
university of groningen

University of Groningen

Analytical calculation of Sobol sensitivity indices for Gaussian Processes with a squared exponential covariance function

Milias Argeitis, Andreas; Kurdyaeva, Tamara

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Milias Argeitis, A., \& Kurdyaeva, T. (2018). Analytical calculation of Sobol sensitivity indices for Gaussian Processes with a squared exponential covariance function.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. number of authors shown on this cover page is limited to 10 maximum.

Analytical calculation of Sobol sensitivity indices for Gaussian Processes with a squared exponential covariance function

Notation and modeling assumptions

- Column vector of random inputs: $\mathbf{X}=\left[X_{1} \ldots X_{d}\right]^{T} \in \mathbb{R}^{d}, \mathbf{X}^{\prime}=\left[X_{1}^{\prime} \ldots X_{d}^{\prime}\right]^{T} \in \mathbb{R}^{d}$,
- Column subvector of \mathbf{X} without X_{s} element: $\mathbf{X}_{-s}=\left[X_{1} \ldots X_{s-1} X_{s+1} \ldots X_{d}\right]^{T} \in \mathbb{R}^{d-1}$
- Column vector consists of elements \mathbf{X}_{-s}^{\prime} and $X_{s}: \hat{\mathbf{X}}=\left[X_{1}^{\prime} \ldots X_{s} \ldots X_{d}^{\prime}\right]^{T} \in \mathbb{R}^{d}$
- Random inputs $X_{s}, s=1, \ldots, d$ are mutually independent and each input follows a standard uniform distribution: $X_{s} \sim \mathcal{U}(0,1), s=1, \ldots, d$
- Function F represents a black-box model of interest: $Y=F(X)$, where Y is the model output
- Observed n training data points are denoted by $\widetilde{X}=\left(\widetilde{\mathbf{x}}^{(1)}, \ldots, \widetilde{\mathbf{x}}^{(n)}\right)$
- Test n_{*} data points are denoted by $X_{*}=\left(\mathbf{x}_{*}^{(1)}, \ldots, \mathbf{x}_{*}^{\left(n_{*}\right)}\right)$
- Vector of function F values at n training points $\widetilde{X}: \widetilde{\mathbf{y}}=\left[\widetilde{y}^{(1)}, \ldots, \widetilde{\mathrm{y}}^{(n)}\right]^{T}, \widetilde{y}^{(i)}=F\left(\widetilde{\mathbf{x}}^{(i)}\right), i=1, \ldots, n$
- Gaussian process (GP) parametrization $f(x) \sim \mathcal{G P}\left(0, k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right)$

$$
\begin{align*}
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\sigma_{f}^{2} \prod_{j=1}^{d} \exp \left(-\frac{\left(x_{j}-x_{j}^{\prime}\right)^{2}}{2 l_{j}^{2}}\right)=*\left|h_{j}=\frac{1}{2} l_{j}^{-2}\right| \\
& =\sigma_{f}^{2} \prod_{j=1}^{d} \exp \left(-h_{j}\left(x_{j}-x_{j}^{\prime}\right)^{2}\right) \tag{1}
\end{align*}
$$

- Posterior GP distribution $f_{*} \mid \widetilde{X}, \widetilde{\mathbf{y}}, X_{*} \sim \mathcal{N}\left(m\left(X_{*}\right), v\left(X_{*}\right)\right)$, where

$$
\begin{align*}
m\left(X_{*}\right) & =K\left(X_{*}, \widetilde{X}\right)\left[K(\widetilde{X}, \widetilde{X})+\sigma^{2} I\right]^{-1} \widetilde{\mathbf{y}} \tag{2}\\
v\left(X_{*}\right) & =K\left(X_{*}, X_{*}\right)-K\left(X_{*}, \widetilde{X}\right)\left[K(\widetilde{X}, \widetilde{X})+\sigma^{2} I\right]^{-1} K\left(\widetilde{X}, X_{*}\right), \tag{3}
\end{align*}
$$

where the additive term $\sigma^{2} I$ reflects the fact that the function values are corrupted by additive noise with variance σ^{2}. Even if $\sigma^{2}=0$ (as is the case when the function is exactly evaluated), a small noise term is typically inserted to regularize the inversion of the covariance matrix $K(\widetilde{X}, \widetilde{X})$.

- $K=K(\widetilde{X}, \widetilde{X})$
- $k_{p q}$ for $p=1, \ldots, n$ and $q=1, \ldots, n$ denotes the entries of the matrix $\left[K+\sigma^{2} I\right]^{-1}$
- $w_{p}, p=1, \ldots, n$ are the elements of the vector $\left[K+\sigma^{2} I\right]^{-1} \widetilde{\mathbf{y}}$
- Expectations and variances with respect to the GP posterior distribution are denoted as \mathbb{E}_{*} and Var ${ }_{*}$, respectively
- $\operatorname{erf}(\cdot)$ denotes the error function.

Sobol indices

The estimate of the Sobol indices for the output Y with respect to the input X_{s}

$$
\begin{equation*}
\hat{S}_{s}=\frac{\mathbb{E}_{*}\left\{\operatorname{Var}\left\{E\left(Y \mid X_{s}\right)\right\}\right\}}{\mathbb{E}_{*}\{\operatorname{Var}(Y)\}}, s=1, \ldots, d . \tag{4}
\end{equation*}
$$

Inference for variance in numerator $\mathbb{E}_{*}\left\{\operatorname{Var}\left\{E\left(Y \mid X_{s}\right)\right\}\right\}$

Let us first calculate the numerator in the formula for estimates of Sobol indices (4).

$$
\begin{align*}
\mathbb{E}_{*}\left\{\operatorname{Var}\left\{E\left(Y \mid X_{s}\right)\right\}\right\} & =\mathbb{E}_{*}\left\{E\left(E\left(Y \mid X_{s}\right)\right)^{2}\right\}-\mathbb{E}_{*}\{E(Y)\}^{2}= \\
& =\mathbb{E}_{*}\left\{E\left(E\left(Y \mid X_{s}\right)\right)^{2}\right\}-\operatorname{Var}_{*}\{E(Y)\}-\left(\mathbb{E}_{*}\{E(Y)\}\right)^{2}= \\
& =I-I I-I I I \tag{5}
\end{align*}
$$

First component I from (5): $\mathbb{E}_{*}\left\{E\left(E\left(Y \mid X_{S}\right)\right)^{2}\right\}$
We derive the formulas for every component of (5) separately. The first term I requires the computation of the following integrals:

$$
\begin{align*}
\mathbb{E}_{*}\left\{E\left(E\left(Y \mid X_{s}\right)\right)^{2}\right\} & =E\left[\operatorname{Var}_{*}\left\{E\left(Y \mid X_{s}\right)\right\}+\left(\mathbb{E}_{*}\left\{E\left(Y \mid X_{s}\right)\right\}\right)^{2}\right]= \\
& =\int_{0}^{1} \int_{[0,1]^{d-1}} \int_{[0,1]^{d-1}} v(\mathbf{x}, \hat{\mathbf{x}}) d \mathbf{x}_{-s} d \mathbf{x}_{-s}^{\prime} d x_{s}+\int_{0}^{1} \int_{[0,1]^{d-1}} \int_{[0,1]^{d-1}} m_{*}(\mathbf{x}) m_{*}(\hat{\mathbf{x}}) d \mathbf{x}_{-s} d \mathbf{x}_{-s}^{\prime} d x_{s}= \\
& =L+M . \tag{6}
\end{align*}
$$

For the simplification we also provide the derivation of the formulas for the individual terms L and M in (6) separately.

$$
\begin{align*}
L & =\int_{0}^{1} \int_{[0,1]^{d-1}} \int_{[0,1]^{d-1}} v(\mathbf{x}, \hat{\mathbf{x}}) d \mathbf{x}_{-s} d \mathbf{x}_{-s}^{\prime} d x_{s} \frac{\text { 兽 }}{} \\
& =\int_{0}^{1} \int_{[0,1]^{d-1}} \int_{[0,1]^{d-1}} K(\mathbf{x}, \hat{\mathbf{x}}) d \mathbf{x}_{-s} d \mathbf{x}_{-s}^{\prime} d x_{s}-\int_{0}^{1} \int_{[0,1]^{d-1}} \int_{[0,1]^{d-1}} K(\mathbf{x}, \tilde{X})\left(K+\sigma^{2}\right)^{-1} K(\tilde{X}, \hat{\mathbf{x}}) d \mathbf{x}_{-s} d \mathbf{x}_{-s}^{\prime} d x_{s}= \\
& =\int_{0}^{1} Z_{-s}(\hat{\mathbf{x}}) d x_{s}-\int_{0}^{1}\left[z_{-s}^{T}(\mathbf{x})\left(K+\sigma^{2}\right)^{-1} z_{-s}(\hat{\mathbf{x}})\right] d x_{s} \tag{7}
\end{align*}
$$

Now we divide the calculation of the integrals into several parts to make it easier to follow

$$
\begin{align*}
z_{-s}(\mathbf{x}) & =\int_{[0,1]^{d-1}} K(\mathbf{x}, \tilde{X}) d \mathbf{x}_{-s} \stackrel{1}{)}^{1}=\sigma_{f}^{2} \exp \left(-h_{s}\left(x_{s}-\tilde{x}_{s}\right)^{2}\right) \prod_{j=-s} \int_{0}^{1} \exp \left(-h_{j}\left(x_{j}-\tilde{x}_{j}\right)^{2}\right) d x_{j}= \\
& =\sigma_{f}^{2} \exp \left(-h_{s}\left(x_{s}-\tilde{x}_{s}\right)^{2}\right) \prod_{j=-s} I_{j} \tag{8}
\end{align*}
$$

Next we evaluate the integral defined as I_{j} in (8)

$$
\begin{align*}
I_{j} & =\int_{0}^{1} \exp \left(-h_{j}\left(x_{j}-\tilde{x}_{j}\right)^{2}\right) d x_{j}=*\left|a_{j}=\sqrt{h_{j}}\left(x_{j}-\tilde{x}_{j}\right)\right|=\frac{1}{\sqrt{h_{j}}} \int_{-\sqrt{h_{j}} \tilde{x}_{j}}^{\sqrt{h_{j}}\left(1-\tilde{x}_{j}\right)} \exp \left(-a_{j}^{2}\right) d a_{j}= \\
& =\frac{\sqrt{\pi}}{2} \frac{1}{\sqrt{h_{j}}}\left(\operatorname{erf}\left(\sqrt{h_{j}}\left(1-\tilde{x}_{j}\right)\right)+\operatorname{erf}\left(\sqrt{h_{j}} \tilde{x}_{j}\right)\right)=\sqrt{\frac{\pi}{2}} l_{j}\left(\operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}}\left(1-\tilde{x}_{j}\right)\right)+\operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}} \tilde{x}_{j}\right)\right) \tag{9}
\end{align*}
$$

We can substitute the exact formula of $I_{j}(9)$ into the final formula of z_{-s} in (8)

$$
\begin{equation*}
z_{-s}(\mathbf{x})=\sigma_{f}^{2} \exp \left(-\frac{1}{2 l_{s}^{2}}\left(x_{s}-\tilde{x}_{s}\right)^{2}\right) \prod_{j=-s} \sqrt{\frac{\pi}{2}} l_{j}\left(\operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}}\left(1-\tilde{x}_{j}\right)\right)+\operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}} \tilde{x}_{j}\right)\right) \tag{10}
\end{equation*}
$$

Finally we calculate the first double integral in (7) which was marked as Z_{-s}

$$
\begin{align*}
Z_{-s} & =\int_{[0,1]^{d-1}} \int_{[0,11]^{d-1}} K(\mathbf{x}, \hat{\mathbf{x}}) d \mathbf{x}_{-s} d \mathbf{x}_{-s}^{\prime}=\sigma_{f}^{2} \prod_{j=-s} \int_{0}^{1}\left[\int_{0}^{1} \exp \left(-h_{j}\left(x_{j}-x_{j}^{\prime}\right)^{2}\right) d x_{j}\right] d x_{j}^{\prime}=\sigma_{f}^{2} \prod_{j=-s} \int_{0}^{1} I_{j} d x_{j}^{\prime}= \\
& =\sigma_{f}^{2} \prod_{j=-s} \sqrt{\frac{\pi}{2}} l_{j} \int_{0}^{1}\left(\operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}}\left(1-x_{j}^{\prime}\right)\right)+\operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}} x_{j}^{\prime}\right)\right) d x_{j}^{\prime}=\sigma_{f}^{2} \prod_{j=-s} J_{j} \tag{11}
\end{align*}
$$

We present the exact analytic calculation of the J_{j} integral in (11)

$$
\begin{align*}
J_{j} & =\sqrt{\frac{\pi}{2}} l_{j}\left[\int_{0}^{1} \operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}}\left(1-x_{j}^{\prime}\right)\right) d x_{j}^{\prime}+\int_{0}^{1} \operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}} x_{j}^{\prime}\right) d x_{j}^{\prime}\right]= \\
& =*\left|b_{j}=\frac{1}{\sqrt{2} l_{j}}\left(1-x_{j}^{\prime}\right), c_{j}=\frac{1}{\sqrt{2} l_{j}} x_{j}^{\prime}\right|= \\
& =\sqrt{\frac{\pi}{2}} l_{j}\left[-\sqrt{2} l_{j} \int_{1 / \sqrt{2} l_{j}}^{0} \operatorname{erf}\left(b_{j}\right) d b_{j}+\sqrt{2} l_{j} \int_{0}^{1 / \sqrt{2} l_{j}} \operatorname{erf}\left(c_{j}\right) d c_{j}\right]= \\
& =2 \sqrt{\pi} l_{j}^{2} \int_{0}^{1 / \sqrt{2} l_{j}} \operatorname{erf}\left(t_{j}\right) d t_{j}= \\
& =*\left|u=\operatorname{erf}\left(t_{j}\right), d v=d t_{j}, d u=\frac{2}{\sqrt{\pi}} \exp \left(-t_{j}^{2}\right) d t_{j}, v=t_{j}\right|= \\
& =2 \sqrt{\pi} l_{j}^{2}\left[\left.\operatorname{erf}\left(t_{j}\right) t_{j}\right|_{0} ^{1 / \sqrt{2} l_{j}}-\frac{2}{\sqrt{\pi}} \int_{0}^{1 / \sqrt{2} l_{j}} \exp \left(-t_{j}^{2}\right) t_{j} d t_{j}\right]= \\
& =2 \sqrt{\pi} l_{j}^{2}\left[\frac{1}{\sqrt{2} l_{j}} \operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}}\right)+\left.\frac{1}{\sqrt{\pi}} \exp \left(-t_{j}^{2}\right)\right|_{0} ^{1 / \sqrt{2} l_{j}}\right]= \\
& =2 \sqrt{\frac{\pi}{2}} l_{j} \operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}}\right)+2 l_{j}^{2}\left(\exp \left(-\frac{1}{2 l_{j}^{2}}\right)-1\right) \tag{12}
\end{align*}
$$

Then we can write down a closed form to compute Z_{-s} in 11)

$$
\begin{equation*}
Z_{-s}=\sigma_{f}^{2} \prod_{j=-s}\left[2 \sqrt{\frac{\pi}{2}} l_{j} \operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}}\right)+2 l_{j}^{2}\left(\exp \left(-\frac{1}{2 l_{j}^{2}}\right)-1\right)\right] \tag{13}
\end{equation*}
$$

Finally, the analytic formula for L in (7) is simplified to the following form

$$
\begin{align*}
L & =\sigma_{f}^{2} \prod_{j=-s} J_{j}-\sigma_{f}^{4} \sum_{p=1}^{n} \sum_{q=1}^{n}\left[k_{p q} \prod_{j=-s} I_{j}\left(\mathbf{x}_{p}\right) \prod_{j=-s} I_{j}\left(\mathbf{x}_{q}\right) \int_{0}^{1} \exp \left(-h_{s}\left[\left(x_{s}-\tilde{x}_{s}^{p}\right)^{2}+\left(x_{s}-\tilde{x}_{s}^{q}\right)^{2}\right]\right) d x_{s}\right]= \\
& =\sigma_{f}^{2} \prod_{j=-s} J_{j}-\sigma_{f}^{4} \sum_{p=1}^{n} \sum_{q=1}^{n}\left[k_{p q} \prod_{j=-s} I_{j}\left(\mathbf{x}_{p}\right) \prod_{j=-s} I_{j}\left(\mathbf{x}_{q}\right) R_{p q s}\right] \tag{14}
\end{align*}
$$

The derivation of the integral $R_{p q s}$ is presented separately:

$$
\begin{align*}
R_{p q s} & =\int_{0}^{1} \exp \left(-h_{s}\left[\left(x_{s}-\tilde{x}_{s}^{p}\right)^{2}+\left(x_{s}-\tilde{x}_{s}^{q}\right)^{2}\right]\right) d x_{s}= \\
& =*\left|a^{2}+b^{2}=\frac{1}{2}\left[(a+b)^{2}+(a-b)^{2}\right]\right|= \\
& =\exp \left[-\frac{h_{s}}{2}\left(\tilde{x}_{s}^{p}-\tilde{x}_{s}^{q}\right)^{2}\right] \int_{0}^{1} \exp \left[-\frac{h_{s}}{2}\left(2 x_{s}-\tilde{x}_{s}^{p}-\tilde{x}_{s}^{q}\right)^{2}\right] d x_{s}= \\
& =*\left|g_{s}=\sqrt{\frac{h_{s}}{2}}\left(2 x_{s}-\tilde{x}_{s}^{p}-\tilde{x}_{s}^{q}\right), d g_{s}=\sqrt{2 h_{s}} d x_{s}, g_{s}(0)=-\sqrt{\frac{h_{s}}{2}}\left(\tilde{x}_{s}^{p}+\tilde{x}_{s}^{q}\right), g_{s}(1)=\sqrt{\frac{h_{s}}{2}}\left(2-\tilde{x}_{s}^{p}-\tilde{x}_{s}^{q}\right)\right|= \\
& =\exp \left[-\frac{h_{s}}{2}\left(\tilde{x}_{s}^{p}-\tilde{x}_{s}^{q}\right)^{2}\right] \frac{1}{\sqrt{2 h_{s}}} \int_{g_{s}(0)}^{g_{s}(1)} \exp \left(-g_{s}^{2}\right) d g_{s}= \\
& =\exp \left[-\frac{h_{s}}{2}\left(\tilde{x}_{s}^{p}-\tilde{x}_{s}^{q}\right)^{2}\right] \frac{1}{\sqrt{2 h_{s}}} \frac{\sqrt{\pi}}{2}\left(\operatorname{erf}\left[g_{s}(1)\right]-\operatorname{erf}\left[g_{s}(0)\right]\right)= \\
& =\frac{\sqrt{\pi}}{2} l_{s} \exp \left[-\frac{1}{4 l_{s}^{2}}\left(\tilde{x}_{s}^{p}-\tilde{x}_{s}^{q}\right)^{2}\right]\left(\operatorname{erf}\left[\frac{1}{2 l_{s}}\left(2-\tilde{x}_{s}^{p}-\tilde{x}_{s}^{q}\right)\right]+\operatorname{erf}\left[\frac{1}{2 l_{s}}\left(\tilde{x}_{s}^{p}+\tilde{x}_{s}^{q}\right)\right]\right) \tag{15}
\end{align*}
$$

This concludes the evaluation of the integral L in with the exact analytic form for the components $I_{j}(\mathbf{x})$ in (9), J_{j} in (12) and $R_{p q s}$ in (15).

On the next step to finalize the calculation of (6), we evaluate the second part M in the equation.

$$
\begin{align*}
M & =\int_{0}^{1} \int_{[0,1]^{d-1}} \int_{[0,1]^{d-1}} m_{*}(\mathbf{x}) m_{*}(\hat{\mathbf{x}}) d \mathbf{x}_{-s} d \mathbf{x}_{-s}^{\prime} d x_{s}= \\
& =\int_{0}^{1}\left[z_{-s}^{T}(\mathbf{x})\left(K+\sigma^{2}\right)^{-1} \widetilde{\mathbf{y}} z_{-s}^{T}(\hat{\mathbf{x}})\left(K+\sigma^{2}\right)^{-1} \widetilde{\mathbf{y}}\right] d x_{s}= \\
& =\sigma_{f}^{4} \sum_{p=1}^{n} \sum_{q=1}^{n}\left[w_{p} w_{q} \prod_{j=-s} I_{j}\left(\mathbf{x}_{p}\right) \prod_{j=-s} I_{j}\left(\mathbf{x}_{q}\right) \int_{0}^{1} \exp \left(-h_{s}\left[\left(x_{s}-\tilde{x}_{s}^{p}\right)^{2}+\left(x_{s}-\tilde{x}_{s}^{q}\right)^{2}\right]\right) d x_{s}\right]= \\
& =\sigma_{f}^{4} \sum_{p=1}^{n} \sum_{q=1}^{n}\left[w_{p} w_{q} \prod_{j=-s} I_{j}\left(\mathbf{x}_{p}\right) \prod_{j=-s} I_{j}\left(\mathbf{x}_{q}\right) R_{p q s}\right] \tag{16}
\end{align*}
$$

Second component $I I$ from (5): $\operatorname{Var}_{*}\{E(Y)\}$
Let us return to the equation in (5) and focus on the second term $I I$

$$
\begin{align*}
\operatorname{Var}_{*}\{E(Y)\} & =\int_{[0,1]^{d}} \int_{[0,1]^{d}} k_{*}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}= \\
& =\int_{[0,1]^{d}} \int_{[0,1]^{d}} K\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}-\int_{[0,1]^{d}} \int_{[0,1]^{d}} K(\mathbf{x}, \tilde{X})\left(K+\sigma^{2}\right)^{-1} K\left(\tilde{X}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}= \\
& =Z-z^{T}\left(K+\sigma^{2}\right)^{-1} z \tag{17}
\end{align*}
$$

Again we recast the calculation in more simple steps and use the formulas that was presented previously. For instance, the computation of the integral z in 17 is reduced to the evaluation of I_{j} from the equation (9).

$$
\begin{equation*}
z(\mathbf{x})=\int_{[0,1]^{d}} K(\mathbf{x}, \tilde{X}) d \mathbf{x}=\sigma_{f}^{2} \prod_{j=1}^{d} I_{j}(\mathbf{x}) \tag{18}
\end{equation*}
$$

Analogously, to compute Z we address to the integral J_{j} that was calculated in 12)

$$
\begin{equation*}
Z=\int_{[0,1]^{d}} \int_{[0,1]^{d}} K\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}=\sigma_{f}^{2} \prod_{j=1}^{d} J_{j} \tag{19}
\end{equation*}
$$

Third component $I I I$ from (5): $\mathbb{E}_{*}\{E(Y)\}$

We address now to the calculation of the final third component in (5).

$$
\begin{equation*}
\mathbb{E}_{*}\{E(Y)\}=\left[\int_{[0,1]^{d}} K(\mathbf{x}, \widetilde{X}) d \mathbf{x}\right]\left[K+\sigma^{2} I\right]^{-1} \widetilde{\mathbf{y}}=z^{T}\left(K(\tilde{X}, \tilde{X})+\sigma^{2}\right)^{-1} \widetilde{\mathbf{y}} \stackrel{[18}{=} \sigma_{f}^{2} \prod_{j=1}^{d} I_{j}\left(K(\tilde{X}, \tilde{X})+\sigma^{2}\right)^{-1} \widetilde{\mathbf{y}} \tag{20}
\end{equation*}
$$

This derivation finalize the computation of the numerator from the formula (4), all three components, $I, I I$ and $I I I$, from (5) have been derived in analytic form.

Inference for variance in denominator $\mathbb{E}_{*}\{\operatorname{Var}(Y)\}$

The final step in the calculation of the estimate for the Sobol indices is the derivation of the analytic formula for the denominator in (4).

$$
\begin{align*}
\mathbb{E}_{*}\{\operatorname{var}(Y)\} & =\mathbb{E}_{*}\left\{E\left(Y^{2}\right)\right\}-\mathbb{E}_{*}\{E(Y)\}^{2}=E\left\{\mathbb{E}_{*}\left(Y^{2}\right)\right\}-\left(\operatorname{Var}_{*}\{E(Y)\}+\left(\mathbb{E}_{*}\{E(Y)\}\right)^{2}\right)= \\
& =E\left(\operatorname{Var}_{*}\{Y\}+\left\{\mathbb{E}_{*}(Y)\right\}^{2}\right)-\left(\operatorname{Var}_{*}\{E(Y)\}+\left(\mathbb{E}_{*}\{E(Y)\}\right)^{2}\right)=I V-I I-I I I \tag{21}
\end{align*}
$$

Similar to the previous routine for the numerator in (4), we divide the calculations in several steps. There are three components $I I, I I I$ and $I V$ in (21), where $I I$ is summarized by formulas (17), (18) and (19), while $I I I$ can be calculated using (20). The derivation of the fourth component $I V$ is presented in the next section.

Fourth component $I V$ from (21): $\mathbb{E}_{*}\{E(Y)\}$

Here we perform the last calculation of the fourth component in (21).

$$
\begin{align*}
E\left\{\operatorname{Var}_{*}\{Y\}\right\}+E\left\{\mathbb{E}_{*}(Y)\right\}^{2} & =\int_{[0,1]^{d}} K(\mathbf{x}, \mathbf{x}) d \mathbf{x}-\int_{[0,1]^{d}} K(\mathbf{x}, \tilde{X})\left[K+\sigma^{2} \mathbb{I}\right]^{-1} K(\tilde{X}, \mathbf{x}) d \mathbf{x}+ \\
& +\int_{[0,1]^{d}}\left[K(\mathbf{x}, \tilde{X})\left(K+\sigma^{2}\right)^{-1} \widetilde{\mathbf{y}} K(\mathbf{x}, \tilde{X})\left[K+\sigma^{2} \mathbb{I}\right]^{-1} \widetilde{\mathbf{y}} d \mathbf{x}\right]= \\
& =\sigma_{f}^{2}-\sigma_{f}^{4} \sum_{p=1}^{n} \sum_{q=1}^{n}\left[k_{p q} \prod_{s=1}^{d} R_{p q s}\right]+\sigma_{f}^{4} \sum_{p=1}^{n} \sum_{q=1}^{n}\left[w_{p} w_{q} \prod_{s=1}^{d} R_{p q s}\right], \tag{22}
\end{align*}
$$

where the derivation for $R_{p q s}$ is shown in (15).

Final formulas for Sobol indices

Here we present the final formulas for Sobol indices' estimates \hat{S}_{s} defined as:

$$
\begin{equation*}
\hat{S}_{s}=\frac{\mathbb{E}_{*}\left\{\operatorname{Var}\left\{E\left(Y \mid X_{s}\right)\right\}\right\}}{\mathbb{E}_{*}\{\operatorname{Var}(Y)\}}, s=1, \ldots, d . \tag{4}
\end{equation*}
$$

We start with the analytic expression for the numerator $\mathbb{E}_{*}\left\{\operatorname{Var}\left\{E\left(Y \mid X_{s}\right)\right\}\right\}$ in 4

$$
\begin{equation*}
\mathbb{E}_{*}\left\{\operatorname{Var}\left\{E\left(Y \mid X_{s}\right)\right\}\right\}=\mathbb{E}_{*}\left\{E\left(E\left(Y \mid X_{s}\right)\right)^{2}\right\}-\operatorname{Var}_{*}\{E(Y)\}-\left(\mathbb{E}_{*}\{E(Y)\}\right)^{2}=I-I I-I I I . \tag{5}
\end{equation*}
$$

For the first term I in 5 , we get

$$
I: \boxed{\mathbb{E}_{*}\left\{E\left(E\left(Y \mid X_{s}\right)\right)^{2}\right\}=\sigma_{f}^{2} \prod_{j=-s} J_{j}-\sigma_{f}^{4} \sum_{p=1}^{n} \sum_{q=1}^{n}\left[\left(k_{p q}-w_{p} w_{q}\right) R_{p q s} \prod_{j=-s} I_{j}\left(\tilde{\mathbf{x}}^{(p)}\right) I_{j}\left(\tilde{\mathbf{x}}^{(q)}\right)\right] .}
$$

where

$$
J_{j}=2 l_{j}\left[\sqrt{\frac{\pi}{2}} \operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}}\right)+l_{j}\left(\exp \left(-\frac{1}{2 l_{j}^{2}}\right)-1\right)\right],
$$

$$
R_{p q s}=\frac{\sqrt{\pi}}{2} l_{s} \exp \left(-\frac{1}{4 l_{s}^{2}}\left(\tilde{x}_{s}^{(p)}-\tilde{x}_{s}^{(q)}\right)^{2}\right)\left(\operatorname{erf}\left[\frac{1}{2 l_{s}}\left(2-\tilde{x}_{s}^{(p)}-\tilde{x}_{s}^{(q)}\right)\right]+\operatorname{erf}\left[\frac{1}{2 l_{s}}\left(\tilde{x}_{s}^{(p)}+\tilde{x}_{s}^{(q)}\right)\right]\right),
$$

and

$$
I_{j}\left(\tilde{\mathbf{x}}^{(p)}\right)=\sqrt{\frac{\pi}{2}} l_{j}\left[\operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}}\left(1-\tilde{x}_{j}^{(p)}\right)\right)+\operatorname{erf}\left(\frac{1}{\sqrt{2} l_{j}} \tilde{x}_{j}^{(p)}\right)\right] .
$$

The second term $I I$ in 5 can then be written as

$$
I I: \operatorname{Var}_{*}\{E(Y)\}=\sigma_{f}^{2} \prod_{j=1}^{d} J_{j}-\sigma_{f}^{4}\left[\prod_{j=1}^{d} I_{j}(\widetilde{X})\right]^{\prime}\left[K+\sigma_{f}^{2} I\right]^{-1}\left[\prod_{j=1}^{d} I_{j}(\widetilde{X})\right] .
$$

Finally, for the third $I I I$ term of 5 we get

$$
I I I:\left(\mathbb{E}_{*}\{E(Y)\}\right)^{2}=\left(\sigma_{f}^{2} \prod_{j=1}^{d} I_{j}\left(K(\tilde{X}, \tilde{X})+\sigma^{2}\right)^{-1} \tilde{\mathbf{y}}\right)^{2}
$$

The expression for the denominator $\mathbb{E}_{*}\{\operatorname{Var}(Y)\}$ of 4 has the following form:

$$
\begin{equation*}
\mathbb{E}_{*}\{\operatorname{Var}(Y)\}=\mathbb{E}_{*}\left\{E\left(Y^{2}\right)\right\}-\operatorname{Var}_{*}\{E(Y)\}-\left(\mathbb{E}_{*}\{E(Y)\}\right)^{2}=I V-I I-I I I . \tag{21}
\end{equation*}
$$

As we can see, the formula 21 contains one further term compared to the expression of the numerator 5. which is given by

$$
I V: \mathbb{E}_{*}\left\{E\left(Y^{2}\right)\right\}=\sigma_{f}^{2}-\sigma_{f}^{4} \sum_{p=1}^{n} \sum_{q=1}^{n}\left[k_{p q} \prod_{s=1}^{d} R_{p q s}\right]+\sigma_{f}^{4} \sum_{p=1}^{n} \sum_{q=1}^{n}\left[w_{p} w_{q} \prod_{s=1}^{d} R_{p q s}\right] .
$$

