particle the momenta are not a constant of motion as a consequence of
the AC symmetry. Another difference with the Carroll particle is that the mass-shell constraint
depends on the coordinates of the AC space, therefore the AC particle ‘sees’ the geometry.
This is different from the Carroll case where the energy of the particle is equal to plus or
minus the mass [37, 43]. We find that only in the massless limit the mass-shell constraint
coincides with the flat Carroll case. Using the AC particle action we will construct the Killing
equations for the AC space. We find that the solution of the Killing equations produces an
infinite-dimensional algebra that contains the symmetries of the AC algebra. The Lifshitz
dilatations are not included in these symmetries. Only in the flat case the dilatations with
z = 0 are part of the infinite dimensional algebra.

In the second part of this paper we consider the supersymmetric extension of the Carroll
algebras8. We first construct the  = 1 AC superalgebra in any dimension (see tables 1 and
2, where Q stands for the generator of supersymmetry). A difference with respect to the
supersymmetric NH case is that we have a conventional supersymmetry algebra, where the
energy and boost generators appear in the anti-commutator of the supersymmetries. The AC
superalgebra in the flat limit contains the supersymmetric extension of the ‘Lifshitz boost
extended Carroll algebra’ introduced in appendix B of [45]. We construct the AC super-
particle action both as the non-relativistic limit of the relativistic massive superparticle
[46, 47] as well as by applying the nonlinear realization technique. As we will see the  = 1
AC superparticle like in the Relativistic and Galilean case is non-BPS, i.e.the super-
symmetries are nonlinearly realized. We will study the super-Killing equations and we find in
general an infinite-dimensional algebra of symmetries thereby extending the finite  = 1
super AC transformations.

Table 2. In this table we give the (anti-)commutators of the  = 1 Newton–Hooke and
AC superalgebras that involve the generators Q of supersymmetry. Note that here is no
duality between the two algebras.

 = 1 M Q,ab[ ] P Q,a[ ] a bQ Q,{ }

Newton–Hooke g- Qab
1
2

0 dabZ2

AdS-Carroll g- Qab
1
2

g Q
R a
1

2
g g+ab ab

- -C H C K
R

a
a

0 1 2 0 1[ ] [ ]

7 If we consider two particles or a particle interacting with Carroll gauge fields the dynamics is non-trivial. The same
phenomenon occurs in tachyon condensation when the tachyon interacts with a gauge field [31].
8 A first attempt in this direction was done in the unpublished notes [44].
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Inspired by the relativistic and Galilei case we will investigate whether the  = 2
Carroll superparticle is BPS or not. For simplicity we restrict to the three-dimensional case.
We first construct the  = 2 Carroll superalgebra as a contraction of the  = 2 Poincaré
superalgebra. This leads to the result given in table 3. We see that, unlike in the bosonic case,
there is no duality in the supersymmetric case. Next, we construct the action for the  = 2
Carroll superparticle. This action has two terms, one of them is a Wess–Zumino term. If we
properly choose the coefficients of the two terms we find a so-called kappa gauge symmetry
[48, 49] that kills half of the fermions. This gauge symmetry has the form of a Stückelberg
symmetry, similar to what we found in the Galilean case [18, 50]. We find that after fixing the
kappa-symmetry the super-Carroll action reduces to the action we found in the  = 1 case.
The linearly realized supersymmetry acts trivially on all the fields and therefore the  = 2
Carroll superparticle reduces to the  = 1 Carroll superparticle and hence is not BPS. This is
rather different from the  = 2 super-Galilei case were BPS particles do exist. The main
difference between the super-Carroll and super-Galilei cases comes from the kappa symmetry
transformations, in the former case it eliminates the linearized supersymmetry and it the last
case it does not.

In a separate appendix we extend our investigations to the  = 2 curved case and
consider the Carroll contraction of the so-called (p, q) AdS superalgebras [51] for the part-
icular cases of =p q, 2, 0( ) ( ) and =p q, 1, 1( ) ( ). The (2, 0) and (1, 1) AC algebras are not
isomorphic. We find that the associated particle actions are rather different. While in the (2, 0)
case we have kappa-symmetry, we find that this is not the case in the (1, 1) case. The two
models have different degrees of freedom.

This paper is organized as follows. In section 2 we discuss the bosonic free AC particle
thereby extending our previous analysis [43] to the curved case. In particular, we construct the
action and investigate the Killing equations. In section 3 we consider the  = 1 AC
superparticle. At the end of this section we discuss the flat limit. Finally, in section 4 we
investigate the  = 2 super Carroll particle. Our conclusions are presented in section 5.
Some technical details and the extension of the  = 2 super Carroll particle to the curved
case, for three-dimensions only, are given in three appendices.

2. The free AC particle

Before discussing the supersymmetric case we will first study in this section different aspects
of the free AC particle.

2.1. The AC algebra

In order to write the commutators corresponding to the AC algebra, we will start with the
contraction of the D-dimensional AdS algebra. The basic commutators are given by

= ¼ -A D0, 1, , 1( )

Table 3. In this table we give the (anti-)commutators of the  = 2 Galilei and Carroll
supersymmetry algebras. Note that there is no duality between these two algebras.

 = 2 M Q,ab[ ] +K Q,a[ ] a b
+ +Q Q,{ } a b

+ -Q Q,{ } a b
- -Q Q,{ }

Galilei g- Qab
1
2

g- -Qa
1
2 0 g ab

-C H0 1[ ] g ab
-C Pa

a
1[ ] g ab

-C Z2 0 1[ ]
Carroll g- Qab

1
2

0 g +ab
-C H Z21

2
0 1[ ] ( ) 0 g -ab

-C H Z21
2

0 1[ ] ( )
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h h= -M M M M, 2 2 , 2.1AB CD A C D B B C D A[ ] ( )[ ] [ ]

h= =M P P P P
R

M, 2 , ,
1

, 2.2AB C C B A A B AB2
[ ] [ ] ( )[ ]

where R is the AdS radius. Here PA and MAB are the (anti-hermitian) generators of space–time
translations and Lorentz rotations, respectively.

To make the Carroll contraction we rescale the generators with a parameter ω as follows
[20, 39]:

w
w= =P H M K

2
, . 2.3a a0 0 ( )

Taking the limit w  ¥ we find that the commutators corresponding to the D-dimensional
AC algebra are given by ( = ¼ -a D1, , 1):

h h d= - =M M M M M K K, 2 2 , , 2 , 2.4ab cd a c d b b c d a ab c c b a[ ] [ ] ( )[ ] [ ] [ ]

d d= =M P P P K H, 2 , ,
1

2
, 2.5ab c c b a a b ab[ ] [ ] ( )[ ]

= =P P
R

M P H
R

K,
1

, ,
2

. 2.6a b ab a a2 2
[ ] [ ] ( )

Notice that the commutation relations of space–time translation coincide with the same
commutation relations of the AdS algebra. The difference between the AdS and AC algebra is
in the different commutation relations that involve the boost generators. Note that this is not
the case for the NH algebras.

The AC algebra can be expressed in terms of the left invariant Maurer–Cartan one-forms
La, which satisfy the Maurer–Cartan equations - =L f L Ld 0C C

AB
B A1

2
. Explicitly, these

equations read

+ = - =L L L L L Ld
1

2
0, d 2 0, 2.7H P

a
K
a

P
a

P
b

M
ab ( )

- = - =L L L
R

L L L L L
R

L Ld 2
2

, d 2
1

2
. 2.8K

a
K
b

M
ab

H P
a

M
ab

M
ca

M
cb

P
b

P
a

2 2
( )

2.2. Nonlinear realizations

In this subsection we apply the method of nonlinear realizations [41, 42] and use the algebra
(2.4) to construct the action of the AC particle.

We consider the coset = -G H DAC SO 1( ) and the coset element =g g U,0 where
=g e eHt P x

0
a

a
is the coset representing the AC space and =U eK va

a
is a general Carroll boost.

The = ¼ -x a D1, 1a ( ) are the Goldstone bosons of broken translations, t is the Goldstone
boson of the unbroken time translation9 and U is parametrized by the Goldstone bosons of the
broken Carroll boost transformations.

The reason to consider the coset element in terms of g0 and U is because in this way we
have that for a general symmetric space–time g0 is the coset element representing the ‘empty’
space–time, while U represents the broken symmetries that are due to the presence of a
dynamical object, in our case a particle, in the ‘empty’ space–time. For the case of a particle U
is given by the general rotation that mixes the ‘longitudinal’ time direction with the

9 The unbroken translation P0 generates via a right action [52, 53] a transformation which is equivalent to the world-
line diffeomorphisms.

J. Phys. A: Math. Theor. 49 (2016) 185402 E Bergshoeff et al

6



‘transverse’ space directions, i.e.the Carroll boosts. If we would like to consider as a
dynamical object a p-brane, we should consider as U the general rotations that mix the
longitudinal and tranverse directions [53].

Returning to the AC particle, it is interesting to write out the Maurer–Cartan form W0

associated to the AC space

w wW = = + + +-g g He P e K Md , 2.9a
a

a
a

ab
ab

0 0
1

0
0 0 ( )

where e e, a0( ) and w w,a ab0( ) are the space and time components of the Vielbein and spin
connection one-forms of the AdS space, respectively. If we parametrize the AdS space as
e eHt P xa

a
, the Vielbein and spin-connection one-forms corresponding to the AC space are given

by

w

w

=

= + -

=-

= - -

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

e t
x

R

e
R

x
x

x

R x
x x x

R

x

x

R

xR
tx

x

R

x
x x x x

x

R

d cosh ,

d sinh
1

d 1 sinh ,

2
d sinh ,

1

2
d d cosh 1 . 2.10

a a a b
b

a a

ab b a a b

0

2

0

2
( ) ( )

These one-forms satisfy the structure equations

w w+ = - =e e e ed
1

2
0, d 2 0, 2.11a a a b ab0 0 ( )

w w w w w w- = - =
R

e e
R

e ed 2
2

, d 2
1

2
. 2.12a b ab a ab ca cb b a0 0

2
0

2
( )

We see that the the AC space, like the ancestor AdS space, has constant negative spatial
curvature, i.e.the left side of the equation on the right of equation (2.12) is non-zero.

We now insert a particle in the empty AC space and consider the Maurer–Cartan form of
the combined system:

W = = W +- - -g dg U U U Ud . 2.131 1
0

1 ( )

In order to derive an expression for Ω we need to know how the space–time translation
generators and the boost generators transform under a general Carroll boost:

= +

=
=
= + -

-

-

-

-

U H U H v P

U P U P

U K U K

U M U M v K v K

1

2
,

,

,

. 2.14

a
a

a a

a a

ab ab b a a b

1

1

1

1 ( )

We have also =-U U v Kd d a
a

1 . Using these formulae we find that the Maurer–Cartan form Ω

is given by
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w w
w

= +

=
= + +
=

L e v e

L e

L v v

L

1

2
,

,

d 2 ,

. 2.15

H a
a

P
a a

K
a a a

b
ab

M
ab ab

0

0

( )

We note that that the Maurer–Cartan forms of space–time translations can be written in
matrix-form as follows:

=
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟L L e e v

, ,
1 0

1
. 2.16H P

a a

a

0 1
2

( )( ) ( )

The matrix appearing at the right-hand side is the most general Carroll boost in the vector
representation.

We now proceed with the construction of an action of the AC particle. An action
with the lowest number of derivatives is obtained by taking the pull-back of all the Lʼs
that are invariant under rotations, see for example [53]. In this way we obtain the following
action:

*
*

ò ò

ò t

= = +

= + + -

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

S M L M e v e

M t
x

R

R

x
v x

x

R x
x v x x

R

x

x

R

1

2

d cosh
2

sinh
1

2
1 sinh . 2.17

H a
a

a
a b

b a
a

0

2

( )

˙ ˙ ˙ ( )

This action is invariant under the following transformation rules with constant parameters
z l la, , ,i i

j
i( ) corresponding to time translations, spatial translations, boosts and spatial

rotations, respectively:

d z l

d l

d l l l

=- + +

=- - - -

=- - - - -

- - + -

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

t
R

x
x

x

R

t

Rx
a x

x

R

x
x

x a x
x

R

x

R
x a x a x x

v
x

x x
x

R

x

R
v

t

R
a

t

R x
x a x

x

R

x

R Rx
v a x

x

R

x

R

2
tanh tanh ,

1
coth 2 ,

1
sech 1 cosh 2

2

2
sech 1 cosh

2
csch 1 cosh . 2.18

k
k

k
k

i i k
k

i k
k

i
k

i k

i i k
k

i
j

i j i

i k
k b

i b

2
2

2 2

2 2

( )

( )[ ]

The equations of motion for t x, a and v a read

=

=- - -

= - + -

+ - -

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

xR
x x

x

R
R

x
x

x

R x
x x x

R

x

x

R
R

x
v

x

R xR
tx

x

R x
x x v

R

x

x

R

x

x
v x x v

x

R

0
1

sinh ,

0
2

sinh
1

2
1 sinh ,

0
2

sinh
1

sinh
1

2
1 sinh

2
cosh 1 . 2.19

a
a

a a
b

b

a a a
b

b

b

a
b

a b

2

2

2

˙

˙ ˙

˙ ˙ ˙

˙ ( ) ( )
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These equations imply that

=

= + -⎜ ⎟⎛
⎝

⎞
⎠

x

xR
tx

x

R

R

x
v

x

R x
x x v

R

x

x

R

0,
1

sinh
2

sinh
1

2
1 sinh . 2.20

a

a a a
b

b2

˙

˙ ˙ ˙ ( )

Notice that the evolution of v a is non-trivial. If we take the limit  ¥R we recover the flat
bosonic equations of motion = =x v 0a a˙ ˙ and therefore a trivial dynamics for both
x v,a a [43].

The energy and spatial momenta of the free AC particle are given by





=-
¶
¶

= -

=
¶
¶

= + -⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

E
t

M
x

R

p
x

M
R

x
v

x

R x
x x v

R

x

x

R

cosh ,

2
sinh

1

2
1 sinh . 2.21a

a
a a

b
b2

˙

˙
( )

They satisfy the constraint

- =E M
x

R
cosh 0. 2.222 2 2 ( )

The canonical action of the AC particle is given by10

ò t= - + - -⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥S Et p x

e
E M

x

R
d

2
cosh . 2.23a

a 2 2 2˙ ˙ ( )

Note that if we calculate pȧ and impose both equations of motion (2.20) we obtain

= =p
M

Rx
tx

x

R

eM

Rx
x

x

R

x

R
sinh cosh sinh . 2.24a a a

2
˙ ˙ ( )

In the last step we have used that = - =t eE eM cosh x

R
˙ , see equation (2.26). This is the

same result one finds using the Hamiltonian form given in equation (A.5).

2.3. The Killing equations of the AC particle

In order to find the Killing symmetries of the AC space, it is convenient to consider the
symmetries of the canonical action (2.23). The basic Poisson brackets of the canonical
variables occurring in the action (2.23) are given by

p d= = =E t e x p, 1, , 1, , . 2.25e i j ij{ } { } { } ( )

This leads to the following equations of motion:

p l

=- = = =

=- - =⎜ ⎟
⎛
⎝

⎞
⎠

t eE x E p
eM

Rx
x

x

R

E M
x

R
e

, 0, 0,
2

sinh
2

,

1

2
cosh , . 2.26

i i i

e

2

2 2 2

˙ ˙ ˙ ˙

˙ ˙ ( )

Here l l t= ( ) is an arbitrary function and pe is constrained by p = 0e˙ .
We take as the generator of canonical transformations

x x g p= - + +  
G E t x e p t x e t x e, , , , , , , 2.27i

i
e

0 ( ) ( ) ( ) ( )

10 Alternatively, we can obtain this action by taking the Carroll limit of the canonical action of a massive particle in
AdS, see appendix A.

J. Phys. A: Math. Theor. 49 (2016) 185402 E Bergshoeff et al

9



where x x x x= =
 

t x e t x e, , , , ,i i0 0 ( ) ( ) and g g=


t x e, ,( ). The condition that this generator
generates a Noether symmetry is that it is a constant of motion and it leads to the following
restrictions:

x x x x x gp

x l x x

x l x
g

= = - ¶ + ¶ + + ¶ + ¶ +

= ¶ - ¶ +

- ¶ + ¶ - -⎜ ⎟
⎛
⎝

⎞
⎠

G E t e p p t e

eE E
eM

Rx
x

x

R

eEp p E M
x

R

0

2
sinh

2

2
cosh . 2.28

t e i
i

i t
i

e
i

e

t e i
i

i t
i

i e
i

0 0

2 0 0
2

2 2 2

˙ (˙ ˙ ) ˙ (˙ ˙ ) ˙

( )

From this equation we deduce the following equations describing the symmetries of the AC
space:

x x x

g x x g

¶ = ¶ = ¶ =

= ¶ + =e
e

xR
x

x

R

x

R

0, 0, 0,

2 , sinh
1

2
cosh 0. 2.29

e e
i

t
i

t i
i

0

0 ( )

The last two equations can be combined into the single condition

x x¶ = -
xR

x
x

R

1
tanh . 2.30t i

i0 ( )

The generator G is given by

x x g p= - + +  
G E t x p x t x e, , , . 2.31i

i
e

0 ( ) ( ) ( ) ( )

From the variation of the momenta we can obtain the transformation rules for vi as
follows. First, we use that

d x x x p

x x x p

= = - + + ¶

= ¶ - ¶ - ¶ ¶

  
p p G p E t x p x e t x

E p e

, , , 2 ,

2 . 2.32
i i i i

i
t e

i k i
k

t i e

0 0

0 0

{ } { ( ) ( ) ( ) }
( )

Next, using equation (2.21) and p = 0e we obtain

d x x= - ¶ - + - ¶⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥p M

x

R
M

R

x
v

x

R x
x x v

R

x

x

R
cosh

2
sinh

1

2
1 sinh . 2.33i i i i

b
b i

k0
2

( )

Finally, using the expression for pi given in equation (2.21), we obtain the following
transformations of the variables vi:

d x x x

x x

x x

x

=- ¶ - ¶ - ¶ -

+ - ¶ + -

- - - ¶

+ - - + +

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

v
x

R

x

R
v

Rx
v x x

R

x

x

R

Rx

x

R

R

x

x

R
x x

Rx

R

x

x

R
v x

Rx

R

x

R

x

x

R
x x

x
x x v

Rx

x

R

R

x

x

R

R

x

x

R

x

R
x x x v

2
coth

1
1 sinh

2
coth 1 sinh

1
coth

1
sinh

1

1
csch sinh sinh 1 cosh

i i
a

i a b
b

k i
k

i a
a

i b
b

i b
b

i a
a

k
k

i b
b

k
k

0

0

2

2 2

3

2

2
2
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x

x

+ - - + +

+ -⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

Rx

x

R

R

x

x

R

R

x

x

R

x

R
x x x v

Rx

x

R

R

x

x

R
x v

1
csch 2 sinh sinh 1 cosh

1
csch sinh 1 . 2.34

i b
b

k
k

i b
b

2

2
2

( )

We see that the free Carroll particle in an AdS background has an infinite-dimensional
symmetry. A possible solution to these equations is given by equation (2.18) which are the
symmetry transformations of the Carroll group. We do not find any Lifshitz dilatations in this
case i.e., a transformation with parameters x x= =x zt,i i 0 .

2.3.1. The massles limit. Using the canonical action

ò t= - + - -⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥S Et p x

e
E M

x

R
d

2
cosh , 2.35a

a 2 2 2˙ ˙ ( )

it is straightforward to take the massless limit M 0 and obtain the action

ò t= - + -⎜ ⎟
⎛
⎝

⎞
⎠S Et p x

e
Ed

2
. 2.36a

a 2˙ ˙ ( )

We see that in the massless limit the R-dependence of the AC particle has disappeared. This
means that the massive Carroll particles are affected by the geometry but the massless Carroll
particles are not. Consequently, in the massless limit there is no difference between particles
in an AdS or flat background. Furthermore, the isometries should be given by the most
general conformal Carroll group as it was analyzed in [43]. In this case dilatations are
included i.e., with parameters x x= =x zt,i i 0 .

3. The  ¼ 1 AC superparticle

In this section we extend our investigations to the  = 1 supersymmetric case and consider
the AC superparticle.

3.1. The  ¼ 1 AC superalgebra

We start by taking the contraction of the D-dimensional  = 1 AdS algebra. The basic
commutators are given by = ¼ -A D0, 1, , 1( )

h h

h

g g

g g

= -

= =

=- =

= +a b ab ab
- -

M M M M

M P P P P x M

M Q Q P Q
R

Q

Q Q C P
R

C M

, 2 2 ,

, 2 , , 4 ,

,
1

2
, ,

1

2
,

, 2
1

, 3.1

AB CD A C D B B C D A

AB C C B A A B AB

AB AB A A

A
A

AB
AB

2

1 1

[ ]

[ ] [ ]

[ ] [ ]

{ } [ ] [ ] ( )

[ ] [ ]

[ ]

where R is the AdS radius and P M,A AB and Qα are the generators of space–time translations,
Lorentz rotations, and supersymmetry transformations, respectively. The bosonic generators
PA and MAB are anti-hermitian while de fermionic generator Qα is hermitian.
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To make the Carroll contraction we rescale the generators with a parameter ω as follows:

w
w w= = = = ¼ -P H M K Q Q a D

2
, , ; 1, 2, , 1. 3.2a a0 0 ˜ ( )

Taking the limit w  ¥ and dropping the tildes on the Q we get the following  = 1 AC
superalgebra:

d d

d

g g

g g

= =

= = =

= = -

= +a b ab ab
- -

M P P M K K

P P
R

M P K H P H
R

K

P Q
R

Q M Q Q

Q Q C H
R

C K

, 2 , , 2 ,

,
1

, ,
1

2
, ,

2

,
1

2
, ,

1

2
,

,
2

. 3.3

ab c c b a ab c c b a

a b ab a b ab a a

a a ab ab

a
a

2 2

0 1 0 1

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

{ } [ ] [ ] ( )

[ ] [ ]

The Maurer–Cartan equation - =L f L Ld 0C C
AB

B A1

2
in components reads

g

g

g g

=- - =

= + - = +

= -

L L L L L L L L

L L L
R

L L
R

L L L L L
R

L L

L L L
R

L L

d
1

2

1

2
, d 2 ,

d 2
2 1

, d 2
1

2
,

d
1

2

1

2
.

3.4

H P
a

K
a

Q Q P
a

P
b

M
ab

K
a

K
b

M
ab

H P
a

Q
a

Q M
ab

M
ca

M
cb

P
b

P
a

Q ab Q M
ab

a Q P
a

0

2
0

2

¯

¯

( )

3.2. Superparticle action

We now use the algebra (3.3) to construct the action of the AC superparticle with the coset


=

=
-

G

H D

1 AdS Carroll

SO 1
3.5

( )
( )

that is locally parametrized as =g g U,0 where = qa a
g e e eHt P x Q

0
a

a
is the coset representing

the ‘empty’ curved AC Carroll superspace and =U eK va
a
is a general Carroll boost

representing the particle inserted in the empty space. The Maurer–Cartan form W0 associated
to the empty AC superspace is given by

w wW = = + + + --g g HE P E K M QEd , 3.6a
a

a
a

ab
ab

0 0
1

0
0 0 ¯ ( )

where aE E E, ,a0( ) and w w,a ab0( ) are the time and space components of the supervielbein
and the spin connection of super-AdS if we parametrize the AdS superspace as qa a

e e e .Ht P x Qa
a

The explicit expressions for these components are given by
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qg q w qg g q

w qg q qg g q

w

q g q w g q

= - -

= + -

=- - -

= - -

= - +a a a a

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

E t
x

R

E
R

x
x

x

R x
x x x

R

x

x

R

xR
tx

x

R R R
E

x
x x x x

x

R

E
R

E

d cosh
1

2
d

1

2
,

d sinh
1

d 1 sinh ,

2
d sinh

1
d

1

2
,

1

2
d d cosh 1 ,

d
1

2

1

2
. 3.7

ab
ab

a a a b
b

a a a
ab

b

ab b a a b

a
a ab

ab

0 0 0

2

0 0
2

0

2

¯ ¯

¯ ¯

( )

[ ] [ ] ( )

In this case we have torsion given by g= - a
aT E E0

1

2
0¯ and a non-vanishing spin connection.

The Maurer–Cartan form for the  = 1 AC superparticle inserted in the AC superspace is
given by

W = = W +- - -g dg U U U Ud , 3.81 1
0

1 ( )

where

w w
w

= +

=
= + +
=
=a a

L E v E

L E

L v v

L
L E

1

2
,

,

d 2 ,

,
. 3.9

H a
a

P
a a

K
a a a

b
ab

M
ab ab

Q

0

0

( )

Note that the Maurer–Cartan forms of the spacetime supertranslations can be written in matrix
form in terms of the Supervielbein components of the AC superspace as follows:

=a a

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟L L L E E E v, , , ,

1 0 0

1 0

0 0 1

. 3.10H P
a

Q a
a

0 1
2( ) ( ) ( )

Like in the bosonic case the Maurer–Cartan forms of the supertranslations of the AC
superparticle can be obtained from the Maurer–Cartan forms of the AC superspace by a
matrix representation of the Carroll boost.

The action of the  = 1 AC superparticle is given by the pull-back of all the Lʼs that are
invariant under rotations:

*
*

ò ò

ò t qg q

qg g q

= = +

= + + - -

- -

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

S M L M E v E

M t
x

R

R

x
v x

x

R x
x v x x

R

x

x

R

x
x x

x

R

1

2

d cosh
2

sinh
1

2
1 sinh

1

2

1

4
cosh 1 .

3.11

H a
a

a
a b

b a
a

b a
ab

0

2
0

2
0

( )

˙ ˙ ˙ ¯ ˙

˙ ¯

( )
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The equations of motion corresponding to this action can be written as follows

q= =

= + -⎜ ⎟⎛
⎝

⎞
⎠

x

xR
tx

x

R

R

x
v

x

R x
x x v

R

x

x

R

0, 0,
1

sinh
2

sinh
1

2
1 sinh . 3.12

i

a a a
b

b2

˙ ˙

˙ ˙ ˙ ( )

We can write a Hamiltonian version of this action with the momenta given by

qg g q

qg

=

= + - - -

=q

⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

p M
x

R

p M
R

x
v

x

R x
x x v

R

x

x

R x
x

x

R

P
M

cosh ,

2
sinh

1

2
1 sinh

1

4
cosh 1 ,

2
.

3.13

t

a a a
b

b
b

ab2 2
0

0

¯

¯ ¯

( )

Then, the canonical form of (3.11) is

ò t q qg r= - + + - - - +q q⎜ ⎟⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥S tE x p P

e
E M

x

R
P

x

R
Ed

2
cosh cosh

1

2
.

3.14

a
a 2 2 2 0˙ ˙ ˙̄ ¯ ¯

( )

The bosonic transformation rules for the coordinates with constant parameters z l la, , ,i i
j
i( )

corresponding to time translations, spatial translations, boosts and rotations, respectively, are
given by

d z l

d l

d l l l

dq l g q g q

=- + +

=- - - -

=- - - - -

- - + -

=- + -

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

t
R

x
x

x

R

t

Rx
a x

x

R

x
x

x a x
x

R

x

R
x a x a x x

v
x

x x
x

R

x

R
v

t

R
a

t

R x
x a x

x

R

x

R Rx
v a x

x

R

x

R

Rx
a x

x

R

x

R

2
tanh tanh ,

1
coth 2 ,

1
sech 1 cosh 2

2

2
sech 1 cosh

2
csch 1 cosh ,

1

2

1

2
csch 1 cosh . 3.15

k
k

k
k

i i k
k

i k
k

i
k

i k

i i k
k

i
j

i j i

i k
k b

i b

ab
ab

k b
kb

2
2

2 2

2 2

( )

( )

[ ]

The fermionic transformation rules with constant parameter ò corresponding to the
supersymmetry transformation are given by

 

 

  

 

d g q g q

d

d g q g q

g q g q g q

dq g

= -

=

= -

- + +

= +

⎜ ⎟⎛
⎝

⎞
⎠

t
x

R

x

R x
x

x

R

x

R
x

v
Rx

x
x

R

x

R x
x

x

R

Rx
x

x

R R

x

R Rx
x

x

R
x

R x
x

x

R

1

2
sech cosh

2

1

2
sech sinh

2
,

0,
1

tanh cosh
2

1
sinh

2
1

sinh
2

1
cosh

2

1
sinh

2
,

cosh
2

1
sinh

2
. 3.16

k k

i

i i k k

i i k ik

k
k

0 0

0 0

0 0 0

¯ ¯

¯ ¯

¯ ¯ ¯

( )
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3.3. The super Killing equations

The basic Poisson brackets of the canonical variables are given by

p d

q d r d

= = =

= - P = -q
a

b b
a

r
a

b b
a

E t e x p

P

, 1, , 1, , ,

, , , , 3.17

e i j ij{ } { } { }
{ } { } ( )

and the corresponding Dirac Hamiltonian of the action (3.14) is given by

lp qg r p= - + + + + Lq r⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠H

e
E M

x

R
P

x

R
E

2
cosh cosh

1

2
, 3.18D e

2 2 2 0¯ ¯ ¯ ( )

p = 0e and P =r 0 are the primary constraints, l l t= ( ) and tL = L( ) are arbitrary
functions. The corresponding primary Hamiltonian equations of motion are given by

qg r

r

p l

q r rg r qg

=- - = =

= -

=- - =

=- = - = -L P = +

q

q r q

⎜ ⎟
⎛
⎝

⎞
⎠

t eE x E

p
eM

xR
x

x

R

x

R xR
x

x

R
P

E M
x

R
e

x

R
P E P

x

R
E

1

2
, 0, 0,

cosh sinh
1

sinh ,

1

2
cosh , ,

cosh ,
1

2
, , cosh

1

2
.

3.19

i

i i i

e

0

2

2 2 2

0 0

˙ ¯ ˙ ˙

˙ ¯

˙ ˙

˙ ˙̄ ¯ ˙ ˙̄ ¯ ¯

( )
The stability of primary constraints give as secondary constraint the mass-shell condition

- =E M cosh 0x

R
2 2 2 and the fermionic constraint qg+ =qP Ecosh 0x

R

1

2
0¯ ¯ . If we require the

stability of the secondary constraints we get r = 0. Substituting this into (3.19) and using the
canonical momenta (3.13) we obtain equation (3.12).

The generator of canonical transformations has a bosonic and a fermionic part given by

x q x q g q p c q q= - + + - + P Gq r
    

G E t x p t x t x P t x t x, , , , , , , , , , ,

3.20
i

i
e

0 ( ) ( ) ( ) ¯ ( ) ¯ ( )
( )

the parameters x x q x x q= =
 

t x t x, , , , ,i i0 0 ( ) ( ), c c q g g q= =
 

t x t x, , , , ,( ) ( ) have the
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gp c c cq
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x r x x qg r x r
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=
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+ - - ¶ + ¶ + P G
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+ ¶ + ¶

+ G + G

q q

q q q r

q

q q
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G
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eE E E
x
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xR
x

x

R

x
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x
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E M
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R

P
x
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E
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1

2
cosh cosh sinh

1
sinh
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2
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1

2
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2
1

2
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2

. 3.21

t i
i
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i i
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t t
i

i

i
i i t
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i t

i
i
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t

t

0 0
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From this equation we derive the super-Killing equations

g x cr x r

x x x cg qg c

x x c

= ¶ G = -¶ +

¶ = - ¶ = + ¶

¶ = ¶ = ¶ =

q

q q

q

e
xR

x
x

R

xR
x

x

R

x

R

x

R

2 ,
1

tanh ,

1
tanh ,

1

2
sech

1

2
sech ,

0, 0, 0. 3.22

t
i

i

t
i

i

t
i i

t

0

0 0 0 0¯ ¯

( )

The solution to this equations is given by equations (3.15) and (3.16) with the symmetry
generator G given by

x q x x q p c q

c q r x q r

=- + + ¶ -

+ P -¶ +

q

r q

   

 ⎜ ⎟⎛
⎝

⎞
⎠

G E x p t x e x P x

x
xR

x x
x

R

, , 2 , ,

,
1

, tanh . 3.23

i
i

t e

i
i

0 0( ) ( ) ( ) ¯ ( )

¯ ( ) ( ) ( )

Then, the  = 1 AC superparticle has an infinite dimensional algebra with the transformation
rules given by (3.15) and (3.16).

3.4. The flat limit

We end this section with some comments on the flat limit (  ¥R ) which can be taken
directly from the AC curved case in order to obtain the dynamics and symmetries of the
 = 1 flat Carroll superparticle. In this case, the time and space components of the super-
vielbein simplify to

qg q q= - = =a aE t E x Ed
1

2
d , d , d . 3.24a a0 0¯ ( )

In the  ¥R limit, the torsion becomes qg q= -T d d0
1

2
0¯ and since we are studying the flat

case, the spin connection vanishes. The supertranslations can be again written in terms of the
supervielbein in matrix form as in (3.10) and the action is given by

*
ò ò t qg q= + = - +⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠S M E v E M t v x

1

2
d

1

2

1

2
. 3.25a

a
a

a0 0˙ ¯ ˙ ˙ ( )

The equations of motion that follow from this action are:

q= = = 
x v 0. 3.26˙ ˙ ˙ ( )

Therefore, the superparticle does not move. The transformation rules of the different variables
are given by





d z l g q d l

d l l dq l g q

=- + + = - -

=- - = - +

t x x a x

v v

1

2

1

2
, 2 ,

2 ,
1

2
. 3.27

i
i

i i
j

i j

i i
j

i j
ij

ij

0¯

( )

As we can see from the transformation of θ the  = 1 Carroll superparticle is not BPS like in
the relativistic and Galilean case.

If we rewrite the action (3.25) in Hamiltonian form

ò t q qg r= - + + - - - +q q⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥S tE x p P

e
E M P Ed

2

1

2
, 3.28a

a 2 2 0˙ ˙ ˙̄ ( ) ¯ ¯ ( )

it turns out that the super-Killing equations can be obtained as the flat limit of the
equations (3.22)
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g cr x x x c

x cg qg c

= G = -¶ ¶ = ¶ = ¶ = ¶ =

¶ = + ¶

q q

q q

0, , 0, 0, 0, 0,
1

2

1

2
, 3.29

t t
i i

t
0

0 0 0¯ ¯ ( )

where the symmetry generator G is

x q x c q c q r= - + - - P ¶q r q
   

G E x p x P x x, , , . 3.30i
i0 ( ) ( ) ¯ ( ) ¯ ( ) ( )

From the variation of the momenta

d x x c= = ¶ - ¶ + ¶qp p G E p P, 3.31i i i k i
k

i
0{ } ¯ ( )

and using that the energy, the spatial momenta and the fermionic momenta are given by

qg= - = =qE M p
M

v P
M

,
2

,
2

, 3.32i i
0¯ ¯ ( )

we find that the transformation rule of v i

d x x qg c= - ¶ - ¶ + ¶v v2 . 3.33i i k i
k

i
0 0¯ ( )

Note that the above symmetries include the dilatations given by

d d dq d= = = = -t x x v v0, , 0, . 3.34a a a a ( )
These dilatations, together with the super-Carroll transformations, form a supersymmetric
extension of the Lifshitz Carroll algebra [45] with dynamical exponent z=0. The Lifshitz
Carroll algebra with z=0 has appeared in a recent study of WCFTs [35].

4. The  ¼ 2 flat Carroll superparticle

In this section we extend our investigations to the  = 2 supersymmetric case. The flat case
is discussed in this section while the curved case will be dealt with in appendix C.

4.1. The  ¼ 2 Carroll superalgebra

Our starting point is the  = 2 super-Poincaré algebra. For simplicity, we consider 3D only.
The basic commutators are = =A i0, 1, 2; 1, 2( )



h h

h

g

g d

= -

=

=-

= +a b ab ab
- -

M M M M

M P P

M Q Q

Q Q C P C Z

, 2 2 ,

, 2 ,

,
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2
,

, 2 2 . 4.1

AB CD A C D B B C D A

AB C C B A

AB
i

AB
i

i j A
A

ij ij1 1

[ ]
[ ]

[ ]

{ } [ ] [ ] ( )

[ ] [ ]

[ ]

To make the Carroll contraction we define new supersymmetry charges by

g= a a a
Q Q Q

1

2
4.21

0
2( ) ( )

and rescale the different symmetry generators with a parameter ω as follows:
w

w w

w w

= = =

= =+ + - -

P H M K Z Z

Q Q Q Q

2
, , ,

, . 4.3

a a0 0 ˜

˜ ˜ ( )
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Taking the limit w  ¥ we obtain the following 3D Carroll algebra

d d
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The Maurer–Cartan equation -  =L f L Ld 0C
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2
in components reads:
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4.2. Superparticle action and kappa symmetry

To construct the action of the  = 2 Carrollian superparticle we consider the following
coset:


=

=
-

G

H D

2 super Carroll

SO 1
. 4.6

( )
( )

The coset element is given by =g g U,0 where = q qa
a

a
a-

-
+

+g e e e e eHt P x Q Q Zs
0

a
a

is the coset
representing the ‘empty’  = 2 Carroll superspace with a central charge extension and

=U eK va
a
is a general Carroll boost representing the insertion of the particle.

The Maurer–Cartan form associated to the super-Carroll space is given by

W = = + - - +- -
-

+
+g g HE P E Q E Q E ZEd , 4.7a

a
Z0 0

1
0

0( ) ¯ ¯ ( )

where a a- +E E E E E, , , ,a
Z

0( ) are the supervielbein components of the Carroll superspace
given explicitly by

q g q q g q

q q

q g q q g q
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a a a a
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- - + +

E t E x

E E

E s

d
1

4
d

1

4
d , d ,
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d
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2
d

1

2
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Z
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¯ ¯

¯ ¯ ( )

In terms of the supervielbein the Maurer–Cartan form of the  = 2 Carroll superparticle is
given by

= + =

= =
= =a a a a- - + +

L E v E L E

L E L v
L E L E

1

2
, ,

, d ,
, . 4.9

H a
a

P
a a

Z Z K
a a

0

( )

As before, we can write the space–time super-translations in matrix form in terms of the
Vielbein of Carroll superspace as follows:
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=a a a a- + - +
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⎜⎜⎜⎜⎜
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The action of the  = 2 Carrollian superparticle is given by the pull-back of all the Lʼs
that are invariant under rotations:
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The equations of motion corresponding to this action are given by

q q= = = =- +x v0, 0, 0, 0. 4.12a a˙ ˙ ˙ ˙ ( )

The transformation rules for the coordinates with constant parameters z h,( ,  l l + -a , , , ,i i
j
i )

corresponding to time translations, Z transformations, spatial translations, boosts, rotations
and supersymmetry transformations, respectively, are given by
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To derive an action that is invariant under additional κ-transformations we need to find a
fermionic gauge-transformation that leaves LH and/or LZ invariant. The variation of LH and
LZ under gauge-transformations is given by

d d d d g d g d

d d g d g d

= + + + +

= - +

- - + +

- - + +

L z L z L z L z L z

L z L z L z
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([ ]) ¯ [ ] ¯ [ ] ( )

Where dzK
a[ ] is obtained from LH by changing the one-forms td , q+d , q-d with the

transformations dt, dq+, dq-. In analogous way we can construct the other terms appearing
in (4.14).

For κ-transformations, d =z 0,H[ ] d =z 0,K
a[ ] d =z 0P

a[ ] ,

d dq g d dq g d

d dq g d dq g d

= = +
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0
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2
,
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H
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It follows that to obtain a κ-symmetric action we need to take = b a1

2
. We focus here on the

case = -b a1

2
. With this choice the action and κ-symmetry rules are given by
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where k k t= ( ) is an arbitrary local parameter. Using this we find the following κ-
transformations of the coordinates
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After fixing the κ-symmetry, by imposing the gauge condition q =+ 0, the action reduces to
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The residual transformations that leave this action invariant are given by
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The linearly realized supersymmetry acts trivially on all the fields and therefore the  = 2
super Carroll particle reduces to the  = 1 super Carroll particle and hence is not BPS since
the kappa-symmetry eliminates the linearized supersymmetry. This is different from the
 = 2 super Galilei case were BPS particles do exist.

5. Discussion and outlook

In this paper we have investigated, using the method of nonlinear realizations, the geometry
of the flat and curved (AdS) Carroll space both in the bosonic as well as in the super-
symmetric case. We furthermore have analyzed the symmetries of a particle moving in such a
space. In the bosonic case we constructed the Vielbein and spin connection of the AC space
which shows that this space has constant (negative) spatial curvature. We constructed the
action of a massive particle moving in this space thereby extending the flat case analysis of
[43]. Like in the flat case, we found that the AC particle does not move. However, in the
curved case the momenta are not conserved. Particles moving in a Carroll space, whether flat
or curved, do not have a relation among their velocities and momenta.

Using the symmetries of the AC particle we have computed the Killing equations of the
AC space. We found that these Killing equations allow an infinite-dimensional algebra of
symmetries that, unlike in the flat case, does not include dilatations. Another difference with
the flat case is that there is no duality between the NH and AC algebras. Furthermore, in the
curved case the mass-shell constraint depends on the coordinates of the AC space.

In the second part of this paper we have extended our investigations to the super-
symmetric case. Unlike the bosonic case, the  = 1 AC superspace has torsion with constant
curvature due to the presence of fermions. Like in the bosonic case, we found that the  = 1
AC superparticle does not move and the momenta are conserved. We have constructed the
super-Killing equations and showed that the symmetries form an infinite dimensional
superalgebra. After taking the flat limit we found that among the symmetries of the  = 1
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Carroll superparticle we have a supersymmetric extension of the Lifshitz Carroll algebra [45]
with dynamical exponent z = 0. The bosonic part of this algebra has appeared as a symmetry
of WCFTs [35].

We also showed that the  = 2 Carroll superparticle has a fermionic kappa-
symmetry such that, when this gauge symmetry is fixed, the  = 2 Carroll superparticle
reduces to the  = 1 Carroll superparticle. Apparently, in flat Carroll superspace the
number of supersymmetries is not physically relevant. This is due to the fact that the
kappa gauge symmetry neutralizes the extra linear supersymmetries beyond  = 1. Unlike
the bosonic case, there is no duality between the  = 2 super Galilei and super Carroll
algebras.

In a separate appendix we investigated the  = 2 AC superparticle11. We studied the so-
called (2, 0) and (1, 1) super-Carroll spaces and the corresponding superparticles. Physically,
the (2, 0) and (1, 1) cases are different, they have unequal degrees of freedom. For instance,
only the (2, 0) superparticle has a kappa-symmetry. Apparently, for the AC superparticle the
type of supersymmetry one considers does make a difference.

We note that, both in the bosonic and in the supersymmetric case, the equations of
motion that follow from our (super-)particle actions have an interesting geometrical inter-
pretation, i.e. they can be viewed as the geodesic equation for a suitable Carrollian
connection12.

As a possible continuation to the ideas presented in this paper it would be interesting to
find the coupling of the AC particle, and the corresponding superparticle, to the (super) AdS
gauge fields. Like in the flat Carroll case [43] we expect that the (super) particle will have a
non-trivial dynamics.

Finally, it would be interesting to study if one could construct the corresponding Carroll
(super) gravity theory. There are two approaches to this issue. One approach is to gauge the
(super) Carroll algebra and/or the Lifhsitz Carroll algebra with z = 0. In this respect we note
that the gauging of the Carroll algebra as performed in [43] can be improved by imposing
curvature constraints that allow to set some of the spin-connection fields equal to zero, like in
[35], instead of trying to solve for all of the spin-connection fields. It would be interesting to
apply this improved gauging technique to the other algebras as well. A second alternative
approach would be to try to define an ultra-relativistic limit of relativistic (super-)gravity
similar to the non-relativistic limit.
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Appendix A. The Carroll action as a limit of the AdS action

In this appendix we show how to obtain the action of the D-dimensional free
AC particle starting from the massive particle moving in an D-dimensional AdS

11 For simplicity we did only consider the 3D case.
12 We thank the referee for pointing this out.
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spacetime and to take the Carroll limit. The canonical form of the action before taking the
limit is given by

ò t= - +m
m mn

m nS p x
e

g p p md
2

, A.12[ ˙ ˜ ( )] ( )

where τ is the evolution parameter, mng is the metric of an AdS space and ẽ is a Lagrange
multiplier. We use that the signature of the metric is - + + , , ,( ) and that the AdS line
element is given by
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where =x x xa
a . To take the Carroll limit we first consider a re-scaling of the variables
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The equations of motion are given by
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Note that although the dynamics of x is trivial, i.e. =x 0a˙ (the particle is not changing its
position), the momentum is changing over τ because ¹p 0a˙ . In the flat limit (the limit when

 ¥R ) the particle is at rest and does not move.
Finally, the mass-shell constraint reads

- =E M
x

R
cosh 0. A.62 2 2 ( )

Appendix B. The super-AC action as a limit of the super-AdS action

In the supersymmetric case, we obtain the action of the free AC superparticle starting from the
massive superparticle moving in an AdS spacetime whose action is given by

ò t f fg l= + - + + +m
m

f mn
m n

f mn
m nS x p P

e
g p p m P g pd

2
, B.12[ ˙ ˙̄ ˜ ( ) ( ¯ ¯ ) ] ( )

where mng is the AdS metric with line element given by equation (A.2). Rescaling the
variables as
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allows us to take the Carroll limit with w  ¥ to obtain
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The primary equations of motion are
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After requiring the stability of all the constraints we obtain the equations of motion (3.12).
Like in the bosonic case we find that the dynamics of x is trivial, =x 0a˙ (the particle is not
changing its position), but that the momentum is changing over τ because ¹p 0a˙ .

Appendix C. The 3D  ¼ 2 AC superparticle

There are two independent versions of the 3D  = 2 AdS algebra, the so-called  = 1, 1( )
and  = 2, 0( ) algebras. Correspondingly, there are two possible  = 2 AC superalgebras
which we consider below.

C.1. The  ¼ ð2; 0Þ AC superalgebra

We will start with the contraction of the 3D  = 2, 0( ) AdS algebra. The basic commutators
are given by = =A i0, 1, 2; 1, 2( )
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Here P M, ,A AB and aQ i are the generators of space–time translations, Lorentz rotations,
SO(2) R-symmetry transformations and supersymmetry transformations, respectively. The
bosonic generators P M,A AB and  are anti-hermitian while de fermionic generators aQ i are
hermitian. The parameter =x R1 2( ), with R being the AdS radius. Note that the generator
of the SO(2) R-symmetry becomes the central element of the Poincaré algebra in the flat
limit x 0.

To take the Carroll contraction we define new supersymmetry charges by

g= a a a
Q Q Q

1

2
C.21

0
2( ) ( )
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and rescale the generators with a parameter ω as follows:
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Taking the limit w  ¥ and dropping the tildes on the Q we get the following 3D
 = 2, 0( ) Carroll superalgebra:
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In components the Maurer–Cartan equation - =L f L Ld 0C C
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B A1

2
reads as follows:
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C.2. Superparticle action

We use the algebra (C.4) to construct the action of the  = 2 Carrollian superparticle. The
coset that we will consider is


=

=
-

G

H D

2, 0 AdS Carroll

SO 1
, C.6

( )
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with the coset element =g g U,0 where = q qa
a

a
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-
+

+g e e e e eHt P x Q Q Zs
0

a
a

is the coset representing
the  = 2, 0( ) Carroll superspace with a central charge extension and =U eK va

a
is a general

Carroll boost that represents the superparticle.
The Maurer–Cartan form associated to the super-Carroll space is given by
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+
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where a a- +E E E E E, , , ,a
Z

0( ) and w w,a ab0( ) are the supervielbein and the spin connection of
the Carroll superspace which are given explicitly by
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We can use the supervielbein to write the Maurer–Cartan form of the  = 2, 0( ) Carroll
superparticle as follows:
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C.3. Global symmetries and kappa symmetry

The action of the Carrollian superparticle is given by the pull-back of all Lʼs that are invariant
under rotations:
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which is invariant under the following bosonic transformation rules for the coordinates with
constant parameters z h,( , l la , ,i i

j
i ) corresponding to time translations, Z transformations,

spatial translations, boosts, rotations, respectively
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The same action is invariant under fermionic transformation rules with constant parameters
 + -,( ) corresponding to the supersymmetry transformations

 

 

 



 



 

 

 

 

d g q g q

g q g q

d

d g q g q

g q

g q g g q

g q

d g q g q

g q g q

dq g

dq g

= -

+ -

=

= - +

-

+ -

-

= +

- -

= +

= +

+ + + -

- - - +

+ + + -

+ -

- - - -

- +

+ + + -

- - - +

+ + -

- - +

⎜ ⎟⎛
⎝

⎞
⎠

t
x

R

x

R x
x

x

R

x

R
x

R

x

R x
x

x

R

x

R
x

v
Rx

x
x

R

x

R

x

R R

x

R

Rx
x x

x

R

x

R

Rx
x

x

R

x

R Rx
x

x

R

Rx
x x

x

R

x

R

s
x

R x
x

x

R
x

R x
x

x

R
x

R x
x

x

R
x

R x
x

x

R

1

4
sech cosh

2

1

4
sech sinh

2
1

4
sech cosh

2

1

4
sech sinh

2
,

0,
1 1

2
tanh cosh

2
2 sinh

2

1
cosh

2
1

2
tanh sinh

2
1

2
tanh cosh

2

1
sinh

2
1

2
tanh sinh

2
,

1

2
cosh

2

1

2
sinh

2
1

2
cosh

2

1

2
sinh

2
,

cosh
2

1
sinh

2
,

cosh
2

1
sinh

2
. C.12

k k

k k

i

i i i

i k k

i b
b

i

i k k

k k

k k

k
k

k
k

0 0

0 0

0 0

2
0

0 0

2
0

0 0

0 0

¯ ¯

¯ ¯

¯ ¯

¯

¯ ¯

¯

¯ ¯

¯ ¯

( )

J. Phys. A: Math. Theor. 49 (2016) 185402 E Bergshoeff et al

26



To derive an action that is invariant under κ-transformations we need to find a fermionic
gauge-transformation that leaves LH and/or LZ invariant. The variation of LH and LZ under
gauge-transformations are given by
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where, for example, dzK
a[ ] is obtained from LH by changing the one-forms td , q+d , q-d with the
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It follows that to obtain a κ-symmetric action we need to take the pull-back of either LH or LZ,
with = b a1

2
. We focus here on the case = -b a1

2
. For this choice the action and κ-

symmetry rules are given by
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where k k t= ( ) is an arbitrary local parameter. Using this we find the following κ-
transformations of the coordinates
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After κ-gauge fixing (setting q =+ 0) the action reads

ò t

q g q q g g q

= - + + -

- - -- - - -

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

S a t
x

R
s

R

x
v x

x

R x
x v x x

R

x

x

R

x
x x

x

R

d cosh
1

2 2
sinh

1

2
1 sinh

1

2

1

4
cosh 1 . C.17

a
a b

b a
a

b a
ab

2

0
2

0

˙ ˙ ˙ ˙

¯ ˙ ˙ ¯ ( )
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C.4. The  ¼ ð1; 1Þ AC superalgebra

We now consider the D3  = 1, 1( ) AdS algebra which is given by
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Here P M,A AB and a
Q are the generators of space–time translations, Lorentz rotations and

supersymmetry transformations, respectively. The bosonic generators PA and MAB are anti-
hermitian while de fermionic generators a

Q are hermitian. Like in the previous case, the
parameter =x R1 2( ) is a contraction parameter.

To make the Carroll contraction we rescale the generators with a parameter ω as follows:
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Taking the limit w  ¥ and dropping the tildes on the Q we get the following 3D
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C.5. Superparticle action

Taking the algebra (C.21) we consider the following coset
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The coset element is =g g U,0 where = q qa
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The Maurer–Cartan form associated to the super-Carroll space is given by
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We can use the supervielbein to write the Maurer–Cartan form of the  = 1, 1( ) Carroll
superparticle as follows:
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C.6. Global symmetries

The action of the Carrollian superparticle is given by the pull-back of all Lʼs that are invariant
under rotations:
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This action is invariant under the following bosonic transformation rules for the coordinates
with constant parameters z( , l la , ,i i

j
i ) corresponding to time translations, spatial translations,

boosts and rotations, respectively
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The same action is invariant inder the following fermionic transformation rules with constant
parameters  + -,( ) corresponding to supersymmetry transformations:
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