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ABSTRACT
In this work, a frequency-domain method for the numerical

solution of the nonlinear dynamics of a wave energy converter
with a pumping system is presented. To this end, a finite Fourier
series is used to describe the nonlinear force components, i.e.,
the pumping force. The dynamics of the buoy and the piston are
obtained by solving a set of linear motion equations. The numer-
ical model is validated by comparing it with experimental results.
The dynamic characteristics of the pumping system are investi-
gated by performing a series of numerical simulations for sev-
eral approximation orders under various wave conditions. The
advantages and limitations of this method are also discussed in
the paper. This work provides great insight into the mechanism
of a WEC with a pumping unit under various sea states, which
can guide the design of a multi-piston pump (MPP) system. This
model will be applied to investigate the optimal configuration for
the MPP system in the future.

Introduction
The recently proposed novel wave energy converter (WEC)

that constitutes the core technology of the Ocean Grazer, a hybrid
ocean energy collection and storage platform, has the potential
to be an effective contender in the challenge of extracting energy
from offshore ocean waves. The Ocean Grazer’s WEC utilizes
an adaptable multi-pump multi-piston power take-off (MP2PTO)
system that consists of a grid of interconnected floater elements
(denominated a floater blanket, FB), with each floater being con-
nected to a piston-type hydraulic pumping system (a multi-piston
pump, MPP) [1]. The working principle of this WEC consists on

∗Address all correspondence to this author. Email: a.vakis@rug.nl

pumping internal fluid from a lower to an upper reservoir, creat-
ing hydraulic head and storing fluid in the upper reservoir. Each
pumping system consists of three differently-sized engageable
pistons, thus providing adaptability to the incoming waves by
being able to alternate between seven different pumping combi-
nations. Consequently, this particular WEC can be configured to
maximize the overall energy extraction for various sea states by
choosing the optimal pumping combinations. A system of check-
valves working together with the pumping system prevents back-
flow from the upper to the lower reservoir while pumping, which
essentially results in nonlinear pulse-like pumping force profiles.

In previous work, a functional scale prototype of single pis-
ton pump (SPP), the main building element of the MP2PTO sys-
tem, was constructed to evaluate the performance of a pumping
unit [2]; furthermore, a mathematical model was proposed to in-
vestigate its mechanical efficiency. In addition, a time-domain
model was developed to demonstrate the advantage of the adapt-
able MPP for wave energy extraction [3], and a frequency-
domain model was used to investigate the hydrodynamic be-
haviour and performance of a FB with linear PTO system [4].
There are some limitations in our previously developed numer-
ical models. The time-domain model can simulate the FB with
the MP2PTO system under various sea states; however, due to the
nonlinearity of the MP2PTO system, it is computationally costly,
and thus not suitable to identify the optimal pumping configu-
rations of the system. Particularly, this would be rather critical
for an FB consisting of hundreds of floating elements. On the
other hand, the frequency-domain model can obtain the hydro-
dynamic response of a FB efficiently, but it can only deal with a
linear PTO system. The nonlinearity of the MP2PTO system is
mainly due to the pumping force, introduced by the interaction
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of the check valves and the dynamics of the pistons, being simi-
lar to a square wave. Therefore, it would be valuable to develop
a computationally-efficient numerical model for an FB incorpo-
rating the nonlinear MP2PTO system.

To assist in the development of WEC technologies, many
numerical methods for modeling WECs have been proposed and
tested by researchers [5]. The conventional numerical modeling
methods taking into account nonlinearities include time-domain
techniques and computational fluid dynamics(CFD), both being
computationally expensive compared to the frequency-domain
approach. Moreover, the optimal control of a WEC requires a
fast and accurate solution for calculating the nonlinear hydrody-
namics. Korde and Ringwood [6] introduced a Fourier-Galerkin
direct transcription method for optimal control of WECs. In such
an approach, the displacement and the PTO force are approx-
imated by a truncated Fourier series; thus, the numerical inte-
gration of the convolution integral can be avoided when solving
the motion equations, which significantly reduces the computa-
tional cost. This approach has been extended to the nonlinear
frequency-domain model of WECs by Merigaud et al. [7]. Their
simulations indicate that such an approach is superior for appli-
cations involving a large number of simulations, such as WEC
parametric optimisation.

The influence of the damping profile on the WEC perfor-
mance and fatigue damage was investigated by Lamont-Kane et
al. [8]. The authors concluded that the mean power capture at
optimum damping was not sensitive to the damping profile, but
the use of Coulomb damping significantly decreased the fatigue
damage. Nevertheless, its influence on the dynamic response
of the WEC was not discussed. Our proposed WEC system is
analogous to the mechanical system of a harmonically excited
oscillator incorporating Coulomb-type friction, which has been
investigated by [9, 10]. Their analytical and numerical results
show that a symmetric motion of the oscillator would be found
with the assumption that there are only two stops per period, but
the asymmetric motion might occur when this assumption was
not fulfilled. The previous hints to similar phenomena possi-
bly existing in the MP2PTO system as well. Note that multiple
turnarounds of the piston per period mean that the check valves
may open/close frequently, which may in turn result in signifi-
cant volumetric losses. Hence, it is important to investigate the
system dynamics at various configurations, in order to obtain an
optimal design.

The present work proposes a frequency-domain model for a
single buoy with a pumping unit (i.e., an MPP), using the Fourier
approximation method. Firstly, we describe the numerical model
and its solution; next, we validate the model by comparing it
against the SPP experiment. Subsequently, we investigate the
response behaviour of the WEC when incorporating the SPP.
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FIGURE 1: The Ocean Grazer WEC concept(a) and the schematic
diagram of numerical model for a WEC with a pumping unit(b).

Numerical model
A schematic representation of the Ocean Grazer WEC is

shown in Fig. 1(a). The floating elements B1−B4 are intercon-
nected into a “floater blanket”; each element is linked with the
(multi-piston) pumping system P1−P4 through cables. The pis-
tons are driven by the heaving motion of the floating elements,
therefore pumping water from the lower reservoir into the up-
per reservoir. The stored potential energy is then transformed
into electricity by means of a hydraulic turbine T . This mechan-
ical system of one floating element with a piston pump can be
simplified into the lumped-element model as shown in Fig. 1(b).
The buoy and piston are considered as two mass bodies, and
the connecting cable is assumed to be a spring-damper element.
Thus, the complete buoy-piston system is governed by the mo-
tion equations:

MMMb

Ä
ẌXXb +g

ä
= FFFe +FFFr +FFFhs +FFFc (1)

mp
(
z̈p +g

)
= Fp +Ff −Fc,3 (2)

where MMMb ∈ R6×6 is a diagonal matrix of masses and moments
of inertia for the general case of a buoy with 6 DOF, XXXb ∈ R6

is the displacement vector of the buoy, and FFFe, FFFr, FFFhs and
FFFc ∈ R6 represent the vectors of excitation, radiation, hydro-
static restoring and cable forces, respectively. In addition, mp
is the mass of the piston, zp is its displacement, Fp is the pump-
ing force due to the pressure difference between two ends of the
piston, Ff is the friction between the piston and cylinder, and
Fc,3 =

î
0 0 1 0 0 0

ó
FFFc is the cable force in the heaving direc-

tion.
For the SPP model, the pumping force depends on the open

area of the check valve and the dynamics of the piston [1]. It
can be very large during the upstroke, but becomes zero during
the downstroke, which introduces a nonlinearity into the WEC
system. Due to the variation of the water levels in both reser-
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voirs being very small in a short period, the water levels can be
assumed to be constant during one pumping cycle. Then, the
pumping force can be expressed as:

Fp = At

î
ρg(Lc +LU −LL)+ρ (Lc +LU ) z̈p +ρ ż2

p

ó
, (3)

where At is the time variation of the open area of the check valve,
Lc is the length of the cylinder between both reservoirs, LU and
LL are the water depth of the upper and lower reservoirs and ρ is
the density of the working fluid. The first term inside the brack-
ets in Eq. (3) represents the pressure due to the hydraulic head
between two reservoirs; the second term accounts for the inertia
of the working fluid in the cylinder; and the third term describes
the dynamic pressure of the working fluid. Based on the param-
eters in [1], a scale analysis indicates that the last two terms are
generally much smaller than the first term, except under high fre-
quency waves.

Furthermore, applying the Couette flow assumption, the vis-
cous friction force Ff acting on the piston in (2) can be described
as

Ff =
µ`pżp

sp
, (4)

where µ is the dynamic viscosity of the working fluid, sp is the
piston-casing separation and `p = 2πRpHp corresponds to the
lateral area of the piston with radius Rp and height Hp.

In general terms, the dynamics governing the opening and
closing of the check valve should be considered in (3). Accord-
ingly, in this work we model them by assuming that the open
area of the check valve is a logistic function of the piston veloc-
ity, namely

At =
Ac

1+ ek(żp−żp0)
, (5)

where Ac is the piston cross-sectional area, żp0 is the threshold
piston velocity that makes the check valve half open, and k is the
steepness coefficient. In the present study we use żp0 = 0 and
a smaller value of k for the opening than closing to match the
measurements in the SPP experiment.

The finite Fourier series method is applied to approximate
the nonlinear dynamics of the WEC system. Therefore, the free
water surface elevation, as well as the displacements of buoy and

piston are described as a truncated Fourier series:

η(t) =
N∑

n=0

ℜ

¶
Âneinωt

©
(6)

XXXb(t) =
N∑

n=0

ℜ

¶
X̂XXb,neinωt

©
(7)

zp(t) =
N∑

n=0

ℜ

¶
ẑp,neinωt

©
(8)

for a frequency ω , where Âw,n represents the complex wave am-
plitude components obtained from a wave spectrum or a designed
wave train, X̂XXb,n corresponds to the amplitude of the buoy dis-
placement, and ẑp,n is the amplitude of the piston displacement.
The n = 0 component indicates the mean water level or displace-
ments. Consequently, the forces in Eq. (1)-(2) can be written as:

FFFe(t) =
N∑

n=1

ℜ

¶
Âw,nF̂FFe,neinωt

©
(9)

FFFr(t) =
N∑

n=1

ℜ

{Ä
n2

ω
2AAAr,n− inωBBBr,n

ä
X̂XXb,neinωt

}
(10)

FFFhs(t) =
N∑

n=0

ℜ

¶
−KKKhsX̂XXb,neinωt

©
(11)

FFFc(t) =
N∑

n=0

ℜ

{
(−KKKc− inωCCCc)

Ä
X̂XXb,n− ẑzzp,n

ä
einωt

}
(12)

Fp(t) =
N∑

n=0

ℜ

¶
F̂p,neinωt

©
(13)

Ff (t) =
N∑

n=1

ℜ

®
µ`p

sp
inω ẑp,neinωt

´
(14)

where F̂FFe,n, AAAr,n and BBBr,n are the excitation, added mass and radi-
ation damping at the nth harmonic frequency, respectively; KKKhs
contains the hydrostatic stiffness coefficients. They can be nu-
merically obtained by the boundary element method. The open
source code NEMOH [11] is used in the present paper. KKKc and
CCCc are the stiffness and damping coefficients of the cable. The
nth harmonic pumping force coefficients F̂p,n can be calculated
by performing the numerical integration:

F̂p,n =
1
T

∫ t0+ T
2

t0− T
2

Fp(żp, z̈p)e−inωtdt (15)
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Substituting Eqs. (9)-(14) into Eq. (1)-(2) and sorting out the
terms by the order of the frequency, the system of equations (1)-
(2) can be converted into a set of linearized equations over each
harmonic, which can be solved easily in a conventional numeri-
cal computing environment, e.g., Matlab. Since F̂p,n in Eq. (15)
depends on the piston dynamics which are unknown in advance,
a series of iterative steps is required. The results of X̂XXb,n and ẑp,n
are obtained once the residuals of the pumping force are smaller
than a predefined tolerance.

The leakage and volumetric losses are not accounted for in
the present model, hence it is not possible to calculate the cap-
ture power of the WEC system. Alternately, we use the pumping
power to assess the system performance. For the monotonous
wave simulation, the pumping power can be expressed as:

Pp(ω) =
ω

2π

∫ 2π
ω

0
Fp(t)żp(t)dt. (16)

Considering a single WEC system excited by monotonous
waves with only one degree of freedom in heave, we assume that
the stiffness of the cable is infinite and the damping of the cable
is neglected such that the buoy and piston move synchronously,
and we neglect the last two terms in Eq. (3) such that the pumping
force only depends on the sign of the velocity and the hydraulic
head. Then, eqs. (1) and (2) can be reduced as:

(
mb +mp +Ar

)
z̈p +Br żp +Khszp =

|F̂e|cos
(
ω(t + t0)

)
− Acρg(Lc +LU −LL)

2
sgn(żp), (17)

where mb is the mass of the buoy, sgn(żp) denotes the sign oper-
ation of the piston velocity given by

sgn(żp) =


1 if żp > 0
[1,−1] if żp = 0
−1 if żp < 0

, (18)

which gives the dry fiction characteristic as in [10], such that
when żp = 0 the function in (18) gives undetermined values; this
situation corresponds to the so-called stick phase when the piston
is unable to move and thus sticking occurs. Comparing Eq. (17)
with the motion equations of the harmonically excited dry fric-
tion oscillator (Eq. (4) in [10]), the uniqueness of the present
system includes the following aspects: (1) the system has the
radiation damping term; and (2) the radiation and excitation co-
efficients (Ar, Br and Fe) are frequency-dependent. Therefore,
this is a more complex problem than that in [10], which has not

been investigated in the context of WEC applications, using the
finite Fourier approximation method.

Comparison with SPP experiment
The proposed model is validated by comparing it with the

SPP experiment. In this experiment, the dynamics of the buoy
are replaced by a sinusoidal oscillation provided by a motor. The
details of the experimental configuration can be found in [2].

Fig. 2 shows the comparison of the pumping power as a
function of the hydraulic head. The numerical results show very
good agreement with those obtained in the experiment. The
pumping power is almost linear to the hydraulic head, because
the velocity of the piston is a semi-sinusoidal profile, and the
pumping force is roughly proportional to the hydraulic head (ne-
glecting the last two terms in Eq. (3)).

1 1.5 2 2.5 3
Hh(m)

20

30

40

50

P
p
(w

)

Num
Exp

FIGURE 2: Pumping power as a function of the hydraulic head.

The comparison of the pumping power with varying periods
is presented in Fig. 3. The numerical and experimental results
exhibit a similar trend in the pumping power, which decreases
as the period increases. The numerical model slightly underesti-
mates the pumping power; this small difference may be caused
by the phase difference between the opening and closing of the
check valve, resulting in an offset in the pumping force.

The time variations of the system dynamics can be recov-
ered from the Fourier series, which makes the numerical re-
sults directly comparable with the experimental measurements,
as demonstrated in Fig. 4. There is a discrepancy in the piston
displacement, appearing near the occurrence of the switching be-
tween the upstroke and downstroke, which may be caused by the
inaccurate stiffness of the system in the numerical model. More
specifically, the stiffness in the experiment may be multiple-
factor dependent on, e.g., the supporting structure, the cable con-
nection between the motor and piston, and the compliance of the
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FIGURE 3: Pumping power for different periods.
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FIGURE 4: Comparison of experimental and numerical results (top:
piston displacement; bottom: pumping force).

cylinder. These factors are difficult to determine and incorpo-
rate in the numerical model. A time shift is found in the pump-
ing force, indicating that the dynamics of the check valve are
not accurately described in the model (both opening/closing of
the check valve occur earlier than in the experiment). We ob-
serve that this time shift is frequency dependent, implying that
a more complicated expression of Eq. (5) is necessary in order
to improve the accuracy of the model. This also explains why
the pumping power is underestimated in Fig. 3. In addition, the
high frequency oscillations of the pumping force are measured
during the switching in the experiment, which is not observed

in the numerical results. Since the mathematical expression of
the pumping force is a semi-discontinuous function, it is difficult
to describe the mechanism during the switching. Theoretically,
although the accuracy of the Fourier approximation approach de-
pends on the choice of the order N such that one can increase N to
capture this slamming phenomenon, the inherent difficulty in ap-
proximating a discontinuous function by a finite Fourier series,
i.e. the Gibbs phenomenon, may affect the numerical results.
Hence, this model can be used to assess the energy extraction of
the pumping system, but it can hardly be applied to investigate
the mechanism of the slamming.

Dynamic behaviour of the WEC with a pumping unit
After discussing the validation of the model, following our

discussion on the sticking phenomena, as reported in [9], mul-
tiple sticking instances may appear when the excitation force is
smaller than the maximum friction force. Analogously, in the
present WEC system, sticking may occur when the wave exci-
tation force is smaller than the pumping force. Hence, it is in-
teresting to investigate the dynamics of the complete system by
coupling the hydrodynamic force with pumping system. Accord-
ingly, this section discusses the dynamic response and the energy
extraction of the WEC coupling with a pumping unit, based on a
series of numerical simulations.

It was found that the numerical results in the previous sec-
tion are not sensitive to the chosen order (the higher order results
are very close to those using 1st order approximation). The rea-
son is that the motion of the buoy was replaced with a powerful
motor in the experiment, which can easily overcome the pump-
ing force. There are no sticks observed and the motion of the
piston is semi-sinusoidal, but in the buoy-piston coupling sys-
tem, this is not true. The convergence study is performed with
various harmonic simulations. The results of the capture factor
(the ratio between the pumping power of the WEC and the power
of the incident wave per unit width of the device) are shown in
Fig. 5. In this figure, it can be seen that the results of the 1st
and 2nd order approximations are significantly different from
those of higher order approximations. The lower order simu-
lations predict higher pumping power for low frequency waves,
while underestimating the power in higher frequencies. The re-
sults converge when the simulations are performed with a 3rd
order approximation or higher.

The discrepancy between the simulation results with differ-
ent orders is mainly caused by the appearance of sticking, which
can be understood by comparing their results in the time domain
in Fig. 6. In this figure, it is clear that the sticking occurs between
t = 3 s and t = 4 s, and the piston keeps stationary for a while
before it starts moving in the upstroke direction (Note that due to
the limitation of the Fourier approximation approach, since it is
impossible to obtain the explicit sticking section, i.e., żp = 0 for a
certain time, we identify the piston velocity żp = 0±ε for ε� 1
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FIGURE 5: Capture factor profiles for different harmonic orders (Rp =
0.3 m, Aw = 1 m).

as the occurrence of the sticking). The lower order simulations
i.e., the 1st and 2nd, cannot capture such a phenomenon. The
results of the higher order approximation simulations show that
the check valve will open and close more than once during one
wave cycle, as shown in the plot of the time series of At , which is
a major difference between the SPP experiment and the complete
WEC system. Consequently, the pumping force Fp shows a sim-
ilar behaviour with respect to At . Resultingly, the peak pumping
power Pp for higher order approximation simulations is almost
double that of lower order ones, as demonstrated in the last plot.
In addition, we would like to remark that varying the parameters
in Eq. (5) may alter the check valve dynamics, e.g., the open-
ing/closing duration and frequency, thereby change the pumping
power.

Since the present model dismisses the convolution inte-
gral or the state-space approximation for the radiation forces,
it is very computationally competitive with respect to the time-
domain model when choosing a proper order of the Fourier se-
ries, i.e., 3rd order approximation in the present case. This model
can estimate satisfactorily the pumping power, while keeping the
simulation execution efficient. The higher order simulations can
describe the system dynamics better around the sticking section,
but their computational cost increases dramatically due to the
fact that the Fourier series of discontinuous functions will con-
verge very slowly. The former can also be associated with the
previously-mentioned Gibbs phenomenon.

In Fig. 5, it is surprising to observe several spikes occur-
ring occasionally. Csernák et al. (2007) [10] also observed these
spikes of oscillating amplitude near sub-harmonic resonance fre-
quencies. Their interpretation is that these spikes are caused by
the marginal stability of the dynamical system at those frequen-
cies. In the present case, the spikes in the capture factor may be
attributed to the sharp variation of the sub-harmonic added mass
coefficient, as shown in Fig. 7. It is clear that the 1st order har-
monic added mass is smooth, whereas the higher order harmonic

ones have sudden jumps at certain frequencies. These frequen-
cies precisely coincide with the frequencies of the appearance of
the spikes in Fig. 5.

Although the present model cannot accurately describe the
sticking phenomenon, it can shed some light on the dynamic
patterns of the system. It was reported by [10] that the num-
ber of stops per cycle is both frequency- and friction intensity-
dependent. Based on a series of simulations with various radii of
the piston, we obtain results exhibiting behavior similar to those
in [10], which are shown in Fig. 8. These results have been con-
verted into dimensionless quantities by:

S =
Acρg(Lc +LU −LL)

2|F̂e(ω)|
(19)

t∗ = t
ω

2π
(20)

z∗p = zp
Khs

|F̂e(ω)|
(21)

ż∗p = żp
Br(ω)

|F̂e(ω)|
(22)

where S is the ratio between the pumping force and the wave ex-
citation, which indicates the capability for the excitation to over-
come the resistance in the system. The upper and lower bounds
of the shaded zone in Fig. 8 are calculated by:

z∗s =
ℜ

¶
F̂e(ω)eiωt

©
|F̂e(ω)|

±S. (23)

The sticking phenomenon occurs when the piston switches the
moving direction in the shaded zone.

The explanation of the dynamic behaviour is the follow-
ing. In the case of a low frequency incident wave, the excita-
tion force is mainly attributed to the Froude-Krylov force, which
varies slowly with the free water surface elevation. As soon as
the excitation overcomes the pumping force, the piston starts to
move upward. In the mean time, the buoyancy restoring force
decreases, which can easily cancel the excitation force, because
both forces strongly depend on the free water surface elevation.
Consequently, the piston stops and will restart to move again un-
til the excitation can overcome the pumping force. As a result,
the piston sticks and the check valve closes and opens frequently.
Similarly, such a mechanism may occur during the downstroke.
These dynamics can be observed in Fig. 8(a), where the displace-
ment of the piston traces the lower bound during the upstroke
while tracing the upper bound during the downstroke; further-
more, the time series of piston velocity oscillates in high fre-
quencies.

When increasing the incident wave frequency, S increases
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FIGURE 6: Comparison of time variation of (a) piston displacement Zp, (b) piston velocity Żp, (c) piston acceleration Z̈p, (d) open area of cylinder
Ac, (e) pumping force Fp and (f) pumping power Pp (Rp = 0.3 m, Aw = 1 m, ω = 1.08 rad/s).

because the excitation decreases with the wave frequency in gen-
eral. A phase shift appears between the excitation force and
the displacement of the piston (the shaded zone includes the
phase information of the excitation force with Eq. (23)), as seen
in Fig. 8(b). The two sticking sections merge and two long-
duration sticking instances can be identified prior to the up-
stroke/downstroke.

In Fig. 8(c), it can be observed that the sticking only appears
during the upstroke, and it is absent during the downstroke. The

asymmetric displacement in one wave cycle may be caused by
the asymmetric pumping force. The pumping force is a function
of velocity and acceleration during the upstroke (the jump at the
switching from downstroke to upstroke is greater than that from
upstroke to downstroke), while it is constant during the down-
stroke, as presented in Fig. 6. As a result, it is harder for the
wave excitation to overcome the pumping force in the upstroke.

The non-sticking case is not observed in the case of Rp =
0.3 m, when further increasing the wave frequency. Nonetheless,
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it can be found in the case with a smaller piston radius (decreas-
ing the pumping force), e.g., Rp = 0.25 m in Fig. 8(d). The re-
sults correspond to non-sticking semi-symmetric solutions, sim-
ilar to the ones in [12, Chapter 11].

Conclusions
The present paper proposed a nonlinear frequency-domain

model for a WEC with a pulse-like pumping system, based on
the Fourier approximation method. Several conclusions can be
drawn:

• The numerical simulations show good agreement with the
SPP experiment.
• The numerical results indicate that at least 3rd order ap-
proximation is required in order to properly capture the non-
linear response and satisfactorily predict the pumping power.
• The Fourier approximation method is able to assess the en-
ergy extraction of the WEC system, but it is not very suitable
to investigate the high frequency response, i.e., slamming
phenomenon.
• A complete WEC system with a pumping unit behaves
significantly differently than the one in the SPP experiment.
Various sticking patterns may appear, depending on the in-
cident wave frequency and the configuration of the system.

The present work placed emphasis on understanding the dynamic
response of the system, while the energy extraction has not been
carefully examined yet; this should be done in the future. Ad-
ditionally, a more analytical approach could be taken to study
the dynamic response of the system and the sticking phenomena.
The current work only deals with a single buoy with one pump-
ing unit, but it may be readily extended to an FB coupled with
the MP2PTO system, which is a work in progress. The present
model will be applied to identify the optimal configuration of the
MPP in the future.
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FIGURE 8: The dynamic patterns of the WEC system with various number of sticking sections per wave cycle; the plots on the left show the non-
dimensional displacements of the piston, with the shaded (cyan) zones indicating the ranges that may result in sticking; the plots on the right show the
non-dimensional velocity of piston. The results are derived from the simulation of the 10th order approximation.
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