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Analytical calculation of Sobol sensitivity indices for Gaussian Processes
with a squared exponential covariance function

Notation and modeling assumptions

Column vector of random inputs: X = [X;...X,]" € RY, X' = [X]..X/]" e RY,
Column subvector of X without X, element: X_; = [X] ... X,_1 Xss1...Xg]T € R4!
Column vector consists of elements X’ ; and X: X = [X]... Xs.. .X&]T e R4

Random inputs X;, s = 1, ..., d are mutually independent and each input follows a standard uniform
distribution: Xy ~ U(0,1), s=1,...,d

Function F represents a black-box model of interest: ¥ = F(X), where Y is the model output
Observed n training data points are denoted by xX=c",... x™

Test n, data points are denoted by X, = (Xil), cees xfﬁ"*))

= - T _. .
Vector of function F values at n training points X: y = [’)7(1), ... ,37(”)] ,37(’) =F (35’)), i=1,...,n

Gaussian process (GP) parametrization f(x) ~ GP(0, k(x,x"))

d (xj — x)? 1
n_ 2 Y L2
k(x,x") = afHexp[—T} =x|hj= 2lj
J=1 J
d
= o7 | [exp(-hit; = x?) (1)

j=1
Posterior GP distribution f*|)~(,37, X« ~ N(m(X,),v(X.)), where

m(X.) =KX X [KX.X) + 21| '3, @)

v(X,) =K(X., X.) — K(X., X) [K()’(’, X) + (721]_1 KX, X.), 3)

where the additive term o1 reflects the fact that the function values are corrupted by additive noise
with variance o2. Even if 0> = 0 (as is the case when the function is exactly evaluated), a small
noise term is typically inserted to regularize the inversion of the covariance matrix K(X, X).

K = K(X,X)

-1
kpq for p=1,..,nand g = 1, ..., n denotes the entries of the matrix [K + o2 I]

-1 _
wp, p = 1,...,n are the elements of the vector [K + 02 I] y

Expectations and variances with respect to the GP posterior distribution are denoted as E, and
Var,, respectively

erf(-) denotes the error function.



Sobol indices

The estimate of the Sobol indices for the output ¥ with respect to the input X

& _ E*{Var{E (Y|Xs)}} _
S, = E(varl)] s=1,...,d. S

Inference for variance in numerator E.{Var{E (Y|X,)}}
Let us first calculate the numerator in the formula for estimates of Sobol indices ().
EAVar{E(Y|X)}} = BAE (E(YIX,))’} - BAE(Y)Y =

= E(E (E(Y|X,))?} - Var{E(Y)} — (BAE(Y))? =
=1-II-1II %)

First component / from (5): E.{E (E(Y|X,))?)

We derive the formulas for every component of (5] separately. The first term / requires the computation
of the following integrals:

EE (E(YIX,)*) = [Var* E(Y|X) + BAEYIX))| =

1
= f f f v(X, X) dx_dx_ dx; + f f m.(X)m. (X)dx_dx_ dx, =

0 [O,I]d_l [O,l]d_l 0 [O,l]d_l [0,1]‘1_]
=L+M. (©6)

For the simplification we also provide the derivation of the formulas for the individual terms L and M in

(6) separately.

L= f f f V(x, R) dx_ydx.dxs
0 [0, 1](1—1 [o, l]d—l

1
f f f K(x,%) dx_dx'_dx; — f f f K(x,X) (K+0'2)_1 K(X,%) dx_dx’ dx, =

0[01]17“[01]111 0 [0,1]4-1 [0,1]4-1
1
= f Z_R)dx; - f [z_s(x) (K+0?) z_s(fc)] dx; (7
0 0

Now we divide the calculation of the integrals into several parts to make it easier to follow

7-5(X) = f K(x,X) dx_j ) =07 exp( —hy(xs — X)? 1—[ fexp h j(xj = X;) ) dxj =
[0,1]4-1 j==s 0

= o-? exp (—hs(xs - fs)z) l_[ I; (8)

j==s



Next we evaluate the integral defined as /; in (8)

' Vhj(1-5)
Ij:fexp(—hj(xj—fj)z) dsz* aJ-: J;j(XJ—fj) :L f exp(_ai) daj:
0 \/_ —\/_x]
1 1
= Tﬂ—J(erf(((l x]))+erf(\/7xj (erf[ (1 _xj)]+erf( \/iljfj)]

©))

We can substitute the exact formula of /; @[) into the final formula of z_; in @)

7o5(x) = O'fexp( Xy — %) ) 1—[ f (erf( (1 —xj)]+erf( \/;ljfj)] (10)

j_—S

Finally we calculate the first double integral in (/) which was marked as Z_;

1 1
Z_g= f f K(x,X)dx_sdx’; = O'f l_l f fexp(—hj(xj —x})z) dxj|dx’; = a; 1_[ dex;. =
[0,1]4-1 [0,1]4-! J==s 0o Lo J==s 0
1
2 A 1 ’
=0 —1; erf (1-x")+erf x =0 J; (11D
fJDY\/;fO [ (\/Elj ’] \/_l D f,l___[Y

We present the exact analytic calculation of the J; integral in

1 1
b4 1 1
J; = \/jl~ ferf —(1-x) dx’.+ferf ¥, |dx,| =
J ) /L (\/Elj J J J \/Elj VN

=x|b; = ﬁ(l —x), ¢j= \/_%l]x; =
1/V21;
\/7 l Vi erf(bj)dbj + V2 f erf(c)dc;| =
1/V21; 0
1/ V21,
=2 Vrl; f erf(t))dt; =
0
= x|u = erf(t;),dv = dt;,du = i ( )dtj,v =t =
\/ﬁ
1/V21;
=2l erf(tj)tj /ﬁ zﬂ f exp(—13)tdt;| =
0

[ 1 1 1
_ 2 _42
_ZX/Elj»\/Elerf(\/zlj)—k ﬁexp( tj)|0

_ 2 1 _
_2\/;lerf(\/§l]]+21 [exp[ l?] lJ (12)



Then we can write down a closed form to compute Z_; in (TT)

Z., =0 ]_[ [ \/71 erf ]+ 22 [exp[—zil?J - 1” (13)

j==s

Finally, the analytic formula for L in (7) is simplified to the following form

L=op [ 7= rffZZ " ﬂl(xp>ﬂ1<xq)fexp o[ = 0+ (o = 27 x| =

j==s p=lg=1| J==s J==5
n n
=07 n Jj— 0' kpq l—[ Ii(xp) l_[ 1j(Xq) Rpgs (14)
j=—s p=1q=1] Jj==s j=-s

The derivation of the integral R, is presented separately:

1

Rpgs = f exp (—hy [(x; = 2)7 + (x, — ¥1?]) dx; =

0

[(a +b)? +(a~- b)Z] =

exp [—% (fcf - )?Z)z]

| =

*|a* + b =

o%_

exp [—% (2xA -7 -5 ) ]a’x3 =

= X

I ! gs(D)
= exp [—3 (% - 56?)2] f exp (~g3) dg; =

2h,
8s(0)
hy 1o 1
= exp [—3 (= - x?)z] o g (erf [g,(1)] —erf[gs(0)]) =
\r L/, .2 1 -
= = leexp [_@ (& - & }(erf[z—ls (2- & - )| +erf| (x” +x]) ) (15)

This concludes the evaluation of the integral L in (14]) with the exact analytic form for the components

Ij(x) in (9), J; in (12) and R s in (T5).

On the next step to finalize the calculation of (), we evaluate the second part M in the equation.

M = f f f m, (X)m, (R)dx_dx" dx; =

0 [0, 1]‘1 l[o]]d 1

:fz_

0

s(x)(K+o-) yz_s(ﬁ)(K+o-) y]dxs:

n n

=U;ZZ Wp Wq I_II(Xp) nl(Xq)fexp (xs )+ (x, — 502 ])dxs =
p=1

q:] j==s J=-s

n n

= g'jc Wy Wy l_[ 1i(xp) l_[ Ti(Xg)R pgs

p=1¢g=11| Jj==s Jj=-s

(16)

x’q

gS:\/g(sz—xp—x) dgs = \2hgdx;, gs(O)z—\/g(x +x) gs(1) = \/g(Z—fcf—

N




Second component /] from (5): Var.{E(Y)}

Let us return to the equation in (5)) and focus on the second term 77

Var, {E(Y)} = f f k.(x,x") dxdx =

[0,114 [0,1]4
= f f K(x, X )dxdx' — f f K(x,X) (K + 0'2)_1 KX, x') dxdx’ =
[0,114 [0,1]¢ [0,114 [0,1]¢
—7-7 (k+0?) " (17

Again we recast the calculation in more simple steps and use the formulas that was presented previously.
For instance, the computation of the integral z in (17) is reduced to the evaluation of /; from the equation

©).

d
2(x) = f K(x, Xydx = o} | [ 150 (18)
j=1

(0,114
Analogously, to compute Z we address to the integral J; that was calculated in

d

f f K(x, X )dxdx’ = J%]_[ J; (19)
0,11 [0,1]4 /=1
Third component /1] from (5): E.{E(Y)}

We address now to the calculation of the final third component in (5)).

d

E{E(Y)} = f K(x, X)dx [K+a21] y=2 (KX.X) +0?) ]—[ i (KX %) +0?) 'y
0,114 J=1

(20)

This derivation finalize the computation of the numerator from the formula @), all three components,/, 11
and /11 , from (3] have been derived in analytic form.

Inference for variance in denominator E.{Var(Y)}

The final step in the calculation of the estimate for the Sobol indices is the derivation of the analytic
formula for the denominator in (4).

E.{var(Y)} = E{E(Y)} - E{E(Y)) = E(E.(Y?)} - (Var{E(Y)} + BE(Y)})) =
= E(Var{Y} + (E.(V))?) - (VarE(V)} + BAEY)) = IV — 1T - 111 Q1)
Similar to the previous routine for the numerator in (@), we divide the calculations in several steps. There
are three components /1, I11 and IV in (2I), where II is summarized by formulas (17), and (19),

while /11 can be calculated using (20). The derivation of the fourth component /V is presented in the
next section.



Fourth component /V from 21): E.{E(Y)}

Here we perform the last calculation of the fourth component in (21).

E{Var {Y}} + E{E.(Y)} f K(x,X)dx — f KxX)|K+o 1[] K(X,x) dx+
[0,1)4 [0,1}¢
+ [K(x, % (k+0?) TR D [K +021] ’ydx] -
[0,1}¢

non d
o5l

p=1 g=1 s=1

+0'fZZ wp wa_lqus

p=1 g=1

(22

where the derivation for R s is shown in (T5).



Final formulas for Sobol indices

Here we present the final formulas for Sobol indices’ estimates S ; defined as:

~  E.{Var{E (Y|X,)}}

S, = E*{Var(Y)}A ,s=1,...d. @

We start with the analytic expression for the numerator E.{Var{E (Y|X,)}} in[4]

EAVar{E(Y|X)}} = BAE (E(YIX,))*} = VarE(Y)} = BAEY))* = 1 - 11 - I1. (&)

For the first term 7 in[5] we get

I: E*{E(E(YIXS))2 O'j l_l J; —0' oY l(kpq — Wy We)R pys l—[ I ( (p))l ( (q))‘

Jj=-5 =1 g=1 Jj==s

where

[l ]

v L o @ 1 (P <@
Rpgs = TZsexp —412 (xsp xsq) erf 2—15(2—xsp q)

(Y = T el 2 (1= 2] 4 e 5
(&) \Ez,[ef[@j(l ])]+ef(\/§lj j ]]

The second term /7 in[5can then be written as

11 (50 + )z(ﬂ))]),

+ erf
erzs

and

II: | VarE(Y)) = & ]i[JJ [HI(X)

j=1 j=1

|k +o21] [HI(X)

Finally, for the third /11 term of [5| we get

d 2
11 - | (BE(Y))? [ ]_[1, K(X.X)+0%) ]37]

Jj=

The expression for the denominator E.{Var(Y)} of @ has the following form:

E.{Var(Y)} = EJ{E(Y?)} — Var{E(Y)} — BJEY)})? =1V - II - III. 1)

As we can see, the formula[21]contains one further term compared to the expression of the numerator
[l which is given by

n n

d
4
+oy [wp Wy | |qus .
p:l q:] s=1

n o n d
IV |EAEQY)} = 0% - o} [kpq [ 1 Roas
p=1g=1 s=1




