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Abstract 

In another paper we proposed a small but powerful grammar for specifying System Sequence Diagrams (SSDs). 

As an exercise, test, and illustration we want to apply it to a non-trivial, representative, extensive, and detailed 

real-life case study. The book Applying UML and Patterns of Larman contains such a case study. In the current 

technical report, we will convert his well-known use case ‘Process Sale’ into an SSD using our grammar. 

 

Introduction 
In [1] we proposed a grammar for describing system sequence diagrams (SSDs). As an exercise we want to convert 

the non-trivial use case ‘Process Sale’ in [2] into an SSD, including the extensions mentioned there. Throughout 

[2], Larman uses his NextGen Point-of-Sale system (POS) as an illustrative case study. In particular, he treats 

‘Process Sale’ as a running example of a use case (UC). It is a very elaborated, representative real-life example. 

Although Larman treats this UC in depth, he only gives an SSD for the so called Main Success Scenario of the 

UC. We will now explain how to convert that UC into an SSD along the lines presented in [1]. The appendix 

contains the finally resulting SSD. 

 

1. Main Success Scenario 
We start with Larman’s Main Success Scenario (MSS) of the UC, together with its corresponding SSD: 

 

: Cashier :System

Simple cash-only Process Sale scenario:

1. Customer arrives at a POS checkout 

with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and 

presents item description, price, and 

running total. 

Cashier repeats steps 3-4 until indicates 

done.

5. System presents total with taxes 

calculated.

6. Cashier tells Customer the total, and 

asks for payment.

7. Customer pays and System handles 

payment.

...

enterItem(itemID, quantity)

endSale

makePayment(amount)

description, total

total with taxes

change due, receipt

makeNewSale

[ more items ]loop

Process Sale Scenario

 
Figure 1: A use case and its corresponding SSD, taken from Section 10.5 of [2] 

 

A few small remarks about the example itself:  

• Input steps in the SSD (so steps of the form: Cashier ⟶ System) should indicate what the system has to do 

(e.g., ‘makeNewSale’). Therefore, the name ‘makePayment’ in Figure 1 is misleading; it could better be 

something like ‘handlePayment’, for instance. 

• Step 7 of the use case says: ‘Customer pays and System handles payment’. We read this as ‘Customer pays 

to the cashier, cashier requests the system to handle a cash payment, and System handles payment’. The first 

sub-step is not relevant for the SSD because there is no interaction with the system. 

• In the last SSD-step, ‘change due’ shall be ‘amount’ – ‘total’ (from the previous SSD-steps).  

mailto:E.O.de.Brock@rug.nl


2 

 

• Note that the UC and SSD are not completely in line with each other (e.g., there is no ‘quantity’ in the UC 

and no ‘price’ in the SSD). When writing down the SSD along our lines, we will not follow the SSD of 

Larman, but his UC (as well as the step-numbering of his UC). 

 

Some of his seven steps (viz. 4 and 7) actually consist of several steps and there is also an unnumbered step, just 

before Step 5. The order of steps 4.1 and 4.2 below is irrelevant. Some other steps (viz. 1 and 6) are not relevant 

for the SSD, because there is no interaction with the system. These steps are left out. When we apply our grammar 

for SSDs presented in [1], it results in the following SSD of the MSS: 

 
 

2 
 
3 
4.1 
4.2 
 
– 
5 
7.1 
7.2 

 

 

Cashier ⟶  System : makeNewSale; 

for each item i of Customer 

do Cashier ⟶  System : enterItem(itemID of i);  

 System ⟶  System : recordSaleLine(i),  /* The comma indicates that the  

 System ⟶  Cashier : description of i, price of i, running total /* order of 4.1 and 4.2 is irrelevant 

end; 

Cashier ⟶  System : endSale; 

System ⟶  Cashier : total with taxes; 

Cashier ⟶  System : handleCashPayment(amount); 

System ⟶  Cashier : change due, receipt 

 

 

If we would like to simulate the ‘life line’ idea underlying the diagrams of UML (User always left, below each 

other; System always right, also below each other) then we could turn ‘System ⟶ Cashier: …’  into  ‘Cashier ⟵ 

System : …’ and ‘System ⟶ System : …’  into  ‘   System⥻ : …’ (i.e., with ‘System⥻’ on the right-hand side). 

This would result in: 

 
 

2 
 
3 
4.1 
4.2 
 
– 
5 
7.1 
7.2 

 

 

 Cashier ⟶   System : makeNewSale; 

for each item i of Customer 

do Cashier ⟶   System : enterItem(itemID of i);  

      System⥻ : recordSaleLine(i);  /* The steps in a UML sequence  

 Cashier ⟵   System : description of i, price of i, running total  /* diagram should be ordered 

end; 

 Cashier ⟶   System : endSale; 

 Cashier ⟵   System : total with taxes; 

 Cashier ⟶   System : handleCashPayment(amount); 

 Cashier ⟵   System : change due, receipt 

 

 

Somewhere else in [2] (in Section 6.8), the example also has steps 8, 9, and 10. In Step 10 there is no interaction 

with the system, so we ignore that step (just as steps 1 and 6). Step 9 is a separate step for presenting the receipt 

(so not as part of Step 7). Step 8 says: System logs completed sale and sends sale and payment information to the 

external Accounting system (for accounting and commissions) and Inventory system (to update inventory). We 

note that the order of these three steps is irrelevant, i.e., they can be applied in any order. We denote this ‘freedom’ 

as ‘W1, W2, W3’ meaning: ‘W1, W2, and W3, in arbitrary order’. Hence, ‘;’ is used when the order is relevant 

and ‘,’ can be used to indicate that the order is irrelevant. When we name the external Accounting system AccSys 

and the external Inventory system InvSys, Step 8 consists of the following steps (in our notation): 
 

8.1 System  ⟶  System : log completed sale, 

8.2 System  ⟶  AccSys : sale and payment information, 

8.3 System  ⟶  InvSys : sale and payment information 
 

An important difference between our SSDs and the classical UML-diagrams – such as the right side in Figure 1 – 

is (the scalability of) the layout, especially in the case of nested constructs. We can simply indicate the irrelevance 

of a certain order of steps (like between 8.1, 8.2, and 8.3). We introduce variables where relevant, e.g., a variable 

i in the loop above, so that we can clearly refer to it, e.g., indicate what is a property of i (e.g., description and 

price) and what isn’t (e.g., running total). 

 

2. Extensions 
Besides the Main Success Scenario of the UC ‘Process Sale’, Larman also mentions various kinds of extensions 

of the UC. We will now work out almost all his extensions, towards SSD fragments. In the Appendix we present 

the finally resulting SSD. We will follow the order and numbering used by Larman ([2], Section 6.8). 
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*a) An important kind of extension is an interrupt (‘Manager requests an override operation’ in this case). An 

interrupt can occur at any moment, so anywhere in the UC/SSD. It can occur 0, 1, or more times. We have to 

specify each interrupt and how has to be handled. As described in [2], this example goes roughly as follows: 
 

Manager ⟶  System: enterManagerMode; 

System ⟶  System: change to Manager mode; 

Manager ⟶  System: <some ManagerMode operation>; 

System ⟶  System: change to Cashier mode 
 

When we look back at this example, we might generalize it to a parameterized input changeModeTo(<role>). 

Also, it makes more sense that the manager him/herself indicates to go back to Cashier mode. This results in: 
 

Manager ⟶  System: changeModeTo(‘Manager’); 

System ⟶  System: change to mode ‘Manager’; 

Manager ⟶  System: <some ManagerMode operation>; 

Manager ⟶  System: changeModeTo(‘Cashier’); 

System ⟶  System: change to mode ‘Cashier’ 

 

1a) Instead of starting a new sale (Step 2 in the UC, but actually the first step in the SSD), a suspended sale might 

be resumed. This starts as follows: 
 

Cashier ⟶ System : resumeSuspendedSale(SaleID); 

System ⟶ Cashier : state of sale to be resumed; 
 

after which the suspended sale can be continued. A scenario that Larman mentions is that the suspended sale 

might not be found by the system. So, those first steps should be: 
 

Cashier ⟶ System : resumeSuspendedSale(SaleID); 

System ⟶ System : find sale with SaleID; 

if sale is found 

then System ⟶ Cashier: state of sale to be resumed /* The suspended sale can be continued 

else System ⟶ Cashier: “Sale not found”  /* The sale has to be re-entered as a new sale 

end; 
 

Our informal remarks (after ‘/*’) could also be incorporated in the response of the system to the cashier. 

In our opinion, (1a) is not an extension of the use case Process Sale but another use case (‘Resume Sale’). 

 

2-4a) Another important kind of extension is the idea of an option: Once it can occur but it doesn’t need to occur. 

In Larman’s example, the customer might tell the cashier that (s)he has a tax-exempt status (e.g., being a 

senior). Similar to Extension *a, this is also an example of a ‘free floating’ extension: It can occur at any 

moment (until Step 5). The cashier verifies the status (a step outside the system), enters it, and the system 

records it. During the UC, this needs to be done at most once. It then leads to the following system interactions:  
 

Cashier ⟶ System: enterStatusCode(‘tax-exempt’); 

System ⟶ System: record Status Code ‘tax-exempt’ 

 

3a) In Step 3, the entered item ID might be invalid, but if there is a human-readable item ID (e.g., a numeric UPC) 

then that item ID might be entered manually. Otherwise, if there is a price on the tag then that price might be 

entered manually. (As Larman describes, this should be done via an override by the manager, but for simplicity 

we neglect that.) Finally, the cashier can use the Help- or SearchItem-function or ask another cashier or the 

manager to find the correct item ID or price, and enter it. This is a subtly nested if-then-else construction: 
 

 Cashier ⟶  System: enterItem(itemID of i); /* First try this  (A) 

 System ⟶  System: check itemID of i; 

 if itemID of i is invalid  

 then System ⟶ Cashier: “Invalid item ID”; 

  if there is a human-readable item ID /* check by Cashier 

  then Cashier ⟶ System: enterManually(itemID of i) /* else try this  (B) 

  else if there is a price on the tag /* check by Cashier 

   then Cashier ⟶ System: enterPrice(price of i);  /* else try this  (C) 

    Cashier ⟶ System: applyStandardTaxation 

   else /* after finding the correct item ID or price /* else try either (B) or (C) 
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    either Cashier ⟶ System: enterManually(itemID of i) 

    or Cashier ⟶ System: enterPrice(price of i);  

     Cashier ⟶ System: applyStandardTaxation 

    end 

   end 

  end 

 end 
  

 With this construction, we force the intended order of preference: first try enterItem, else try enterManually, 

else try enterPrice, and then (after consultation) try either enterManually or enterPrice. 

 We recall an important difference between our SSDs and the classical UML-diagrams (as in the right-

side of Figure 1): the scalability of the layout, especially in the case of such nested constructs. 

 

3b) Sometimes a customer has multiple items of the same category (e.g., 5 bottles of the same wine). The cashier 

should then also be able to mention that quantity (instead of entering the item multiple times). We could change 

the original Step 3 into:  
 

Cashier ⟶ System :  enterItem(itemID of i [; q ]) 
 

indicating that the parameter q (for quantity) is optional. Larman does not mention quantity in his UC but does 

mention it in his SSD; however, not as an option but as an obligation.  

The default value of the parameter q should be 1. We could indicate that in the original Step 3 as: 
 

Cashier ⟶ System:  enterItem(itemID of i [; q (default is 1) ]) 
 

This language construction is not in [1]. Extension 3b also influences Extension 3a. 

 

3c) Some items require manual category and price entry (e.g., flowers). In that case, the step is something like: 
 

Cashier ⟶ System : enterPricedItem(category code of i; price of i) 
 

When we combine this with Extension 3b (multiple items of the same category), Step 3 could become: 
 

if  i is a special item /* check by Cashier 

then Cashier ⟶ System : enterPricedItem(category code of i; price of i [; q (default is 1) ]) 

else Cashier ⟶ System : enterItem(itemID of i [; q (default is 1) ]) 

end 
 

We now add our own extension: For some item types we must enter the weight (e.g., for fruit and vegetables). 

So, then we must distinguish three cases (and of course in time this could become more). Instead of a nested 

if-then-else we can use a kind of case-construction (similar to those in programming languages), as a general-

ization of the if-then-else. Our case-construction has the following general form: 
 

case <expression> is <value> then <SSD>, <value> then <SSD>, … <value> then <SSD> [else <SSD>] end 
 

Explanation: Depending on the value of the expression, a specific SSD will apply. There should be no duplicate 

values. If no value applies, the else-part applies, provided it is there (because the else-part is optional).  

In the case of our extended example, the original Step 3 could now become as follows (with the (simple) 

text of the original Step 3 underlined): 
 

case item type of i is 

‘priced’ then Cashier ⟶ System : enterPricedItem(category code of i; price of i [; q (default is 1) ]), 

‘weight’ then Cashier ⟶ System : enterWeightItem(category code of i; weight of i [; q (default is 1) ]) 

 else  Cashier ⟶ System : enterItem(itemID of i [; q (default is 1) ]) 

end 
 

By now, the advantages of starting with the (relatively simple) Main Success Scenario only, later followed by 

the stepwise (incremental or agile) development of a ‘full’ UC/SSD, might already become clear. 

 

3-6a) The customer might ask the cashier to remove a certain item (in a certain quantity) from the purchase. This 

is another example of a ‘free floating’ extension. Moreover, the quantity parameter is optional, with default 

value 1. So, we could therefore define handleItemRemoval(i [; q (default is 1) ]) as consisting of the steps 
 

if quantity parameter is not given /* check by System 

then System ⟶ System: let q be 1 end;     /* First settle the optional parameter 

Cashier ⟶  System: removeItem(itemID of i; q); 
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System ⟶  System: remove item i in quantity q; 

System ⟶  Cashier: new (running) total 
 

But there is a complication: This can only be done by the cashier if the item value is less than the limit for 

cashiers to do it; otherwise, (the cashier knows that) the manager must do it. So, the second step might become: 
 

if value of i ≤ cashier-limit /* check by Cashier (or System) 

 then Cashier ⟶  System : removeItem(itemID of i; q) 

 else Manager ⟶  System : removeItem(itemID of i; q) 

end 

  

3-6b) At any moment after Step 2 and before Step 7, the cashier might cancel the sale (e.g., on request of the 

customer). This can be done at most once during the use case. This interrupt has the following form: 
  

 Cashier ⟶ System: cancelSale;  

 System ⟶ System: delete sale;  

 System ⟶ Cashier: “Done”  

 

3-6c) At any moment after Step 2 and before Step 7, the cashier might suspend the sale (e.g., on customer’s 

request). During the use case this can be done at most once. This interrupt  has the following form: 
  

 Cashier ⟶ System: suspendSale;  

 System ⟶ System: record suspended sale;  

 System ⟶ Cashier: suspend receipt (with sale ID and all the line items so far) 

 

5b) A customer might say to be eligible for a discount (e.g., an employee or a preferred customer), in which case 

the cashier enters the customer identification and then the system presents the discount total. If this happens, 

it should happen just after Step 5. This option has the following form: 
  

 maybe begin Cashier ⟶ System: applyDiscount(Customer ID);  

    System ⟶ System: apply discount to sale;  

    System ⟶ Cashier: new total with taxes  

    end 

 

5c) A customer might have a credit on his/her account and might want to use it. In that case, the cashier enters the 

customer identification and then the system applies the credit (up to price = 0) and reduces the remaining 

credit. If this happens, it should happen just after Step 5 (and 5b). This option has the following form: 
  

 maybe begin Cashier ⟶ System: applyCredit(Customer ID);  

 System ⟶ System: apply credit to sale; 

 System ⟶ System: reduce remaining credit; 

 System ⟶ Cashier: new total with taxes 

 end 

 

7a-d) When the customer is about to pay (Step 7), there are several possibilities to pay: by cash, by credit, by 

check, by debit. Each of these possibilities require different steps. This typically asks for a case-construction. 

Larman works the cash and credit possibilities out in detail. The result is something like:  
 

case payment method is 

 cash then begin  

 Cashier ⟶ System: makeCashPay(amount);  

 System ⟶ Cashier: change due;  

 System ⟶ System: release cash drawer; 

 Cashier ⟶ System: ClosePayment; 

 System ⟶ System: record payment  

 end, 

 credit then begin  

 Customer ⟶ System: makeCreditPay(credit card; pin code); 

 System ⟶ Cashier: payment info (for verification);  

 Cashier ⟶ System: confirm; 

 System ⟶ AutSys: paymentApproval?; /* Request to Payment Authorisation system 

  : 
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  : 

 end, 

 check then …, 

 debit then … 

end 
 

When we completely work out this instruction, it becomes large and hardly surveyable. Therefore, we would 

like to ‘name’ the instruction sequences after each then, for instance as follows: 
 

define handleCashPayment as 

begin 

 Cashier ⟶ System: makeCashPay(amount);  

 System ⟶ Cashier: change due;  

 System ⟶ System: release cash drawer; 

 Cashier ⟶ System: ClosePayment; 

 System ⟶ System: record payment  

end 
 

We could do something similar for the other cases (credit, check, etc.), e.g.:  
 

define handleCreditPayment as 

begin 

 Customer ⟶ System: makeCreditPay(credit card; pin code); 

 System ⟶ Cashier: payment info (for verification);  

 Cashier ⟶ System: confirm; 

 System ⟶ AutSys: paymentApproval?; /* Request to Payment Authorisation system 

 : 

 : 

end 
 

Now we can rewrite the case-construction and introduce a general handlePayment as follows: 
 

define handlePayment as 

begin case payment method is 

  cash then handleCashPayment,  

  credit then handleCreditPayment,  

  check then handleCheckPayment, 

  debit then handleDebitPayment 

  end 

end 
 

In the future there might come more payment possibilities, and also some payment possibilities might disap-

pear. This can all be managed here, in the case-construction within handlePayment, so at one spot. 

 

7e) During the payment step, the cashier might cancel that step. The system then reverts to ‘item entry’ mode. 

Hence, the steps are: 
 

Customer ⟶ System: cancelPayment; 

System ⟶ System: revert to ‘item entry’ mode 
 

We can consider this as an option within handlePayment. 

 

7f) The customer can (but doesn’t need to) present one or more coupons. So, this is another example of an option.  

It might go roughly as follows: 
 

for each coupon c of the customer 

do Cashier ⟶ System : recordCoupon(c); 

 System ⟶ System : reduce price with value of c; 

 System ⟶ System : record usage of c; 

 System ⟶ Cashier : new total with taxes 

end 
 



7 

 

If it happens, it should happen before handling the payment, so before Step 7. It might even happen before 

Extension 5c (using a credit). But it should take place after Extension 5b (applying a discount). The considered 

fragment of the SSD then becomes: 
 

System ⟶ Cashier: total with taxes;  /*  Step 5 

maybe handleDiscount; /*  Extension 5b 

maybe handleCredit,  /*  Extension 5c 

maybe for each coupon c of the customer do … end;  /*  Extension 7f 

handlePayment;  /*  Extensions 7a-d 

 

9b) A customer might ask for a gift receipt, in which case the cashier asks the system for it and the system presents 

it. If this happens, it should happen at the end. This option has the following form: 
  

 maybe begin Cashier ⟶ System: giveGiftReceipt; System ⟶ Cashier: gift receipt end 

 

9c) When the system wants to print a receipt (Step 9), it might detect that the printer ran out of paper. The system 

informs the cashier about it, the cashier replaces the paper (which is not an interaction with the system), and 

then the cashier requests the receipt. This option has the following form: 
  

if printer is out of paper then  /* check by System 

 System ⟶ Cashier: “Out of paper”; /* Then the cashier must replace the paper 

 Cashier ⟶ System: printReceipt  

end 

 

As we saw under extensions 3b, 3c, and 7f, for instance, extensions can influence each other. So, now and then 

we have to take other extensions into account as well. The finally resulting SSD for the ‘fully dressed’ version of 

Process Sale, including those influences, will be presented in the Appendix. We captured Process Sale in the form 

of a definition and named it processSale (so that it can easily be called upon). 

 

References 
[1] E.O. de Brock: Designing instruction languages, 2018, under review 

[2] C. Larman: Applying UML and patterns, 3th edition, Addison Wesley Professional, 2005 
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file:///C:/Users/Bert/Documents/Appendix.docx%23handlePayment
https://aanimesh.files.wordpress.com/2013/09/applying-uml-and-patterns-3rd.pdf


8 

 

Appendix: An SSD for the fully dressed use case Process Sale of Larman 

 

We present an SSD that contains a representative subset of the extensions of the Process Sale example in Larman’s 

Applying UML and patterns (see Section 6.8 of [2]). This SSD is the result of the discussion in our paper.  But we 

start with our SSD for his Main Success Scenario of Process Sale, taking over the step numbers from that section: 

   
 

Step 2 
 
Step 3 
Step 4.1 
Step 4.2 
 
– 
Step 5 
Step 7 
Step 8.1 
Step 8.2 
Step 8.3 
Step 9 

 

 

Cashier ⟶  System : makeNewSale; 

for each item i of Customer 

do Cashier ⟶  System : enterItem(itemID of i);  

 System ⟶  System : recordSaleLine(i),  

 System ⟶  Cashier : description of i, price of i, running total /* price follows from price rules 

end; 

Cashier ⟶  System : endSale; 

System ⟶  Cashier : total with taxes; 

Cashier ⟶  System : handlePayment(amount);  /* cash payment only 

System ⟶  System : log completed sale, 

System ⟶  AccSys : sale and payment information, /* external Accounting System 

System ⟶  InvSys : sale and payment information;  /* external Inventory System 

System ⟶  Cashier : receipt 

 

 

We capture our SSD for (a representative part of) Larman’s ‘fully dressed’ version of Process Sale in the form of 

a definition, see below. We take over the step numbering and extension numbering used in [2], Section 6.8. Ap-

plying our grammar rules for SSDs as specified in [1], the Main Scenario (i.e., including the alternative flows) 

looks as follows: 

 

DEFINE processSale AS  

BEGIN 

Cashier ⟶ System: makeNewSale; /*  Step 2 

for each item i of Customer /* 

do handleItem(i [; q (default is 1) ]);  /*  Extensions 3b and 3c 

 System ⟶ System : recordSaleLine(i),  /*  Step 4.1 

 System ⟶ Cashier : description of i, price of i, and running total /*  Step 4.2 

end;  /* 

Cashier ⟶ System: endSale;  /*  – 

System ⟶ Cashier: total with taxes;  /*  Step 5 

maybe handleDiscount; /*  Extension 5b 

maybe handleCredit,  /*  Extension 5c 

maybe handleCoupons;  /*  Extension 7f 

handlePayment;  /*  Extensions 7a-d 

System ⟶  System : log completed sale, /*  Step 8.1 

System ⟶  AccSys : sale and payment information, /*  Step 8.2 

System ⟶  InvSys : sale and payment information; /*  Step 8.3 

if printer is out of paper then handlePaperShortage end; /*  Extension 9c 

System ⟶  Cashier : receipt;  /*  Step 9 

maybe handleGiftReceipt; /*  Extension 9b 

 

extra: 

handleManagerOverride,  /*  Extension *a 

handleTaxExempt at most once, /*  Extension 2-4a 

handleItemRemoval(i [; q (default is 1) ]), /*  Extension 3-6a 

handleSaleCancellation at most once, /*  Extension 3-6b 

handleSaleSuspension at most once /*  Extension 3-6c 

end 

 

/* The Main Scenario refers to many definitions (‘shorthands’), to be specified in a with-construction: 
 

  

https://aanimesh.files.wordpress.com/2013/09/applying-uml-and-patterns-3rd.pdf
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With 
 

define handleItem(i [; q (default is 1) ]) as /* Extension 3b 

begin if second parameter is not given then System ⟶ System: let q be 1 end; /* check by System 

 case item type of i is 

 ‘priced’ then Cashier ⟶ System : enterPricedItem(category code of i; price of i; q),  /*  Extension 3c+ 

 ‘weight’ then Cashier ⟶ System : enterWeightItem(category code of i; weight of i; q)  /*  own extension 

 else  handleNormalItem(i; q) 

 end 

end; 
 

define handleNormalItem(i; q) as 

begin Cashier ⟶ System: enterItem(itemID of i; q); /*  First try this   (A) 

 System ⟶ System: check itemID of i; 

 if itemID of i is invalid  /*  Extension 3a 

 then System ⟶ Cashier: “Invalid item ID”; 

  if there is a human-readable item ID /*  check by Cashier 

  then Cashier ⟶ System: enterManually(itemID of i; q) /*  else try this   (B) 

  else if there is a price on the tag /*  check by Cashier 

   then Cashier ⟶ System: enterPrice(price of i; q); /*  else try this   (C) 

    Cashier ⟶ System: applyStandardTaxation 

   else /* after finding the correct item ID or price /*  else try either (B) or (C) 

    either Cashier ⟶ System: enterManually(itemID of i; q)  

    or Cashier ⟶ System: enterPrice(price of i; q); 

     Cashier ⟶ System: applyStandardTaxation 

    end 

   end 

  end 

 end 

end; 
 

define handleDiscount as /*  Extension 5b 

begin Cashier ⟶ System: applyDiscount(Customer ID);  

 System ⟶ System: apply discount to sale; 

 System ⟶ Cashier: new total with taxes  

end; 
 

define handleCredit as /*  Extension 5c 

begin Cashier ⟶ System: applyCredit(Customer ID);  

 System ⟶ System: apply credit to sale; 

 System ⟶ System: reduce remaining credit; 

 System ⟶ Cashier: new total with taxes 

end; 
 

define handleCoupons as /*  Extension 7f 

begin for each coupon c of the customer 

do Cashier ⟶  System: recordCoupon(c); 

 System ⟶  System: reduce price with value of c; 

 System ⟶  System: record usage of c; 

 System ⟶  Cashier: new total with taxes 

end 

end; 
 

define handlePayment as 

begin  case payment method is 

cash then handleCashPayment, /*  Extension 7a 

credit then handleCreditPayment, /*  Extension 7b 

check then handleCheckPayment, /*  Extension 7c 

debit then handleDebitPayment /*  Extension 7d 

end; 

extra: handlePaymentCancellation end /*  Extension 7e 

end; 
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define handleCashPayment as /*  Extension 7a 

begin Cashier ⟶ System: makeCashPay(amount);  

 System ⟶ Cashier: change due;  

 System ⟶ System: release cash drawer; 

 Cashier ⟶ System: ClosePayment; 

 System ⟶ System: record payment  

end; 
 

define handleCreditPayment as /*  Extension 7b 

begin Customer ⟶ System: makeCreditPay(credit card; pin code); 

 System ⟶ Cashier: payment info (for verification);  

 Cashier ⟶ System: confirm; 

 System ⟶ AutSys: paymentApproval?; /* Request to the Payment Authorisation system 

 : 

 : 

end; 
 

define handleCheckPayment as /*  Extension 7c 

begin : 

 : 

 : 

end; 
 

define handleDebitPayment as /*  Extension 7d 

begin : 

 : 

 : 

end; 
 

define handlePaymentCancellation as /*  Extension 7e 

begin Customer ⟶ System: cancelPayment; 

 System ⟶ System: revert to ‘item entry’ mode 

end; 
 

define handlePaperShortage as /*  Extension 9c 

begin System ⟶ Cashier: “Out of paper”; /*  Then the cashier must replace the paper 

  Cashier ⟶ System: printReceipt  

end; 
 

define handleGiftReceipt as /*  Extension 9b 

begin Cashier ⟶ System: giveGiftReceipt;  

 System ⟶ Cashier: gift receipt  

end; 
 

define handleManagerOverride as /*  Extension *a 

begin Manager ⟶  System: changeModeTo(‘Manager’); 

System ⟶  System: change to mode ‘Manager’; 

Manager ⟶  System: <some ManagerMode operation>; 

Manager ⟶  System: changeModeTo(‘Cashier’); 

System ⟶  System: change to mode ‘Cashier’ 

end; 
 

define handleTaxExempt as /*  Extension 2-4a 

begin Cashier ⟶  System: enterStatusCode(‘tax-exempt’); 

System ⟶  System: record Status Code ‘tax-exempt’ 

end; 
 

define handleItemRemoval(i [; q (default is 1) ]) as /*  Extension 3-6a 

begin if second parameter is not given 

 then System ⟶ System: let q be 1 end; 

 if value of i ≤ cashier-limit 

 then Cashier ⟶ System: removeItem(itemID of i; q) 

 else Manager ⟶ System: removeItem(itemID of i; q) 
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end; 

System ⟶  System: remove item i in quantity q; 

System ⟶  Cashier: new (running) total 

end; 
 

define handleSaleCancellation as /*  Extension 3-6b 

begin Cashier ⟶ System: cancelSale;  

 System ⟶ System: delete sale;  

 System ⟶ Cashier: “Done”  

end; 
 

define handleSaleSuspension as /*  Extension 3-6c 

begin Cashier ⟶ System: suspendSale;  

 System ⟶ System: record suspended sale;  

 System ⟶ Cashier: suspend receipt (with sale ID and all the line items so far) 

end 
 

End 
 

END 
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