
 

 

 University of Groningen

Low-power Appliance Recognition using Recurrent Neural Networks
Rizky Pratama, Azkario; Simanjuntak, Frans Juanda; Lazovik, Aliaksandr; Aiello, Marco

Published in:
Frontiers in AI and Applications (FAIA)

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Rizky Pratama, A., Simanjuntak, F. J., Lazovik, A., & Aiello, M. (2018). Low-power Appliance Recognition
using Recurrent Neural Networks. In Frontiers in AI and Applications (FAIA)

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-02-2023

https://research.rug.nl/en/publications/5f2b0f02-b392-49f1-acbf-6fbbec7bdeb8


Low-power Appliance Recognition using
Recurrent Neural Networks

Azkario R. Pratama a,1, Frans J. Simanjuntak b, Alexander Lazovik a and Marco Aiello a

a Distributed Systems Group, Johann Bernoulli Institute for Mathematics and Computer
Science, University of Groningen, The Netherlands

b Master Student in Computing Science, Faculty of Science and Engineering, University
of Groningen, The Netherlands

Abstract. Indoor energy consumption can be understood by breaking overall power
consumption down into individual components and appliance activations. The clas-
sification of components of energy usage is known as load disaggregation or ap-
pliance recognition. Most of the previous efforts address the separation of devices
with high energy demands. In many contexts though, such as an office, the devices
to separate are numerous, heterogeneous, and have low consumptions. The disag-
gregation problem becomes then more challenging and, at the same time, crucial
for understanding the user context. In fact, from the disaggregation one can deduce
the number of people in an office room, their activities, and current energy needs.
In this paper, we review the characteristics of office appliances load disaggregation
efforts. We then illustrate a proposal for a classification model based on Recur-
rent Neural Network (RNN). RNN is used to infer device activation from aggre-
gated energy consumptions. The approach shows promising results in recognizing
14 classes of 5 different devices being operated in our office, reaching 99.4% of
Cohen’s Kappa measure.

Keywords. Appliance recognition, Load disaggregation, Deep neural network,
Energy smart systems, Smart building

1. Introduction

The trend of electricity consumption monitoring has been shifting from the analog power
meter to the digital one [1]. It then becomes easy to collect vast amounts of power con-
sumption data and mine it to get better context insight into user behaviors, especially
indoors. Most power meters which have been installed in buildings measure composite
loads of devices at a single point of measurement, such as in a circuit breaker of a room,
of a building floor, or even of on entire department building. Therefore, mining an aggre-
gated power consumption is more realistic and challenging than mining per-device data.
Extracting meaningful information from an aggregated data can be beneficial in cases
such as: 1) breaking down the energy load per-appliance for giving insight to the build-
ing administrator of energy expense, consumption pattern, and thus potential energy sav-
ing; or 2) providing enriched contexts to a smart system to adapt the building behavior
accordingly and, hence, satisfying predetermined building managers’ goals.

1Corresponding Author: a.r.pratama@rug.nl



Previous works have shown successful recovery rates in identifying individual power
consumptions from a composite load measured in a single point of measurement, e.g.,
[2,3,4]. However, the scope of these works mainly covers energy hungry devices in
residential buildings, such as microwave ovens, fridges, front load washers, and heat
pumps [2]. The electricity consumption is relatively easily separable in these cases (e.g.,
consuming different amounts of power, having regular temporal patterns, and different
power consumption behavior due to various composing circuits). In the office setting,
one cannot make use of these characteristics. Of the three types of electrical appliances,
i.e., resistive, inductive, and capacitive [3], typical office appliances (e.g., monitor, CPU,
beamer, laptop charger) fall into the same class, which is capacitive. Moreover, the of-
fice appliance consumption is relatively low compared to the residential appliances, for
example, 14 Watts of power consumption for a 22 inch monitor screen compared to 80
Watts an hour for a home television. This rises of the complexity of disaggregation due
to oscillations and masked low-power consumptions [5].

Despite these difficulties, we focus on monitoring an office. The reason is that the
related loads contribute for more than 70% of the baseline electricity load, even though
the individual loads consume low amounts of power [6]. We provide an analysis of appli-
ance profiling in terms of cosphi, current, active-, reactive-, and apparent-power from a
real measurement of office space equipment at the University of Groningen, The Nether-
lands. Furthermore, we explore the use of deep learning techniques, namely Recurrent
Neural Network (RNN) in this context, due to its effectiveness in sequence modeling.

The key contributions of the present work can be summarized as follows: 1) Identi-
fying the behavior of low-power appliances commonly present in offices; and 2) Present-
ing the implementation of Recurrent Neural Network to recognize active devices from
a single point of measurement. The paper organization is as follows. We briefly intro-
duce the typical type of office appliances and our recognition design in Section 2. The
experimental setup and metrics are presented in Section 3. We report results and discus-
sion in Section 4. Related works and concluding remarks are presented in Section 5 and
Section 6, respectively.

2. Design and Implementation

To get a better understanding of devices’ behavior, we analyze the typical types of ap-
pliances in terms of their power consumption. We thus discuss our effort to use machine
learning algorithms in classifying appliance activation.

2.1. Appliance Profiling

According to their inner circuit, devices can be classified into three types, i.e., resistive,
capacitive, and inductive [3]. A purely resistive device is the one that has the current
waveform in the same phase as the voltage, such as an incandescent lamp or a heater. As
for the capacitive and inductive devices, the inductor and capacitor components shift the
current wave with respect to the voltage wave. The shifting can be leading (for capacitive
loads) or lagging (for inductive loads). This shape can be observed through the active and
reactive power components, as if voltage and current are shifted, the power transferred to
the appliance is lower than when no shifts occur. Those appliances with motors such as



pumps, generators, and washing machines are inductive loads; those with capacitors used
in their circuits, such as laptops and TVs, are capacitive loads. The relation of active-
and apparent-power is measured as power factor PF , shown in Equation 1. The closer
the value to one, the more pure (resistive) the devices is.

PowerFactorPF =
ActivePower(P)

ApparentPower(S)
= cos(φ) (1)

Even though there are three types of common appliances, it does not mean that those
devices that fall in the same category have the same characteristic. For example, capaci-
tive devices may shift current wave with respect to voltage wave, but the degree of shift-
ing might be different and thus could be the indication of a pattern. Moreover, if we com-
bine different appliance loads measured at one point, we will form a combination load
constructed from the interaction of individual loads that can be either strengthening or
canceling out one another. For instance, the typical appliances in an office are a desktop
PC and monitors. The characteristic of the measured power does not always follow the
nature of the components. Hence, if the aforementioned appliances are activated at the
same time, it is hard to predict the effect on the electric footprints. Appliance profiling
provides prior insight of how the actual power consumption is drawn before dealing with
device classification.

2.2. Appliance Recognition

We address the recognition problem by applying a supervised pattern recognition tech-
nique. The observation of devices’ signatures is done through an instantaneous snap-
shot taken at any fixed interval or time windows, instead of capturing the switching
ON/OFF state [7]. The reason is that the switching states of the low-power device are
easily masked by the ripple or oscillation of the power consumption of operating devices,
thus negatively affecting systems’ robustness [8].

For each time interval, we capture several power-related signatures using a power
meter, namely active-, reactive-, and apparent-power, power factor, and current. These
signatures are described as follows.

Active Power (P), Watt, the actual amount of power being used;
Reactive power (Q), Volt-Amps-Reactive, the dissipated power resulting from induc-

tive and capacitive loads;
Apparent power (S), Volt-Amps, the product of the root-mean-square voltage and the

root-mean-square current;
Power factor or cosphi, percentage, representing the ratio of the real power flowing to

a load divided by the apparent power; and
Current, in Ampere, the electron flow in an electrical conductor.

We experiment with three feature combinations to compare recognition performance
based on various measurements, as shown in Table 1. The first combination consists of
active- and reactive-power, as proposed by Hart et al. [9]. The second set includes active
power, current, and cosphi. In the last feature set, we use five components measured by
the power meter.



Table 1. Feature sets in the experiment

Feature Set Signatures

FS-1 Active- and reactive-power
FS-2 Active power, current, and cosphi
FS-3 Active-, reactive-, and apparent-power, current, and cosphi

Further, we select a pattern recognition approach to infer the most likely class given
the signature sequences. We choose Recurrent Neural Network (RNN) as it benefits in
operating over sequences of vectors [10]. RNN is a type of neural network that takes the
previous output as the next input value in a sequence. The intuition behind the chosen
technique is that the activity of office related devices is relatively stable, i.e., once a
monitor and CPU are being used, most likely they will remain in the same state for
hours. Hence, we aim at discovering whether giving a notion of order in time provides
better insight than only supplying one single point of measurement to the classifier. We
utilize LSTM (Long Short-Term Memory) to deal with the vanishing gradient problem.
That is, the problem that arises when data is flattened due to passing hidden layers (e.g.,
applying a logistic sigmoid function) multiple times. LSTM is a technique that is useful
in deciding when to forget or keep the current input for the future output.

We design an RNN architecture such that we can input a sequence (e.g., 60 data
points during 5 minutes) of n-dimensional features to the model. The taken sequences
are from non-overlapped moving windows, as performance is better than the overlapping
windows, according to our experiments [11]. For each sequence, we expect a class label
to be learned or classified. We feed 20 mini-batches of the sequences in an iteration to
reduce the number of looping needed to complete one epoch, thus, speeding up the learn-
ing process. We apply either one or two LSTM layers (we refer to LSTM or LSTM*,
respectively, in the rest of this paper) stacked in the hidden layer of the network. Each
LSTM layer consists of ht hidden states, where ht = 20. The reason of the chosen archi-
tectures is that the layer size is not more important than the layer depth [12], hence we
stick in the fixed size of ht and change the level of the hidden layer. We apply Adam op-
timizer [13] and determine the learning rate of 0.001 to optimize a cost function during
iteration. The cost function is based on cross entropy [14].

We need to determine the number of epochs to be completed to make sure that
the model has learned sufficiently without memorizing the training data (overfitting). To
do so, we implement the early stopping strategy. We evaluate the model performance
on a validation set and save the best model snapshot when it outperforms the previous
best winner. We terminate the training when the network is not improving after the i-th
epoch, where i = 100 when the maximum number of epochs is 400, and i = 50 when the
maximum is set to 200.

To evaluate the RNN approach, we also consider k-NN (with k = 7) [15] and Sup-
port Vector Mechine (SVM) with linear- and polynomial-kernel [16] as a comparison.
We consider k-NN as this is one of the simplest techniques. It works by assigning a label
based on the highest votes of the nearest samples into a query. SVM is a widely used tech-
nique for classification due to its ability to generate nonlinear decision boundary. It was
initially designed for binary classification problems. The multi-class problem is solved
by combining several binary classifiers (i.e., ’one-against-one’ approach) [17]. Both k-



Table 2. List of used devices

Id Device Rated power

1 Monitor 22’ brand Iiyama 21 W (max)
2 Monitor 22’ brand Philips 15.43 W (normal)
3 CPU brand HP Z230 400 W PSU
4 Laptop charger MacBook Pro 60W
5 Heater Philips 2000 W (max)

NN and SVM are designed to classify on the basis of one single point of measurement,
instead of giving a sequence of data as input.

3. Experiment

We monitor office appliances in a workspace at the University of Groningen, The Nether-
lands, during several weeks between June 2017 and February 2018, that is in more sea-
sons. The goal of the experiment is to evaluate the performance of Recurrent Neural
Networks to recognize active devices from a single point measurement.

3.1. Setup

We consider several office-related appliances, listed in Table 2. The rated power informa-
tion listed in the table is given by the manufacturer. For some devices (e.g., CPU), there
is insufficient information about the averaged power consumption, as it indeed depends
on the actual operation. Therefore, we provide the capacity of Power Supply Unit (PSU)
as an indication of the maximum power that can be drawn by the PC.

The appliances are connected to room electrical sockets that supply electricity from
a central electric network of the building. We attach a measurement kit consisting of a
power meter node and a clip. The clip is clamped on the main line to measure the total
power consumed by the appliances. For simplicity in deployment, the kit can be placed
in the fuse box that is commonly installed in particular area (e.g., in a room or zone).

We use Smappee2 energy monitor device to collect the data. To collect denser data
(i.e. in 5 seconds interval), we use a local hub library3 and build our gateway to receive
and store data from the sensor node. We refer to [18] for the data flow diagram coming
from sensors (i.e., power meter) to an integrated server for further process.

We collected 92,580 data points (about 128.6 hours) from 14 classes, consisting of
both individual appliances (i.e., laptop, CPU, monitor-1, monitor-2, and electric heater)
and some combinations of these devices. The raw data is normalized to the scale between
0 and 1, depending on the minimum and maximum value of each feature. We utilize
k-fold cross-validation, with k = 5, to assess model generalization to the dataset. It is
worth noting that as we analyze sequence data using RNN, we randomly partition the
data based on the group of data points during 5 minutes interval.

2https://www.smappee.com/nl/home
3https://github.com/NMichas/smappee-local-mqtt



3.2. Metrics

In order to evaluate the classification, we provide total accuracy and confusion matrix
to give better insight of classification performance per-class. We also consider Cohen’s
Kappa measure [19] to eliminate the accuracy bias due to imbalanced class distribution.

Accuracy defines the number of windows with correctly-predicted label divided by the

total number of classifications made, i.e., totalAccuracy=
correctlypredictedclass

N
,

where N is the total number of windows being classified.
Cohen’s Kappa measures the agreement between accuracy of the system to the accu-

racy of a random system, as shown in Equation 2. The total accuracy is an ob-
servational probability of agreement while the random accuracy is a hypothetical
expected probability of agreement under an appropriate set of baseline constraints
[19].

kappa =
totalAccuracy− randomAccuracy(RA)

1−RA
(2)

where RA is the sum of the products of reference likelihood and result likelihood
for each class. Mathematically,

randomAccuracy =
∑
c∈C

actualclassc ∗ predictedclassc

N2

4. Results and Discussion

4.1. Appliance profiling

The properties of five different devices is shown in Table 3. As for the individual devices,
the electric heater consumes the highest active power, up to 1,015 Watt. For the other
office-related devices, they consume less than 30 Watt on average. In spite of the highest
power consumption, the heater draws the lowest reactive power among the others, about
15.8 VAR, giving a very high cosphi percentage, 99.0%. Monitor-1 and monitor-2 have
one-third active power difference, but their cosphi percentages are comparable, reaching
about 58%. The laptop draws 48.7% cosphi value and is the lowest cosphi percentage
among the individual appliances. The laptop and CPU are the most fluctuating loads,
as shown by a high standard deviation value, up to 4.94 Watt, of their averaged power
consumption, i.e., 20 and 29.6 Watts, respectively.

As for composite loads, when we combine CPU with monitors (either monitor-1,
2, or both), the cosphi value will be slightly higher than CPU’s cosphi itself, ranging
between 72-74% on average. Interestingly, when we add one more device, such as a
heater or a laptop charger, the cosphi value can either increase or decrease, reaching 99%
and 68.9%, respectively. By adding both devices, the cosphi reaches about 98.98%.

While the cosphi values do not follow the additive criterion, the active power values
do. That is, the total power (in Watt) is the sum of the power consumption of its unified
devices. For example, two monitors and a CPU in total consume an average power of



Table 3. Device consumption properties

Devices Id Apparent (S) Reactive (Q) Active (P) Current (I) Cosphi Volt

Laptop 10 39.9944 34.4420 20.3187 0.1690 48.7352 235.9286
std. 8.7177 7.2080 4.9454 0.0370 2.2287 0.5990

CPU 1 42.6769 30.6346 29.6370 0.1826 67.5016 233.0149
std. 4.7489 1.7105 4.9080 0.0203 3.7528 1.4248

Mon-1 2 34.8440 27.6004 21.2403 0.1485 58.9423 233.7170
std. 2.7060 2.1001 2.0144 0.0114 4.9012 1.7116

Mon-2 3 23.5081 18.8441 14.0503 0.1004 56.1919 232.8989
std. 0.9884 0.7579 0.7092 0.0043 2.3941 1.2056

Heater 8 1015.6 15.8 1015.4 4.4 99.0 229.7
std. 5.4440 4.8278 5.3955 0.0110 0 0.7838

CPU + mon-1 4 71.1456 46.5500 53.7291 0.3055 74.0030 232.4804
std. 6.5571 2.1491 6.8051 0.0282 2.8612 1.0642

CPU + mon-2 5 63.9867 41.5065 48.5110 0.2742 73.8093 232.8909
std. 9.6870 3.3673 10.0324 0.0418 5.6097 0.9138

CPU + 2 monitors 7 92.8489 62.3019 68.7935 0.3981 72.8101 232.9445
std. 5.6886 2.2540 5.8374 0.0251 2.7407 1.0220

Mon-1 + mon-2 6 58.7115 46.6721 35.5946 0.2514 59.0784 233.0153
std. 4.3197 3.2825 3.1019 0.0186 4.0328 0.9249

Laptop + 2 monitrs 13 94.1747 76.9155 54.3128 0.4024 56.5481 233.7015
std. 6.8031 5.0313 4.8889 0.0295 1.7659 0.8893

CPU + montrs + laptop 11 114.6322 81.8831 80.1831 0.4925 68.9402 232.4662
std. 7.4370 4.3592 6.5265 0.0318 1.9694 0.9942

CPU + montrs + heater 9 1062.9 44.2 1061.9 4.7 99.0 227.9
std. 32.0644 7.6395 33.5706 0.1365 1.0007 1.1147

All 5 devices 12 1089.3334 70.8284 1086.9892 4.7691 98.9819 228.3417
std. 24.5299 7.4510 25.1245 0.1020 0.8412 1.1263

68.79 Watts, that is the amount of the sum of the power of each device. Current (in Am-
pere) also behaves in the same way. The total current flow through the electric extension
socket is equal to the sum of the currents through each appliance’s circuit. It does not
happen to the apparent- and reactive-power.

4.2. Appliance recognition

The classification results are shown in Table 4. In general, the performance indicated by
the accuracy and Kappa measure is comparable. The reported measures are the average
of the completion of 5-folds cross-validation. The RNN with LSTM based classification
delivers Kappa between 60-97%, depending on the network configuration, the number of
iteration on the training phase and the feature set taken into account. LSTM and LSTM*
differ in terms of cells number. The former uses a single LSTM cell while the latter uses
two. Using LSTM, we can achieve a Kappa measure of up to 90.1%, while based on
LSTM*, 96.8% of the same measure can be achieved. These results can be improved up
to 97.6-99.4% by increasing the number of training epochs. The higher number of epoch
iterations are allowed, the better results are obtained.



Table 4. Cohen’s Kappa measure of classifiers with different feature sets

Method
Accuracy Kappa measure

Remarks
FS-1 FS-2 FS-3 FS-1 FS-2 FS-3

LSTM 0.73 0.629 0.909 0.709 0.599 0.901
iteration max 200 epochs

LSTM* 0.779 0.719 0.97 0.761 0.696 0.968
LSTM 0.819 0.782 0.978 0.804 0.765 0.976

iteration max 400 epochs
LSTM* 0.848 0.841 0.995 0.836 0.829 0.994
k-NN 0.999 0.996 0.999 0.999 0.996 0.999 k = 7

SVM (lin) 0.84 0.92 0.934 0.827 0.914 0.928 C = 1
SVM (poly) 0.31 0.444 0.456 0.24 0.396 0.408 degree=3, C = 1

In general, the classifications using the feature set-3 achieve higher performance
than the other sets, reaching at least 90%. SVM with polynomial kernel is an exception.
While SVM with linear kernel can achieve Kappa measure of about 82-93%, the same
classifier with polynomial kernel (degree 3) reaches roughly 40% for feature set-2 and 3.
The k-NN based inference results up to 99.9% Kappa measure on the all set of predictors.

4.3. Discussion

The utilization of power meter supports the appliances’ behavior observation from dif-
ferent measurements, e.g., power consumption, current flow, and the shifting between
current- and voltage-wave. From the observation, we clarify that the four of five of the
office-related appliances fall in the capacitive type. It is indicated by measured cosphi.
Office-related loads, such as CPU, monitors, and laptop, shift the current waveforms with
respect to the voltage waveforms. They deliver higher reactive power, and finally affect
the cosphi value. Even though these devices fall in the same capacitive category, they
have a different degree of shifting. Two different types of monitors have a comparable
behavior regarding phase shifting, while CPU has a higher one. Among four appliances,
the laptop is the most capacitive. It has the smallest cosphi percentage, thus the highest
phase shifting. We can also see from the dissipated reactive power that is the highest
among the others. The shifting does not happen for the heater, where the cosphi is mea-
sured at 99%. It means that the heater does not generate any phase difference, or in the
other word, the active- and apparent-power are in the same direction. It is because the
heater circuit is resistive where the delivered active power is directly converted to heat.

The behavior of the composite load changes when several devices are activated si-
multaneously. The response behavior depends on the comprising devices. The more re-
sistive devices being attached, the higher cosphi being measured (or, the more vanishing
current-voltage shifts). For instance, when we add a big resistive load such as a heater,
the cosphi is climbing, reaching 99%. In contrast, the more capacitive the device we add,
the higher dissipated reactive power will be measured. Thus, higher apparent power will
be obtained, and cosphi value will decrease. One example is when we combine the laptop
to the monitors, where the cosphi is reduced of about 3%.

The appliances classification, given the sequence data of aggregated power con-
sumption, shows promise when we supply the right predictors or features to the RNN
classifier. In our setting, feature set-3 provides the best classification outputs among the
other two sets. This indicates that the classifier recognizes patterns, resulting the promis-



Table 5. Confusion matrix of the predicted classes. Left-side: single LSTM cell (epoch-171); Right-side: dou-
ble cells (epoch-174)

Pred. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Pred. 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Act. Act.

0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 22 0 0 0 2 0 0 0 0 0 0 0 0 1 0 21 0 0 1 2 0 0 0 0 0 0 0 0
2 0 0 24 1 0 0 0 0 0 0 0 0 0 0 2 0 0 23 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 22 0 0 0 0 0 0 0 0 0 0 3 0 0 0 25 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 11 13 0 0 0 0 0 0 0 0 4 0 0 0 0 24 0 0 0 0 0 0 0 0 0
5 0 3 0 0 4 24 0 0 0 0 0 0 0 0 5 0 0 0 0 10 22 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 23 0 0 0 0 0 0 0 6 0 0 0 0 0 0 24 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 23 0 0 0 0 0 0 7 0 0 0 0 0 0 0 25 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 19 0 0 0 0 0 8 0 0 0 0 0 0 0 0 18 0 0 0 0 0
9 0 0 0 0 0 0 0 0 1 17 0 0 0 0 9 0 0 0 0 0 0 0 0 0 18 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 24 0 0 0 10 0 0 0 0 0 0 0 0 0 0 22 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 17 0 0 11 0 0 0 0 0 0 0 0 0 0 0 16 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 19 0 12 0 0 0 0 0 0 0 0 0 0 0 0 20 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 16 13 0 0 0 0 0 0 0 0 0 0 0 0 0 14

ing results (i.e., at least 90.1% Kappa measure), based on the feature set as a predictor. In
this case, the pattern is the form of the waveforms during observation window (e.g., in 5
minutes interval). The experiments also reveal that the two cells LSTM* outperforms the
single stack LSTM cell in all predictor combinations and iteration epochs. Such results
support the finding that an RNN earns benefits in having deeper architecture [12].

The confusion matrix presented in Table 5 illustrates the classification outputs of
one and two LSTM cells in the comparable epoch iteration (epoch 171 and 174). At
first glance, both models are confused with class label 4 and 5 (i.e., CPU + mon-1 and
CPU + mon-2). However, the model with two LSTM cells is better than the one with
a single cell in predicting device CPU + mon-1 (label 4), indicating that the two cells
model have faster convergence over the same epochs. Given similar results on the other
folds, we believe that in this phase of iteration, the LSTM-based models may have not
fully converged yet and more training steps are necessary.

The higher number of epoch iterations give better results both in one LSTM cell
and two stacked LSTM cells. It is because the approach is based on iterative optimiza-
tion (i.e., Adam optimizer [13]). The approach tries to adjust model’s weights along the
iterations to find the optimal network configuration.

LSTM mostly outperforms non-probabilistic binary linear classifier SVM providing
the right predictors (i.e., feature set-3). When we apply SVM with polynomial degree-3
kernels, the classifier does not perform as expected. The reason is that, in SVM, decision
boundary is decided by a hyperplane that is shaped by kernel functions. As for the poly-
nomial kernel, the model tries to overfit the training data and fails to classify the rest of
data, while the decision boundary formed by linear kernel works quite well in this work,
reaching 92.8% Kappa measure. Interestingly, k-NN performs very well for all set of pre-
dictors. This might indicate that feature combinations are distinct and non-overlapping,
where k-NN performs well in [15]. As a comparison, when we put only active power (P),
k-NN will return worse result than the one reported in this work.



In the current work, we take into account five different devices by considering binary
states. For laptop and PC, even though they have considerably numerous states, we utilize
them only in two states (either ON or OFF). We consider ON when we activate CPU and
leave it idle, or execute simple tasks (e.g., streaming and updating software). As for the
laptop, it keeps on charging while in fully-charged condition, leaving relatively stable
power consumption. As the approach is based on supervision, it requires the training
phase before the operation one. Recognizing an un-trained condition is not possible and
will result in misclassification. The scalability of the approach relies on the deployment
of power meters. The more electric interconnection under the power meter, the more
appliances being measured. Hence, the classification is even more challenging. Another
limitation is that the experiments were conducted with one subject only. We plan to
involve more people to deduce context from the power consumption.

5. Related work

Previous studies for recognizing appliances from electricity fingerprints have been pro-
posed. For example, Reindhardt et al. observe the behavior of individual device through
plug-based power meters [20]. By developing pattern recognition models (e.g., decision
tree and Bayesian-based techniques), they classify unlabelled load signature to recognize
appliances. They then identify the most relevant predictors on the basis of the amount of
information gain. They report more than 90% True Positive for specific devices. How-
ever, they fail to distinguish LCD from CRT. Furthermore, they do not experiment with
separating individual devices from a composite electricity load.

Balaji et al. made an open dataset of plug loads in the office environment [21].
The motivation is to support analysis of diverse appliance types and identical instances.
Nevertheless, at the time of writing, the database has not been published.

Rogriguez et al. proposed an approach for individual device profiling [22]. They dis-
cover several properties, such as current (Ampere), settling time (ms), and phase shift-
ing for binary state transition (ON/OFF). The measured data has considerably high sam-
pling rate (1 KHz). By using decision trees, the authors identify unlabeled loads and
evaluate the performance using 10-fold cross validation for individual loads and hold-
out-validation method for aggregated loads. The accuracy is in the range of 50-80%,
though it is not clear how much aggregated loads they have analyzed. Low-power work-
station devices achieve worse results than kitchen appliances due to their lower power
profile, i.e., < 0.2A. The thresholding-based classifier, such as decision tree, highly rely
on the thresholds compatibility, hence, inappropriate threshold sets significantly affects
classifier performance. In the present work, we utilize a clamp-based power meter that
has lower sampling rate (5 seconds interval) and richer parameters (reactive-, active-,
apparent-power, current, and cosphi). We focus on common appliances in an office where
the achieved accuracy still lower than in the kitchen or household.

There are two signature forms in solving load disaggregation problems through pat-
tern recognition, namely snapshot and delta forms [7]. While some works are based on
delta form [22,8], the work of Zoha et al. [23] relies on the snapshot form taken every 15
seconds. They use Factorial HMM to perform load disaggregation of devices in relation
to a work desk. Based on ten experiments, the F-measure performances range between
76-98% for recognizing 2-5 appliances. However, there is no further analysis of particu-



lar office devices, especially in terms of cosphi, reactive power, etc. From the results, it
is hard to understand how appliances affect each other.

Using deep neural networks for solving the load disaggregation problem has been
proposed by Kelly et al. [10]. The authors adapt three deep neural network architectures,
including Recurrent Neural Network with Long Short-Term Memory (LSTM) networks.
The results suggest that LSTM outperforms auto-encoder and “rectangle” neural network
architectures for binary states appliances. However, the research scope is in homes (using
an open dataset with 6 seconds sampling interval) that consist of several high-power ap-
pliances, i.e., 300-3100 Watts maximum power for five appliances (kettle, fridge, wash-
ing machine, microwave, and dishwasher). Furthermore, their work relies on the appli-
ance activation, that is, the power drawn of a single appliance over one complete cycle
instead of a defined time window. The evaluation is based on synthetic data. In contrast,
we use actual measurements of various office-related appliances. We observe per-device
behavior to give an insight of how our lower power devices behave and build an RNN
model and infer active devices for each time window.

6. Concluding Remarks

We have presented a comprehensive review of the power consumption of five low-power
appliances in an office. A readily available power meter was used to measure aggregated
electricity footprints in a room as an impact of appliances utilization. The observable
footprints include active-, reactive-, and apparent-power, current, and cosphi.

Some common office appliances (such as monitor, CPU, and laptop) fall in the ca-
pacitive category due to their inner component in nature. That is, these appliances have
major capacitance components (such as an integrated circuit that consists of capacitors)
to perform a specific function. Such a component makes current waveform leading with
respect to voltage waveform. Nevertheless, the gap between the two varies among the
appliances. In this work, we found that the laptop makes the highest lead between current
and voltage waveform, followed by two different monitors and CPU. The different be-
havior of the observable appliances potentially reveals the pattern that can be recognized
to provide the enriched context of the spaces.

We then proposed an appliance recognition based on RNN to the sequence of data. It
is beneficial for understanding the context of the spaces, such as identifying occupancy,
recognizing activity, and estimating the number of people [24]. We showed that RNN
can be a viable option to solve the appliance recognition problem, with a Kappa measure
of up to 99.4% of the detection for 14 different classes. Such results outperform the SVM
approach. However, the results of k-NN seems to be better in terms of its robustness to
the three different sets we have experimented.

Acknowledgement

Azkario Rizky Pratama and Frans Juanda Simanjuntak are supported by the Indonesia
Endowment Fund for Education (LPDP). The research is also supported by the H2020
ERA-Net Smart Grids Plus project MatchIT, NWO contract number 651.001.011 and by
the H2020-RISE FIRST project.



References

[1] M. Aiello and G. A. Pagani, “How energy distribution will change: an ICT perspective,” in Smart Grids
from a Global Perspective, pp. 11–25, Springer, 2016.

[2] S. Makonin, F. Popowich, L. Bartram, B. Gill, and I. V. Bajić, “AMPds: A public dataset for load
disaggregation and eco-feedback research,” in 2013 IEEE Electrical Power Energy Conf., 2013.

[3] A. G. Ruzzelli, C. Nicolas, A. Schoofs, and G. M. P. O’Hare, “Real-time recognition and profiling of
appliances through a single electricity sensor,” in 2010 7th Annual IEEE Communications Society Conf.
on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 1–9, June 2010.

[4] A. Cominola, M. Giuliani, D. Piga, A. Castelletti, and A. Rizzoli, “A hybrid signature-based iterative dis-
aggregation algorithm for non-intrusive load monitoring,” Applied Energy, vol. 185, no. Part 1, pp. 331
– 344, 2017.

[5] M. Weiss, A. Helfenstein, F. Mattern, and T. Staake, “Leveraging smart meter data to recognize home
appliances,” in IEEE Int. Conf. on Pervasive Computing and Communications, pp. 190–197, March
2012.

[6] Y. Agarwal, T. Weng, and R. K. Gupta, “The energy dashboard: improving the visibility of energy
consumption at a campus-wide scale,” BuildSys’09, 2009.

[7] J. Liang, S. K. K. Ng, G. Kendall, and J. W. M. Cheng, “Load signature study 2014;part i: Basic concept,
structure, and methodology,” IEEE Trans. on Power Delivery, vol. 25, pp. 551–560, April 2010.

[8] A. R. Pratama, W. Widyawan, A. Lazovik, and M. Aiello, “Power-based device recognition for occu-
pancy detection,” in Service-Oriented Computing — ICSOC 2017 Workshops, vol. in press, Springer,
Nov 2017.

[9] G. W. Hart, “Nonintrusive appliance load monitoring,” Proc. of the IEEE, vol. 80, pp. 1870–1891, Dec
1992.

[10] J. Kelly and W. Knottenbelt, “Neural NILM: Deep neural networks applied to energy disaggregation,”
in Proc. of the 2nd ACM Int. Conf. on Embedded Systems for Energy-Efficient Built Environments,
BuildSys ’15, pp. 55–64, ACM, 2015.

[11] F. J. Simanjuntak, “Deep learning approach for electric appliances recognition.” http://ugm.id/

fsimanjuntak, August 2017.
[12] A. Graves, A. r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,”

in 2013 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 6645–6649, May 2013.
[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint:1412.6980, 2014.
[14] P. Golik, P. Doetsch, and H. Ney, “Cross-entropy vs. squared error training: a theoretical and experimen-

tal comparison.,” in Interspeech, vol. 13, pp. 1756–1760, 2013.
[15] G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-Neighbor Methods in Learning and Vision: Theory

and Practice (Neural Information Processing). The MIT Press, 2006.
[16] A. Ben-Hur and J. Weston, “A user’s guide to support vector machines,” in Data Mining Techniques for

the Life Sciences, pp. 223–239, Humana Press, 2010.
[17] S. Knerr, L. Personnaz, and G. Dreyfus, “Single-layer learning revisited: a stepwise procedure for build-

ing and training a neural network,” in Neurocomputing, pp. 41–50, Springer Berlin Heidelberg, 1990.
[18] A. R. Pratama, W. Widyawan, A. Lazovik, and M. Aiello, “Multi-user low intrusive occupancy detec-

tion,” Sensors, vol. 18, no. 3, 2018.
[19] J. Cohen, “A coefficient of agreement for nominal scales,” Educational and Psychological Measurement,

vol. 20, no. 1, pp. 37–46, 1960.
[20] A. Reinhardt, P. Baumann, D. Burgstahler, M. Hollick, H. Chonov, M. Werner, and R. Steinmetz, “On

the accuracy of appliance identification based on distributed load metering data,” in 2012 Sustainable
Internet and ICT for Sustainability, pp. 1–9, Oct 2012.

[21] B. Kalluri, S. Kondepudi, K. H. Wei, T. K. Wai, and A. Kamilaris, “OPLD: Towards improved non-
intrusive office plug load disaggregation,” in 2015 IEEE Int. Conf. on Building Efficiency and Sustain-
able Technologies, pp. 56–61, Aug 2015.

[22] A. Rogriguez, S. T. Smith, A. Kiff, and B. Potter, “Small power load disaggregation in office buildings
based on electrical signature classification,” in 2016 IEEE Int. Energy Conf., pp. 1–6, April 2016.

[23] A. Zoha, A. Gluhak, M. Nati, and M. A. Imran, “Low-power appliance monitoring using factorial hidden
markov models,” in 2013 IEEE 8th Int. Conf. on Intelligent Sensors, Sensor Networks and Information
Processing, pp. 527–532, 2013.

[24] M. Milenkovic and O. Amft, “An opportunistic activity-sensing approach to save energy in office build-
ings,” in Proc. of the 4th Int. Conf. on Future Energy Systems, e-Energy ’13, pp. 247–258, 2013.


