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Abstract

Conjoint analysis is one of the most popular methods to measure preferences of
individuals or groups. It determines, for instance, the degree how much con-
sumers like or value specific products, which then leads to a purchase decision. In
particular, the method discovers the utilities that (product) attributes add to the
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overall utility of a product (or stimuli). Conjoint analysis has emerged from the
traditional rating- or ranking-based method in marketing to a general experimen-
tal method to study individual’s discrete choice behavior with the choice-based
conjoint variant. It is therefore not limited to classical applications in marketing,
such as new product development, pricing, branding, or market simulations, but
can be applied to study research questions from related disciplines, for instance,
how marketing managers choose their ad campaign, how managers select inter-
nationalization options, why consumers engage in or react to social media, etc.
This chapter describes comprehensively the “state-of-the-art” of conjoint analysis
and choice-based conjoint experiments and related estimation procedures.

Keywords

Preference measurement · Choice experiments · Conjoint analysis · Conjoint
measurement · Tradeoff analysis · Choice-based conjoint · Adaptive conjoint ·
Utility function · New product development · Revealed preference · Incentive-
aligned mechanisms · Willingness-to-pay · Market simulation

Introduction

Assume that an electronics company wants to enter the market for ebook readers.
The company has already developed a working prototype with the basic function-
ality. However, consumers did not yet consider buying this specific product
according to a survey, but continue to buy a (more expensive) competitor’s product
instead. The manufacturer therefore would like to know which attributes of an ebook
reader are valued by consumers and which specific attributes they need to improve.
Given limited budgets, they can only modify their product in one or two attributes,
depending on the manufacturing costs, so that they need to reveal which attributes
are most important. Moreover, they would like to know how price-sensitive con-
sumers are and how much they are willing to spend for an ebook reader. Finally, they
also need an estimate of the achievable market share to reach the final decision if
they should market their product or not.

These questions and related ones can be addressed with preference measurement.
The aim of preference measurement is to discover the degree how much consumers
like or value (i.e., derive a utility from) specific products, which then leads to a
purchase decision. Conjoint analysis, as one of the most popular methods within
preference measurement, assumes that products are attribute bundles. Accordingly,
an ebook reader is considered as a bundle of screen technology, screen size, screen
resolution, storage size, brand name, price, etc. The method tries to discover the
utilities that each attribute (and attribute level, respectively) adds to the overall
utility of the product by systematically varying specific levels of the attribute. It is
a decompositional method, meaning that it elicits consumers’ overall utilities for
experimentally varied product concepts and then decomposes the overall utility
into the attributes’ utilities (so-called “partworth utilities” or just “partworths”)
via statistical procedures. In line with this description, the American Marketing
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Association (2015) defines conjoint analysis as a “statistical technique in which
respondents’ utilities or valuations of attributes are inferred from the preferences
they express for various combinations of these attributes.”

As a result, conjoint analysis provides researchers with a utility function that
translates the specific attribute levels of a product into consumers’ preferences. This
utility function serves multiple purposes; it can explain consumers’ actual purchase
decisions and predict their choices given changes to the product configuration, i.e.,
modification of attributes. In this regard, it is the basis for a multitude of relevant
marketing applications, for example:

– New product development and innovation, e.g., which product concept
will be preferred by consumers? (e.g., Page and Rosenbaum 1992; Urban and
Hauser 1993)

– Pricing, e.g., how much are consumers willing to pay and how much are
improvements in products attributes allowed to cost? (e.g., Miller et al. 2011)

– Branding, e.g., how much value can be attributed to the brand of a product? (e.g.,
Sattler 2005)

– Market segmentation, e.g., are there different market segments that differ in terms
of certain preferred product attributes? (e.g., Teichert 2001b)

– Market scenarios, e.g., what is the effect of a new product entry on the market
shares of the incumbents? (e.g., Burmester et al. 2016)

Conjoint analysis is not limited to applications in marketing, but can be generally
applied when individuals need to make a decision regarding multiattributive objects.
It is also a popular method in other areas, such as transportation (e.g., Hensher 1994),
litigation (e.g., Eggers et al. 2016), agriculture (e.g., Lusk and Schroeder 2004), or
health economics (e.g., De Bekker-Grob et al. 2012). Due to its broad area of
applications, conjoint analysis has advanced to a widely respected method since its
introduction into marketing in the 1970s. Overviews of its popularity can be found in
Green and Srinivasan (1978, 1990) as well as in empirical studies conducted, for
example, by Wittink et al. (1994), Voeth (1999), Sattler (2006), and Orme (2016).

Conjoint methods differ in terms of how the overall utilities are elicited. Tradi-
tional approaches use ratings of single product concepts (rating-based conjoint),
ratings of pairs of products, or rankings of a selection of products (ranking-based
conjoint). Currently, the most popular conjoint approach with over 80% of applica-
tions (Orme 2016) is based on choices among several product concepts, i.e., choice-
based conjoint (CBC; also termed discrete choice experiments; Haaijer and Wedel
2003; Louviere and Woodworth 1983). Using choices as the dependent variable has
become popular because they mimic consumers’ behavior when they are making
purchase decisions.

Continuing the example case mentioned above, assume that the manufacturer of
the ebook reader is currently producing a black ebook reader with a 6-in. E Ink
display and 4 GB storage. They are exploring different options to improve their
product, e.g., identified via qualitative research or pretests: (1) increasing the storage
from 4 GB to 8 GB, (2) increasing the screen size from 6 to 7 in., or (3) changing the
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case color from black to white. Accordingly, there are (2^3) eight different options
they could potentially offer, resulting from the different combination of attribute
levels (Table 1).

Although one could assume that more storage is better so that 8 GB models are
preferred to 4 GB models, this is not necessarily true for screen size since consumers
might either value a small (and less bulky) product or a larger (and more readable)
screen. There is also no a priori preference order for color. Hence, it is not known
beforehand which option would be the most preferred one. Moreover, it might not be
profitable to offer an 8 GBmodel if the increase in preference, and therefore demand,
is only marginal and does not justify the additional manufacturing costs. Thus,
conjoint analysis is a suitable method to solve this decision problem.

Traditional conjoint analysis (e.g., rating-based conjoint) would present each of
the products in Table 1 to a consumer in a survey and ask for his/her preference, e.g.,
on a rating scale from 0 (“not at all preferred”) to 10 (“very much preferred”). The
partworth utilities for the attribute levels can then be derived by using the ratings as a
dependent variable in a regression model in which the attribute levels serve as
independent variables (e.g., as dummy variables). Although ratings can be consid-
ered an acceptable manifestation of preferences, they do not mimic consumers
behavior in the marketplace. Moreover, it is often questionable how the ratings
can be translated into actual choices (Teichert 2001a).

These issues are among the reasons why CBC approaches have become popular.
They offer respondents a selection of product alternatives in a choice set (also called
“choice task”) and ask for their most preferred option (Fig. 1). This procedure is
repeated across multiple sequential choice sets, each presenting alternatives that are
systematically varied by an experimental design. The decisions within a choice set
often require a trade-off between attributes. For example, if a consumer prefers larger
screens (as in option 1 in Fig. 1) and more storage (as in option 2), she/he needs to
determine how important each of these attributes really is in order to reach a decision
between option 1 and option 2, while also considering color. These decisions
increase the realism of the tasks as trade-off decisions are very often required in
the marketplace, e.g., when a higher quality is offered for a higher price. Another
element that increases the realism of CBC is that it is possible to include a so-called
no-choice option (also termed “none option” or “outside good”), which can be

Table 1 List of potential ebook readers (2^3 design)

Concept Storage (GB) Screen size (in.) Color

1 4 6 Black

2 4 7 Black

3 4 6 White

4 4 7 White

5 8 6 Black

6 8 7 Black

7 8 6 White

8 8 7 White
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chosen if none of the alternatives are acceptable. In this example, the no-choice
option could also be termed, e.g., “With these options I would keep reading books on
paper,” so that a threshold can be identified which indicates the utility that is needed
to make consumers switch from traditional books to an ebook reader.

The higher degree of realism of CBC experiments leads to the expectation that
CBC exhibits a higher validity compared to traditional, metric conjoint analysis.
However, not all studies find significantly better results for CBC compared to
traditional conjoint analysis, although the direction of the effects is as expected
(Chakraborty et al. 2002; Elrod et al. 1992; Moore 2004; Moore et al. 1998; Vriens et
al. 1998). A disadvantage of CBC experiments is that choices among alternatives are
nominal and generate less information than, e.g., rating each alternative separately.
Therefore, CBC requires collecting a multitude of sequential choice sets, which
might invoke respondent fatigue and could serve as an explanation for those findings
in which CBC is not predicting significantly better than rating or ranking-based
conjoint.

The traditional conjoint approaches (e.g., rating and ranking-based conjoint) and
CBC can be classified as static because they do not adapt to the responses that the
consumer has given in the survey. To make the information collection more efficient,
adaptive procedures dynamically adjust to the preferences of the respondents. They
are typically based on a hybrid approach that combines a decompositional and a
compositional method. Compositional approaches (e.g., the self explicated method)
ask respondents directly about their preference for attribute levels and the relative
importance of the attributes, e.g., via rating scales (Srinivasan and Park 1997). This
input can then be used as a first estimate of the consumer’s preferences in order to
show product concepts in the conjoint procedure that are meaningful to the individ-
ual respondent or that generate most information about the respondent’s preferences.
The rating-based Adaptive Conjoint Analysis (ACA, Johnson 1987) and Adaptive
CBC (ACBC, Sawtooth 2014) follow this idea. Other adaptive approaches from the
machine learning literature dynamically anticipate each respondent’s utility based on
previous answers, i.e., either ratings (Toubia et al. 2003) or choices (Toubia et al.
2004, 2007). Hybrid individualized two-level CBC (HIT-CBC, Eggers and Sattler
2009) uses a compositional approach in order to ask for the best and worst levels for

Which of these ebook readers do you prefer?

Storage:

Screen size:

Color:

Option 1 Option 2 Option 3

4 GB 8 GB I would not buy any
of these7 inch 6 inch

White Black

Please assume that these two options do not differ in terms of other attributes, i.e., both 
option have a self-lit E Ink display with 758x1024 pixels resolution, WiFi, and 3 weeks battery 
life. They both support multiple formats (PDF, EPUB) and connect to major book distributors.  

Fig. 1 Exemplary choice set of a CBC experiment
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each attribute and adjusts the CBC part to these two extreme levels only. Thus, it can
be seen as a compositional approach in which the attribute importance is derived by a
conjoint experiment.

In newer conjoint analysis approaches, respondents interact with each other,
following the principles of barter markets (Ding et al. 2009), auctions (Park et al.
2008), or poker games (Toubia et al. 2012). Preferences can then be inferred
from these transactions. Figure 2 summarizes the evolution of conjoint analysis
approaches.

It should be noted that the above-mentioned example of ebook reader attributes is
a very simple case that is used for illustration only. Typically, conjoint studies apply
more complex scenarios with more attributes, including price, and additional levels
per attribute. Therefore, as an extended example, we will introduce additional
attribute levels and a fourth attribute: price. The list of attributes and levels for the
extended example is given in Table 2. Because of the popularity of CBC approaches,
the remaining chapters will focus on these approaches.

Fig. 2 Evolution of conjoint analysis approaches

Table 2 Attributes and levels for the extended example

Attribute Level 1 Level 2 Level 3 Level 4

Storage 4 GB 8 GB 16 GB n.a.

Screen size 5 in. 6 in. 7 in. n.a.

Color Black White Silver n.a.

Price €79 €99 €119 €139

786 F. Eggers et al.



Model

Conjoint applications assume a (purchase) decision model in which consumer
preferences, i.e., utilities, are the central element of the choice process. The assump-
tion is that specific product attributes determine the individual utility evaluations and
these, in turn, form the basis for the observed choice behavior (Fig. 3). This requires
two interdependent models: a utility model and a choice model, which translates
utilities into multinomial choices.

The literature on preference measurement or conjoint-related literature is often
equivocal in their terminology. Throughout this chapter, we will use the following
terminology (with alternative formulations noted in parentheses): We measure the
utility (= preference, need, liking, worth, value) of a consumer (= respondent,
individual, subject) for a specific product or service (= alternative, stimulus, object,
option, profile) that consists of different attributes (= factors, dimensions), each
having specific attribute levels (= characteristics, features).

Utility Model

The basis for the utility model in a choice context is random utility theory (RUT),
which states that the overall utility U of consumer c for a product i is a latent
construct that includes a systematic component V and an error component e, i.e.,
Uci = Vci + eci (McFadden 1981; Walker and Ben-Akiva 2002). The stochastic error
term catches all effects that are not accounted for and can include, e.g., respondent
fatigue, omitted variables, biases in the data collection, or unaccounted heterogene-
ity (Louviere and Woodworth 1983).

The theory assumes that a consumer chooses the product from a set of alternatives
that exhibits the highest utility. Since the overall utility is influenced by a stochastic
component, it is only possible to state a probability that this consumer would choose
the product. Consequently, the probability p that a consumer chooses product i from
a set of products S = {i, j} is (Train 2009):

pi ¼ p Ui > Uj

� � ¼ p V i � V j > ej � ei
� �

(1)

According to Eq. (1) a consumer is more likely to choose product i if the utility of
i is larger than the utility of j. This requires that there is a positive residual from the
difference in systematic utilities and that this residual exceeds the influence of error.
Consequently, only differences in product attributes are considered, e.g., if con-
sumers need to choose between two ebook readers and both devices are black then

Product 
attributes

Utility model Utility 
evaluation

Choice model Observed
choice

Fig. 3 Elements of a purchase decision model
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color does not affect the decision. Generally, any constant value can be added to the
utility functions and it will not affect the outcome, which is why choice-based
utilities are interval-scaled and choice models do not have a general regression
constant (constants, if any, need to be alternative-specific).

The systematic utility V represents the function that translates the product
attributes and their levels into partworth utilities. The estimated utility Vi for a
product i with N attributes can be divided into two subfunctions ψ and fn as follows
(Teichert 2001a):

V i ¼ Ψ f 1 v1ið Þ, f 2 v2ið Þ, . . . , f N vNið Þ½ � (2)

with

vni: Partworth utility of attribute n in product i, n = 1, 2, . . ., N
fn: Evaluation function of attribute n, n = 1, 2, . . ., N
ψ: Function to combine partworth utilities across attributes

Evaluation Function for Attribute Levels
The function fn in Eq. 2 describes how levels of attribute n are evaluated. The
basic idea is that at least one attribute level represents the ideal point for the
consumer (or at least the most preferred level from the available attribute levels).
Differences to this ideal point lead to a loss in utility. Figure 4 depicts three potential
functional forms.

The vector model assumes that increasing (decreasing) the attribute level leads to
a proportional positive (negative) effect in utility. Hence, the ideal point is positive
(negative) infinity. This model would be appropriate when assuming, e.g., that
increasing the screen size of an ebook reader from 5 to 6 in. leads to the same
positive utility difference as upgrading the screen from 6 to 7 in. The vector model
uses the actual numeric values of the attributes and just one utility parameter to
represent the partworth utility:

vin ¼ βn � X inm (3)

X 

β

Vector model
X 

β

X 

β

Ideal point model Partworth model

Fig. 4 Alternative functional forms for the evaluation of attribute levels
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with,

vin: partworth utility for attribute n in product i
βn: utility vector for attribute n
Xinm: numeric value of level m of attribute n in product i

The ideal point model does not assume a linear slope of the utility function as the
vector model but assumes diminishing (or increasing) marginal utilities. For exam-
ple, although consumers might in general prefer larger screens for an ebook reader,
very large sizes will become impractical so that utilities will decrease again when
increasing the size from an (individually perceived) ideal point further. Likewise,
when an ebook reader already has a very large storage, it can be expected that
increasing the storage further leads to a diminishing marginal utility for the con-
sumer. The ideal point model thus considers not only the numeric value of the
attribute level, e.g., its screen size, but also its squared term:

vin ¼ βn1 � X inm þ βn2 � X 2
inm (4)

with,

vin: partworth utility for attribute n in product i
βn1: utility vector for attribute n
βn2: utility vector for the squared value of attribute n
Xinm: numeric value of level m of attribute n in product i

The partworth model estimates separate partworth utilities for each level of the
attribute, i.e., there is no assumed functional relationship between the attribute
levels. This model is required for qualitative, nominal attributes, e.g., color, but
can also be applied to quantitative, numeric attributes. If the choice sets include a no-
choice option, this option is also represented by a separate partworth that measures
the attractiveness of not choosing any of the alternatives. The partworth model is
typically based on dummy-coding (or effect-coding) techniques, which requires
M�1 variables to represent an attribute with M levels:

vin ¼
XM�1

m¼1

βnm � X inm (5)

with,

vin: partworth utility for attribute n in product i
βnm: partworth utility for level m of attribute n
Xinm: dummy variable with value 1 if product i features level m of attribute n,

otherwise 0

Regarding the number of parameters that these models require for the estimation,
the vector model is the most parsimonious as it only uses one parameter per attribute.
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The ideal point model is based on two parameters. The partworth model requires
setting one attribute level as the reference level, which is left out of the estimation so
that it requires M � 1 parameters.

The partworth model can be considered conservative since it does not require a
prior specification or theory about the slope of the partworth utility function. If more
than two attribute levels are present, it uses the most number of parameters and
therefore provides the best model fit (by sacrificing degrees of freedom). It is
therefore not surprising that the partworth model is predominantly used in conjoint
analysis and is partly also considered as a constitutive element (Shocker and
Srinivasan 1973).

Function to Combine Partworth Utilities Across Attributes
The function ψ in Eq. 2 determines how to combine partworth utilities across
attributes. Conjoint analysis assumes a compensatory utility model. In a linear
additive utility model, the overall systematic utility Vi of a product i is the sum of
the partworth utilities vin of its attributes n = 1, . . ., N:

V i ¼
XN
n¼1

vin (6)

Complex functions can be modeled as extension to this base model, e.g., inter-
action effects between attributes. Interaction effects occur when the utility evaluation
of one attribute level depends on the level of another attribute. For example,
consumers might prefer a white color for ebook readers with large screens but
black for readers with smaller screens.

Interaction effects can be modeled as additional effects in the linear additive base
model by including separate partworth utilities for the cross product of two attri-
butes. The overall utility for a product is then represented as the sum of the partworth
utilities of both the main effects and the interaction effects:

V i ¼
XN
n¼1

vin þ
XM�1

m¼1

XM 0�1

m0¼1

βIAnm,n0m0 � X inm � X in0m0 (7)

with,

βIAnm;n0m0 : Interaction effect between level m of attribute n and level m0 of attribute n0;
m = 1, 2, . . ., M; m0 = 1, 2, . . ., M0

X inm;X in0m0 : Dummy variable with value 1 if product i features level m (m0) of
attribute n (n0), otherwise 0

Interaction effects increase the complexity of a model. For this reason, they are
predominantly added if theory or prior assumptions about them exist. However,
being able to measure interaction effects with conjoint analysis is a major advantage
compared to other survey techniques, e.g., compositional approaches.
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Choice Model

Choice models can be differentiated according to the assumptions about the stochastic
error component (see Train 2009 for an overview). In most applications, the error is
assumed to be independent and identically distributed (iid) as extreme value type, i.e.,
Gumbel. This assumption leads to a logistic distribution of the differences of error terms
and the multinomial logit (MNL) model (McFadden 1981; Hensher and Johnson 1981;
Louviere et al. 2000). Accordingly, choosing an object i from a choice set with S
alternatives is represented by the MNL model in terms of choice probabilities p:

p ijSð Þ ¼ exp V ið ÞX
j� S

exp V j

� � (8)

The MNL model results in an S-shaped relationship between utility difference
and choice probability (Fig. 5).

An alternative to the Gumbel distribution is the assumption of a normal distribu-
tion of the error term, which results in a multinomial probit model (Haaijer et al.
1998). The probit model requires multiple integrals and complex estimation pro-
cedures. Because of the compact form of the logit function (see Eq. 8), the MNL
model is predominantly applied in CBC analyses (Haaijer and Wedel 2003).

Procedure for Conducting Discrete Choice Experiments

Identification of Attributes and Attribute Levels

The prerequisite – and most relevant step – for conducting conjoint analyses is to
identify the relevant determinants of consumers’ choices, i.e., product attributes and
their levels. The selection of attributes and levels should reflect the products on the

0.0 

0.5 

1.0 

-5.0 -3.0 -1.0 1.0 3.0 5.0 

C
ho
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ty

Utility difference between products

Fig. 5 S-shaped function of
the multinomial logit model
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marketplace and should affect consumers’ preferences. Otherwise, the validity of the
model can be questioned. In general, the selection of attributes has to fulfill the
following requirements (Green and Srinivasan 1978, 1990; Orme 2002):

– Attributes should be relevant, i.e., they should influence consumers’ utility. In
order to identify relevant attributes qualitative surveys, e.g., focus groups or depth
interviews can be used.

– Attributes should discriminate, i.e., they should be able to differentiate between
the competitive offerings on the marketplace.

– The number of attributes should be manageable. CBC experiments typically
use less than seven attributes. Using more attributes greatly increases the com-
plexity of the experimental design and requires high cognitive capabilities of the
respondents.

– Attributes should not be interrelated, i.e., they should measure independent aspects
of the product. If attributes are interrelated, then certain combinations might be
highly unrealistic and confusing to the respondents. However, if, e.g., higher
storages typically go along with higher prices, it is possible to consider these
attributes as independent and analyze “what-if” scenarios. It should be noted that
this requirement does not preclude potential interaction effects, i.e., although the
attributes are independent, it does not mean that the preferences for them are as well.

After setting the attributes, their levels need to be determined. Regarding the type
and number of levels, the following requirements should be considered (Green and
Srinivasan 1978, 1990; Orme 2002; Teichert 2001a):

– The levels should span a range that is larger than in reality, but not substantially,
in order to be able to cover potential future scenarios.

– Levels that have an ambiguous meaning should be avoided. For example, instead
of using levels “large” and “small” for screen size, it is better to use specific
values because they are free from interpretation. Moreover, specific values allow
using a vector or ideal point model for estimation.

– The number of levels should be kept low because the complexity of the exper-
imental design will increase exponentially with more levels. Consider the exam-
ple in Table 1 with 2^3 = 8 combinations. If three levels per attribute were used
instead there are already 3^3 = 27 potential options. Conjoint experiments can
consider complex designs, however, most applications use an average of three to
four levels per attribute.

– When setting the number of attribute levels, it should also be considered if the
linearity or nonlinearity of the utility function (e.g., an ideal point model) should
be tested, which then requires at least three levels. For testing interaction effects,
it would be preferable (but not required) to use just two levels in order to keep the
number of interaction effect parameters low.

– The number of levels should be balanced across attributes. Otherwise, the
number-of-levels effect can occur, which leads to an artificially higher relevance
of attributes that have more levels (Eggers and Sattler 2009; Verlegh et al. 2002).
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– Levels should be generally acceptable. Unacceptable levels would otherwise
invalidate the assumed compensatory utility model.

– Attribute levels are assumed to be mutually exclusive. For example, if an attribute
“extra features” is added to the ebook reader setup with the levels “waterproof”
and “integrated music player,” the reader can only have one of these levels.
If it is also interesting for the researcher to analyze preferences for both
features in combination, this combination should be added as a separate level
(an alternative would be to define each extra as a separate attribute with the levels
“yes” and “no”).

Creating the Experimental Design

The experimental design determines which combinations of attribute levels are
presented to the respondent as stimuli (factorial design) and how these stimuli are
allocated to choice sets (choice design). It represents the independent variable matrix
for the analysis. To estimate the main effects of the attributes – and potentially
interaction effects between them – the experimental design needs to make sure that
these effects can be identified.

Criteria to evaluate the efficiency of an experimental design are (Huber and
Zwerina 1996):

– Balance, i.e., each attribute level is presented an equal number of times
– Orthogonality, i.e., attribute levels are uncorrelated
– Minimal overlap, i.e., alternatives within a choice set are maximally different
– Utility balance, i.e., alternatives within a choice set should be equally attractive so

that there should not be dominated or dominating alternatives

Balance and orthogonality refer to the factorial design, while minimal overlap and
utility balance relate to the choice design.

Factorial Design
The set of all potential stimuli, i.e., every combination of attribute levels, leads to a
full factorial. With N attributes and M1 levels for attribute 1, M2 levels of attribute 2,
and MN levels of attribute N, the size of the full factorial consists of all permutations
M1 * M2 * . . . * MN. Table 1 shows a full factorial of the 2^3 design. Full factorials
are always balanced, i.e., the attribute levels occur an equal number of times (here,
four times), and orthogonal, i.e., each pair of attribute levels is balanced (here, each
pair occurs twice).

A full factorial is only required if all main effects and all potential interaction
effects should be estimated. The 2^3 design with three binary attributes A, B, C
allows to estimate the three main effects, the three two-factor interaction effects
(A*B, A*C, B*C), as well as the three-factor interaction (A*B*C). This is demon-
strated in Table 2, in which the attribute levels are effect-coded (first level = 1,
second level = �1). The interaction levels result from multiplying the levels of the
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underlying main effect attributes. As can be seen, the resulting interaction levels are
not identical to any other column, i.e., are independent, and are also balanced and
orthogonal so that they can be identified.

Since the full factorial increases exponentially when more attributes and/or more
attribute levels are added, its size quickly becomes hard to handle in an experimental
survey. For example, the extended example with three three-level attributes and one
four-level attribute consists of 3^3 * 4 = 108 potential alternatives. Moreover, very
often three-factor interaction effects can be neglected and not all two-factor interac-
tion effects may be required. In general, smaller factorials, i.e., fractional factorials,
still allow estimating main effects and selected interaction effects (Addelman 1962).

The idea of creating a fractional factorial design is demonstrated with an example.
Consider that a fourth binary attribute D would be added to the simple example in
Table 3. The full factorial would then increase to 2^4 = 16 stimuli. A fractional
design assumes that at least one of the interaction effects between the attributes A, B,
and C would be zero so that it can be replaced with the main effect of D, e.g.,
D = A*B, i.e., each level of the interaction between A and B becomes the new level
of D. The fractional factorial then consists of the 8 entries in Table 2 and columns A,
B, C, as well as D = AB. The factorial was reduced to 8 stimuli, i.e., by 50%
compared to the full factorial. Nevertheless, it is still able to identify all main effects,
i.e., the design is still balanced and orthogonal. As a downside, however, the
interaction effect between A and B cannot be estimated as it is confounded with
the main effect of D.

Fractional factorials are documented for the most common experimental designs
(e.g., Sloan 2015) or can be generated via software (e.g., SAS or SPSS). The
efficiency of the fractional design can be tested easily by checking the correlation
matrix of all assumed main and interaction effects. If there are no or only minor
correlations, then the design is orthogonal and the parameters can be identified
without bias.

For traditional rating- or ranking-based conjoint procedures, it is sufficient
to evaluate the factorial design. CBC methods require an additional step of
allocating alternatives of the factorial design to specific choice sets, i.e., to evaluate
the choice design.

Table 3 Main and interaction effects of a full factorial 2^3 design

Stimulus

Main effect Interaction effects

A B C AB AC BC ABC

1 �1 �1 �1 1 1 1 �1

2 �1 �1 1 1 �1 �1 1

3 �1 1 �1 �1 1 �1 1

4 �1 1 1 �1 �1 1 �1

5 1 �1 �1 �1 �1 1 1

6 1 �1 1 �1 1 �1 �1

7 1 1 �1 1 �1 �1 �1

8 1 1 1 1 1 1 1
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Choice Design
Choice experiments require that the factorial is subdivided into choice sets with a
selection of alternatives. Creating an optimal choice design involves complex
algorithms based on combinatorics. For example, even with the simple example

and a 2^3 full factorial, there are
8
2

� �
¼ 28 different choice sets with two

alternatives. The complexity increases with the size of the factorial, e.g., in the

extended example there would be
108
3

� �
¼ 205,156 potential choice sets of size

three. The challenge lies in selecting those choice sets that provide the most
information about the respondents’ preferences. The efficiency criteria minimal
overlap and utility balance help reducing the size of the list of potential choice sets
(Huber and Zwerina 1996).

Minimal overlap requires that the alternatives within a choice set are maximally
different, i.e., have different attribute levels (Sawtooth 1999). It is based on the idea
that an attribute that exhibits the same level for each alternative within a set does not
affect the choice (see Eq. 1). A choice design with minimal overlap can be created
for the simple example when the first four entries in the full factorial in Table 1 are
coupled with their fold-over, i.e., opposite level. Accordingly, concept 1 (4 GB, 6 in.,
black) would be coupled with concept 8 (8 GB, 7 in., white) to create one choice set;
concept 2 would be coupled with concept 7, etc., so that in total four choice sets with
minimal overlap are created.

The idea of selecting choice sets that are utility balanced is that alternatives are
allocated to a choice set that are equally attractive (Huber and Zwerina 1996).
Contrarily, a choice set that features a dominating or dominated alternative provides
no new knowledge since the choice can be anticipated. However, dominating
alternatives can only be identified if there is a priori knowledge about the respon-
dents’ preference structure or if respondents’ preferences are anticipated during the
experiment with adaptive conjoint approaches (see above).

Because of the complexity of creating an optimal choice design, computer
algorithms are recommended. For example, SAS or Sawtooth offer algorithms to
create optimal choice designs and analyze their efficiency.

Decision Parameters
Relevant decision parameters for the experimental design also concern the number
of stimuli per choice set and the number of choice sets.

Each choice task should be manageable for the respondent, which favors showing
only a few alternatives per set (Batsell and Louviere 1991). On the other hand, more
alternatives increase the information of each choice. Therefore, two to five stimuli per
choice set aremost common (Meissner et al. 2016). Using eye-tracking data,Meissner et
al. (2016) show that the number of alternatives also affects search patterns. It is therefore
advisable to use a choice set size that is similar to the typical size of a consideration set
when consumers make purchase decisions. In product categories in which consumers
frequently have to choose from a multitude of alternatives, e.g., toothpaste in supermar-
kets, choice sets could also include a larger number of alternatives (Hartmann 2004). The
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selection of the number of alternatives should also consider the number of attribute
levels since using a number of alternatives that is a subset of the number of levels
provides statistical benefits (Zeithammer and Lenk 2009).

Apart from the number of alternatives per choice set, the number of choice sets
needs to be considered when selecting an optimal design. More choice sets lead to a
higher reliability of the parameters. However, from a consumer perspective, more
choice sets induce fatigue so that respondents tend to make more errors or even
switch their decision strategy, e.g., focusing more on the price attribute (Johnson and
Orme 1996), which is counterproductive. Consistently, results concerning the pre-
dictive validity depending on the number of choice sets indicate that the marginal
benefit of additional choice sets declines (Sattler et al. 2004; Teichert 2001a). A
review of articles published in the Journal of Marketing Research between 2000 and
2017 shows that most researchers make a compromise between statistical reliability
and consumer fatigue so that most applications (14 out of 42) have used 11–15 sets.
Slightly fewer studies (13 out of 42) have used ten sets or less. The number of
applications decreases with more choice sets, i.e., nine studies used 16–20 choice
sets, five applications 21–25 sets, and one study more than 25.

Implementation into Questionnaire

The implementation of the CBC experiment into a questionnaire requires decisions
regarding the presentation of stimuli, integration of a no-choice option, collecting
additional choices per choice set, applying incentive alignment mechanisms, and
adding holdout choice sets.

Presentation of Stimuli
Most CBC interviews are computer-based since they facilitate handling complex
experimental designs. Moreover, having more than two alternatives per choice set
puts high cognitive burden on respondents, e.g., when described via telephone
interviews. Computer-based interviews are beneficial because they allow
implementing attribute levels or overall stimuli as multimedia information. Instead
of using text only it is possible to depict the size of the ebook reader screens as a
pictogram or to show actual ebook readers in different colors. When certain func-
tionalities, e.g., page-turn effects, are included as attributes, these could be show-
cased with instructional videos (e.g., following the idea of information acceleration,
Urban et al. 1996). Eggers et al. (2016) demonstrate that the more realistic the
experiment can be made compared to what consumers see in the marketplace, i.e.,
investing in “craft,” the higher is the validity of the results, which might also change
the managerial implications from the results compared to studies that rely on
defaults, e.g., text-only descriptions of the stimuli.

No-Choice Option
An advantage of CBC experiments compared to metric (rating or ranking-based)
conjoint analyses is that respondents can indicate that they prefer none of the
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presented alternative. This none (or no-choice) option increases the realism since it
does not force a decision if the alternatives are unacceptable so that consumers
would not buy any of them or switch stores in reality (Haaijer et al. 2001). Recent
approaches suggest asking for the no-choice option separately, i.e., sequentially after
each choice set (“dual response none”; Brazell et al. 2006). In the dual response
procedure respondents are first asked to select the most preferred option (excluding
no-choice) in a forced-choice task and, sequentially, whether they would purchase
the selected product concept in a second step (Brazell et al. 2006; Wlömert and
Eggers 2016).

This procedure allows observing the preferred alternative even if it is not
acceptable to be purchased. At the same time, consumers have no possibility to
opt out of difficult decisions. Moreover, Wlömert and Eggers (2016) show that the
increased salience of the no-choice option leads to more realistic predictions of
adoption shares.

The no-choice option plays a central role when calculating (absolute) willingness-
to-pay (see section “Market Simulations”). Implications from these analyses are
limited if consumers show extreme response behavior and never or always choose
the none option. To avoid these extremes, Gensler et al. (2012) present an adaptive
approach that dynamically adjusts the price levels downwards whenever the respon-
dent selected the no-choice option and upwards whenever the respondent selected an
alternative. Schlereth and Skiera (2016) address this issue by proposing a separated
adaptive dual response (SADR) procedure. They adjust the dual response procedure
so that the forced choice and purchase question are not presented within the same
task but are separated into sequential blocks. Presenting the block of forced choices
first allows them to approximate the utility of the alternatives and adaptively select
fewer, but more informative alternatives (not necessariliy the alternatives selected in
the forced choices) in the purchase questions thereafter.

Collecting Additional Choices per Choice Set
Recently, it was suggested to ask not only for the best option but also for the worst
option in a so-called best-worst scaling (or MaxDiff) approach (Louviere et al. 2015;
Sawtooth 2013). By assuming that worst choices are reversed best choices, both
decisions measure the same construct, i.e., preferences. Stated differently, if βnb
represents the partworth utility for attribute n based on best choices and βnw is the
partworth utility for the same attribute based on worst choices then it can be
assumed that βnb = �βnw. The choices can then be used to make the estimation
more reliable since twice as many observations exist. Collecting more choices per set
is not limited to best and worst decisions only. More choices can be used as separate
dependent variables in order to explore different aspects of consumers’ preferences.
An additional choice can be, e.g., “Which of these ebook readers would you buy for
your partner?” which might explore consumers’ gift giving behavior. In a study by
Kraus et al. (2015), the authors collected additional choices per set to analyze
managers’ perception of risk and success of different internationalization strategies.

Figure 6 shows an example of a choice set that includes best and worst choices
and a dual response no-choice option.
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Incentive Alignment
Ding et al. (2005) introduced incentive alignment mechanisms to conjoint analysis.
The basic idea of incentive-aligned (IA) mechanisms is to attenuate hypothetical bias
by influencing the type of reward that is provided to respondents. Specifically,
the reward is linked to the preferences the respondent expresses during the data
collection.

Ding et al. (2005) implemented the IA mechanism by rewarding the respondent
with the alternative that she/he selected in a randomly selected choice task (including
the no-choice option). In this way, each choice might constitute the potential reward
so that respondents are motivated to answer truthfully. If the study features a price
attribute, then respondents are required to actually purchase the product for the price
shown. Payment is typically achieved by providing the respondents with a budget. If
the respondent selected the no-choice option, she/he gets the full budget as a
monetary reward. If she/he selected a product for a price €X, she/he will get the
actual product plus the remaining change (i.e., initial budget minus €X).

Ding (2007) proposed an alternative IA approach in which respondents are
informed before completing the choice tasks that their choices will be used to infer
their willingness-to-pay (WTP) for one specific product concept (see sections
“Willingness-to-Pay” and “Market Simulations” for details about calculating
WTP). Under this WTP-based mechanism, incentive alignment is achieved by
obliging participants to purchase this specific product concept at a randomly
drawn price if this random price is less or equal to the WTP inferred from the
CBC experiment. This approach integrates the incentive compatible Becker-
Degroot-Marschak (BDM) auction procedure (Becker et al. 1964, see also
Wertenbroch and Skiera 2002) with CBC analysis. Ding (2007) shows theoretically

Which of these ebook readers is your most preferred option and which option is the least attractive?

Storage:

Screen size:

Color:

Would you actually buy your most preferred option if it was available?

Prize:

Option 1 Option 2 Option 3

Best option:

Worst option:

4 GB 8 GB 16 GB

6 inch 7 inch 5 inch

Silver

€99 €119 €139

Black White

Yes

No

Please assume that these options do not differ in terms of other attributes, i.e., all options have a self-lit E Ink 
display with 758x1024 pixels resolution, WiFi, and 3 weeks battery life. They support multiple formats (PDF, 
EPUB) and connect to  major book distributors. 

Fig. 6 Choice set with best and worst choices and dual response no-choice option
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that truthful answers constitute the Bayesian Nash equilibrium for participants in
such applications as long as the respondents do not know the configuration of the
product that is used as a reward prior to the study.

Dong et al. (2010) introduced and validated a third variant of IA conjoint
experiments which involves predicting a rank ordering of the possible rewards
based on estimated preferences. Eventually, the reward that is predicted to be ranked
first is given to the respondent. Again, respondents are motivated to answer truth-
fully and keep the impact of error small in order to be rewarded with their most
preferred product.

It has been shown that incentive-aligned (IA) data collection procedures substan-
tially increase the predictive performance of conjoint choice experiments compared
with traditional CBC analysis (Ding 2007; Ding et al. 2005; Dong et al. 2010) so that
their application is recommended. However, one drawback of incentive alignment is
that their application is limited to contexts where at least one concept of the research
object can be rewarded after the experiment. This may not be feasible in many
instances, for example, when the research object is an innovative product and not yet
available on the market.

Holdout Choice Sets
A holdout choice set is a choice task that mimics a regular choice set but that is not
used in the estimation. The answers given in the holdout choice set provide a
benchmark for the (internal) predictive validity of the estimation results. The better
the preference estimates are able to predict the actual choices made in the holdout
sets the higher the predictive validity. Validity can be assessed with different
measures. The hit rate compares on an individual level if the predicted most
preferred alternative based on the estimates equals the alternative actually chosen
in the holdout set, i.e., a hit meaning a correct prediction. The hit rate is then the
mean value across all respondents. The mean absolute error (MAE), as an alternative
measure among others, considers the absolute differences between predicted and
actual choice shares for each alternative in the holdout set (e.g., Moore et al. 1998).

Estimation

Since choices from choice sets typically do not provide enough information to estimate
reliable utilities at the individual level, they require some level of aggregation (see
Frischknecht et al. 2014 for an alternative approach). The estimation procedure
described here is based on the maximum likelihood procedure. It aggregates all choices
from all respondents and produces one set of utilities that represent all consumers, i.e., it
neglects consumer heterogeneity (see section “Advanced Estimation Techniques” for
advanced estimation procedures without this assumption).

We will use the MNL model for describing the estimation in more detail. The
estimates are based on the extended ebook reader example. The (simulated) data are
based on 200 respondents who answered 10 choice sets, each showing three product
alternatives plus a no-choice option.
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Coding
The estimation of partworth utilities requires transforming the attribute levels
according to a dummy (or effect) coding technique. When applying a partworth
utility model to an attribute with M levels, M � 1 dummy-coded variables are
needed to represent this attribute in the estimation. Each variable represents one
attribute level and can take the values 1 or 0 depending on whether the attribute level
was shown or not. The Mth attribute level (or any other level) is left out since it can
be expressed as a linear combination of the other variables and cannot be estimated
separately. The partworth utility of this reference level is set to 0. The partworth
utilities of the remaining attribute levels need to be interpreted in relation to this
level. Thus, it matters for the interpretation which level represents the reference.

Conjoint experiments are frequently coded using effect-coding. Effect-coded vari-
ables (Louviere et al. 2000), as an alternative to dummy-coding, are zero-centered so
that the sum of partworth utilities across all levels of the attribute is zero, i.e., positive
partworth utilities indicate higher preferences for that level compared to the average
partworth utility across all levels of the attribute. Therefore, positive or negative values
do not necessarily mean that these levels are perceived as positive or negative on an
absolute level but only compared to the mean of the levels that were included in the
experimental design. The reference level, which is left out of the estimation, can be
recovered by calculating the partworth utility that is needed so that the average across
all utilities is zero. Effect-coding therefore provides a partworth utility value for each
attribute level, and it is irrelevant which level is set as the reference.

Effect-coding can be accomplished by setting the reference level to�1, instead of
0 as in dummy coding. Table 4 shows an example of effect-coding two attributes
with M = 3 and M = 4 levels. Figure 7 shows an excerpt of the first two choice sets
from the ebook reader dataset. In this dataset, each alternative (indicated by Alt_id)
is represented by one row such that four rows represent one choice set (indicated by
Set_id). The none option is included as one of the alternatives, which is represented
by the None variable. The columns in dark grey show the numeric values for screen
size, storage, and price, and text information for color. Effect-coding (columns in
light grey) needs two parameters each for the attributes storage, screen size, and
color, and three parameters for the effect-coded prices. This means that a partworth
model requires ten parameters in total, i.e., nine parameters for the effect-coded
variables and one variable for the none option (here, dummy coded). The column
Selected is a dummy coded variable that shows which alternative was chosen in each
choice set. It serves as the dependent variable in the estimation model.

Table 4 Effect-coding of attribute levels

Level

Effect-coded variables for M = 3 Effect-coded variables for M = 4

X1 X2 X1 X2 X3

1 1 0 1 0 0

2 0 1 0 1 0

3 �1 �1 0 0 1

4 �1 �1 �1
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Maximum Likelihood Estimation
Applying OLS procedures for the estimation is not appropriate because CBC
analyses provide nominal data. The estimation of the MNL model therefore relies
on maximum likelihood procedures. In aggregate-level analyses, all respondents are
pooled to estimate one set of partworth utilities for the entire sample (Louviere and
Woodworth 1983; Sawtooth 1999).

The maximum likelihood procedure aims at finding the set of partworth utilities
that best represents the observed choices. The likelihood function L results from
multiplying the MNL probabilities as shown in Eq. (8) across all choice sets t= 1, 2,
. . ., T and – in the aggregate-level estimation – across all respondents c= 1, 2, . . ., C
(Louviere et al. 2000):

L ¼
YC
c

YT
t

p itcj Stcð Þ (9)

with,

itc = chosen alternative in choice set t by respondent c
Stc = alternatives in choice set t presented to respondent c

The parameters can be found by maximizing the function subject to the partworth
utilities, i.e., @L@β ¼ 0.

The likelihood function lies in the interval [0, 1] and expresses the aggreggate
probability to observe the choice data given the set of estimated partworth utilities.
However, the minimum of zero is only a theoretical value as choosing randomly
between the choice options, i.e., assuming that all betas are zero, would yield a
probability of 1/S, with S being the number of alternatives in the choice set. For
example, choosing randomly between three ebook readers and the no-choice option
would give a probability of 1/4 that the choice matches the respondents preferred
option. The lowest logical value of the likelihood function is therefore (1/S)^(T*C).
Since this value is very close to zero, the optimization of the function is typically
based on the logarithm, i.e., log-likelihood function (Louviere et al. 2000). The
lowest value, and the benchmark to assess the model fit, then is T*C*log(1/S), e.g.,
for the ebook reader case with 10 choice sets with four alternatives and 200
respondents: 10*200*log(1/4) = �2772.6. The estimation model should exceed
this value significantly, i.e., have a log-likelihood value that is less negative (closer
to zero), because otherwise the partworth utilities would not predict choices better
than a random, NULL model.

Estimating the partworth utilities based on the ebook reader example yields a log-
likelihood value of �2277.8. To test if the difference in log-likelihood between the
NULL model and the estimated model is significant, a likelihood ratio test can be
applied. The test statistic is χ2 = 2 * (LL1 – LL0), with LL1 representing the log-
likelihood of the estimated model and LL0 the log-likelihood value of the NULL
model. This test statistic is distributed χ-squared with degrees of freedom (df) equal
to the difference in the number of parameters between both models. In this case, χ2 is
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2 * (�2277.8 � (�2772.6)) = 989.6, with df = 10. This test is highly significant
(p < 0.001), i.e., the estimated model predicts significantly better than the NULL
model.

Another measure to assess the goodness of fit is the Pseudo-R2 or McFadden’s
R2 = 1 � (LL1/LL0). For the ebook reader example, it is: R2 = 1 � (�2277.8/
�2772.6) = 0.178. McFadden’s R2 can be adjusted according to the number of
parameters, i.e., 1 � ((LL1 � npar)/LL0), with npar being the number of parameters.
This R2 value has a different interpretation than in linear regression models. Typi-
cally, values exceeding 0.2–0.4 are considered acceptable. Although the ebook
reader model is significantly different from the NULL model, its fit relative to this
benchmark is not exceeding the threshold of 0.2. A potential explanation for this low
fit is that consumers likely have heterogeneous preferences, e.g., towards screen size
or color, which are not acknowledged in the aggregate model and therefore increase
the error term.

The estimated partworth utilities are depicted in Table 5 (see “Appendix” for the
corresponding R code). The partworth utilities for the attribute levels are effect-
coded, which can be seen by checking that the sum across the betas is zero. The betas
for storage and price show face validity as increasing the storage (price) yields higher
(lower) utilities. There is no such trend regarding screen size as 6-in. models have the
highest utility, followed by 5-in. models and 7-in. screens. White ebook readers are
more preferred than black and silver models.

The no-choice option was dummy coded in this case, with “no-choice” equal to
one and “not the no-choice” equal to zero. As can be seen, not choosing one of the

Table 5 Estimated partworth utilities based on the aggregate-level model

Attributes Beta Standard error t-value Attribute importance

Storage 21.6%

4 GB �0.389 0.042 �9.323

8 GB �0.051 0.039 �1.322

16 GB 0.440 0.036 12.143

Screen size 22.0%

5 in. �0.049 0.039 �1.274

6 in. 0.446 0.036 12.352

7 in. �0.397 0.042 �9.528

Color 12.5%

Black �0.002 0.038 �0.059

White 0.240 0.037 6.547

Silver �0.238 0.040 �5.952

Price 43.9%

€79 0.840 0.045 18.502

€99 0.286 0.047 6.103

€119 �0.284 0.053 �5.416

€139 �0.842 0.063 �13.447

No-choice

�0.532 0.069 �7.749
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ebook readers shows a negative partworth utility so that on average (i.e., with all
attributes at their mean utility of zero), choosing one of the ebook readers provides a
higher utility and is therefore more likely than choosing none.

The partworth utilities can be transformed to be more accessible for managerial
use compared to the rather abstract units of utility. Three transformations shall be
elaborated subsequently: relative attribute importances, willingness-to-pay mea-
sures, and calculation of purchase probabilities within market simulations.

Relative Attribute Importance
The attribute importance wn of an attribute n can be calculated based on the relative
range of the partworth utilities, i.e., the difference between the most and least
preferred attribute levels related to the sum of ranges across all attributes:

wn ¼ max βnð Þ �min βnð Þ
PN
i¼1

max βið Þ �min βið Þð Þ
(10)

For example, storage exhibits a range of 0.829 (=0.440 � (�0.389)). The sum of
all attribute ranges is 3.832. The relative importance of storage is therefore 0.829/
3.832 = 21.6%. The attribute importance serves as a first indicator which attribute is
most influential in affecting respondents’ choices. However, these attribute impor-
tances only consider the extremes of the partworth utilities and not the intermediate
levels. Moreover, the importances can only be interpreted in the context of the
selected attributes and levels. Additionally, the attribute importance has to be
evaluated in the context of the ability to discriminate between market offerings
(Bauer et al. 1996). For example, most ebook readers on the market are 6-in. models.
Although the attribute is the second most important based on the range of partworth
utilities, it is less managerially relevant since most manufacturers are already
offering the most preferred size so that using this attribute level does not help to
differentiate from the competitors.

Willingness-to-Pay
The willingness-to-pay (WTP) transformation is based on the idea to analyze how
much utility is lost (gained) when the price increases (decreases) and to relate this
utility difference to the partworth utility of an attribute level. As a result, the
partworth utilities for nonprice attributes can be expressed in monetary terms
(Orme 2001).

The WTP calculation requires a vector model for the price attribute, which means
that these analyses are only meaningful if the price function is indeed linear. The
WTP for level m of attribute n can then be derived by dividing the partworth utility
for the specific attribute level by the value of the price vector:

WTPnm ¼ βnm
βp

(11)
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with,

βnm: partworth utility for level m of attribute n
βp: utility vector for the price attribute

The estimate for the price vector in the ebook reader example is �0.028, i.e., if
price increases by one Euro utility drops by 0.028 units (see Table 6 below). The
WTP values for the color attribute can then be calculated as 0.240/�0.028= €�8.57

Table 6 Estimation results of alternative modeling approaches

Attributes
Partworth
model

Vector model
for storage and
price

Ideal point
model for
screen size

Interaction effect
between screen size
and color

Log-likelihood �2277.8 �2278.3 �2278.3 �2273.3

Storage

4 GB �0.389

8 GB �0.051

16 GB 0.440

(linear) 0.067 0.067 0.067

Screen size

5 in. �0.049 �0.050 �0.044

6 in. 0.446 0.446 0.454

7 in. �0.397 �0.396 �0.410

(linear) 7.854

(squared) �0.669

Color

Black �0.002 �0.003 �0.003 �0.015

White 0.240 0.240 0.240 0.255

Silver �0.238 �0.237 �0.237 �0.240

Price

€79 0.840

€99 0.286

€119 �0.284

€139 �0.842

(linear) �0.028 �0.028 �0.028

No-choice

�0.532 �2.965 19.632 �2.984

Screen size � color

5 in. � black �0.123

6 in. � black 0.173

7 in. � black �0.051

5 in. � white 0.018

6 in. � white �0.164

7 in. � white 0.146
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for the color white, €0.07 for black, and €8.50 for silver. The interpretation of these
values is that if an ebook reader is not available in, e.g., the preferred color white
consumers would accept this drawback only if the price of the reader was, on
average, at least €8.57 cheaper. In this case, the negative utility difference of a
nonwhite reader is balanced with the positive utility difference of a cheaper price.
Vice versa, a consumer would accept paying €8.57 more for a white ebook reader, on
average. The least preferred color is silver and consumers would be willing to spend
€17.07 for upgrading from a silver ebook reader to a white product. The WTP values
can therefore be interpreted directly in terms of consumers’ incremental willingness
to pay for differences in attribute levels. Note, however, that the interpretation needs
to consider the differences in signs, i.e., attribute levels with positive utilities have a
negative WTP and vice versa.

Market Simulations
The most common ebook readers on the market, e.g., the Amazon Kindle, currently
feature 4 GB storage, a 6-in. screen, in the color black for €139. To see how likely it
is that consumers buy this product or no ebook reader at all, purchase probabilities
can be calculated by applying the MNL function (Eq. 8). These calculations
require the specification of a market scenario. A scenario consists of assumptions
about the products that are available on the market, i.e., about S, which could
include multiple products. In this example, we assume that there are two options,
the above-mentioned ebook reader and the no-choice option. On the basis of the
aggregate-level estimates, the overall utility of the ebook reader is Vi = �0.389
(4 GB) + 0.446 (6 in.) � 0.002 (black) � 0.842 (€139) = �0.787. The utility of the
no-choice option is Vj = �0.532, i.e., consumers are more likely to buy no ebook
reader compared to the one available. The purchase probability for the reader can be
calculated by applying Eq. (8):

p ijSð Þ ¼ exp �0:787ð Þ
exp �0:787ð Þ þ exp �0:532ð Þð Þ ¼ 0:437

That is, the probability that the sample buys the ebook reader is 43.7%. Market
simulations then offer the possibility to see how the market will react if the product
configuration is changed. If, e.g., the storage is increased to 8 GB, the overall utility
increases to Vi = �0.449 and the purchase probability to 0.521. Thus, this modifi-
cation would be sufficient to make consumers more likely to buy an ebook reader
compared to not buying one. Purchase probabilities can be increased further by
changing the color to white or reducing the price. These simulations therefore allow
detecting promising product modifications. Moreover, a company that wants to enter
the market can identify attractive product concepts and assess their effect on
purchase probabilities given a specific market scenario that could also consider
competitor products. Sophisticated simulation procedures also consider optimal
competitive reactions and resulting Nash equilibria (Allenby et al. 2014).

Changing the price in a market simulation, ceteris paribus, allows creating a
demand function. In the example above, the purchase probability for the ebook
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reader for €139 is 0.437. Systematically reducing the price increases the probabilities
to 0.575 for €119, 0.705 for €99, and 0.806 for €79. The resulting demand function is
depicted in Fig. 8. This function can be used to analyze the price elasticity or
constitutes an alternative way to calculate WTP. In this example, the price that
makes consumers indifferent between choosing the ebook reader and the no-choice
option can be taken as the consumers’ absolute WTP, in this case €130.

The purchase probabilities are frequently interpreted in terms of market shares.
Interpreting the predicted probabilities as market shares is ambitious because they
have to meet several assumptions (Orme and Johnson 2006). Specifically, probabil-
ities are closer to market shares:

(a) The more the experiment resembles reality, i.e., all attributes and levels that
affect buyers need to be accounted for and all competitors are included in the
market scenario (assumptions that are not met in this example).

(b) The more the real market environment matches the experiment, i.e., all offers are
available, e.g., the products are equally distributed, consumers are aware of the
available offers, and there are no switching costs between the offers.

Furthermore, predictions are closer the less consumers’ choices are influenced by
errors that are introduced by the CBC experiment. It has been shown that incentive
alignment is a suitable procedure to accomplish more valid answers so that pre-
dictions are closer to market shares (Wlömert and Eggers 2016). Moreover, it is often
beneficial to consider heterogeneity among consumers via advanced estimation
techniques.
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Modeling Alternatives
Table 6 depicts the estimation results of alternative modeling approaches. Next to the
partworth model interpreted above, it also shows an approach that uses a vector
model for storage and price, i.e., that uses their numeric values instead of its effect
codes. It can be seen that the model fit changes only marginally as the difference in
log-likelihood is only �0.5, despite using three parameters less. According to a
likelihood ratio test this difference is not significant (p = 0.793), i.e., this vector
model achieves the same fit, while being more parsimonious. The vector model
shows that utility increases linearly by 0.067 with every additional GB storage and
decreases by �0.028 with every Euro more in purchase price. As the attributes are
orthogonal, the other estimates remain largely unaffected. Only the estimate of the
no-choice option changes substantially because the numeric values of storage and
price are not zero-centered, unlike using effect-coding. This shift does not affect the
implications, however.

The third model shown in Table 6 demonstrates the estimation of an ideal-
point model for screen size. It requires two parameters, one for the linear effect
and one for the squared term. Its model fit is therefore identical to the model in
which screen size is represented by a partworth model, which also uses two param-
eters. The utility for screen size is given by the function vscreensize = 7.854 �
screensize � 0.669 � screensize2. Accordingly, the ideal point can be calculated
as @v/@screensize = 7.854 � 2 � 0.669 � screensize = 0, which shows a maximum
at 5.87 in.

Finally, the last column of Table 6 adds an interaction effect between the attributes
screen size and color. Screen size and color are both represented by two parameters
so that 2 * 2 additional parameters are required. Adding these four parameters
significantly increases the model fit (p = 0.039), i.e., there is an interaction between
these two attributes. Accordingly, consumers prefer a black ebook reader in 6 in. and
a white version in 7 in.

Advanced Estimation Techniques

The assumption of aggregate-level analyses that consumers are all identical is
usually too restrictive. Considering consumer heterogeneity with advanced estima-
tion techniques is therefore beneficial in reducing the error term. Finite mixture
(latent class) procedures assume that the sample consists of distinct segments and
estimates different utilities for these segments. Continuous mixture (hierarchical
Bayes) models are able to estimate individual-level partworth utilities by assuming
that the utilities are drawn from a common distribution, e.g., normal distribution.
As a result, partworth utilities are generated for each segment or each individual.
These values can subsequently be interpreted analogously to the procedures
described in sections “Relative Attribute Importance,” “Willingness-to-Pay,” and
“Market Simulations.”
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Segment-Level Estimation
Segment-level estimation procedures, i.e., latent class estimation, are assuming that a
finite number of (homogeneous) segments can represent the heterogeneity of the
respondents in the sample. A segment-level perspective is also in line with discov-
ering market segments with distinct preferences that are an attractive target group
for a company’s market offerings (i.e., following the segmentation, targeting, and
positioning approach).

There are two general approaches for segmentation. The first approach deter-
mines segments based on socio-demographic data, e.g., separating males and
females and estimating aggregate-level preferences for each of these segments.
This a priori segmentation, however, is usually not able to detect segments that
reflect systematically different preferences towards the attribute levels. The second
approach, i.e., the latent class procedure, aims at finding segments that differ in their
choice behavior and estimates segment-specific partworth utilities. These segments
are latent, i.e., each respondent belongs to the segments with a certain probability
(DeSarbo et al. 1995). If a consumer differs in his/her choice behavior from the
partworth utilities of the respective segment, this is reflected by a lower probability
to belong to this segment (Teichert 2001b).

Before the estimation starts, the researcher needs to define a specific number of
segments. In a first step of an iterative-recursive procedure, the segment-specific
partworth utilities for the given number of segments are estimated via maximizing
the likelihood function. Afterwards, the utility functions are evaluated given the
individual respondent’s choices in order to allocate the respondents probabilistically
to the segments. This results in posterior probabilities of segment membership based
on conditional probabilities according to Bayes’ rule (DeSarbo et al. 1995). These
calculated probabilities form the basis for the iterative process of re-estimating
segment-specific utilities. This loop is repeated until only minor changes in the
probabilistic allocation of respondents to segments are observed (Sawtooth 2004).

The iterative-recursive process should be repeated for several numbers of seg-
ments. The “optimal” number of segments is not determined by the algorithm and
has to be based on information criteria, e.g., AIC, BIC, or CAIC (Wedel and
Kamakura 2000; Sawtooth 2004). Moreover, a measure of entropy should be
inspected, which reflects the accuracy of the segmentation. It is based on the
posterior membership probabilities of the respondents. The entropy can exhibit
values in the interval [0, 1] and values close to “1” indicate that the segments are
well separated, i.e., respondents can be allocated to one of the segments with almost
certainty (DeSarbo et al. 1995).

By weighing the segment-level estimates with the membership probability,
individual level estimation can be calculated. However, these values lie in the
convex hull of the segment-specific utilities so that it is questionable if they can
represent individual-level data well (Wedel et al. 1999). Applying the hierarchical
Bayes procedures is more appropriate to estimate individual-level preferences
(see next chapter).
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Applying the latent class estimation procedure with three segments to the ebook
reader case results in a log-likelihood value of �2056.6, i.e., an acceptable
McFadden’s R2 of 0.258. The entropy value of 0.948 shows a good separation
between the segments. The segment-specific partworth utilities are depicted in
Table 7 (not showing standard errors and t-values for better readability).

Based on the membership probabilities, segment 1 is the largest segment with
about 60% of the respondents. Segment 2 includes a quarter of the sample and
segment 3 follows in size with about 15%. As in the aggregate-level case, the
estimates for storage and price show face validity for each segment. Moreover, the
segmentation is able to discover segments that prefer smaller screens (segment 2)
and larger screens (segment 3). The color white is preferred by segments 2 and 3,
however, not by segment 1 that prefers black ebook readers. Finally, segment 1
shows a positive value for the no-choice option, which reflects that this segment is
more likely to choose no ebook reader compared to the other segments.

Note that in the aggregate-level analysis 6-in. screens and the color white are
preferred by the sample. The conclusion to launch this kind of ebook reader would
have been suboptimal as none of the segments prefer this product, i.e., segment 1
prefers 6-in. screens but not the color white, and segment 2 and 3 prefer white but
smaller or larger screens.

Table 7 Segment-level estimates

Attributes Segment 1 Segment 2 Segment 3

Relative segment size 0.592 0.249 0.158

Storage

4 GB �0.323 �0.544 �1.195

8 GB �0.102 0.122 �0.091

16 GB 0.425 0.422 1.286

Screen size

5 in. �0.243 0.815 �0.945

6 in. 0.859 0.011 0.108

7 in. �0.616 �0.826 0.837

Color

Black 0.302 �0.593 �0.067

White �0.240 1.246 0.259

Silver �0.062 �0.653 �0.192

Price

€79 1.009 0.920 1.423

€99 0.425 0.411 �0.195

€119 �0.318 �0.250 �0.542

€139 �1.116 �1.081 �0.686

No-choice

0.118 �2.383 �0.876
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Individual-Level Estimation
An estimation of individual-level partworth utilities with the MNL model is possible
with the hierarchical Bayes (HB) procedure. The idea of the procedure is that the
aggregate sample is used to determine the distribution of partworth utilities. The
distribution then serves as a basis to draw conditional estimates for each individual
given the respondent’s choice data. The HB model therefore consists of two coupled
layers (Lindley and Smith 1972). The first model layer describes the choice proba-
bilities given the individual partworth utilities, i.e., the MNL model (Eq. 8). The
second layer relates the respondents’ partworth utilities to each other by assuming a
multivariate (normal) distribution of the utilities with unknown mean (Arora et al.
1998).

The model parameters can then be estimated in an iterative process, e.g., with the
Metropolis-Hasting algorithm (Chen et al. 2000). Figure 9 depicts the sequence of
the HB procedure.

The researcher first needs to specify the type and parameters of the distribution of
the utilities. Based on the distribution and the observed choice data, estimates for the
individual partworth utilities are drawn in an iterative recursive process. These
utilities, in turn, affect the parameters of the distribution, which then serves as a
basis to draw a new set of individual-level partworth utilities in a next iteration. This
process runs for a large number of iterations, e.g., 20,000, until the parameters
converge. Typically, the first set of individual-level utilities draws is discarded as
“burn-in” (Sawtooth 2000). The second set of individual-level draws can be used to
make inferences about consumer preferences (Allenby et al. 1995).

Figure 10 shows the distribution of individual-level partworth utilities of the
ebook reader dataset as boxplots. The mean and median values are plausible and in
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line with the aggregate-level model. The distribution and the standard deviation
across the respondents’ utilities indicate those attributes and attribute levels that
exhibit a larger amount of heterogeneous preferences, e.g., screen size, the color
white, the highest price, or the no-choice option.

Mean Standard deviation
Storage

4 GB -0.960 0.749
8 GB -0.173 0.820

16 GB 1.134 0.731
Screen size

5 inch -0.187 1.210
6 inch 1.067 0.921
7 inch -0.880 1.151

Color
Black 0.026 0.990
White 0.445 1.260
Silver -0.472 0.668

Price
€79 2.030 0.804
€99 0.739 0.736

€119 -0.565 0.663
€139 -2.204 1.275

No-choice
-0.088 1.593
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Fig. 10 Boxplots of partworth utilities and summary statistics for individual-level preferences
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Outlook

Conjoint analysis has emerged from the traditional rating- or ranking-based method
in marketing to a general experimental method to study individual’s discrete choice
behavior with the choice-based conjoint variant. It is therefore not limited to classical
applications in marketing, such as new product development, but can be applied to
study research questions from related disciplines, e.g., how marketing managers
choose their ad campaign, how managers select internationalization options, why
consumers engage in or react to social media, etc.

This chapter aims at providing the necessary terminology of conjoint analysis and
the requirements to conduct and interpret discrete choice experiments. It also lays the
foundation to understand more sophisticated methods and models.

Given the large scope of discrete choice experiments, this attempt is also
limited. CBC taps into general theories of how individuals (or groups) choose.
These are vast theoretical and empirical grounds, which we cannot cover in detail
in this chapter. Understanding CBC models requires not only knowledge of the
statistical properties but also understanding behavioral aspects and biases, such as
context effects (e.g., compromise, attraction, similarity effects) or trade-off aversion.
While knowledge about these aspects is important when running discrete choice
experiments, CBC can likewise be used to identify these effects, e.g., by incorpo-
rating context effects (Rooderkerk et al. 2011) or by measuring price-quality heu-
ristics (Rao and Sattler 2003).

Although CBC is well developed and documented, many areas are still under
research, ranging from, e.g., optimal experimental designs, incentive alignment
procedures, to estimation techniques. It will therefore remain an active research
area with numerous managerial applications in marketing in the future.

Appendix: R Code

The R code and dataset that correspond to the ebook reader example and estimated
models can be found at: http://www.preferencelab.com/data/CBC.R. The estimation
uses the mlogit package (Croissant 2012), which needs to be installed first. A less
documented version of the R code can be found below (# indicates a comment):

# load the library to estimate multinomial choice models.

library(mlogit)

# load (simulated) data about ebook readers

cbc <- read.csv(url("http://www.preferencelab.com/data/

Ebook_Reader.csv"))

# convert data for mlogit

cbc <- mlogit.data(cbc, choice="Selected", shape="long", alt.

var="Alt_id", id.var = "Resp_id")
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### calculate models ###

### partworth model ###

ml1 <- mlogit(Selected ~ Storage_4GB + Storage_8GB +

Screen.size_5inch + Screen.size_6inch +

Color_black + Color_white +

Price_79 + Price_99 + Price_119 +

None | 0, cbc)

summary(ml1)

# recover reference level estimates (effect-coding)

# Storage_16GB

-(coef(ml1)["Storage_4GB"] + coef(ml1)["Storage_8GB"])

# Screen.size_7inch

-(coef(ml1)["Screen.size_5inch"] + coef(ml1)["Screen.size_6inch"])

# Color_silver

-(coef(ml1)["Color_black"] + coef(ml1)["Color_white"])

# Price_139

-(coef(ml1)["Price_79"] + coef(ml1)["Price_99"] + coef(ml1)

["Price_119"])

# standard errors of the effects are given by the

# square root of the diagonal elements of the

# variance-covariance matrix

covMatrix <- vcov(ml1)

sqrt(diag(covMatrix))

# with effect-coding, the standard error of the reference

# level needs to consider the off-diagonal elements of the

# corresponding attribute levels

# Std. Error Storage_16GB

sqrt(sum(covMatrix[1:2, 1:2]))

# Std. Error Screen.size_7inch

sqrt(sum(covMatrix[3:4, 3:4]))

# Std. Error Color_silver

sqrt(sum(covMatrix[5:6, 5:6]))

# Std. Error Price_139

sqrt(sum(covMatrix[7:9, 7:9]))
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### Vector model ###

# Storage and Price follow a linear trend. Replacing

# parameters leads to a more parsimonious model.

ml2 <- mlogit(Selected ~ Storage +

Screen.size_5inch + Screen.size_6inch +

Color_black + Color_white +

Price +

None | 0, cbc)

summary(ml2)

# likelihood ratio test

lrtest(ml2, ml1)

# incremental willingness-to-pay for storage

coef(ml2)["Storage"]/coef(ml2)["Price"]

# WTP to upgrade from a black to a white ebook reader

(coef(ml2)["Color_white"] - coef(ml2)["Color_black"])/coef(ml2)

["Price"]

### Vector model for screen size has sig. worse fit ###

ml3 <- mlogit(Selected ~ Storage + Screen.size + Color_black +

Color_white + Price + None | 0, cbc)

summary(ml3)

lrtest(ml3, ml2)

### Testing an ideal point model for screen size ###

ml4 <- mlogit(Selected ~ Storage +

Screen.size + I(Screen.size**2) +

Color_black + Color_white +

Price +

None | 0, cbc)

summary(ml4)

# same model fit because no differences in df

lrtest(ml4, ml2)

### Adding interactions between screen size and color ###

ml5 <- mlogit(Selected ~ Storage +

Screen.size_5inch + Screen.size_6inch +

Color_black + Color_white +

Price +

Screen.size_5inch * Color_black +

Screen.size_6inch * Color_black +
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Screen.size_5inch * Color_white +

Screen.size_6inch * Color_white +

None| 0, cbc)

summary(ml5)

# likelihood ratio test

lrtest(ml2, ml5)
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