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Abstract

We investigated the validity of curriculum-sampling tests for admission to higher education

in two studies. Curriculum-sampling tests mimic representative parts of an academic pro-

gram to predict future academic achievement. In the first study, we investigated the predic-

tive validity of a curriculum-sampling test for first year academic achievement across three

cohorts of undergraduate psychology applicants and for academic achievement after three

years in one cohort. We also studied the relationship between the test scores and enroll-

ment decisions. In the second study, we examined the cognitive and noncognitive construct

saturation of curriculum-sampling tests in a sample of psychology students. The curriculum-

sampling tests showed high predictive validity for first year and third year academic achieve-

ment, mostly comparable to the predictive validity of high school GPA. In addition, curricu-

lum-sampling test scores showed incremental validity over high school GPA. Applicants

who scored low on the curriculum-sampling tests decided not to enroll in the program more

often, indicating that curriculum-sampling admission tests may also promote self-selection.

Contrary to expectations, the curriculum-sampling tests scores did not show any relation-

ships with cognitive ability, but there were some indications for noncognitive saturation,

mostly for perceived test competence. So, curriculum-sampling tests can serve as efficient

admission tests that yield high predictive validity. Furthermore, when self-selection or stu-

dent-program fit are major objectives of admission procedures, curriculum-sampling test

may be preferred over or may be used in addition to high school GPA.

Introduction

Curriculum-sampling tests are increasingly used in admission procedures for higher education

across Europe. For example, in Finland, Belgium, the Netherlands, and Austria these test are

used across various academic disciplines such as medicine [1–3], psychology [4,5], teacher

education [6], economics and business [7], and computer science [8]. The rationale behind

these tests is to mimic later behavior that is expected during an academic study. Thus, curricu-

lum samples often mimic representative parts of the academic program that the student is
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applying to. Often, these samples are small-scale versions of an introductory course of a pro-

gram, because performance in such courses is a good indicator for later academic performance

(e.g., [4,9,10]). An example is studying domain-specific literature or watching video-lectures,

followed by an exam.

There are several arguments for using curriculum samples in admission to higher education

in addition to or instead of traditional admission criteria used in higher education, such as

high school GPA. High school GPA is a good predictor of academic performance in higher

education (e.g., [11–14]). However, due to the increasing internationalization and different

educational ‘routes’ to higher education [15], these grades are often difficult to compare across

applicants. Also, Sackett et al. [16] and Kuncel et al. [17] found that matching the content of

the predictor to the criterion was beneficial to the predictive validity.

There are, however, few studies in which the validity of curriculum sampling tests has been

investigated. Two types of relevant validity evidence can be distinguished: predictive validity

for academic achievement, showing the value of these tests in admission procedures, and con-

struct validity or “construct saturation” (i.e., the degree to which the score variance reflects

construct variance [18–20]), which can contribute to explaining the predictive validity of cur-

riculum samples. In the first study described in this paper we investigated the predictive valid-

ity of curriculum sampling for academic achievement in a psychology program. In the second

study, we investigated the construct saturation of curriculum samples.

Signs, samples, and construct saturation

Most traditional assessments for performance prediction, like cognitive ability tests and per-

sonality inventories, are based on a signs approach. Signs are psychological constructs that are

theoretically linked to the performance or behavior of interest [21]. In contrast, samples are

based on the theory of behavioral consistency: Representative past or current performance is

the best predictor for future performance [21,22]. The samples approach originated in the con-

text of personnel selection, where high-fidelity simulations like work sample tests and assess-

ment centers were good predictors of future job-performance [18,23,24]. An explanation for

the high predictive validity of sample-based assessments is the ‘point-to-point correspondence’

of the predictor and the criterion [25]. Curriculum-sampling tests are based on the same ratio-

nale as work sample tests; they are designed as high-fidelity simulations of (parts of) an aca-

demic program.

It is often assumed that sample-based assessments are multifaceted compound measures

that are saturated with cognitive- and noncognitive constructs that also underlie performance

on the criterion task [22,26]. The construct saturation an assessment represents the degree to

which score variance reflects variance on different constructs. The concept of construct satura-

tion may seem in conflict with the underlying idea of a samples approach, since they are explic-

itly not designed to measure distinct constructs. However, construct saturation studies can

help in explaining the predictive validity of sample-based assessments through investigating

what scores on sample-based assessments represent in terms of psychological constructs [20].

In addition, construct saturation can affect predictive validity and the size of sub-group score

differences of test scores [18,19,27]. Especially noncognitive saturation may provide great ben-

efits in high-stakes assessment. Noncognitive constructs like personality traits, self-efficacy,

and self-regulation are good predictors of future job-performance and academic performance,

and show incremental validity over cognitive abilities [28]. However, they are difficult to mea-

sure validly in high-stakes assessment due to faking [29,30]. A performance-based assessment

method that is able to tap into noncognitive traits and skills may provide a solution to that

problem.

Curriculum-sampling tests for admission to higher education
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Curriculum sampling: Existing research

Curriculum-sampling tests often require studying domain-specific literature or–lectures,

followed by an exam, but this approach can take many different forms, depending on the cur-

riculum the test is designed for. The approach may also involve the preparation of a demon-

stration lesson in the case of teacher education [6], in which internships within schools make

up a large proportion of the curriculum, a massive online open course (MOOC) for admission

to a computer science program, in which applicants successfully have to complete program-

ming assignments from the first academic year [8], or a ‘virtual semester’ in medical school,

followed by an exam [3].

Most studies on curriculum sampling compared the academic performance of students

admitted through curriculum-sampling procedures with students admitted via other methods.

Results showed that students admitted through a curriculum-sampling procedure earned

higher grades, progressed through their studies faster, and dropped out less often compared to

students admitted via lottery [1,5] or via traditional entrance tests or matriculation exam

grades [8]. However, participation in the curriculum-sampling admission procedures was vol-

untary in these studies, and admission could also be achieved through other procedures. Thus,

these differences may also be caused by, for example, motivation; highly motivated applicants

may have chosen to participate in the curriculum-sampling procedure that requires effort,

whereas less motivated applicants may have chosen an alternative route [31].

Reibnegger et al. [3] compared the dropout rate and time to completion of the first part of

medical school for three cohorts of students admitted through open admission, a ‘virtual

semester’ in medicine followed by a two-day examination, or secondary school-level knowl-

edge exams about relevant subjects. The best results were found for the cohort admitted

through the ‘virtual semester’. However, the selection ratio was also the lowest for that cohort,

which may have influenced the results.

Lievens and Coetsier [2] examined the predictive validity of two curriculum-sampling tests

for medical school for first year GPA, one using a video-based lecture (r = .20) and one using

written medical material (r = .21). However, these tests had relatively low reliability (α = .55 and

.56, respectively). Their study is, to our knowledge, also the only study that investigated the con-

struct saturation of curriculum sampling tests. They found moderate relationships between the

curriculum-sampling exams scores and scores on a cognitive ability test (r = .30 and r = .31,

respectively), indicating at least some cognitive ability saturation, but they did not find relation-

ships with scores on the Big Five personality scales. In addition, Niessen et al. [4] found that the

predictive validity of a curriculum-sampling test for undergraduate psychology applicants was

r = .49 for first year GPA, r = .39 for credits obtained in the first year, and r = -.32 for dropping

out of the program in the first year. Furthermore, the curriculum-sampling test scores were

related to subsequent self-chosen enrollment, indicating that it may serve as a self-selection tool.

Booij and van Klaveren [7] found similar results based on an experiment in which applicants to

an economics- and business program were randomly assigned to a non-binding placement pro-

cedure consisting of an intake interview or a curriculum-sampling day without a formal exam

or assignment. Compared to the interview condition, fewer students from the curriculum-sam-

pling condition enrolled in the program and more students passed the first year. Enrolling stu-

dents who participated in the curriculum-sampling procedure also reported that the program

met their expectations more often than enrollees from the interview condition.

Aim of the current article

The few existing predictive validity studies [2,4] only used single cohorts and only used first

year academic achievement as a criterion measure. To our knowledge, there are no predictive

Curriculum-sampling tests for admission to higher education
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validity studies using outcomes such as graduation rates and long-term college GPA. Further-

more, there is only one study [2] in which the construct saturation of curriculum-sampling

tests was investigated. To address these shortcomings in the literature, we conducted two stud-

ies. The aim of the first study was to investigate the predictive validity of curriculum-sampling

tests for academic performance in a psychology program at a Dutch university. We studied

predictive validity in different cohorts, using not only first year GPA but also third year GPA

and bachelor-degree attainment as criterion measures, thus extending the Niessen et al. [4]

study. The aim of the second study was to investigate the construct saturation of curriculum-

sampling tests by gaining more insight into how these test scores are related to psychological

constructs, in order to explain their predictive validity.

The present studies. The academic outcomes in Study 1 were academic performance,

study progress, and college retention. In addition, we studied (1) the incremental validity of

the curriculum-sampling scores over high school GPA, (2) the predictive- and incremental

validity of curriculum-sampling tests for achievement in specific courses, over specific skills

tests designed to predict performance in those courses [16], and (3) the relationship between

curriculum-sampling tests scores and self-chosen enrollment decisions. We studied two types

of curriculum-sampling tests: A literature-based test and a video-lecture test. Given the corre-

spondence between criterion and the predictors, we expected to replicate the high predictive

validity results from Niessen et al. [4] for first year academic achievement and we expected

somewhat lower predictive validity for later academic achievement. In addition, we expected

that the skills tests would predict performance in courses they were designed to predict (the

math test for statistics courses and the English test for theoretical courses), and that the curric-

ulum-sampling tests would predict performance in both types of courses, but that the correla-

tion with statistics course performance would be lower compared to the math test.

In the second study we investigated the hypothesis that the curriculum-sampling tests are

saturated with both cognitive- and noncognitive constructs. Assuming that the curriculum-

sampling test scores represent a ‘sample’ of future academic performance, we expected that the

curriculum-sampling test scores would be saturated with variables that also predict academic

performance, such as cognitive ability [32,33] and several noncognitive constructs and behav-

ioral tendencies [28,34]. To investigate this hypothesis, we studied if and to what extent the

scores on the curriculum-sampling test can be explained by cognitive ability, conscientious-

ness, procrastination tendencies, study-related cognitions, and study strategies [28,34].

Study 1: Predictive validity

Method

Procedure. All applicants to an undergraduate psychology program at a Dutch university

were required to participate in an admission procedure. In 2013 and 2014, the admission pro-

cedure consisted of the administration of a literature-based curriculum-sampling test and two

skills tests: A math test and an English reading comprehension test. In 2015, a math test and

two curriculum-sampling tests (a literature-based test and a video-lecture test) were adminis-

tered. Administration time for each test was 45 minutes, with15-minute breaks in between.

Each test score was the sum of the number of items answered correctly. Applicants were

ranked based on a composite score with different weights for the individual tests in each co-

hort. The highest weight was always assigned to the literature-based curriculum-sampling test.

All applicants received feedback after a few weeks, including their scores on each test and their

rank. In addition, the lowest ranking applicants (20% in 2013 and 15% in 2014 and 2015)

received a phone call to discuss their results with an advice to rethink their application. How-

ever, the selection committee did not reject applicants because the number of applicants

Curriculum-sampling tests for admission to higher education
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willing to enroll did not exceed the number of available places. The applicants did not know

this beforehand, thus the applicants perceived the admission procedure as high stakes. The

study program and the procedure could be followed in English or in Dutch. Applicants to the

English program were mostly international students.

Curriculum-sampling tests. The literature-based curriculum-sampling test was used in

each cohort, and was designed to mimic the first-year course Introduction to Psychology. The

applicants were instructed to study two chapters of the book used in that course. The second

curriculum-sampling test, only administered in 2015, required applicants to watch a twenty-

minute video lecture on the topic Psychology and the Brain. A lecturer who taught a related

course in the first year provided the lecture. At the selection day, the applicants completed

multiple-choice exams about the material. The exams were similar to the exams administered

in the first year of the program and were designed by faculty members who taught in the first

year. The first curriculum-sampling test consisted of 40 items in 2013 and 2014, and of 39

items in 2015. The second curriculum-sampling test consisted of 25 items. The exams con-

sisted of different items each year. Cronbach’s alpha for each test is displayed in S1 Table.

Skills tests. The English test was included in the procedure because most of the study

material is in English, also in the Dutch-taught program, and the math test was included

because statistics courses are a substantial part of the program. The English test consisted of 20

multiple choice items on the meaning of different English texts. The math test consisted of 30

multiple choice items in 2013 and 2014, and 27 multiple choice items in 2015, testing high-

school level math knowledge. The applicants did not receive specific material to prepare for

these tests, but example items were provided for the math test. The tests consisted of different

items each year.

High school performance. High school grades of enrolled students who completed the

highest level of Dutch secondary education (pre-university education, in Dutch: vwo) were

collected through the university administration. The grades were not part of the admission

procedure. The mean high school grade (HSGPA) was the mean of the final grades in all high

school courses, except courses that only resulted in a pass/fail grade. For most courses, 50% of

the final course grade was based on a national final exam. The other 50% consisted of the

grades obtained in the last three years of secondary education.

Academic achievement. Outcomes on academic achievement were collected through the

university administration. For all cohorts, the grade on the first course, the mean grade

obtained in the first year (FYGPA, representing academic performance), the number of credits

obtained in the first year (representing study progress), and records of dropout in the first year

(representing retention) were obtained. For the 2013 cohort we also collected the mean grade

obtained after three years (TYGPA, representing academic performance) and bachelor degree

attainment after three years (representing study progress). The bachelor program can be com-

pleted in three years. All grades were on a scale of 1 to 10, with 10 being the highest grade and

a six or higher representing a pass. Mean grades were computed for each student using the

highest obtained grade for each course (including resits). Courses only resulting in a pass/fail

decision were not taken into account. Credit was granted after a course was passed; most

courses earned five credit points, with a maximum of 60 credits per year. The first and second

year courses were mostly the same for all students; the third year consisted largely of elective

courses. Since the skills tests were designed to predict performance in particular courses, we

also computed a composite for statistics courses (SGPA) and theoretical courses (all courses

that required studying literature and completing an exam about psychological theories;

TGPA) in the first year. The SGPA is the mean of the final grades on all statistics courses and

the TGPA is the mean final grades on courses about psychological theory. In addition, we also

obtained information on whether students chose to enroll after participating in the admission

Curriculum-sampling tests for admission to higher education
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procedure. Because we only used data available at the university, there were no manipulations

in this study, and no identifiable information was presented, informed consent was not

obtained. This was in line with the university’s privacy policy. This study was approved by and

in accordance with the rules of the Ethical Committee Psychology from the University of Gro-

ningen [35].

Applicants. The 2013 cohort (this is the same cohort used in Niessen et al.[4]) consisted

of 851 applicants, of whom 652 (77%) enrolled in the program, and 638 participated in at least

one course. For enrollees the mean age was 20 (SD = 2.0), 69% was female, 46% were Dutch,

42% were German, 9% had another European nationality, 3% had a non-European nationality,

and 57% followed the program in English. A high school GPA obtained at the highest level of

Dutch secondary education was available for 201 enrollees. Third year academic performance

was available for 492 students, the others dropped out of the program in the first or second

year. A high school GPA was available for 159 of these students.

The 2014 cohort consisted of 823 applicants, of whom 650 enrolled in the program (79%)

and 635 participated in at least one course. For the enrollees the mean age was 20 (SD = 2.1),

66% was female, 44% were Dutch, 46% were German, 7% had another European nationality,

3% had a non-European nationality, and 59% followed the program in English. The high

school GPA obtained at the highest level of Dutch secondary education was available for 217

enrollees.

The 2015 cohort consisted of 654 applicants, of whom 541 (83%) enrolled in the program,

and 531 participated in at least one course. For enrollees the mean age was 20 (SD = 2.0), 70%

was female, 43% were Dutch, 46% were German, 9% had another European nationality, 2%

had a non-European nationality, and 62% followed the program in English. The high school

GPA obtained at the highest level of Dutch secondary education was available for 188

enrollees.

Analyses. To assess the predictive validity of the curriculum-sampling tests, correlations

were computed for each cohort between the different predictor scores and FYGPA, obtained

credits in the first year, dropout, TYGPA, and degree attainment after three years. Because the

literature-based curriculum-sampling tests was designed to mimic the first course, and because

the first course was previously found to be a good predictor of subsequent first year perfor-

mance [4,10], correlations between the curriculum-sampling test scores and the first course

grade and correlations between the first course grade and subsequent first year performance

were also computed. For these analyses, results from the first course were excluded from the

FYGPA and the number of obtained credits. In addition, to compare the predictive validity of

the curriculum-sampling tests to the predictive validity of HSGPA, correlations between

HSGPA and the academic performance outcomes were also computed. In addition, the rela-

tionship between the admission test scores and enrollment was studied by computing point-

biserial correlations between the scores on the admission tests and enrollment. Low-ranking

applicants were contacted by phone and were encouraged to reconsider their application. To

further investigate the relationships between enrollment and the scores on the admission tests,

logistic regression analyses controlling for receiving a phone call were conducted in each

cohort, with the admission test scores as independent variables and enrollment as the depen-

dent variable. To ease interpretation of the odds ratios, the admission test scores were stan-

dardized first.

Corrections for range restriction. Although applicants were not rejected by the admis-

sion committee, indirect range restriction occurred due to self-selection through self-chosen

non-enrollment for first year results, and through dropout in earlier years of the program for

third year results, which may result in underestimation of operational validities. Therefore, the

individual correlations (r) were corrected for indirect range restriction (IRR) using the Case

Curriculum-sampling tests for admission to higher education
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IV method [36] resulting in an estimate of the true score correlation (ρ) corrected for unreli-

ability in the predictor and the criterion, and for IRR, and the operational validity (rc), only

corrected for IRR and unreliability in the criterion variable. Corrections for criterion unreli-

ability were only made for GPA criterion variables, and not for obtained credits and drop out.

The corrected correlations were computed using the selection package in R [37]. In the discus-

sion of the results we focus on the operational validities [38]. Statistical significance (α = .05)

of individual correlations was determined before corrections were applied. The correlations

were aggregated across cohorts when applicable (resulting in �r ; �r, and �rc).

Because the number of cohorts was small and the admission procedures and samples were

very similar, the validity estimates were aggregated (�r ; �r, and �rc) applying a fixed effects

model, using the metafor package in R [39]. It was not possible to correct the correlations

between first year academic results and HSGPA and the first course grade for IRR, since only

data of enrolled students were available for these variables. Therefore, these correlations were

only corrected for predictor- and criterion unreliability ð�rÞ, and for criterion unreliability ð�rcÞ.

For third year results, the correlations for the first course grade and high school GPA could be

corrected for range restriction due to dropout in earlier years. The reliability of the first course

grade was only known for the 2013 sample (α = .74) and was assumed constant across cohorts.

In addition, the incremental validity of the literature-based curriculum-sampling test over

HSGPA was studied based on the observed ð�rÞ and corrected ð�rcÞ aggregated correlations,

including an IRR correction on the correlation between HSGPA and the curriculum-sampling

test scores. We conducted these analyses using the full samples, and using only data from

students that had a high school GPA at the highest level of Dutch secondary education. Fur-

thermore, the skills tests (math and English reading comprehension) were included in the

admission procedure to predict performance in first year statistics courses and theoretical

courses, respectively. We studied the predictive validity for these courses by computing corre-

lations between the scores on the admission tests and the mean grade on these two types of

courses in the first year, and the incremental validity of the skills tests over the literature-based

curriculum-sampling test. The corrections and aggregation procedures described above were

also applied to these analyses.

Estimating GPA reliability. Reliability estimates for GPA variables were obtained in the

same way as described in Bacon and Bean [9]. First, we computed intraclass correlations

(ICC’s) between the grades that were used to compute each GPA variable, using the mean

squares resulting from ANOVA’s with grade as the DV and student as the IV. Next, the Spear-

man-Brown prophecy formula was applied to the ICC’s using the mean number of grades in

each GPA variable. The resulting reliability estimates are shown in S2 Table and were in line

with previous results on the reliability of college GPA [9,40]. The same procedure was used to

compute the reliability of high school GPA, shown in S1 Table.

Results

Short-term predictive validity. S1 and S2 Tables contain all descriptive statistics and S3

Table shows the observed correlations between the predictors and the first year academic out-

comes in each cohort. Table 1 shows the aggregated observed, true, and operational validities

of each predictor measure for the first year academic performance outcomes.

Curriculum samples as predictors. The validity of the literature-based curriculum-sam-

pling test was consistent across cohorts and the aggregated operational validity was high for

first year academic performance in terms of GPA ð�rc ¼ :56Þ and moderate for obtained credits

ð�rc ¼ :42Þ and for dropout in the first year ð�rc ¼ � :32Þ. The video-lecture test (only adminis-

tered in 2015) showed moderate predictive validity for FYGPA (rc = -.36) and obtained credits

Curriculum-sampling tests for admission to higher education
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(rc = .29), and a small negative correlation with dropout (rc = -.15). In the entire applicant sam-

ple, the correlation between the scores on both curriculum-sampling tests equaled r = .51. In

addition, the video-lecture test showed very small incremental validity for predicting FYGPA

over the literature-based curriculum-sampling test (ΔR2 = .01, R2 = .20, ΔF(1, 528) = 5.69, p =

.02, and based on the corrected correlations, ΔR2
c = .01, R2

c = .29).

Specific skills tests and grades as predictors. The operational validities of the math and

English skills tests were less consistent across cohorts (S3 Table) and the aggregated opera-

tional validities were moderate to small for all outcome measures. The data needed to check

for and, if needed, correct for range restriction in HSGPA were not available, so we only com-

puted correlations corrected for unreliability with the academic outcomes.

High school GPA showed high predictive validity for FYGPA ð�rc ¼ :50Þ, and moderate pre-

dictive validity for the obtained number of credits ð�r ¼ :28Þ and dropout ð�r ¼ � :20Þ. The

first course grade showed very high predictive validity for subsequent performance in the first

year, with �rc ¼ :76 for FYGPA, �r ¼ :61 for obtained credits, and �r ¼ � :43 for dropout. These

correlations were substantially higher than those for the literature-based curriculum-sampling

test, which was modeled after this first course. The literature-based curriculum-sampling test

showed an aggregated correlation with the first course grade of �r ¼ :49 (�rc ¼ :56 after correc-

tion for IRR).

Long-term predictive validity. Table 2 shows observed and corrected correlations

between the predictors and academic performance after three years (only studied for the 2013

cohort). The literature-based curriculum-sampling test showed a high operational validity of

rc = .57 for third year GPA, and a moderate operational validity of rc = .32 with bachelor’s de-

gree attainment in three years. The math skills test showed small validities (rc = .28 for TYGPA

and rc = .19 for TYBA), and the English test showed small validity for TYGPA of rc = .18, and

Table 1. Correlations between predictors and first year academic outcomes aggregated across cohorts.

Predictor FYGPA FYECT FY dropouta Enrollmenta

�r �ρ �r c �r �ρ �r c �r �ρ �r c �r �ρ

Cur. 1 .46

[.43,.50]

.63

[.58,.68]

.56

[.52,.61]

.36

[.32,.40]

.47

[.42,.52]

.42

[.37,.47]

-.27

[-.31,-.23]

-.36

[-.42,-.30]

-.32

[-.37,-.27]

.25

[.22,.29]

.29

[.24,.33]

Cur. 2b .29

[.21,.37]

.43

[.29,.51]

.36

[.25,.43]

.25

[.17,.33]

.35

[.24,.45]

.29

[.20,.38]

-.13

[-.21,-.05]

-.18

[-.29,-.07]

-.15

[-.25,-.06]

.18

[.11,.25]

.21

[.13,.30]

Math .25

[.21,.30]

.32

[.27,.38]

.28

[.23,.33]

.18

[.14,.22]

.21

[.16,.27]

.19

[.14,.23]

-.13

[-.17,-.08]

-.15

[-.21,-.10]

-.13

[-.18,-.09]

.09

[.05,.13]

.10

[.06,.15]

English .17

[.12,.23]

.26

[.18,.34]

.21

[.15,.27]

.12

[.07,.17]

.17

[.10,.24]

.13

[.08,.19]

-.10

[-.15,-.04]

-.13

[-.21,-.06]

-.11

[-.17,-.05]

.15

[.10,.20]

.19

[.31,.24]

HSGPAc .47

[.41,.53]

.60

[.53,.67]

.50

[.43,.57]

.28

[.20,.35]

.33

[.25,.41]

-.20

[-.27,-.12]

-.24

[-.32,-.16]

FCGc,d .72

[.69,.74]

.89

[.86,.92]

.76

[.74,.79]

.61

[.58,.64]

.70

[.68,.74]

-.43

[-.47,-.39]

-.51

[-.55,-.47]

Cur. 1 = curriculum-sampling test based on literature, Cur. 2 = curriculum-sampling test based on a video lecture, Math = math test, English = English reading

comprehension test, HSGPA = high school mean grade, FCG = first course grade, FYGPA = first year mean grade, FYECT = first year credits, FY dropout = first year

dropout, Enrollment = first year enrollment, �r = the aggregated correlation across cohorts, �r = the aggregated true score correlation (corrected for unreliability and

indirect range restriction), �r c = the aggregated operational correlation across cohorts (corrected for indirect range restriction).
a Point-biserial correlations.
b Based the 2015 cohort.
c These correlations could not be corrected for IRR, just for unreliability.
d For these correlations, results on the first course were not included in the calculation of FYGPA and credits. 95% confidence intervals are in brackets. All correlations

were statistically significant with p< .05.

https://doi.org/10.1371/journal.pone.0198746.t001
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small, non-significant validity for TYBA (rc = .06). High school GPA had a high correlation

with TYGPA of rc = .65 and a moderate correlation with TYBA of rc = .31. Lastly, the first

course grade on Introduction to Psychology obtained in the first year showed large correlations

with TYGPA (rc = .73) and with TYBA (rc = .48). Thus, the curriculum-sampling test scores,

high school GPA, and the first course grade were good predictors of academic performance

after three years of studying in the Psychology program.

Incremental validity. The incremental validity of the literature-based curriculum-sam-

pling tests over high school GPA was computed based on the aggregated correlations across

cohorts, both observed and operational. These analyses were conducted using data based on

the entire samples (Table 3), and on the subsets of applicants who had a high school GPA data

(S1 Appendix). The correlations between the curriculum-sampling test scores and academic

achievement were similar or slightly lower based on these subsets, compared to the results pre-

sented in Table 1 (see S1 Appendix). When the analyses were conducted for each cohort sepa-

rately (results not shown but available upon request), the incremental validity of the literature-

based curriculum-sampling test over HSGPA was statistically significant in each cohort and

for each criterion. The aggregated correlation between the curriculum-sampling test score and

high school GPA was �r ¼ :49 and �rc ¼ :55. The curriculum-sampling test showed a substan-

tial increase in explained variance over high school GPA for predicting FYGPA ðD�R2
c ¼ :12Þ,

Table 2. Correlations between predictors and third year academic outcomes.

Predictor TYGPA TYBAa

r ρ rc r P rc
Cur. 1 .38�

[.30,.45]

.64

[53,.72]

.57

[.47,.65]

.20�

[.11,.28]

.35

[.20,.48]

.32

[.18,.43]

Math .24�

[.16,.32]

.32

[.22,.43]

.28

[.19,.37]

.17�

[.08,.25]

.22

[.10,.32]

.19

[.09,.28]

English .17�

[.08,.25]

.21

[.10,.31]

.18

[.08,.26]

.06

[-.03,.15]

.07

[-.04,.18]

.06

[-.03,.15]

HSGPAb .61

[.50,.70]

.76

[.63,.87]

.65

[.54,.74]

.30�

[.15,.44]

.37

[.18,.53]

.31

[.16,.46]

FCGb .62

[.56,.67]

.85

[.80,.89]

.73

[.69,.77]

.37�

[.10,.47]

.56

[.46,.65]

.48

[.39,.56]

Cur. 1 = curriculum-sampling test based on literature, Math = math test, English = English reading comprehension test, HSGPA = high school mean grade, FCG = first

course grade, TYGPA = third year mean grade, TYBA = third year Bachelor’s degree attainment, r = uncorrected correlation, ρ = the aggregated true score correlation

(corrected for unreliability and indirect range restriction), rc = correlation corrected for indirect range restriction.
a Point-biserial correlations.
b These correlations were only corrected for IRR due to drop out after starting the program. 95% confidence intervals are in brackets.

� p< .05

https://doi.org/10.1371/journal.pone.0198746.t002

Table 3. Incremental validity of the literature-based curriculum-sampling test over high school GPA.

Data FYGPA FYECT TYGPAa

�R �R2 Δ�R2 �R �R2 Δ�R2 R R2 ΔR2

Observed .54 .29 .07 .37 .14 .07 .62 .38 .01

Corrected .60 .37 .12 .42 .18 .10 .70 .49 .06

FYGPA = first year mean grade, FYECT = first year credits, TYGPA = third year mean grade, �R = aggregated multiple correlation, �R2 = aggregated variance explained

based on HSGPA and the curriculum-sampling test scores, D�R2 = aggregated increase in explained variance based on curriculum-sampling test scores over HSGPA.

Observed = based on observed correlations, Corrected = based on operational correlations (corrected for IRR).
a Based on the 2013 cohort.

https://doi.org/10.1371/journal.pone.0198746.t003
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and for predicting the number of obtained credits ðD�R2
c ¼ :10Þ. Together, high school GPA

and the curriculum-sampling test scores explained a large percentage of the variance in FYGPA

ð�R2
c ¼ :37Þ and in obtained credits in the first year ð�R2

c ¼ :18Þ. For predicting TYGPA, the cur-

riculum-sampling test and high school GPA combined explained 49% of the variance, but the

incremental validity of the curriculum-sampling test over high school GPA was modest

ðD�R2
c ¼ :06Þ. The results based on the subsets of applicants with a high school GPA were simi-

lar, with slightly lower incremental validity over high school GPA for FYGPA and FYECT, and

slightly higher incremental validity over TYGPA (see S1 Appendix).

Specific course achievement. The predictive validity of the admission tests for specific

course achievement in the first year is shown in Table 4. The aggregated correlation between

the mean grade on the statistics courses (SGPA) and the mean grade on theoretical courses

(TGPA) was �r ¼ :66. As expected, the scores on the English test only showed a small correla-

tion with performance in the statistics courses ð�rc ¼ :16Þ. The curriculum-sampling tests and

the math test predicted performance in statistics course equally well (around �rc ¼ :50). Their

scores combined accounted for a large percentage of the variance in statistics GPA ð�Rc ¼ :38Þ,

with an incremental validity of the math test over the curriculum-sampling test of ðD�R2
c ¼

:12Þ. The curriculum-sampling tests were the strongest predictors of performance in theoreti-

cal courses, with �rc ¼ :57 for the literature-based test and �rc ¼ :33 for the video-lecture test.

The English test and the math test showed small correlations (�rc ¼ :20 and �rc ¼ :21) with the-

oretical course performance. The scores on the English test and the literature-based curricu-

lum-sampling test combined accounted for a large percentage of the variance in theoretical

GPA ð�Rc ¼ :33Þ and with an incremental validity of the English test over the curriculum-sam-

pling test of D�R2
c < :01. The results based on the observed, uncorrected correlations are

described in S2 Appendix.

Enrollment. The aggregated operational and true score correlations between the admis-

sion test scores and enrollment are shown in Table 1, and the observed correlations per cohort

are in S3 Table. The aggregated operational correlation between the scores on the literature-

based curriculum-sampling tests and enrollment was �r ¼ :25; for the video-lecture test this

was r = .18. The math test scores ð�r ¼ :09Þ and the English test scores ð�r ¼ :15Þ showed small

correlations with enrollment. So, the admission test scores showed small relationships with

enrollment, with the largest correlation for the literature-based curriculum-sampling test.

Table 4. Predictive validity for specific course achievement in the first year.

Predictor SGPA TGPA

�r �ρ �r c �r �ρ �r c
Cur. 1 .36

[.32,.40]

.57

[.50,.63]

.51

[.45,.57]

.46

[.43,.50]

.63

[.58,.68]

.57

[.52,.61]

Cur. 2a .33

[.25,.40]

.56

[.43,.66]

.47

[.36,.56]

.26

[.18,.34]

.39

[.27,.50]

.33

[.23,.43]

Math .37

[.33,.41]

.54

[.48,.60]

.47

[.42,.52]

.19

[.14,.23]

.24

[.18,.29]

.21

[.16,.26]

English .13

[.07,.18]

.20

[.11,.30]

.16

[.09,.24]

.17

[.12,.22]

.26

[.18,.33]

.20

[.14,.26]

Cur. 1 = curriculum-sampling test based on literature, Cur. 2 = curriculum-sampling test based on a video lecture, Math = math test, English = English reading

comprehension test, SGPA = statistics courses GPA, TGPA = theoretical courses GPA, �r = the aggregated correlation across cohorts, �r = the aggregated true score

correlation (corrected for unreliability and indirect range restriction), �rc = the aggregated operational correlation across cohorts (corrected for indirect range

restriction). 95% confidence intervals are in brackets.
a Based on the 2015 cohort. All correlations were statistically significant with p< .05.

https://doi.org/10.1371/journal.pone.0198746.t004
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To assess the relationship between the scores on the admission tests and enrollment further,

enrollment was regressed on the admission test scores, controlling for receiving a discouraging

phone call. To ease interpretation of the odds ratios, the admission test scores were standard-

ized first. The results of the logistic regression are shown in Table 5. In each cohort, the score

on the literature-based curriculum-sampling test was significantly related to enrollment, with

higher scores associated to higher odds for enrollment. With each standard deviation unit

increase in the test score, the odds of enrollment increased with eB = 1.33, eB = 2.04, and eB =

1.55 in 2013, 2014, and 2015, respectively. In the 2013 and 2014 cohorts, the curriculum-sam-

pling test score was the only significant predictor of enrollment. The video-based curriculum-

sampling test score and the math test score also showed statistically significant relationships

with enrollment in the 2015 cohort (eB = 1.34 and eB = 0.78). Notably, a higher score in the

math test was associated with lower odds of enrollment.

Discussion

The results showed that the predictive validity of the literature-based curriculum-sampling test

for first year academic achievement was consistent across cohorts, with high correlations with

FYGPA and moderate correlations with the number of obtained credits and dropout. These

results replicated the results obtained by Niessen et al. [4]. However, the validity of the curricu-

lum-sampling test was lower than the predictive validity of the grade in the course that it was

designed to mimic; this course grade showed very large correlations with later academic

achievement. In addition, the video-lecture based curriculum-sampling test showed moderate

predictive validity and little incremental validity over the literature-based test. Notably, the

operational predictive validity of the literature-based curriculum-sampling test for academic

performance after three years of bachelor courses was still high. The predictive validity of the

curriculum-sampling test was mostly comparable to or slightly higher than the predictive

validity of high school GPA; in comparison, high school GPA was a better predictor for third

year GPA. Furthermore, whereas the literature-based curriculum-sampling test scores and

high school GPA were strongly related, the unique explanatory power of the curriculum test

scores over high school GPA was substantial.

For the prediction of specific course achievement, our expectations were partially con-

firmed. The math test scores did not predict statistical course performance better than the cur-

riculum-sampling tests, but they did show some incremental validity over the curriculum-

sampling test. The English test scores did not add incremental validity over the curriculum-

Table 5. Logistic regression results for predicting enrollment based on admission test scores.

Variable 2013a 2014 2015

eB 95% CI Wald eB 95% CI Wald eB 95% CI Wald

Phone call 1.70 0.97, 2.99 3.38 1.09 0.59, 2.02 0.79 1.09 0.49, 2.42 0.04

Cur. 1 1.33 1.09, 1.63 7.67� 2.04 1.64, 2.53 40.83� 1.55 1.15, 2.07 8.42�

Cur. 2 1.34 1.05, 1.71 5.51�

Math 1.14 0.93, 1.40 1.67 1.04 0.84, 1.30 0.13 0.78 0.61, 0.98 4.43�

English 1.03 0.85, 1.24 0.06 1.11 0.91, 1.36 1.15

Model X2 46.44� 81.28� 39.10�

Cur. 1 = curriculum-sampling test based on literature, Cur. 2 = curriculum-sampling test based on a video lecture, Math = math test, English = English reading

comprehension test. eB = odds ratio.
a These results (using unstandardized data) were also shown in Niessen et al. [4]

� p< .05.

https://doi.org/10.1371/journal.pone.0198746.t005
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sampling test for predicting theoretical course performance. A possible explanation may be

that English reading comprehension was also implicitly assessed by the curriculum-sampling

test, as the material to be studied was in English. Finally, in the regression analyses, relation-

ships between test scores and enrollment decisions were only found for the curriculum-sam-

pling test scores, indicating that this relationship may be an advantage of representative

sample-based admission tests in particular.

Study 2: Construct saturation

Method

Participants and procedure. The sample consisted of 104 first year students who enrolled

in the Dutch-taught psychology program in 2015 and participated in the study as part of a

course on research methods, for which they had to participate in a number of studies of their

own choice. The participants were a little younger than the non-participants in this cohort (the

mean age was 19 and 20, respectively) and consisted of a similar percentage of females (71%

and 70%, respectively). All participants had a Dutch nationality. In addition, compared to the

non-participants, the participants scored slightly lower on the literature-based curriculum-

sampling test (t(539) = -2.16, p = .03, d = -0.22), slightly higher on the video lecture-based cur-

riculum-sampling test (t(539) = 2.73, p< .01, d = 0.32), and there were no significant differences

in FYGPA (t(529) = 0.60, p = .55, d = 0.08).

The data were collected in two sessions scheduled three days apart. In the first session, par-

ticipants completed self-report questionnaires about their personality, procrastination tenden-

cies, study skills, and study habits. In the second session they completed a cognitive ability test

that took about an hour to complete. All measures were administered on a computer in the

Dutch language. Both sessions were proctored and took place in a research lab at the univer-

sity, with several participants completing the measures simultaneously. The participants

received their scores on the cognitive test immediately after completion to encourage effortful

participation. All participants provided written informed consent and provided permission to

link the data to their admission test scores and academic performance. This study was

approved by and in accordance with the rules of the Ethical Committee Psychology from the

University of Groningen [35]. Participation took place between October 2015 and April 2016.

Cognitive ability. Cognitive ability was measured by the Q1000 Capaciteiten Hoog (in

Dutch [41]), developed for personnel selection and career development purposes for adults

who followed upper higher education. The test consisted of seven subscales across three

domains: Analogies, syllogisms, and vocabulary for the verbal domain; digit series and sums

for the numerical domain; and matrices and cubes for the figural domain. The test also yields a

higher-order general cognitive ability score consisting of a combination of the three domain

scores. The test showed convergent validity with other measures of cognitive ability (the Dutch

version of the General Aptitude Test Battery and Raven’s Progressive Matrices [41]), and the

Dutch Committee on Tests and Testing Affairs (Dutch: COTAN) evaluated the reliability and

construct validity of the test as sufficient [42]. The proportion of items answered correctly per

scale was used to compute the scale scores, which were averaged across scales to obtain the

total score representing general cognitive ability. These scores were converted to a scale of 0 to

10 for convenience. The estimated reliability of the full test score was α = .87, which was simi-

lar to the reliability reported in the test manual [41].

Conscientiousness. Conscientiousness was measured using the Dutch version of the Big

Five Inventory (BFI; [43]). The entire BFI was administered, but the other scale scores were not

used in this study. The conscientiousness scale of the BFI consisted of nine items answered on a

five-point Likert scale (1 = strongly disagree through 5 = strongly agree), and Cronbach’s α = .86.
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Procrastination. Lay’s Procrastination Scale [44] was used to measure procrastination

tendencies. This scale consisted of 20 Likert items answered on a five-point Likert-scale

(1 = never through 5 = all of the time) with Cronbach’s α = .84.

Study skills and study habits. The Study Management and Academic Results Test

(SMART [45]) consisted of four scales measuring study-related cognitions (academic compe-

tence and test competence), and study management skills (time management and strategic

studying). Academic competence was defined as being able to understand the study material

and enjoying studying the material; test competence was defined as being able to separate

essentials from details, managing the amount of study material, coping with tensions, and pre-

paring for examinations; time management was defined as the ability to plan study time and

combine studying with leisure activities; and strategic studying was defined as utilizing strate-

gies such as summarizing and testing one’s own knowledge and deliberating how to approach

the study material. The SMART contained 29 items, with four to six items per subscale. All

items were answered on a four-point Likert scale (1 = almost never through 4 = nearly always).

The scales yielded estimated reliabilities of αacademic competence = .69, αtest competence = .76,

αtime management = .82, and αstrategic studying = .66.

Analyses. First, we computed observed correlations and correlations corrected for unreli-

ability in the criterion and the predictors, between the curriculum-sampling test scores and

scores on the cognitive and noncognitive measures. Corrections for range restriction could

not be applied because the necessary information was not available for the explanatory vari-

ables. We expected that the curriculum-sampling tests were saturated with cognitive- and non-

cognitive constructs, because these constructs also predict academic performance. To check

our assumptions about the relationships between the explanatory variables and academic per-

formance, the same analyses were conducted with FYGPA as the dependent variable. The esti-

mate of the reliability of FYGPA in 2015 from Study 1 (see S2 Table) was used in the

corrections. Second, we conducted multiple regression analyses with the cognitive and non-

cognitive predictors described above as independent variables and each of the curriculum-

sampling test scores and FYGPA as dependent variables. The SetCor function in the psych R

package [46] was used to conduct regression analyses based on the correlation matrices cor-

rected for unreliability.

Results

Descriptive statistics for all variables are in S4 Table. Table 6 shows the correlations between

the variables and the multiple regression results after correcting the correlations for unreliabil-

ity. We will focus on the results after correcting for unreliability, because we were interested in

the theoretical relationships between the variables. The results based on the uncorrected corre-

lations are shown in S5 Table. The variance inflation factors (VIF) were all smaller than 4, (the

largest VIF before correction was 2.04, and 3.66 after correction, both for the time manage-

ment variable). Although this value indicates that there were no serious problems with multi-

collinearity [47] and we adopted a conservative rule of thumb (10 is another often-used

threshold, e.g., [48]), some of the results do suggest multicollinearity problems, as we discuss

below. This makes some of the results difficult to interpret.

In the model with the literature-based curriculum-sampling test as the dependent variable,

cognitive ability was not a statistically significant predictor, and the zero-order correlation was

also small and not statistically significant. Only conscientiousness, test competence, and time

management were significant predictors of the literature-based curriculum-sampling test

score in the regression model. However, the independent variables did explain a substantial

proportion of the variance in the curriculum-sampling tests scores (ΔR2
c = .38), and the
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regression coefficient for the time management score was negative, which contradicts theoreti-

cal expectations and the zero-order correlation. These somewhat contradictory results are

signs of multicollinearity problems [49]. The model with the video-based curriculum-sampling

test scores as the dependent variable showed similar results.

For the model with FYGPA as the dependent variable there was also no statistically signifi-

cant relationship with the cognitive ability scores. The zero-order correlations for the noncog-

nitive independent variables were all statistically significant and in the expected direction, with

conscientiousness and time management as significant predictors in the regression model.

Again, procrastination and academic competence switched signs as compared to theoretical

expectations and the zero-order correlations. So, the zero-order correlations confirmed our

theoretical expectations, but the regression results, again, indicated problems with multicolli-

nearity, which makes them difficult to interpret.

Discussion

We hypothesized that, similar to academic achievement, the curriculum-sampling test scores

were multifaceted compound measures, saturated with cognitive ability and several noncogni-

tive constructs [22,26]. Contrary to our expectations, the scores on the curriculum-sampling

tests and first year GPA were not significantly related to cognitive ability as measured by the

Q1000 test. One explanation may be restriction in range in the cognitive scores: The students

in our sample were a selective group compared to the general population [50]. Another expla-

nation may be that the participants did not put maximum effort in completing the cognitive

test because the test was administered low-stakes, which could have impacted the validity of

the test scores [51].

We did not find consistent results for the relationships between most noncognitive scale

scores and the curriculum-sampling test scores. The unexpected switch of signs for some

Table 6. Construct saturation multiple regression results based on correlations corrected for unreliability.

Variables Dependent variable

Cur. 1 Cur. 2 FYGPA

rc β/R2 rc β/R2 rc β/R2

Cognitive ability .11

[-.08,.30]

.15

(.09)

.10

[-.09,.29]

.17

(.10)

-.13

[-.31,.06]

.01

(.09)

Conscientiousness .09

[-.10,.27]

.32�

(.14)

.18

[-.01,.36]

.58�

(.16)

.44�

[.27,.58]

.50�

(.15)

Procrastination -.01

[-.20,.18]

.07

(.15)

.03

[-.16,.22]

.31

(.16)

-.32�

[-.48,-.14]

.28

(.15)

Academic competence .24�

[.05,.41]

-.28

(.15)

.15

[-.04,.33]

-.08

(.17)

.36�

[.18,.52]

-.22

(.16)

Test competence .49�

[.33,.62]

.92�

(.14)

.21�

[.02,.39]

.47�

(.15)

.38�

[.20,.53]

.26

(.14)

Time management .12

[-.07,.31]

-.41�

(.15)

-.02

[-.21,.17]

-.39�

(.17)

.48�

[.32,.62]

.36�

(.16)

Strategic studying .10

[-.09,.29]

.07

(.10)

.08

[-.11,.27]

.09

(.11)

.33�

[.15,.49]

.06

(.10)

Model R2 (adj. R2) .38�

(.33)

.23�

(.17)

.34�

(.29)

Cur. 1 = curriculum-sampling test based on literature, Cur. 2 = curriculum-sampling test based on a video lecture, FYGPA = first year mean grade. 95% CI’s are

between brackets.

� p< .05

https://doi.org/10.1371/journal.pone.0198746.t006
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regression coefficients, and the few statistically significant predictors in the models paired with

the relatively high explained variance are indicative of problems with multicollinearity [49],

and make it difficult to draw conclusions based on the results. However, the results did indi-

cate a relationship between test competence and the scores on both curriculum-sampling tests.

So, we cautiously conclude that there does seem to be some noncognitive saturation in the cur-

riculum-sampling tests, especially of test competence, but the results on the explanatory power

of the rest of the noncognitive variables were inconclusive.

General discussion

The central question in this study was: Do curriculum-sampling test scores predict later aca-

demic achievement, and what do they measure in terms of cognitive and noncognitive con-

structs? The results of the first study showed that the literature-based curriculum-sampling

test was a good predictor for short-term and long-term academic achievement. These results

were consistent across cohorts and provided an important extension of earlier findings [4].

An interesting and quite remarkable result was that the literature-based curriculum sample

test, which is a simple 40-item multiple-choice test, yielded equally good or somewhat better

predictions of first year academic achievement than high school GPA (they predicted FYGPA

about equally well, but the curriculum-sampling tests was a slightly better predictor for prog-

ress and retention in the first year). High school GPA is commonly considered to be the best

predictor of academic performance in higher education [11–14] and is a very rich summary

measure, containing grades on thoroughly developed national final exams and on secondary

school exam performance aggregated over the last three years of high school. Furthermore, the

literature-based curriculum-sampling test showed substantial incremental validity over high-

school GPA, and a combination of the two explained 37% of the variance in first year GPA

and 49% of the variance in third year GPA. In addition, the relationship between the curricu-

lum-sampling test scores and enrollment decisions indicated that curriculum sampling may

encourage self-selection and thus may help applicants to gain insight into their fit to the aca-

demic program, which can be a considerable advantage.

Curriculum samples and subject tests

A video-lecture test may have the advantage that the study material is presented in a vivid and

attractive format. However, this test explained very little unique variance in addition to the lit-

erature-based tests and showed lower predictive validity. In contrast, assessing math skills to

predict performance in statistics courses added to the prediction of performance in those

courses over the curriculum-sampling test scores. This confirms that assessing specific skills

that are needed for distinct components of the curriculum can add to the prediction of perfor-

mance in those specific components. These findings are in agreement with the content-match-

ing approach of predictors and outcomes [16], including previous findings that scores on the

GRE subject tests and other domain-specific graduate school admission tests such as the Medi-

cal College Admission Test and the Maths Admission Test, that are more proximal to actual

graduate school requirements, were better predictors for graduate school performance than

scores on more ‘distal’ tests such as the GRE verbal, quantitative, and analytical tests [17,32].

Similar findings have been reported for the SAT subject tests as compared to SAT I scores [52–

54]. However, in these studies, the domain of the subject test was usually not matched to the

study domain or major, so we cannot conclude whether these results can also be explained by

content-matching. A distinction between subject tests or skills tests and the curriculum sam-

pling approach is that the former aim to assess current knowledge and achievement, while

curriculum samples do not; SAT subject tests assess knowledge on high school-level, while
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curriculum samples require preparation using college-level material. This may or may not

matter much in terms of predictive validity, but requiring preparation and assessment on the

college level matched to college programs students are applying to, can have benefits when it

comes to self-selection and face validity [55]. In addition, for many undergraduate programs,

there are no matching high school courses on the basis of which prior achievement can be

assessed. That is the case for many theory-oriented programs, but especially applies in the con-

text of assessing nonacademic skills such as communication skills for medical school (e.g.,

[56]) or practical skills in vocational education. Note that in these cases, specific skills can also

be measured using a samples approach. In future research, it would be interesting to investi-

gate if a samples approach to measuring specific skills would increase their predictive validity.

Construct saturation

The aim of the second study was to investigate the cognitive and noncognitive construct satu-

ration of the curriculum-sampling tests, in order to explain their predictive validity through

possible underlying mechanisms. The results did not completely coincide with our expecta-

tions. We did not find relationships between the cognitive ability test scores and the two cur-

riculum-sampling tests scores or first year GPA. On the one hand, this was a surprising

finding given the large body of literature that shows a relationship between cognitive abilities

and academic performance [32,33], and given the rather obvious cognitive nature of the cur-

riculum-sampling tests. On the other hand, our results are in line with findings based on

restricted samples (e.g.,[57]), and with the observation that correlations between cognitive

ability and educational achievement tend to decline in every subsequent educational phase due

to ongoing selectivity in the educational careers of students [50,58]. In the Netherlands, stu-

dents are selected for different levels of secondary education around age 12, largely based on a

strongly cognitively-loaded test [59]. This degree of early selection restricts the relation

between cognitive ability and educational achievement measured in later years (e.g., [60,61]),

although small positive relationships between cognitive ability and academic achievement

were found in Dutch student samples in earlier studies (e.g., [10,62]). Although our results are

based on a relatively small sample and we are, therefore, cautious to draw firm conclusions,

our results corresponded to other recent publications that showed that it can be difficult to dis-

criminate between applicants to higher education based on tests of general cognitive skills in

restricted or homogeneous samples (e.g., [57]).

Whereas FYGPA was related to and saturated with the noncognitive variables according to

expectations based on previous studies [28,34], the relation between curriculum-sampling test

scores and the noncognitive variables was not straightforward. Our findings showed that there

was some noncognitive saturation in curriculum-sampling tests, mostly for conscientiousness

and test competence scores. Thus, this may indicate that the predictive validity of curriculum-

sampling tests may partly be explained by its saturation with the competence to prepare for

examinations, separating essentials from details, managing the amount of study material, and

coping with tensions, which are important learning skills [28,34]. Furthermore, the same ratio-

nale applies to the high and robust predictive validity of high school GPA, which can be

explained by its multifaceted nature including both cognitive abilities, personality traits, and

study skills [63–65].

Limitations

A first limitation of this study was that the data in each cohort were collected within a single

academic program at a single university. Hence, the results do not necessarily generalize to

other academic disciplines or to programs focused less on theoretical knowledge and more on
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practical skills. Future research may extend our study to different programs where different skills

may be important, such as communication skills or ethical reasoning (e.g., [66]). A second limi-

tation was that we could not correct for range restriction in calculating the validity of high school

GPA, which could lead to an underestimation of their validity. However, since high school GPA

was not part of the admission procedure, we expect that the effect of range restriction is small. In

addition, the case IV method to correct for indirect range restriction [36] can result in over- or

underestimation of the operational validity, although it yields the most accurate estimate of oper-

ational correlations compared to other correction methods [67]. Also, we did not differentiate

between student who followed the program in English or in Dutch. Investigating possible differ-

ential validity for these groups would be an interesting topic for a future study.

Furthermore, we cannot conclude that the positive relationships between the curriculum-

sampling test scores and enrollment were caused by the experience of studying for or taking

the tests, or by obtaining low scores on the tests. In future studies, a measure of enrollment

intentions may be included before the admission tests are administered. In addition, the possi-

bility to promote self-selection through curriculum sampling may also be used in procedures

aimed at placement decisions or advising on student-program-fit. In future research it may be

investigated whether the predictive validity of curriculum-sampling tests generalizes to lower-

stakes procedures.

In study 2, the sample was not entirely representative for the cohort in terms of admission

test scores, although the differences were small. A possible explanation for the lower noncogni-

tive saturation of the curriculum-sampling tests as compared to first year GPA is that the cur-

riculum samples were not representative enough for first year courses, which may require

more prolonged effort. This is supported by the finding that the grade on the first course in the

program was a much better predictor of short-term and long-term academic performance

than the scores on the curriculum-sampling tests. Whereas the literature-based curriculum-

sampling test mimicked that course, the course required studying an entire book, while the

curriculum-sampling test only required studying two chapters. A more comprehensive curric-

ulum sample may be more saturated with constructs related to effortful behavior.

Conclusions

From existing research we know that high school GPA is a good predictor of future academic

performance in higher education and is arguably the most efficient measure to use for admis-

sion decisions. In the present study we showed that the literature-based curriculum-sampling

tests mostly showed similar or slightly higher predictive validity than high school GPA for

first-year academic outcomes, and similar or slightly lower predictive validity for third year

academic outcomes. In addition, this curriculum-sampling test showed incremental validity

over high school GPA. The hypothesized cognitive- and noncognitive saturation of curriculum

samples is often used to explain their high predictive validity. However, our results were diffi-

cult to interpret and only showed some noncognitive saturation. Further research is needed to

be able to draw conclusions on the construct saturation of curriculum-sampling tests. One

caveat of curriculum samples is that the tests should have an acceptable psychometric quality

and that extra resources are needed to construct and administer the tests. However, in the for-

mat adopted in this study, constructing and administering the tests took relatively little time

and effort, and the reliability was sufficient. A final advantage is that curriculum sampling is

perceived as a favorable admission method, whereas applicants disliked the use of high school

GPA in admission procedures [55]. So, in cases where using high school GPA is not feasible,

or when self-selection or applicant perceptions are of major interest, curriculum-sampling

tests may be preferred over, or may be used in addition to high school GPA.
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