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1.1 PREFACE

Genetics as a field of scientific study has existed for 
a century. However, theories of heredity have been 
laid out for millennia. The Greek philosophers and 
mystics suggested how features, or phenotypes, were 
passed on through human generations. For instance, 
 Pythagoras (c. 550 BC) believed, with the lack of an-
atomical evidence, that the male semen circulated 
through the body and mystically collected information 
from its parts. The semen would contain instructions 
for the creation of a human being, whereas the female 
provided for its growth — that the nature came from 
the male and the nurture from the female.1,2

Long after Pythagoras’ time, the Czech friar Johann 
Mendel proposed a remarkable theory of discrete units 
of heredity in his 1866 paper entitled “Versuche über 
Pflanzen-Hybriden” (Experiments on Plant Hybridiza-
tion).3 Mendel cross-hybridised pea plants over the 
course of eight years and observed interesting phe-
nomena over the generations. When he crossed short 
plants with tall plants, only tall plants would result. 
But when he crossed these second-generation plants 
with each other, some of the resulting plants would be 
short. Repeating these experiments and observing sev-
eral characteristics of the plants, Mendel noticed that 
the characteristics of later generations would appear 
in beautiful mathematical ratios and independently of 
each other: the height of the plant was inherited re-
gardless of the colour of the seed, for example. While 
Mendel was not one for schoolbooks,4 he postulated 
the laws of segregation, independent assortment, 
and dominance, which are the foundations of today’s 
schoolbook genetics.

Several years before Mendel’s pea experiments, in 
1831–1836, the English naturalist, geologist and bi-
ologist, Charles Darwin, had sailed to the islands and 
coasts of South America where he collected fossils and 
animal corpses to be shipped back to Europe. He ob-
served that species on different islands were slightly 
different from each other: “Each variety is constant on 
its own island”.5,6 His observations and thinking led him 
to postulate his theory of natural selection and “sur-
vival of the fittest”, a phrase borrowed from  Herbert 
Spencer, an English philosopher and scientist.7

If Darwin was aware of Mendel’s work, he didn’t 
connect it to his own. When working on his theory in 
the decades after the voyage, Darwin struggled with 
how inheritance would fit into his theory of evolution: 
Why didn’t “freaks of nature”, such as short beaks 
of birds, disappear from populations over time? He 
had assumed that the characteristics of individuals 
blended together over generations, and that charac-
teristics acquired by an individual during its lifetime 

were inherited, much as Pythagoras had thought 
2000 years earlier.

Among others, the Dutch botanist Hugo de Vries 
first rediscovered Mendel’s findings and then his work 
at the turn of the twentieth century, publishing his 
own work in 1901.8 Based on his experiments with 
primroses, de Vries realised that mutations such as rel-
atively big leaves were passed on to the next genera-
tions discretely — not in a blending fashion as  Darwin 
had assumed. Mendel’s findings of generation-to- 
generation reproduction and Darwin’s theory of long-
term evolution converged into a new field of study, 
which the English biologist William Bateson first called 

“genetics” in 1905.9
While the basic principles of heredity had been 

discovered, its molecular basis was still unclear in the 
early twentieth century. Microscopic knowledge of the 
late nineteenth century had led scientists to hypothe-
sise that the genetic material resides in the nuclei of 
cells. The existence of chromosomes had been shown, 
leading to the discovery of the cell reproduction mech-
anisms of mitosis and meiosis. It was accepted that the 
concept of a gene had a physical and biological form, 
but it was unclear what this form was. The American 
geneticist Thomas Morgan worked with fruit flies and 
concluded in his 1911 paper, entitled “Random segre-
gation versus coupling in Mendelian inheritance”, that 
some characteristics are linked to each other in con-
trast to Mendel’s law of independent assortment. He 
also found that some characteristics are inherited on a 
sex chromosome, and that genes are carried on chro-
mosomes in a sequential manner.10

The existence of deoxyribonucleic acid (DNA) in 
cells was recognized a few years after Mendel’s pea 
experiments. However, its purpose remained unclear 
for nearly a century. During the first decades of the 
twentieth century, biochemists found that DNA con-
sisted of four different nitrogen bases strung together. 
In 1944, the Canadian-American physician Oswald 
Avery discovered from his experiments that genes 
may reside within the DNA molecule.11 Scientists then 
started racing to determine the physical structure of 
DNA. In England, heavily influenced by the chemist 
Rosalind Franklin’s work on making X-ray photographs 
of DNA, the biologist James Watson and biophysicist 
Francis Crick suggested its double-helix structure, in 
which the nitrogen bases are unambiguously paired 
with each other.12,13 “It has not escaped our notice that 
the specific pairing we have postulated immediately 
suggests a possible copying mechanism for the genetic 
material”, was Watson and Crick’s exciting conclusion 
to their seminal paper in 1953.

In subsequent decades, research shifted from un-
derstanding the form of the DNA to understanding its 
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function. The Indonesian-born American cytogeneti-
cist Joe Hin Tjio and Swedish botanist Albert Levan re-
ported the correct number of chromosomes in humans 
(46) in 1955, two years after the discovery of the DNA 
structure.14 The copying mechanism, or replication, of 
the DNA molecule was affirmed by the American mo-
lecular biologists Matthew Meselson and Franklin Stahl 
in 1958.15 By 1965, the basic mechanism of transcrip-
tion of DNA to ribonucleic acid (RNA) was understood.

Following the concrete discoveries of the funda-
mental molecular processes of DNA replication, RNA 
transcription, and protein translation, during the next 
decades the functions of genes were studied intensely. 
These studies ranged from the development of organ-
isms to what is today the focus of human genetics: hu-
man diseases. In 1972, biologists Herbert Boyer and 
Stanley Cohen introduced viral DNA into a bacterial 
cell, marking a starting point for recombinant DNA 
technology — combining DNA from different organ-
isms — and gene cloning.16,17

In 1977, the English biochemist Frederick Sanger in-
vented a gene sequencing technique to reveal the full 
5386-nucleotide long DNA sequence of the ΦX174 
virus, preparing the path for unravelling the genetic 
code of other organisms.18 Meanwhile, in 1980,  David 
 Botstein and his colleagues proposed a method to con-
struct a genetic linkage map of the human genome.19 In 
1983, the genetic locus linked to Huntington’s disease 
was found using this method, marking the first discovery 
of a single disease locus.20 With the technologies availa-
ble at the time, it took another ten years of gene map-
ping to find the culprit, a large protein- coding gene first 
named “interesting transcript 15”, and later huntingtin.21

After Sanger’s work with the ΦX174 virus, scien-
tists were eager to discover the DNA sequences of 
more complex organisms. In 1998, the genome of the 
worm Caenorhabditis elegans, better known as C. ele-
gans, had been sequenced in Hinxton, near Cambridge, 
UK.22 C. elegans thus became the first multicellular or-
ganism whose genome sequence was revealed. Then, 
in 2000, a consortium of scientists led by the American 
biotechnologist Craig Venter, and his company Celera 
Genomics, published the draft sequence of the fruit fly, 
a model organism traditionally used in genetics.23

To determine the full human DNA sequence, an in-
ternational collaboration called the Human  Genome 
Project (HGP) had been launched in 1990 in the United 
States, long before the genomes of C. elegans and the 
fruit fly had been discovered. It was the biggest pro-
ject in biology ever undertaken. As it progressed, Craig 
Venter became determined to discover the sequence 
of the human genome independently of the HGP, us-
ing a different sequencing strategy (shotgun sequenc-
ing instead of clone based) that Celera had also used 

in determining the fruit fly genome. The two projects 
raced forward neck and neck. After a political interven-
tion by the US President Bill Clinton,24 papers reveal-
ing the draft DNA sequences from both projects were 
published simultaneously in 2001 in rival journals: the 
HGP’s work appeared in Nature and Celera’s effort in 
Science.25,26 A century after the beginning of genetics, 
humans had unravelled their own manuscript, which 
has since been intensively interpreted and led to an in-
creased understanding of biology and human disease.

Meanwhile, by the turn of the millennium, DNA se-
quencing methods had improved enormously. These 

“next-generation” or high-throughput techniques pro-
cess sequences in parallel, speeding up the sequencing 
procedure tremendously. In addition, the cost of se-
quencing an individual genome has fallen by several 
orders of magnitude in less than two decades. The Hu-
man Genome Project was eventually finished in 2003, 
cost nearly $3 billion, and took 13 years to complete. 
Now, in 2017, a whole human genome can be se-
quenced for a few hundred dollars in just a few days.27 

This allows for massive studies of hundreds of thou-
sands of individuals.

Next to sequencing, genotyping technologies have 
been used since 1980 and in the last two decades even 
more widely due to the availability of genome- wide 
DNA chips that allow for high-throughput and cheap 
genotyping.28 Instead of identifying parts of DNA se-
quences, genotyping determines genetic variants at 
specified positions in the genome. Since 2005, a pleth-
ora of genome-wide association studies (GWASs) have 
been performed to identify single nucleotide polymor-
phisms (SNPs) — variations of a single nucleotide in a 
specific position  of the genome — associated with a 
disease or phenotype.29,30 By August 2017, these stud-
ies have compared variants between groups of cases 
and controls, and found nearly 40,000 unique associa-
tions between SNPs and various phenotypes.31

Despite the success of GWASs in finding genetic 
variants associated with phenotypes, it is still often 
unclear how these variants cause a phenotype.30 For 
example, today more than a hundred common vari-
ants (variants seen in at least 1 % of the population) 
are known to be associated with schizophrenia.32 Each 
of these variants individually explains only a small pro-
portion of susceptibility to the disease — it is believed 
that this complex disease is caused by hundreds of 
genetic variants that act together. Back in 1918, stat-
istician Roland Fisher had proposed an infinitesimal 
model stating how several genes with small effect sizes 
could contribute to a certain phenotype.33 But, in most 
cases, it is still not known what role each individual as-
sociated variant or region plays in disease aetiology, or 
how the variants together cause the disease.
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While DNA sequence and genotype information 
can be seen as the basis of biology, the emergence of 
life out of DNA is an extremely complex phenomenon. 
In cells, DNA is transcribed into ribonucleic acid (RNA), 
which in turn is translated into the proteins that make 
us up. Francis Crick called this flow of information “the 
central dogma of molecular biology”, although he later 
regretted the use of the word “dogma”.34 Since Crick’s 
work, we have learned a lot about how genes are regu-
lated — turned “on” or “off” — in various ways, and how 
they work together in different ways depending on the 
developmental stage of the organism, the type of the 
cell, and environmental factors. We have come to ap-
preciate the true complexity of biology, partly because 
we know so little about the genetics and aetiology of 
complex diseases. Now we also know that cells contain 
information that is not encoded in the DNA sequence 
itself. The field that studies this phenomenon is called 

“epigenetics”. In the last decades, the field of genetics 
has become multidisciplinary, requiring efforts from 
biologists, mathematicians, chemists, physicians, infor-
maticians and philosophers. There is far more to study 
with regards to biology, disease and health, than previ-
ously anticipated!

In addition to sequences and genotypes, higher lev-
els of molecular information are now being extensively 
measured. Gene expression is the process in which 
genes as stretches of DNA become their final products: 
RNA or protein. RNA transcription is the first step in  
this process. As such, measuring and analysing quan-
tities of RNA in cells from various tissues, conditions 
and diseases can help us in investigating cellular phe-
nomena, as well as disease biology. Traditionally, RNA 
quantities in cells have been measured using prede-
termined microarrays. In the course of the last seven 
years, RNA sequencing (RNA-seq) has become a prev-
alent method.35,36 While microarray measurements are 
inherently limited to the probes present on the array, 
RNA-seq provides an unbiased, genome-wide view of 
the abundances of RNA in cells. This allows for investi-
gation of large intergenic non-coding RNAs (lincRNAs) 
for example, for most of which there are no probes 
on microarray platforms. Often, and in this thesis, the 
term “gene expression” refers to RNA transcription.

In this thesis, I study the functions of genes in re-
lation to biological pathways, cell types, tissues and 
phenotypes, including diseases. When I started my 
PhD research in February 2011, the National Center 
for Biotechnology Information’s (NCBI) dbSNP data-
base listed 30 million human SNPs. At the same time, 
the GWAS Catalog of the National Human Genome 
Research Institute (USA) and the European Bioinfor-
matics Institute (NHGRI-EBI) contained 4,200 disease- 
associated SNPs. At the time of writing, in August 

2017, these numbers had grown to 300 million and 
35,000, respectively.31,37 While our knowledge of ge-
netic variation and its association with various pheno-
types has increased, it is still unclear how genetic vari-
ation translates to phenotypic variation and disease, as 
in the above example of schizophrenia. We also do not 
yet have a comprehensive view of the functions of in-
dividual genes and, in many cases, we do not yet know 
which genes in the disease-associated genetic regions 
are relevant to the disease biology.

To gain a better understanding of genetics and 
genomics in these respects, scientists have during the 
last two decades developed several tools to predict 
gene function, to find functional enrichment among 
genes of interest, and to prioritize genes in genetic loci 
implicated by GWASs.38,39 PANTHER (Protein Anno-
tation THrough Evolutionary Relationship) is a widely 
used system for classifying gene and protein function. 
Initially released in 2003, it is based on phylogenetic 
data from various organisms combined with functional 
data. PANTHER determines protein and gene fami-
lies by sequence homology, as well as subfamilies by 
shared function.40,41 

Three widely used tools for analysing lists of genes 
deemed interesting in biological experiments are GSEA 
(Gene Set Enrichment Analysis),42 DAVID (the Data-
base for Annotation, Visualization and Integrated Dis-
covery),43 and MAGENTA (Meta-Analysis Gene-set 
Enrichment of variaNT Associations).44 These tools 
traditionally rely on known gene functions to find en-
riched pathways for the user’s genes of interest. 

In addition to finding functional enrichments for 
gene lists, researchers have been increasingly eager 
to determine potentially causal genes based on SNPs 
found to be associated with a phenotype in a GWAS. 
GRAIL (Gene Relationships Across Implicated Loci) has 
been a widespread method for this purpose.45 It is a 
text-mining approach that finds similarities in scientific 
literature among genes in given genetic loci. 

Despite the usefulness of the traditional methods 
for analysing results of genetic studies, they share the 
shortcoming of relying on previously established bio-
logical knowledge. On the other hand, gene function 
prediction methods have shared limitations of relying 
on sequence similarity or not being able to consider 
molecular measurements from a wide variety of con-
ditions, thus lacking means to systematically predict 
functions genome-wide. 

During the last decade, a myriad of measurements 
of gene expression levels have been made freely avail-
able by researchers and technicians around the world. 
These molecular data has allowed me to jointly study 
gene expression patterns in various tissues and con-
ditions. I have been able to use these patterns in 
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combination with established knowledge of biological 
pathways to systematically and accurately predict func-
tions for genes, which has resulted in finding previously 
unknown gene functions. Additionally, I have used find-
ings from genomewide association studies to success-
fully prioritise relevant genes and pathways for various 
phenotypes based on the predicted gene functions. The 
bioinformatic methods described in this thesis

1.2 OUTLINE OF THE THESIS

My thesis has two main aims: (1) to present a gene 
 expression-based method to predict novel functions for 
human genes, and (2) to present a follow-up method to 
suggest which genes and pathways may be relevant to 
different phenotypes, based on findings from genome- 
wide association studies.

Chapter 2 describes a method to predict functions 
for human genes based on gene expression data and 
previously established gene functions. We reanalysed 
77,840 publicly available microarray expression profiles. 
Using principal component analysis (PCA), we found 

“transcriptional components” that describe  biological 
phenomena. We used these components together with 
established pathway information to systematically pre-
dict gene functions for all the human genes represented 
on the microarray platforms. For example, we predicted 
and validated that the FEN1 gene is required for homol-
ogous recombination- mediated repair. We also used the 
gene expression data to identify somatic copy number 
alterations in cancer samples.

Chapter 3 shows that many lincRNAs are under 
genetic control. We tested the association of SNPs 
with expression levels of lincRNAs from five differ-
ent tissues and identified 112 cis-regulated lincRNAs. 
We noticed that 75 % of SNPs that affected lincRNA 
expression did not affect the expression of nearby 
protein- coding genes. Using the method described 
in chapter 2, we predicted relevant functions for four 
lincRNAs whose expression was affected by disease- 
associated SNPs.

Chapter 4 describes a computational method called 
DEPICT, built on the work in chapter 2, to systemat-
ically prioritise relevant genes at disease-associated 
loci that have been found in genome-wide association 
studies. The method also suggests pathways that are 
relevant to the studied phenotype, as well as tissues 
in which the prioritised genes are highly expressed. 
DEPICT uses no phenotype-specific hypotheses. We 
benchmarked it with three different phenotypes: 
Crohn’s disease, human height, and low-density lipo-
protein cholesterol. We observed that the method had 
superior performance compared to existing methods.

In chapter 5, I discuss the findings of my work and 
place them in a broad perspective. I also consider some 
future directions for research and some clinical appli-
cations of the work described here.
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Many cancer-associated somatic copy number alterations 
(SCNAs) are known. Currently, one of the challenges is to identify 
the molecular downstream effects of these variants. Although 
several SCNAs are known to change gene expression levels, it  
is not clear whether each individual SCNA affects gene expression.  
We reanalyzed 77,840 expression profiles and observed a limited 
set of ‘transcriptional components’ that describe well-known 
biology, explain the vast majority of variation in gene expression 
and enable us to predict the biological function of genes. On 
correcting expression profiles for these components, we observed 
that the residual expression levels (in ‘functional genomic mRNA’ 
profiling) correlated strongly with copy number. DNA copy 
number correlated positively with expression levels for 99% of 
all abundantly expressed human genes, indicating global gene 
dosage sensitivity. By applying this method to 16,172 patient-
derived tumor samples, we replicated many loci with aberrant 
copy numbers and identified recurrently disrupted genes in 
genomically unstable cancers.

Thus far, thousands of genetic variants have been associated with 
cancer, other diseases and complex traits, and it has become clear 
that disease-associated SNPs and SCNAs (one of the hallmarks of 
cancer) often affect gene expression levels1–4. This observation 

indicates that changes in gene expression might be an important 
intermediate mechanism for genetic variants to exert their effect 
on the resulting phenotype. However, it is not clear to what extent 
the expression levels of genes are affected by SCNAs.

Here we aimed to systematically investigate the extent of gene 
dosage sensitivity. We hypothesized that every SCNA has an effect 
on gene expression levels but also that this effect is likely to be sub-
tle and will generally be overshadowed by many other, non-genetic  
factors that have much stronger effects on gene expression (for  
example, physiological or metabolic factors).

To this end, we have developed a method called functional genomic 
mRNA profiling, or FGM profiling, that corrects gene expression data 
for major non-genetic factors. We first applied this method to gene 
expression data for which array comparative genomic hybridization 
(aCGH) data were available and observed a strong correlation between 
SCNAs and the FGM expression levels of genes that mapped within 
these SCNAs. We then identified a set of 16,172 unrelated patient-
derived tumor samples and generated a comprehensive landscape of 
FGM profiles in these samples.

RESULTS
A regulatory model of the transcriptome
To identify the effects of genetic variation on gene expression levels, 
expression quantitative trait locus (eQTL) studies are typically employed. 
Often, principal-component analysis (PCA) is used to correct expres-
sion data for unwanted biological or technical effects1,2. PCA is usually 
performed on the expression data corresponding to the eQTL data set 
itself, resulting in a limited number of robust principal components. The 
strongest components (those explaining the largest proportion of varia-
tion in expression) are subsequently used to correct the expression data. 
Although these procedures have proven effective in identifying eQTLs, 
little attention has been paid so far to the makeup of these components. 
We hypothesized that many of these components reflect genuine non-
genetic biological differences between samples, such as their metabolic 
or physiological states. We reasoned that a large compendium of gene 
expression data would permit the identification of many different bio-
logical phenomena. After identifying these phenomena, we should be 
able to quantify their presence for each individual sample in eQTL data 
sets and correct the expression data for non-genetic biological differ-
ences, resulting in increased power to identify eQTL effects.
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Many cancer-associated somatic copy number alterations 
(SCNAs) are known. Currently, one of the challenges is to identify 
the molecular downstream effects of these variants. Although 
several SCNAs are known to change gene expression levels, it  
is not clear whether each individual SCNA affects gene expression.  
We reanalyzed 77,840 expression profiles and observed a limited 
set of ‘transcriptional components’ that describe well-known 
biology, explain the vast majority of variation in gene expression 
and enable us to predict the biological function of genes. On 
correcting expression profiles for these components, we observed 
that the residual expression levels (in ‘functional genomic mRNA’ 
profiling) correlated strongly with copy number. DNA copy 
number correlated positively with expression levels for 99% of 
all abundantly expressed human genes, indicating global gene 
dosage sensitivity. By applying this method to 16,172 patient-
derived tumor samples, we replicated many loci with aberrant 
copy numbers and identified recurrently disrupted genes in 
genomically unstable cancers.

Thus far, thousands of genetic variants have been associated with 
cancer, other diseases and complex traits, and it has become clear 
that disease-associated SNPs and SCNAs (one of the hallmarks of 
cancer) often affect gene expression levels1–4. This observation 

indicates that changes in gene expression might be an important 
intermediate mechanism for genetic variants to exert their effect 
on the resulting phenotype. However, it is not clear to what extent 
the expression levels of genes are affected by SCNAs.

Here we aimed to systematically investigate the extent of gene 
dosage sensitivity. We hypothesized that every SCNA has an effect 
on gene expression levels but also that this effect is likely to be sub-
tle and will generally be overshadowed by many other, non-genetic  
factors that have much stronger effects on gene expression (for  
example, physiological or metabolic factors).

To this end, we have developed a method called functional genomic 
mRNA profiling, or FGM profiling, that corrects gene expression data 
for major non-genetic factors. We first applied this method to gene 
expression data for which array comparative genomic hybridization 
(aCGH) data were available and observed a strong correlation between 
SCNAs and the FGM expression levels of genes that mapped within 
these SCNAs. We then identified a set of 16,172 unrelated patient-
derived tumor samples and generated a comprehensive landscape of 
FGM profiles in these samples.

RESULTS
A regulatory model of the transcriptome
To identify the effects of genetic variation on gene expression levels, 
expression quantitative trait locus (eQTL) studies are typically employed. 
Often, principal-component analysis (PCA) is used to correct expres-
sion data for unwanted biological or technical effects1,2. PCA is usually 
performed on the expression data corresponding to the eQTL data set 
itself, resulting in a limited number of robust principal components. The 
strongest components (those explaining the largest proportion of varia-
tion in expression) are subsequently used to correct the expression data. 
Although these procedures have proven effective in identifying eQTLs, 
little attention has been paid so far to the makeup of these components. 
We hypothesized that many of these components reflect genuine non-
genetic biological differences between samples, such as their metabolic 
or physiological states. We reasoned that a large compendium of gene 
expression data would permit the identification of many different bio-
logical phenomena. After identifying these phenomena, we should be 
able to quantify their presence for each individual sample in eQTL data 
sets and correct the expression data for non-genetic biological differ-
ences, resulting in increased power to identify eQTL effects.
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We therefore employed PCA on a large number of samples to 
identify a substantial set of robust principal components (which 
we henceforth refer to as transcriptional components, or TCs). We 
collected gene expression data for 77,840 samples from 4 Affymetrix 
platforms (33,427 human samples referred to as the humanlarge data 

set, 17,309 human samples referred to as the humansmall data set, 
17,081 mouse samples and 6,023 rat samples). Information on the 
cell types and tissues that these samples represent is provided in 
Supplementary Tables 1 and 2. The collection of samples was unbi-
ased to ensure that we created a large and heterogeneous expression 
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We therefore employed PCA on a large number of samples to 
identify a substantial set of robust principal components (which 
we henceforth refer to as transcriptional components, or TCs). We 
collected gene expression data for 77,840 samples from 4 Affymetrix 
platforms (33,427 human samples referred to as the humanlarge data 

set, 17,309 human samples referred to as the humansmall data set, 
17,081 mouse samples and 6,023 rat samples). Information on the 
cell types and tissues that these samples represent is provided in 
Supplementary Tables 1 and 2. The collection of samples was unbi-
ased to ensure that we created a large and heterogeneous expression 
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Figure 1 (continued)

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

Nature GeNetics VOLUME 47 | NUMBER 2 | FEBRUARY 2015 117

a n a ly s i s

data set in which many tissue types, disease states, cellular contexts, 
experimental variations, and therapeutic or chemical perturbations 
were present, thus maximizing our chances to identify different 
types of TCs.

Each TC explained a different part of the variance seen in gene 
expression in the 77,840 samples, and we hypothesized that these 
TCs reflect different expression-regulating factors (and correspond-
ing cellular states) and thus can be seen as a regulatory model of the 
mRNA transcriptome (Fig. 1a and Supplementary Tables 3–6). The 
robustly estimated TCs (with Cronbach’s α > 0.7) captured 79–90% 
of the variation in gene expression, depending on the species or 
microarray platform (Fig. 1b). Gene set enrichment analysis (GSEA) 
with multiple pathway and gene set databases showed that all TCs 
had at least one functional gene set that was significantly enriched 
(at a permutation-based false discovery rate (FDR) of <0.05), 
indicating that the TCs capture genuine biological phenomena  

(Fig. 1c and Supplementary Tables 7–10). As expected, we observed 
that many of these components were conserved across the three spe-
cies studied (Fig. 1d). PCA also enabled us to assess the activity of 
TCs in different cell types and tissues. An example of this is provided 
by the differential activity of TC3 in brain tissues in comparison to 
cell lines (Fig. 1e). The higher activity (higher TC score; see the 
Supplementary Note) of TC3 observed in brain samples clearly 
matched the GSEA results, in which genes in neuron-specific bio-
logical pathways were upregulated (Fig. 1e). In contrast, the lower 
activity of TC3 observed in cell lines was associated with the upregu-
lation of genes relevant to cell division and growth (Fig. 1e).

A TC-based gene network predicts biological functions
We hypothesized that genes with comparable biological functions 
are similarly regulated by TCs. Therefore, we constructed a TC-
based gene network (publicly available; see URLs) with 19,997 genes 

Figure 1 (continued). Transcriptional components (TCs). (a) PCA was used to define a regulatory model of the mRNA transcriptome, resulting in 
the identification of TCs. Each TC (eigenvector) captures a part of the variance (eigenvalue) seen in mRNA expression in our large, heterogeneous 
set of samples. Each TC is associated with an underlying factor regulating mRNA expression (and a corresponding cellular state). The TC (principal-
component) score can be seen as an indirect measurement of the activity of the underlying regulatory factor in the sample under investigation. The sign 
of a probe set (eigenvector) coefficient in a TC defines the direction of the change in mRNA expression in relation to the TC score. We use the identified 
TCs to predict the functions of genes and to identify deletions and duplications in cancer samples. (b) Explained variance, Cronbach’s α and split-half 
reliability for 377 humansmall, 777 humanlarge, 677 mouse and 375 rat TCs. (c) GSEA on all TCs showed that all components were significantly enriched for 
at least one gene set. Insets show the same data on a log10 scale on the y axis. (d) Heat maps showing high concordance between the TCs identified in the 
different data sets. (e) Differential activity of TC3 in brain tissue versus cell lines. Higher activity of TC3 in brain showed upregulation of biological pathways 
relevant for neurons. In contrast, lower activity of TC3 in cell lines was associated with upregulation of genes relevant for cell division and growth.
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that enabled us to accurately predict gene function by using a ‘guilt- 
by-association’ procedure (see the Supplementary Note for details). 
Predictions were made on the basis of pathways and gene sets from 
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) Reactome and Biocarta. These predictions outperformed 
an existing guilt-by-association approach using coexpression5 
(Supplementary Fig. 1a and Supplementary Note). In addition, we 
observed that genes with newly associated GO terms (including genes 
that were assigned to a GO term after the construction of our gene 
network) had significantly higher prediction z scores than genes that 
remained unassociated (Supplementary Fig. 1b), indicating that our 
predictions forecast new functions for previously unexplored genes.

In the context of genomic instability, we were interested in genes 
that had a similar cellular function as BRCA1 and BRCA2, two key 
genes involved in homologous recombination–mediated DNA repair6. 

Such genes could potentially be used to identify homologous recom-
bination–defective tumor cells or could be exploited as therapeutic 
targets to enhance the sensitivity of cancer cells that are otherwise 
proficient in homologous recombination to DNA-damaging agents. 
On the basis of the gene network, we ranked all genes according to 
their degree of coregulation with BRCA1 and BRCA2 (Fig. 2a). We 
could readily identify genes known to be involved in homologous 
recombination (for example, RAD51, RAD51AP1, EXO1, BLM and 
MRE11A; Fig. 2a). In addition, many genes predicted to be coregu-
lated with BRCA1 and BRCA2 function in the initiation and progres-
sion of replication forks, in good agreement with BRCA1 and BRCA2 
being required for the repair of replication-induced DNA lesions. 
FEN1 (encoding flap endonuclease-1) showed the highest degree 
of coregulation with BRCA1 and BRCA2 (Fig. 2a). FEN1 regulates 
DNA replication through its role in Okazaki fragment processing and 
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Figure 2 FEN1 is required for homologous  
recombination–mediated repair. (a) Genes  
coregulated with BRCA1 and BRCA2 are  
plotted on the basis of P value. Indicated  
cellular processes are represented by  
color. NHEJ, non-homologous end  
joining. (b) HeLa–pDR-GFP or MCF- 
7–pDR-GFP cells were transfected with  
siRNAs and I-Sce1 endonuclease. After  
48 h, quantitative PCR (qPCR) analysis was  
performed (top). GFP positivity was assessed  
by flow cytometry (bottom). Averages and  
s.d. are plotted (n = 2 biological replicates;  
*P < 0.05, **P < 0.001). SCR, scrambled  
control siRNA. (c) Schematic of the  
homologous recombination (HR) repair  
assay (top). Functional homologous  
recombination results in GFP-positive  
cells upon transfection with I-Sce1  
(bottom). iGFP, internal fragment of the  
GFP gene. (d) MTT (3-(4,5-dimethylthiazol- 
2-yl)-2,5-diphenyltetrazolium bromide)  
viability assays using MCF-7 and HeLa cells after FEN1 inhibitor treatment. Averages and s.d. are shown (n = 2 biological replicates). (e) HeLa–pDR-
GFP or MCF-7–pDR-GFP cells were transfected with I-Sce1 and treated with FEN1 inhibitor (FEN1i) or roscovitin (Rosc; 25 µM) as a positive control.  
After 48 h, GFP positivity was assessed by flow cytometry. Averages and s.d. are indicated (n = 2 biological replicates; *P < 0.05, **P < 0.001,  
***P < 0.001). (f) MCF-7 cells were treated with the PARP1 inhibitor ABT-888 (PARP1i; 10 µM) and with FEN1 inhibitor (10 µM). After 24 h, cells were 
stained for γ-H2AX (a marker of DNA double-strand breaks) and analyzed by flow cytometry. Averages and s.d. are indicated (n = 2 biological replicates).  
(g) MCF-7 and HeLa cells were treated as in f and analyzed by fluorescence microscopy (γ-H2AX foci of >25 nuclei per condition were counted).  
Gray bars represent median values. (h) MCF-7 and HeLa cells were grown in the presence of ABT-888 (10 µM) and FEN1 inhibitor (5 µM). After 14 d, 
surviving colonies were counted. Averages and s.d. are plotted (n = 2 biological replicates; **P < 0.001, ***P < 0.001). 
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Figure 3 FGM expression profiles. (a) A subset of human TCs were highly enriched for gene sets containing genes that map to the same 
chromosome band. (b) This observation occurred solely in the human data sets, as approximately half of the samples were derived from  
cancer tissue or cancer cell lines, harboring many SCNAs. (c) To explore the hypothesis that specific TCs represent SCNAs, we calculated  
the autocorrelation per TC. We observed a near-linear increase in autocorrelation with TC number until approximately TC165 in the humanlarge  
set. The same pattern was observed in the humansmall data set. Individual visualization of the TCs that showed high autocorrelation  
demonstrated that, for most of these specific TCs, nearly all genes in specific genomic regions showed either increased or decreased  
expression. Insets show probe set coefficients plotted according to their genomic positions for a TC with strong cytogenetic effects and a TC with 
no cytogenetic effects. (d) On the basis of these results, we developed a computational framework in which we could infer cytogenetic profiles 
from a standard mRNA expression profile using TCs. (e) FGM expression profiles are a good proxy of copy number variation. Small deletions and 
duplications, affecting only specific cytobands, could be readily identified.
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base-excision repair (BER)7, and it is highly expressed in proliferating 
tissues. In addition, mutation of FEN1 has been causally linked to 
tumor initiation8. FEN1 has only been indirectly linked to homolo-
gous recombination in lower eukaryotes, and no role for FEN1 in 
homologous recombination in mammalian cells has been identified  
so far9. We assessed the function of FEN1 in the process of homolo-
gous recombination by inactivating FEN1 by small interfering RNA 
(siRNA) (Fig. 2b), as well as by chemical inhibition of FEN1 (Fig. 2c,d).  
Inactivation of FEN1 clearly impaired homologous recombina-
tion–mediated repair, as assessed with a stably integrated GFP-based 
homologous recombination substrate10, in both human breast and 
cervical cancer cells (Fig. 2b,c,e). Moreover, we observed increased 
numbers of DNA breaks when FEN1 inhibition was combined with 
PARP1 inhibition (Fig. 2f,g). Notably, FEN1 inhibition resulted in 
increased sensitivity to PARP1 inhibition (Fig. 2h), as reported for 
other homologous recombination–deficient tumor cells11,12.

In addition, our gene network predicted SMIM1 to function in the 
‘hemoglobin metabolic process’. Through subsequent experimental 
validation of this prediction, we showed that SMIM1 underlies the Vel 
blood group13. We also showed that genes that map in genetic loci asso-
ciated with educational attainment have a clear neuronal function14.

Some TCs describe the effects of genetic variants
Once we had established that the identified TCs described biologi-
cally coherent phenomena, we aimed to use them to correct gene 
expression levels to thereby increase our statistical power to identify 
the eQTL effects of SCNAs (shown to be effective earlier2). However, 
we observed that a subset of the human TCs (each capturing only 
a small proportion of the total variation in expression) strongly  
affected the expression of all genes in a specific cytogenetic band 
(Fig. 3a), which we hypothesized to result from large SCNAs that 
were present in approximately half of the human samples that 
had been annotated as cancer tissues or cancer cell lines (in con-
trast to the mouse and rat data, which contained very few cancer  
samples) (Fig. 3b). To discriminate between genomically stable 
and unstable samples, we investigated this genomic colocaliza-
tion of expression effects in more detail (using autocorrelation;  
Fig. 3c and Supplementary Note). We observed that the first TCs  
(TC1 to TC50, which captured most expression variation) hardly 
showed this genomic colocalization of expression effects. The  
other TCs showed a near-linear increase in autocorrelation with 

increasing TC number, up to TC165 in the humanlarge set, where 
autocorrelation was maximal (indicating strong colocalization of 
expression effects; Fig. 3c).

On the basis of these observations, we could define a subset of 
18,713 samples in the humanlarge data set that showed no evidence of 
genomic instability (no evident SCNAs; Supplementary Note). We 
subsequently performed PCA again on this subset of 18,713 sam-
ples and identified 718 robustly estimated non-genetic TCs. We used 
these 718 non-genetic TCs as covariates to correct the expression data 
for the other 18,714 humanlarge samples that did show evidence of 
genomic instability (Fig. 3d; details provided in the Supplementary 
Note) and observed that the residual expression signal (explaining, 
on average, only 28% of the total expression variation) was strongly 
correlated with copy number variation (Fig. 3e).

Residual expression levels reflect SCNAs
We hypothesized that this residual expression signal (hereafter 
referred to as the functional genomic mRNA profile, or FGM profile) 
accurately reflects the presence of deletions and duplications. We first 
investigated 20 mRNA expression profiles for samples with known tri-
somy. When employing our method, each trisomy was clearly visible: 
nearly all genes on these trisomic chromosomes showed increased 
FGM expression (Supplementary Fig. 2a). The trisomies were clearly 
visible in both human leukemic blasts and fibroblasts, indicating that 
the FGM expression profiles were stable across different cell types 
(Supplementary Fig. 2b,c).

To validate our method on samples with smaller SCNAs, we per-
formed an eQTL meta-analysis on expression data from 470 samples 
(51 HER2 (ERBB2)-amplified breast cancers, 173 inflammatory breast 
cancers and 246 multiple myelomas) for which aCGH data were also 
available (Supplementary Note). We observed a high concordance 
between aCGH data and FGM expression (median Pearson r = 0.64; 
Supplementary Fig. 2d and Supplementary Note). The FGM expres-
sion levels for 85.7% of all the autosomal probe sets correlated positively 
with the aCGH data. Estimated sensitivity and specificity (based on the 
470 samples described above) for the detection of copy number gains 
and losses for different genomic lengths are provided in Supplementary 
Table 11. See the Supplementary Note and Supplementary Figures 
3–7 for comparisons with previous expression-based methods for 
SCNA detection. Software to infer FGM expression from standard 
expression profiles is publicly available (see URLs).
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The vast majority of genes are dosage sensitive
Although 85.7% of the tested probe sets positively correlated with 
aCGH gene dosage on the basis of the eQTL meta-analysis in 470 
samples, this proportion is likely to be an underestimate of the total 
percentage of genes that are dosage sensitive, as it is only possible 
to identify a significant correlation between copy number and gene 
expression when variation in copy number is actually present for a 
given genomic locus.

To investigate dosage sensitivity in more detail, we assumed that 
our large data set represented a library of many SCNAs of different 

sizes. A subset of these SCNAs reflected entire chromosome arms. We 
therefore hypothesized that, if we were to analyze the FGM expres-
sion data by chromosome arm, the most dominant pattern would 
reflect a deletion or amplification of the entire chromosomal arm.  
To investigate this hypothesis, we performed PCA on the FGM expression  
data for each chromosome arm over all samples. For each of the chro-
mosome arms, the first principal component (PC1), representing the 
most dominant FGM expression pattern, indeed described a complete 
duplication or deletion of that arm (Supplementary Fig. 8). The cor-
relation of an individual probe set (factor loading) with PC1 indicates 

Figure 5 The FGM landscape in 16,172 unrelated patient-derived cancer samples. (a) We applied our method to 16,172 unrelated tumor samples from 
patients to determine the FGM landscape. We applied hierarchical clustering (average linkage, uncentered correlation) to define molecular subtypes. This 
analysis identified clear commonalities and differences between different types of cancer. (b) The frequently used circular binary segmentation algorithm 
was applied to the FGM profiles of each of the 16,172 tumor samples (10,138 samples on the U133 Plus 2.0 array platform and 6,034 samples on the 
U133A platform) to define regions with abnormal copy numbers. Subsequently, the average SCNA profile was defined across these 16,172 samples.
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the extent of dosage sensitivity. Of all the autosomal probe sets, 91% 
were dosage sensitive to some degree: that is, they had a positive  
correlation with PC1 (Fig. 4a).

Genes that were generally abundantly expressed were typically 
more dosage sensitive than genes that showed low overall expres-
sion levels (Pearson r = 0.7, P < 1.0 × 10−300; Fig. 4b): when taking 
the top 25% most highly expressed probe sets across all samples, 
the mean dosage sensitivity (factor loading) was 0.32, and 98.9% of 
these probe sets showed positive dosage sensitivity. This indicates  
that, if a gene is abundantly expressed (and its expression thus  
can be accurately quantified using microarrays), it nearly always is 
dosage sensitive.

This predicted dosage sensitivity for the probe sets was very similar  
to the empirically observed dosage sensitivity in the eQTL meta- 
analysis (Pearson’s R = 0.86 between the factor loadings and the aCGH 
eQTL meta-analysis z scores; Fig. 4c).

The FGM landscape in 16,172 cancer samples
FGM profiling is particularly useful because of the public availability 
of microarray expression profiles for thousands of cancer samples.

We exploited data on the genetic variation occurring in these tumor 
samples in combination with our method to define an FGM landscape. 

Analysis was confined to unrelated tumor samples from patients in 
the combined humanlarge and humansmall data sets. To identify these 
tumor samples, we first developed a method (see the Supplementary 
Note for details) to exclude cell line samples. This method accu-
rately distinguished between cell line samples and all other samples  
(Wilcoxon Mann-Whitney U test, P < 1.0 × 10−300, area under the 
curve (AUC) = 0.9942). To exclude duplicate samples, we then devel-
oped a method (see the Supplementary Note for details) to accurately 
detect and exclude genetically identical samples in expression data, 
even if two different cell types or tissues had been assayed for a single 
individual. After manual curation of all remaining samples, 16,172 
unrelated tumor samples from patients were included for further anal-
yses (see Supplementary Table 12 for the distribution among the 41 
tumor subtypes present in this data set). We then applied our method 
to these samples to determine the FGM landscape (Fig. 5a).

We applied hierarchical clustering to define molecular subtypes, 
which identified clear commonalities and differences between dif-
ferent types of cancer. Highly altered FGM expression, which was 
confined to specific chromosomal regions, was observed between and 
across different tumor types (Fig. 5a). This illustrates that different 
cancer subtypes share genetic alterations driving biological pathways 
relevant for their tumor behavior and treatment response.
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We then applied the frequently used DNACopy software to define 
regions with abnormal copy number in the FGM profiles of each of 
the 16,172 tumor samples. Specifically, we analyzed what the average 
SCNA profile was across these 16,172 samples (Fig. 5b). We observed 
several narrow peaks that typically only comprised a few genes. 
Several of these genes are well known as being frequently altered 
in cancer (such as TP53, ERBB2, CCNE1, MYC, CDK4, CDK12, 
MDM2, PAX3 and RB1). These results indicate that our method is 
able to identify amplifications and deletions that can be as small as 
an individual gene (for example, PAX3) and it provides insight into 
the genes that are most often genetically altered in cancer. To further  
highlight the relevance of this FGM landscape, we performed a 
genome-wide association analysis between the expression of indi-
vidual genes (FGM expression) and the degree of genomic instabil-
ity in 15,204 of the 16,172 tumor samples (samples were excluded if 
they were part of a meta-analysis batch with fewer than 10 samples;  
see the Supplementary Note for details). We reasoned that normal 
cells do not tolerate high levels of genomic instability15, and it is there-
fore remarkable that certain tumor cells can cope with these levels  
of instability. Insight into how these tumor cells are rewired to  
survive genomic instability might uncover new therapeutic targets 
and will be important to help improve the treatment outcome for 
individuals with genomically unstable cancers.

For each tumor sample, we determined the degree of genomic insta-
bility. We observed a clear shift (Mann-Whitney U test, P = 8.4 × 10−195,  

AUC = 0.89) toward a higher degree of genomic instability for ovar-
ian cancer (n = 1,255) in comparison to acute myeloid leukemia 
(AML; n = 1,540; Fig. 6a). Our findings coincide with the recent  
classification of mutation-driven (M class; including AML) versus 
copy number–driven (C class; including ovarian cancer) cancers in 
The Cancer Genome Atlas (TCGA) data sets4.

Recent evidence suggests that a higher degree of genomic instability 
leads to increased sensitivity to certain DNA-damaging chemothera-
peutics. Currently, debulking surgery followed by DNA-damaging 
platinum-based chemotherapy is considered to be standard care for 
serous ovarian cancer. We performed a meta-analysis on 842 primary 
late-stage, high-grade serous tumor samples (Supplementary Note) 
and found that a higher degree of genomic instability was associ-
ated with a better overall survival rate (Cox regression, P = 0.0014). 
In addition, when we analyzed 412 primary late-stage, high-grade 
serous tumor samples from TCGA16, we found significant association 
between a higher degree of genomic instability and longer progres-
sion-free survival (Cox regression, P = 0.0045; Fig. 6b).

A second prototypical tumor type with a high degree of genomic 
instability is triple-negative breast cancer (TNBC)17. As expected, 
there was a clear shift (Mann-Whitney U test, P = 1.6 × 10−101,  
AUC = 0.24) toward a higher degree of genomic instability for  
TNBCs (n = 672) in comparison to non-TNBCs (n = 3,053) 
(Supplementary Fig. 9). For all breast cancer samples, we also 
observed a clear positive association between the degree of genomic 
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instability and pathological grade (Cuzick’s trend, P = 6.6 × 10−100; 
Fig. 6c), which agrees well with high-grade tumors often having 
elevated levels of genomic instability.

Meta-analysis association results for genome-wide association of 
gene expression with genomic instability are provided in Figure 6d,e  
and Supplementary Table 13. When we compared our findings 
with the TCGA analysis of prototypical genomically unstable can-
cers (TNBC and serous ovarian cancer), it was reassuring to find 
many overlapping genes. Genes that are negatively associated with 
genomic instability (including TP53, CDKN2A, RB1, BRCA1, BRCA2 
and ATM) were frequently found to be inactivated in TNBCs and 
serous ovarian cancers. Conversely, genes that are positively associ-
ated with genomic instability were frequently found to be amplified 
(including MYC, CCNE1, PIK3CA and BIRC5)16,18. Further research 
is required to uncover the mechanistic relationship of these genes 
with genome maintenance.

In addition, we determined for each individual gene across 41 
tumor types the percentage of samples in the FGM landscape with a 
significantly increased or decreased signal (Supplementary Tables 14  
and 15). Such altered signals could represent underlying SCNAs (Fig. 3e  
and Supplementary Fig. 2). The resulting percentages can be used to 
assess the potential relevance of new and existing therapeutic targets 
for the various cancer subtypes. Two examples show how this approach 
can be used to discover cancer-relevant genomic alterations (Fig. 6f). 
The signal for the tumor-suppressor gene CDKN2A, for instance, 
was shown to be significantly decreased in samples of bladder cancer  
(29%), pancreatic cancer (44%), head and neck cancer (28%) and 
melanoma (45%), findings that are in good agreement with previous 
reports19–22 and with recent large-scale genomic interrogation of can-
cer subtypes23,24. Conversely, we could readily identify amplified sig-
nals for the ERBB2 gene in breast cancer (17%), bladder cancer (10%)  
and adrenal medulla cancer (20%), again in line with previous  
observations25–27.

DISCUSSION
In this study, we reanalyzed the expression profiles of 77,840 samples 
and observed that a limited number of TCs capture the majority of 
variation that is present in the mRNA transcriptome. On the basis of 
these TCs, we have developed a method to infer the likely biological 
function of candidate genes by implementing a guilt-by-association  
approach; the tool predicts likely functions on the basis of gene 
coregulation. Our approach is conceptually different from methods 
that rely on coexpression: typical guilt-by-association approaches to 
predict the function of genes use the over-representation of known 
functions among genes that are coexpressed with the gene of interest 
to predict its likely function28. However, when one is clustering genes 
on the basis of coexpression, usually only a few clusters will become 
apparent, which each comprise many strongly coexpressed genes 
(attributable to a limited number of biological phenomena that each 
have very strong effects on gene expression levels). Here we chose 
to use PCA rather than coexpression analysis. While we did capture 
the strong biological phenomena with a few individual TCs, we also 
captured many phenomena that were much more subtle. Our gene 
function prediction algorithm treats each of the TCs equally and can 
therefore extract more meaningful information from gene expression 
data to infer the likely function of genes. In other words, our approach 
relates genes with similar transcriptional regulation (similar wiring) 
rather than those with similar coexpression patterns (the end product 
of transcriptional control).

When we corrected the gene expression data of individuals for 
non-genetic TCs, we observed that the residual gene expression levels 

correlated strongly with copy number variation. We estimate that the 
expression of 98.9% of all abundantly expressed human genes cor-
relates positively with copy number to some degree, The realization 
that copy number variation has a consistent effect on gene expression 
levels has several implications, as detailed below.

Previously, extensive gene dosage sensitivity was suggested in 
whole-chromosome duplication syndromes (for example, Down, 
Turner and Patau syndromes) or experimentally established trisomies,  
in which gene expression over the entire duplicated chromosome 
appeared to be upregulated29. Our data suggest that this is not a 
chromosome-specific or cell type–specific effect, explaining why 
aneuploidy invariably leads to unbalanced gene expression levels and 
consequent proteotoxic stress30.

In addition, several integrative cancer studies have concentrated 
only on those genes whose expression levels significantly correlate 
with SCNAs4. This approach might bias researchers toward consider-
ing only genes whose expression levels are not strongly regulated by 
regulatory processes. It is conceivable that reanalysis of these expres-
sion data using the method we propose here (correcting the data for 
all non-genetic regulatory processes) will show that the expression 
levels of nearly all genes in these SCNAs correlate with copy number, 
making every gene within these SCNAs equally interesting for  
follow-up investigation. In addition, we speculate that genes that are 
typically under the strong control of many non-genetic regulatory 
factors are likely to have crucial functions and that they may represent 
more interesting candidate driver genes for disease than genes whose 
expression levels are predominantly affected by SCNAs. Furthermore, 
gene expression microarray technology is still a widely used tech-
nique to identify molecular cancer subtypes. However, there is limited 
overlap between published gene expression profiles associated with 
distinct tumor behavior or treatment response31. This low reproduc-
ibility might, in part, be due to the influence of many non-genetic 
factors on gene expression, including factors that may not be relevant 
for the observed tumor behavior.

Because gene expression data have now been generated for hun-
dreds of thousands of samples (available in public repositories such 
as the Gene Expression Omnibus, GEO), our FGM profiling method 
will enable the reinterpretation of many (cancer) studies, as our 
method can be used to infer SCNAs and their downstream effect on 
gene expression levels and allows for an immediate correlation with 
various clinical outcome measures. However, as there are few clinico-
pathological data publicly available thus far, we challenge researchers 
to apply our method to their microarray samples and associate the 
resulting FGM profiles with clinicopathological variables to evaluate 
how such profiles can predict tumor behavior or therapy response, 
for instance. We expect that such reanalyses might well provide new 
biological insights in the near future.

In this study, we show the advantages and potential relevance of 
FGM profiling in combination with large-scale (‘big data’) analysis. 
Our meta-analysis on patient-derived tumor samples provided new 
insights into the rewiring of genomically unstable tumors that could 
make them dependent on specific genes or biological pathways for 
their survival, thereby identifying potentially synthetic lethal targets 
in a genomically unstable context. In addition, the predicted genomic 
amplifications and deletions we have described, on the basis of the 
FGM landscape in 16,172 tumors, can already be used to assess the 
potential relevance of new and existing therapeutic targets for various 
cancer subtypes.

URLs. The TC-based gene network, FGM profiler, and additional data 
sets and results are accessible at http://www.genenetwork.nl/fgmp/.
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METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Data acquisition. Publicly available raw microarray expression data for 
three different species (Homo sapiens, Mus musculus and Rattus norvegicus) 
were collected from GEO32. Preprocessing and aggregation of raw data were 
performed according to the robust multi-array average (RMA) algorithm in 
combination with quantile normalization. PCA quality control of the result-
ing expression data was performed as previously described33,34. Samples 
were annotated with MeSH terms using a text-mining algorithm (described 
in more detail in the Supplementary Note). We used a conservative method 
to assign Affymetrix probe sets to genes, using mapping information provided 
by Ensembl (release 65).

Defining transcription components. We performed PCA to define a regu-
latory model for the mRNA transcriptome. For each of the four data sets 
(humansmall, humanlarge, rat and mouse), we computed an eigen decomposition 
of the Pearson product-moment correlation between all n probe sets over all 
m samples. This resulted in n eigenvalues and n corresponding eigenvectors 
(hereafter called transcriptional components, TCs). Each TC captures a part of 
the variance seen in the correlation space of n probe sets. We hypothesized that 
each TC is associated with an underlying factor regulating mRNA expression 
(and a corresponding cellular state). Each TC is composed of n scalars called 
‘coefficients’ representing the relative weights of the probe sets in the TC. The 
inner product of a TC and the per–probe set N(0,1) standardized expression 
vector of an individual sample gives the TC score. A TC score can be seen as an 
indirect measurement of the activity of the underlying regulatory factor in the 
sample under investigation. The sign of a probe set coefficient in a TC defines 
the direction of the change in mRNA expression in relation to the TC score. To 
determine the internal consistency and, therefore, the reliability of the identi-
fied TCs, we calculated a Cronbach’s α value and split-half reliability for each 
TC. Pairwise Spearman’s rank correlations were calculated between TCs from 
the different platforms to estimate the concordance between the independently 
defined TCs. To validate that the identified TCs were not merely mathematical 
constructs but were biologically relevant and to gain more biological insight 
into the identified TCs and their associated underlying regulatory factors, we 
performed GSEA. In addition, we calculated the autocorrelation per TC to 
identify TCs that captured the downstream consequences of cytogenetic altera-
tions (genomic deletions and duplications) on mRNA expression levels.

Gene coregulation network analysis. We calculated a gene set enrichment 
score (expressed as a z score) for every gene set in 4 different databases (GO, 
KEGG, Reactome and Biocarta) for each of the 2,206 TCs identified by the 
methods described above. These 2,206 z scores formed a specific ‘z-score 
profile’ for a gene set (for example, a biological pathway). This enabled us to 
investigate whether, for individual genes not previously known to be part of 
this gene set, the 2,206 individual TC coefficients were similar to the 2,206 
z scores, using a Pearson correlation coefficient. Strong positive correlation 
between the TC coefficients for an individual gene and the z-score profile 
meant that the individual gene was behaving similarly to the gene set, indicat-
ing that the gene is likely to have a role in that gene set.

FEN1 and homologous recombination. MCF-7 or HeLa cells stably trans-
fected with the pDR-GFP homologous recombination reporter were trans-
fected with the indicated siRNA oligonucleotides or treated with chemical 
FEN1 inhibitor and subsequently transfected with the I-Sce1 endonuclease. 
The GFP levels of viable cells were determined by flow cytometry. γ-H2AX 
analysis by microscopy and flow cytometry was performed to assess DNA 
break formation after combined FEN1 and PARP1 inhibition. Cytotoxic effects 
after combined FEN1 and PARP1 inhibition were measured using clonogenic 
survival analysis.

Functional genomic mRNA profiling. Expression data for each individual 
sample were reconstructed by taking the inner product of the vector of the TC 
probe set coefficients and the vector of the TC scores for an individual sample, 
after reweighting each of the TCs according to the extent of autocorrelation. 
These reconstructed profiles were used to quantify the number of deletions 
and duplications per individual sample (see the Supplementary Note for a 
detailed description). On the basis of these reconstructed profiles, a subset of 
18,713 samples with the lowest number of cytogenetic aberrations out of all 
37,427 samples (humanlarge) was selected. This subset served as the input for a 
new regulatory model containing TCs that captured the effect of physiological 
factors on mRNA expression. A total of 718 of these non-cytogenetic TCs were 
used as covariates in multiple linear regression to correct the original expres-
sion profiles. The corrected profiles were called FGM profiles. In these profiles, 
the variance in mRNA expression due to physiological factors was minimized, 
emphasizing variance in expression due to genetic aberrations.

Identification of 16,172 unrelated, patient-derived tumor samples. FGM 
profiling is particularly attractive because of the public availability of thou-
sands of cancer samples whose expression has been profiled with mRNA 
microarrays. These cancer samples harbor many genetic aberrations due to 
genomic instability. We decided to construct a large data set to define the 
FGM landscape in cancer. First, we had to ensure that we only investigated 
cancer samples that were not genetically identical and that did not represent 
cell line samples. To do so, we developed a new method to remove cell line 
samples, as these samples might not reflect the in vivo context of cancer cells. 
Next, we removed duplicate individuals: as is common for genome-wide asso-
ciation analysis, duplicate samples can lead to false positive associations and 
should be removed. Finally, we confined our analysis to only the samples that 
showed some genomic instability, as these were likely to be cancer samples. 
Each of these steps required the development of new methods to make this 
possible. A detailed description of these new methods is presented in the 
Supplementary Note.

Genome-wide gene association with genomic instability. We performed a 
genome-wide association analysis between individual genes (FGM expression 
signals) and the degree of genomic instability in 15,204 unrelated, patient-
derived tumor samples. Association was determined by the Pearson product-
moment correlation coefficient within meta-analysis batches. Meta-analysis  
P values were calculated according to the Liptak trend method (z-transformed 
P values, weighted according to the square root of the number of samples in 
a meta-analysis batch).

Predicting gene amplifications and deletions. For each individual gene across 
41 tumor types, we quantified the percentage of samples with a significantly 
increased or decreased signal. To determine the thresholds that defined such 
signals, we applied our method to the subset of 18,713 non-cancer samples in 
the humanlarge data and calculated the 2.5th and 97.5th percentiles for every 
individual gene. For each of the 16,172 tumor samples, genes were marked as 
significantly suppressed or amplified when the signal was below the 2.5th or 
above the 97.5th percentile, respectively, in non-cancer samples.

32. Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. 
Nucleic Acids Res. 41, D991–D995 (2013).

33. Crijns, A.P.G. et al. Survival-related profile, pathways, and transcription factors in 
ovarian cancer. PLoS Med. 6, e24 (2009).

34. Heijink, D.M. et al. A bioinformatical and functional approach to identify novel 
strategies for chemoprevention of colorectal cancer. Oncogene 30, 2026–2036 
(2011).
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Abstract

Recently it has become clear that only a small percentage (7%) of disease-associated single nucleotide polymorphisms
(SNPs) are located in protein-coding regions, while the remaining 93% are located in gene regulatory regions or in
intergenic regions. Thus, the understanding of how genetic variations control the expression of non-coding RNAs (in a
tissue-dependent manner) has far-reaching implications. We tested the association of SNPs with expression levels (eQTLs) of
large intergenic non-coding RNAs (lincRNAs), using genome-wide gene expression and genotype data from five different
tissues. We identified 112 cis-regulated lincRNAs, of which 45% could be replicated in an independent dataset. We observed
that 75% of the SNPs affecting lincRNA expression (lincRNA cis-eQTLs) were specific to lincRNA alone and did not affect the
expression of neighboring protein-coding genes. We show that this specific genotype-lincRNA expression correlation is
tissue-dependent and that many of these lincRNA cis-eQTL SNPs are also associated with complex traits and diseases.
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Introduction

It is now evident that most of the human genome is transcribed

to produce not only protein-coding transcripts but also large

numbers of non-coding RNAs (ncRNAs) of different size [1,2].

Well-characterized short ncRNAs include microRNAs, small

interfering RNAs, and piwi-interacting RNAs, whereas the large

intergenic non-coding RNAs (lincRNAs) make up most of the long

ncRNAs. LincRNAs are non-coding transcripts of more than 200

nucleotides long; they have an exon-intron-exon structure, similar

to protein-coding genes, but do not encompass open-reading

frames [3]. The recent description of more than 8,000 lincRNAs

makes these the largest subclass of the non-coding transcriptome in

humans [4].

Evidence is mounting that lincRNAs participate in a wide-range

of biological processes such as regulation of epigenetic signatures

and gene expression [5–7], maintenance of pluripotency and

differentiation of embryonic stem cells [8]. In addition, several

individual lincRNAs have also been implicated in human diseases.

A well-known example is a region on chromosome 9p21 that

encompasses an antisense lincRNA, ANRIL (antisense lincRNA of

the INK4 locus). Genome-wide association studies (GWAS) have

shown that this region is significantly associated with susceptibility

to type 2 diabetes, coronary disease, and intracranial aneurysm as

well as different types of cancers [9] and some of the associated

SNPs have been shown to alter the transcription and processing of

ANRIL transcripts [10]. Similarly, increased expression of

lincRNA HOTAIR (HOX antisense non-coding RNA) in breast

cancer is associated with poor prognosis and tumor metastasis

[10]. Another example is MALAT-1 (metastasis associated in lung

adenocarcinoma transcript) where the expression is three-fold

higher in metastasizing tumors of non-small-cell lung cancer than

in non-metastasizing tumors [11].

In addition, over the last decade, more than 1,200 GWAS have

identified nearly 6,500 disease- or trait-predisposing SNPs, but

only 7% of these are located in protein-coding regions [12,13].

The remaining 93% are located within non-coding regions [14],

suggesting that GWAS-associated SNPs regulate gene transcrip-

tion levels rather than altering the protein-coding sequence or

protein structure. Even though there is growing evidence to
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Introduction

It is now evident that most of the human genome is transcribed

to produce not only protein-coding transcripts but also large

numbers of non-coding RNAs (ncRNAs) of different size [1,2].

Well-characterized short ncRNAs include microRNAs, small

interfering RNAs, and piwi-interacting RNAs, whereas the large

intergenic non-coding RNAs (lincRNAs) make up most of the long

ncRNAs. LincRNAs are non-coding transcripts of more than 200

nucleotides long; they have an exon-intron-exon structure, similar

to protein-coding genes, but do not encompass open-reading

frames [3]. The recent description of more than 8,000 lincRNAs

makes these the largest subclass of the non-coding transcriptome in

humans [4].

Evidence is mounting that lincRNAs participate in a wide-range

of biological processes such as regulation of epigenetic signatures

and gene expression [5–7], maintenance of pluripotency and

differentiation of embryonic stem cells [8]. In addition, several

individual lincRNAs have also been implicated in human diseases.

A well-known example is a region on chromosome 9p21 that

encompasses an antisense lincRNA, ANRIL (antisense lincRNA of

the INK4 locus). Genome-wide association studies (GWAS) have

shown that this region is significantly associated with susceptibility

to type 2 diabetes, coronary disease, and intracranial aneurysm as

well as different types of cancers [9] and some of the associated

SNPs have been shown to alter the transcription and processing of

ANRIL transcripts [10]. Similarly, increased expression of

lincRNA HOTAIR (HOX antisense non-coding RNA) in breast

cancer is associated with poor prognosis and tumor metastasis

[10]. Another example is MALAT-1 (metastasis associated in lung

adenocarcinoma transcript) where the expression is three-fold

higher in metastasizing tumors of non-small-cell lung cancer than

in non-metastasizing tumors [11].

In addition, over the last decade, more than 1,200 GWAS have

identified nearly 6,500 disease- or trait-predisposing SNPs, but

only 7% of these are located in protein-coding regions [12,13].

The remaining 93% are located within non-coding regions [14],

suggesting that GWAS-associated SNPs regulate gene transcrip-

tion levels rather than altering the protein-coding sequence or

protein structure. Even though there is growing evidence to
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implicate lincRNAs in human diseases [15,16], it is unknown

whether disease-associated SNPs could affect the expression of

non-coding RNAs. We hypothesized that GWAS-associated SNPs

can affect the expression of lincRNA genes, thereby proposing a

novel disease mechanism.

To test this hypothesis, we performed eQTL mapping on 2,140

human lincRNA-probes using genome-wide gene expression and

genotype data of 1,240 peripheral blood samples (discovery

cohort) [17]. The lincRNA cis-eQTLs identified were then tested

for replication in an independent cohort containing 891 peripheral

blood samples (replication cohort). Since lincRNAs are considered

to be more tissue-specific than protein-coding genes [4], we set-out

to identify tissue-dependent cis-eQTLs for lincRNAs using data

from another four different primary tissues from the subset of 85

individuals in our primary cohort [18]. Subsequently, we tested

whether SNPs that affect the levels of lincRNA expression are

associated with diseases or traits. Finally, we predicted the most

likely function(s) of a subset of cis-eQTL lincRNAs by using co-

regulation information from a compendium of approximately

80,000 expression arrays (www.GeneNetwork.nl).

Results

Commercial microarrays contain probes for a subset of
non-coding RNA
Whole-genome gene expression oligonucleotide arrays have

played a crucial role in our understanding of gene regulatory

networks. Even though most of the currently available commercial

microarrays are designed to capture all known protein-coding

transcripts, they still include subsets of probes that capture

transcripts of unknown function (sometimes abbreviated as TUF).

We investigated whether the TUF probes present on the Illumina

Human HT12v3 array, overlap with lincRNA transcripts that were

recently described in the lincRNA catalog [4]. The lincRNA catalog

contained a provisional set of 14,393 transcripts mapping to 8,273

lincRNA genes and a stringent set of 9,918 transcripts mapping to

4,283 lincRNA genes. We identified 2,140 unique probes that map

to 1,771 different lincRNAs from the provisional set and 1,325

unique probes that map to 1,051 lincRNA genes from the stringent

set. We chose 2,140 unique probes that mapped to lincRNAs from

the provisional set for further eQTL analysis.

Genetic control of lincRNAs expression in blood
It is known that in general lincRNAs are less abundantly

expressed compared to protein-coding transcripts [4]. To test the

expression levels of the 2,140 lincRNA probes in 1,240 peripheral

blood samples (discovery cohort), we compared the quantile-

normalized, log scale transformed mean expression intensity as

well as expression variation of the lincRNA probes to probes

mapping to protein-coding transcripts. We indeed observed a

significant difference in the expression levels, where lincRNA

probes are less abundant (mean expression= 6.67) than probes

mapping to protein-coding transcripts (mean expression = 6.92,

Wilcoxon Mann Whitney P,2.2610216; Figure S1). We also

observed a highly significant difference in the expression variation

between lincRNA probes and probes mapping to protein-coding

transcripts (Wilcoxon Mann Whitney P,3.85610296). Next, we

tested whether the expression of these 2,140 lincRNA probes is

affected by SNPs in cis, by performing eQTL mapping in these

1,240 peripheral blood samples for which genotype data was also

available. We confined our analysis to SNP-probe combinations

for which the distance from the center of the probe to the genomic

location of the SNP was #250 kb. In the end, at a false-discovery

rate (FDR) of 0.05, we identified 5,201 significant SNP-probe

combinations, reflecting 4,644 different SNPs; these affected the

expression of 112 out of 2,140 different lincRNA probes. The 112

lincRNA probes mapped to 108 lincRNA genes and comprised

5.2% of all tested lincRNA probes, with a nominal significance

ranging from P,2.861024 to 9.816102198 in peripheral blood

(Table S1).

Replication of lincRNA cis-eQTLs in an independent
blood dataset
We then performed a replication analysis to test the reproduc-

ibility of the identified 112 lincRNA cis-eQTLs using an

independent dataset of 891 whole peripheral blood samples. We

took the 112 lincRNA-probes (or 5,201 SNP-probe pairs) that

were significantly affected by cis-eQTLs in the discovery cohort

and tested whether these eQTLs were also significant in the

replication dataset (at FDR 0.05). We could replicate 45% of the

112 lincRNA cis-eQTLs at an FDR,0.05, of which all the eQTLs

had an identical allelic direction (Figure S2). The smaller sample

size of the replication cohort compared to the discovery cohort

makes it inherently difficult to replicate all the cis-eQTLs that we

have detected in the discovery cohort.

Number of cis-eQTLs is dependent on expression levels
of transcripts
Our observation that 5.2% of all tested lincRNAs are cis-

regulated (Table S1) might seem disappointing, compared to our

earlier observation that 25% of the protein-coding probes in this

dataset are cis-regulated [18]. However, we reasoned that the

generally lower expression levels of lincRNAs compared to

protein-coding genes might make it more difficult to detect cis-

eQTLs for lincRNAs, as the influence of background noise

becomes substantial for less abundant transcripts, making accurate

expression quantification difficult (Figure S1A).

Indeed, we found significantly higher expression levels for the

112 cis-eQTL lincRNA probes (mean expression= 6.80) compared

to the 2,028 non-eQTL lincRNA probes (mean expression= 6.66

Wilcoxon Mann Whitney P= 3.88610215; Figure S3) and also

observed a significant difference in expression variance between

the 112 cis-eQTL lincRNAs compared to the 2,028 non-cis eQTL

lincRNAs (Wilcoxon Mann Whitney P= 1.06761028), indicating

that lower overall expression levels do make identification of cis-

eQTLs more difficult.

To further confirm the relationship between average expression

levels of probes and the number of detectable cis-eQTLs, we first

Author Summary

Large intergenic non-coding RNAs (lincRNAs) are the
largest class of non-coding RNA molecules in the human
genome. Many genome-wide association studies (GWAS)
have mapped disease-associated genetic variants (SNPs)
to, or in, the vicinity of such lincRNA regions. However, it is
not clear how these SNPs can affect the disease. We tested
whether SNPs were also associated with the lincRNA
expression levels in five different human primary tissues.
We observed that there is a strong genotype-lincRNA
expression correlation that is tissue-dependent. Many of
the observed lincRNA cis-eQTLs are disease- or trait-
associated SNPs. Our results suggest that lincRNA-eQTLs
represent a novel link between non-coding SNPs and the
expression of protein-coding genes, which can be exploit-
ed to understand the process of gene-regulation through
lincRNAs in more detail.

LincRNA eQTLs Are Associated with Human Disease
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mapped cis-eQTLs for an equal set of 2,140 probes that were

instead protein-coding and were the most abundantly expressed of

all protein-coding probes. We also conducted cis-eQTL mapping

for a set of 2,140 protein-coding probes that had been selected to

have an identical expression intensity distribution as the 2,140

lincRNA probes (i.e. matched for mean expression intensity and

standard deviation), using the same 1,240 blood samples

(Figure 1A). We indeed observed a profound relationship between

average expression levels of protein-coding transcripts and the

number of detectable cis-eQTLs. Eighty percent of the 2,140 most

abundantly expressed protein-coding probes showed a cis-eQTL

effect, whereas only 10% of the protein-coding probes that had

Figure 1. The number of detected cis-eQTLs is dependent on the expression levels of the transcripts. (A) Quantile-normalized average
expression intensity and (B) number of cis-eQTL affected probes in percentage, for 2,140 lincRNA probes, 2,140 non-lincRNA (matched for 2,140
lincRNA probes’ median expression and standard deviation) and 2,140 most abundantly expressed non-lincRNA probes.
doi:10.1371/journal.pgen.1003201.g001

LincRNA eQTLs Are Associated with Human Disease
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been matched for an expression intensity of the 2,140 lincRNA-

probes were affected by cis-eQTLs (Figure 1B).

Hence it is possible that if we can accurately quantify all

lincRNAs in large RNA-sequencing datasets, we will be able to

identify cis-eQTLs for a larger proportion of all lincRNAs.

Most SNPs that affect lincRNA expression do not alter the
expression of protein-coding genes
It could be possible that the SNPs that affect lincRNA

expression actually operate by first affecting protein-coding gene

expression levels, which in turn affect lincRNA expression. If this

were to be the case, our identified lincRNA cis-eQTLs would

merely be a by-product of protein-coding cis-eQTLs. To ascertain

this, we tested whether the 112 lincRNA-eQTL SNPs were also

significantly affecting neighboring protein-coding genes. By

keeping the same significance threshold (at FDR,0.05 level, the

P-value threshold was 2.461024), we observed that nearly 75%

(83 out of 112) of the lincRNA-eQTLs were affecting only

lincRNAs, even though the interrogated neighboring protein-

coding genes were generally more abundantly expressed than the

lincRNAs themselves (Figure S4). Genetic variants can thus

directly regulate the expression levels of lincRNAs.

We found 29 cis-eQTLs to be associated with the expression of

both lincRNA and protein coding genes. For 50% of these 29 cis-
eQTLs, we found that the expression of lincRNAs and protein-

coding genes was in the opposite direction, whereas for the other

50% of cis-eQTLs, both types of transcripts were co-regulated in

the same direction (Figure S5).We tested whether these 29 cis-
eQTLs are the strongest eQTLs for both lincRNA and protein-

coding genes. Although these 29 cis-eQTLs were the strongest

eQTLs for lincRNAs, only 5 among 29 were also the strongest

eQTLs for protein-coding genes. This observation further

highlights the direct regulation of lincRNA expression through

genetic variants.

Some lincRNA cis-eQTLs are tissue-dependent
There is considerable interest in mapping eQTLs in disease-

relevant tissue types. We reasoned that since expression of the

lincRNAs seems to be much more tissue-specific than the

expression of protein-coding genes [4], mapping lincRNA-eQTLs

in different tissues could reveal additional, tissue-specific lincRNA-

eQTLs. To test this, we analyzed gene expression and genotype

data of 74 liver samples, 62 muscle samples, 83 subcutaneous

adipose tissue (SAT) samples, and 77 visceral adipose tissue (VAT)

samples from our primary cohort of 85 unrelated, obese Dutch

individuals [18]. Upon cis-eQTL mapping we detected 35 cis-

eQTL-probes, of which 18 were specific in the four different non-

blood tissues, resulting in a total of 130 lincRNA-eQTLs in the

combined set of all five tissues (Table S1). Five cis-eQTLs

identified in blood tissue were also significantly replicated in at

least one other non-blood tissue (Table S1). While we could

replicate 45% of the cis-eQTLs in the substantial whole peripheral

blood replication cohort, the replication rate in the very small

cohorts for fat, liver and muscle tissue was, as expected, much

lower. We were able to observe tissue-specific lincRNA eQTLs in

muscle (1), liver (4), SAT (9) and blood (107) (Figure S6). Since the

four non-blood tissue expression levels were from the same

individuals, these results do indeed provide evidence that some of

the lincRNAs are regulated by genetic variants in a tissue-specific

manner.

LincRNA tissue specific cis-eQTLs are disease-associated
SNPs
As most of the GWAS-associated SNPs are located within non-

coding regions, we tested whether the 130 lincRNA-eQTLs

identified in five different tissues are also GWAS-associated

variants. To do this, we intersected trait-associated SNPs (at

reported nominal P,9.961026, retrieved from the catalog of

published genome-wide association studies per 26 July 2012) [14]

with the 130 top lincRNA cis-eQTLs and their proxies (proxies

with R2.0.8 using the 1000Genome CEU population as

reference). We identified 12 GWAS SNPs or their proxies, that

were also a lincRNA cis-eQTLs of eight different lincRNA genes

(Table 1). All except one of the 12 SNPs were exclusively

associated with lincRNA expression and thus did not affect the

expression levels of neighboring protein-coding genes (Table 1),

suggesting a causative role of altered lincRNA expression for these

phenotypes.

Table 1. Some of the lincRNA cis-eQTLs are disease-associated SNPs.

Cis-eQTL SNP
eQTL P
on lincRNA

Proxies (R2.0.8)
associated with
disease/trait Chr Trait/Disease

eQTL affected
lincRNA eQTL tissue

rs13278062 4.31610232 rs13278062 8 Exudative age-related macular
degeneration

XLOC_006742 Blood

rs11066054 4.09610211 rs6490294 12 Mean platelet volume XLOC_010202 Blood

rs206942 3.6361025 rs206936 6 Body mass index XLOC_005690 Blood

rs11065766 6.6761025 rs10849915 12 Alcohol consumption XLOC_009878 Blood

6.6761025 rs10774610 2 Drinking behavior

rs1465541 1.8461024 rs11684202 2 Coronary heart disease XLOC_002026 Blood

rs12125055 1.8461024 rs7542900 1 Type 2 diabetes XLOC_000922 Blood

rs199439 8.2561026 rs199515 17 Parkinson’s disease XLOC_012496 SAT

rs415430 17 Parkinson’s disease SAT

rs199533 17 Parkinson’s disease SAT

rs17767419 1.0561028 rs17767419 16 Thyroid volume XLOC_011797 SAT, VAT

rs3813582 16 Thyroid function SAT, VAT

Chr chromosome, SAT Saturated adipose tissue, VAT Visceral adipose tissue.
doi:10.1371/journal.pgen.1003201.t001
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Notably SNP rs13278062 at 8p21.1, associated with exudative

age-related macular degeneration (AMD) in the Japanese popula-

tion, was reported to alter the transcriptional levels of TNFRSF10A

(Tumor necrosis factor receptor superfamily 10A) protein-coding

gene [19]. Here we identified SNP rs13278062 as a highly

significant cis-eQTL of lincRNA XLOC_006742 (LOC389641)

(P= 4.31610232) rather than for TNFRSF10A (P= 4.2161024)

protein-coding gene (Figure S7). Furthermore, SNP rs13278062 is

located in exon 1 of lincRNA XLOC_006742, which encompasses

an ENCODE (Encyclopedia of DNA elements) enhancer region

characterized by H3K27acetylation and DNaseI hypersensitive

clusters [20] (Figure S8).

Another interesting example is at 17q21.31 where three

Parkinson’s disease associated SNPs were in strong linkage

disequilibrium (R2.0.8) with top cis-eQTL SNP rs199439, which

affects lincRNA XLOC_012496 expression exclusively in SAT

(Table 1). Weight loss due to body-fat wasting is a very common

but poorly understood phenomenon in Parkinson’s disease patients

[21]. In this regard, it is intriguing to note that the Parkinson’s

disease associated SNPs affects lincRNA expression exclusively in

fat tissue (Table 1). Hence, identifying lincRNA-eQTLs in disease-

relevant tissue types using larger groups of individuals may open

up new avenues towards achieving a better understanding of

disease mechanisms.

LincRNA function predictions using a co-expression
network of ,80,000 arrays: A mechanistic link between
disease and lincRNA
Our observations suggest a role for lincRNAs in complex

diseases and other phenotypes. The next, rather daunting task is to

elucidate the function of these ncRNAs. We recently developed a

co-regulation network (GeneNetwork, www.genenetwork.nl/

genenetwork, manuscript in preparation), to predict the function of

any transcript based on co-expression data extracted from

approximately 80,000 Affymetrix microarray experiments (see

Methods). We interrogated the GeneNetwork database to predict

the function of eQTL-affected lincRNAs. Among the 130 cis-

eQTL lincRNAs that we had identified in the five different tissues,

43 were represented by expression probe sets on Affymetrix arrays

for which we could predict the function (Table S2). These 43

probes include four out of eight disease-associated lincRNAs

described above (Table 1) and function prediction for these probes

provided relevant biological explanations.

LincRNA co-expression analysis: Disease-associated
lincRNAs are co-expressed with neighboring protein-
coding genes
It has been reported that some transcribed long ncRNAs

function as enhancers that regulate the expression of neighboring

genes [3] and may thereby contribute to the disease pathology. We

found that the AMD-associated lincRNA XLOC_006742

(LOC389641) (by virtue of SNP rs13278062 which exhibits a

significant eQTL effect) (Figure S7) is in strong co-expression with

TNFRSF10A based on our GeneNetwork database (Table S3).

AMD is a leading cause of blindness among elderly individuals

worldwide and recent studies, both in animal models and in

humans, provide compelling evidence for the role of immune

system cells in its pathogenesis [22]. The gene TNFRSF10A, which

encodes TRAIL receptor 1 (TRAIL1), has been implicated as a

causative gene for AMD [19]. It has been shown that binding of

TRAIL to TRAILR1 can induce apoptosis through caspase 8

activation [23] and using GeneNetwork we also predict a role in

apoptosis for lincRNA XLOC_006742 (Table S2).

Another trait-associated SNP, rs11065766, is the top cis-eQTL

of lincRNA XLOC_009878 (ENSG00000185847 or RP1-46F2.2

or LOC100131138) and it is in strong linkage disequilibrium with

two SNPs associated with alcohol drinking behavior (Table 1). We

found that the lincRNA XLOC_009878 is strongly co-expressed

with the neighboring protein-coding gene MYL2 (Table S4) and,

according to our predictions, lincRNA XLOC_009878 is involved

in striated muscle contraction (P= 1.22610226). Chronic alcohol

abuse can lead to striking changes in skeletal muscle structure,

which in turn plays a role in the development of alcoholic

myopathy and/or cardiomyopathy [24]. It has also been reported

that alcohol can reduce the content of skeletal muscle proteins

such as titin and nebulin to affect muscle function in rats [25]. We

found lincRNA XLOC_009878 to be co-expressed with titin and

many other skeletal muscle proteins necessary for the structural

integrity of the muscle (Table S4). Thus, it needs to be tested

whether deregulation of lincRNA XLOC_009878 expression

might alter an individual’s ability to metabolize alcohol due to

changes in the muscle functional property.

Localization of lincRNA cis-eQTLs in regulatory regions
We found that more than 70% of the lincRNA cis-eQTLs from

both blood and non-blood tissues were located in intergenic

regions with respect to protein-coding genes (Figure 2A). We also

found high frequencies of lincRNA cis-eQTLs to be located

around transcriptional start site (Figure 2B), suggesting that these

cis-eQTLs may affect the expression of lincRNAs through similar

gene regulatory mechanisms as those seen for protein-coding cis-

eQTLs. Thus, in order to understand the mechanism of how

lincRNA cis-eQTLs affect lincRNA expression, we intersected the

location of top 112 lincRNA cis-eQTLs and their proxies (r2 = 1) in

blood with regulatory regions using the HaploReg database [26].

The results suggested that indeed most of the lincRNA cis-eQTLs

(69%) were located in functionally important regulatory regions

(Figure S8), which contained DNAse I regions, transcription factor

binding regions, and histone marks of promoter and enhancer

regions. Furthermore, these cis-eQTLs were found to be located

more often within blood cell-specific enhancers (K562 and

GM12878) (Figure 3A), suggesting that some of these cis-eQTLs

regulate lincRNA expression in a tissue-specific manner through

altering these enhancer sequences.

Since we observed enrichment of cell-specific enhancers for

lincRNA cis-eQTLs within blood cells (K562 and GM12878), we

compared the fold enrichment of enhancers in these two cell types

to see whether lincRNA cis-eQTLs are more often located in

functionally important regions than any random set of SNPs. We

found a significant difference in the enrichment of enhancers in

which more than a 4-fold enrichment was seen for real cis-eQTLs

both in K562 cells (P = 0.0004) and GM12878 cells (P = 0.011)

compared to permuted SNPs. These findings suggest that some of

the identified lincRNA cis-eQTLs are indeed functional SNPs.

Discussion

Even though it may have been expected that lincRNA

expression would be under genetic control, this is the first study,

to our knowledge, to comprehensively establish this link. We were

able to identify cis-eQTLs in five different tissues and have

demonstrated that common genetic variants regulate the expres-

sion of lincRNAs alone. It is intriguing that around 75% of

lincRNA cis-eQTLs are specific to lincRNAs alone, but not to

protein-coding genes. Recent data from the ENCODE project

suggests that combinations of different transcription factors are

involved in regulating gene-expression in different cell types and
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PLOS Genetics | www.plosgenetics.org 5 January 2013 | Volume 9 | Issue 1 | e1003201



39

been matched for an expression intensity of the 2,140 lincRNA-

probes were affected by cis-eQTLs (Figure 1B).

Hence it is possible that if we can accurately quantify all

lincRNAs in large RNA-sequencing datasets, we will be able to

identify cis-eQTLs for a larger proportion of all lincRNAs.

Most SNPs that affect lincRNA expression do not alter the
expression of protein-coding genes
It could be possible that the SNPs that affect lincRNA

expression actually operate by first affecting protein-coding gene

expression levels, which in turn affect lincRNA expression. If this

were to be the case, our identified lincRNA cis-eQTLs would

merely be a by-product of protein-coding cis-eQTLs. To ascertain

this, we tested whether the 112 lincRNA-eQTL SNPs were also

significantly affecting neighboring protein-coding genes. By

keeping the same significance threshold (at FDR,0.05 level, the

P-value threshold was 2.461024), we observed that nearly 75%

(83 out of 112) of the lincRNA-eQTLs were affecting only

lincRNAs, even though the interrogated neighboring protein-

coding genes were generally more abundantly expressed than the

lincRNAs themselves (Figure S4). Genetic variants can thus

directly regulate the expression levels of lincRNAs.

We found 29 cis-eQTLs to be associated with the expression of

both lincRNA and protein coding genes. For 50% of these 29 cis-
eQTLs, we found that the expression of lincRNAs and protein-

coding genes was in the opposite direction, whereas for the other

50% of cis-eQTLs, both types of transcripts were co-regulated in

the same direction (Figure S5).We tested whether these 29 cis-
eQTLs are the strongest eQTLs for both lincRNA and protein-

coding genes. Although these 29 cis-eQTLs were the strongest

eQTLs for lincRNAs, only 5 among 29 were also the strongest

eQTLs for protein-coding genes. This observation further

highlights the direct regulation of lincRNA expression through

genetic variants.

Some lincRNA cis-eQTLs are tissue-dependent
There is considerable interest in mapping eQTLs in disease-

relevant tissue types. We reasoned that since expression of the

lincRNAs seems to be much more tissue-specific than the

expression of protein-coding genes [4], mapping lincRNA-eQTLs

in different tissues could reveal additional, tissue-specific lincRNA-

eQTLs. To test this, we analyzed gene expression and genotype

data of 74 liver samples, 62 muscle samples, 83 subcutaneous

adipose tissue (SAT) samples, and 77 visceral adipose tissue (VAT)

samples from our primary cohort of 85 unrelated, obese Dutch

individuals [18]. Upon cis-eQTL mapping we detected 35 cis-

eQTL-probes, of which 18 were specific in the four different non-

blood tissues, resulting in a total of 130 lincRNA-eQTLs in the

combined set of all five tissues (Table S1). Five cis-eQTLs

identified in blood tissue were also significantly replicated in at

least one other non-blood tissue (Table S1). While we could

replicate 45% of the cis-eQTLs in the substantial whole peripheral

blood replication cohort, the replication rate in the very small

cohorts for fat, liver and muscle tissue was, as expected, much

lower. We were able to observe tissue-specific lincRNA eQTLs in

muscle (1), liver (4), SAT (9) and blood (107) (Figure S6). Since the

four non-blood tissue expression levels were from the same

individuals, these results do indeed provide evidence that some of

the lincRNAs are regulated by genetic variants in a tissue-specific

manner.

LincRNA tissue specific cis-eQTLs are disease-associated
SNPs
As most of the GWAS-associated SNPs are located within non-

coding regions, we tested whether the 130 lincRNA-eQTLs

identified in five different tissues are also GWAS-associated

variants. To do this, we intersected trait-associated SNPs (at

reported nominal P,9.961026, retrieved from the catalog of

published genome-wide association studies per 26 July 2012) [14]

with the 130 top lincRNA cis-eQTLs and their proxies (proxies

with R2.0.8 using the 1000Genome CEU population as

reference). We identified 12 GWAS SNPs or their proxies, that

were also a lincRNA cis-eQTLs of eight different lincRNA genes

(Table 1). All except one of the 12 SNPs were exclusively

associated with lincRNA expression and thus did not affect the

expression levels of neighboring protein-coding genes (Table 1),

suggesting a causative role of altered lincRNA expression for these

phenotypes.

Table 1. Some of the lincRNA cis-eQTLs are disease-associated SNPs.

Cis-eQTL SNP
eQTL P
on lincRNA

Proxies (R2.0.8)
associated with
disease/trait Chr Trait/Disease

eQTL affected
lincRNA eQTL tissue

rs13278062 4.31610232 rs13278062 8 Exudative age-related macular
degeneration

XLOC_006742 Blood

rs11066054 4.09610211 rs6490294 12 Mean platelet volume XLOC_010202 Blood

rs206942 3.6361025 rs206936 6 Body mass index XLOC_005690 Blood

rs11065766 6.6761025 rs10849915 12 Alcohol consumption XLOC_009878 Blood

6.6761025 rs10774610 2 Drinking behavior

rs1465541 1.8461024 rs11684202 2 Coronary heart disease XLOC_002026 Blood

rs12125055 1.8461024 rs7542900 1 Type 2 diabetes XLOC_000922 Blood

rs199439 8.2561026 rs199515 17 Parkinson’s disease XLOC_012496 SAT

rs415430 17 Parkinson’s disease SAT

rs199533 17 Parkinson’s disease SAT

rs17767419 1.0561028 rs17767419 16 Thyroid volume XLOC_011797 SAT, VAT

rs3813582 16 Thyroid function SAT, VAT

Chr chromosome, SAT Saturated adipose tissue, VAT Visceral adipose tissue.
doi:10.1371/journal.pgen.1003201.t001
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Notably SNP rs13278062 at 8p21.1, associated with exudative

age-related macular degeneration (AMD) in the Japanese popula-

tion, was reported to alter the transcriptional levels of TNFRSF10A

(Tumor necrosis factor receptor superfamily 10A) protein-coding

gene [19]. Here we identified SNP rs13278062 as a highly

significant cis-eQTL of lincRNA XLOC_006742 (LOC389641)

(P= 4.31610232) rather than for TNFRSF10A (P= 4.2161024)

protein-coding gene (Figure S7). Furthermore, SNP rs13278062 is

located in exon 1 of lincRNA XLOC_006742, which encompasses

an ENCODE (Encyclopedia of DNA elements) enhancer region

characterized by H3K27acetylation and DNaseI hypersensitive

clusters [20] (Figure S8).

Another interesting example is at 17q21.31 where three

Parkinson’s disease associated SNPs were in strong linkage

disequilibrium (R2.0.8) with top cis-eQTL SNP rs199439, which

affects lincRNA XLOC_012496 expression exclusively in SAT

(Table 1). Weight loss due to body-fat wasting is a very common

but poorly understood phenomenon in Parkinson’s disease patients

[21]. In this regard, it is intriguing to note that the Parkinson’s

disease associated SNPs affects lincRNA expression exclusively in

fat tissue (Table 1). Hence, identifying lincRNA-eQTLs in disease-

relevant tissue types using larger groups of individuals may open

up new avenues towards achieving a better understanding of

disease mechanisms.

LincRNA function predictions using a co-expression
network of ,80,000 arrays: A mechanistic link between
disease and lincRNA
Our observations suggest a role for lincRNAs in complex

diseases and other phenotypes. The next, rather daunting task is to

elucidate the function of these ncRNAs. We recently developed a

co-regulation network (GeneNetwork, www.genenetwork.nl/

genenetwork, manuscript in preparation), to predict the function of

any transcript based on co-expression data extracted from

approximately 80,000 Affymetrix microarray experiments (see

Methods). We interrogated the GeneNetwork database to predict

the function of eQTL-affected lincRNAs. Among the 130 cis-

eQTL lincRNAs that we had identified in the five different tissues,

43 were represented by expression probe sets on Affymetrix arrays

for which we could predict the function (Table S2). These 43

probes include four out of eight disease-associated lincRNAs

described above (Table 1) and function prediction for these probes

provided relevant biological explanations.

LincRNA co-expression analysis: Disease-associated
lincRNAs are co-expressed with neighboring protein-
coding genes
It has been reported that some transcribed long ncRNAs

function as enhancers that regulate the expression of neighboring

genes [3] and may thereby contribute to the disease pathology. We

found that the AMD-associated lincRNA XLOC_006742

(LOC389641) (by virtue of SNP rs13278062 which exhibits a

significant eQTL effect) (Figure S7) is in strong co-expression with

TNFRSF10A based on our GeneNetwork database (Table S3).

AMD is a leading cause of blindness among elderly individuals

worldwide and recent studies, both in animal models and in

humans, provide compelling evidence for the role of immune

system cells in its pathogenesis [22]. The gene TNFRSF10A, which

encodes TRAIL receptor 1 (TRAIL1), has been implicated as a

causative gene for AMD [19]. It has been shown that binding of

TRAIL to TRAILR1 can induce apoptosis through caspase 8

activation [23] and using GeneNetwork we also predict a role in

apoptosis for lincRNA XLOC_006742 (Table S2).

Another trait-associated SNP, rs11065766, is the top cis-eQTL

of lincRNA XLOC_009878 (ENSG00000185847 or RP1-46F2.2

or LOC100131138) and it is in strong linkage disequilibrium with

two SNPs associated with alcohol drinking behavior (Table 1). We

found that the lincRNA XLOC_009878 is strongly co-expressed

with the neighboring protein-coding gene MYL2 (Table S4) and,

according to our predictions, lincRNA XLOC_009878 is involved

in striated muscle contraction (P= 1.22610226). Chronic alcohol

abuse can lead to striking changes in skeletal muscle structure,

which in turn plays a role in the development of alcoholic

myopathy and/or cardiomyopathy [24]. It has also been reported

that alcohol can reduce the content of skeletal muscle proteins

such as titin and nebulin to affect muscle function in rats [25]. We

found lincRNA XLOC_009878 to be co-expressed with titin and

many other skeletal muscle proteins necessary for the structural

integrity of the muscle (Table S4). Thus, it needs to be tested

whether deregulation of lincRNA XLOC_009878 expression

might alter an individual’s ability to metabolize alcohol due to

changes in the muscle functional property.

Localization of lincRNA cis-eQTLs in regulatory regions
We found that more than 70% of the lincRNA cis-eQTLs from

both blood and non-blood tissues were located in intergenic

regions with respect to protein-coding genes (Figure 2A). We also

found high frequencies of lincRNA cis-eQTLs to be located

around transcriptional start site (Figure 2B), suggesting that these

cis-eQTLs may affect the expression of lincRNAs through similar

gene regulatory mechanisms as those seen for protein-coding cis-

eQTLs. Thus, in order to understand the mechanism of how

lincRNA cis-eQTLs affect lincRNA expression, we intersected the

location of top 112 lincRNA cis-eQTLs and their proxies (r2 = 1) in

blood with regulatory regions using the HaploReg database [26].

The results suggested that indeed most of the lincRNA cis-eQTLs

(69%) were located in functionally important regulatory regions

(Figure S8), which contained DNAse I regions, transcription factor

binding regions, and histone marks of promoter and enhancer

regions. Furthermore, these cis-eQTLs were found to be located

more often within blood cell-specific enhancers (K562 and

GM12878) (Figure 3A), suggesting that some of these cis-eQTLs

regulate lincRNA expression in a tissue-specific manner through

altering these enhancer sequences.

Since we observed enrichment of cell-specific enhancers for

lincRNA cis-eQTLs within blood cells (K562 and GM12878), we

compared the fold enrichment of enhancers in these two cell types

to see whether lincRNA cis-eQTLs are more often located in

functionally important regions than any random set of SNPs. We

found a significant difference in the enrichment of enhancers in

which more than a 4-fold enrichment was seen for real cis-eQTLs

both in K562 cells (P = 0.0004) and GM12878 cells (P = 0.011)

compared to permuted SNPs. These findings suggest that some of

the identified lincRNA cis-eQTLs are indeed functional SNPs.

Discussion

Even though it may have been expected that lincRNA

expression would be under genetic control, this is the first study,

to our knowledge, to comprehensively establish this link. We were

able to identify cis-eQTLs in five different tissues and have

demonstrated that common genetic variants regulate the expres-

sion of lincRNAs alone. It is intriguing that around 75% of

lincRNA cis-eQTLs are specific to lincRNAs alone, but not to

protein-coding genes. Recent data from the ENCODE project

suggests that combinations of different transcription factors are

involved in regulating gene-expression in different cell types and
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non-coding RNAs tend to be regulated by certain combinations of

transcription factors more often than others [27]. Thus, it could

still be possible that some transcription factors specifically regulate

lincRNA expression. We also observed a strong relationship

between whether or not a transcript is affected by cis-eQTLs and

its expression levels, where highly abundant transcripts were more

often affected by cis-eQTLs. This relationship was comparable

between lincRNA and protein-coding probes, although protein-

coding probes (matched for expression levels of lincRNA probes)

tend to show more cis-eQTLs (Figure 1B; 5.2% versus 10%).

Although this difference is not drastic, it may suggest that

lincRNAs exhibit another layer of gene regulation which is more

tissue-specific. Thus, we may expect to identify many more

lincRNA cis-eQTLs once larger datasets of different tissues

become available.

One limitation of our study is the lack of probes to

comprehensively map eQTLs to all the reported lincRNAs, as

we relied upon microarrays. Future analyses using RNA-sequenc-

ing datasets will undoubtedly provide much more insight into how

genetic variants affect lincRNA expression. So far, two landmark

RNA-sequencing based eQTL studies have been published using

60 (Montgomery et al) [28] and 69 samples (Pickrell et al) [29],

respectively. While Pickrell et al did not mention lincRNAs with a

cis-eQTL effect, Montgomery et al identified six cis-regulated

Figure 2. Distribution of lincRNA cis-eQTLs with respect to different transcripts. (A) The majority of the lincRNA cis-eQTLs are located
within the non-coding part of the genome and less than 6% of lincRNA cis-eQTLs are located within mRNA. (B) Distribution of lincRNA cis-eQTLs with
respect to distance to the lincRNA transcripts. The x-axis displays the 250 kb window used for cis-eQTL mapping and the y-axis displays the fraction of
lincRNA cis-eQTLs located within this window.
doi:10.1371/journal.pgen.1003201.g002

Figure 3. Localization of lincRNA cis-eQTLs in regulatory regions. (A) A plot to indicate the location of lincRNA cis-eQTLs in cell-specific
enhancers. The x-axis shows the different cell lines analyzed and the y-axis shows the fold enrichment of enhancers. (B) A plot to show the difference
in fold enrichment of enhancers for real lincRNA cis-eQTLs compared to permuted lincRNA cis-eQTLs. The significance of the difference in fold
enrichment was tested by T-test. The HaploReg database was used to analyze the fold enrichment of enhancers.
doi:10.1371/journal.pgen.1003201.g003
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lincRNAs (at a slightly higher FDR of 0.17). We re-analyzed these

two datasets and found that we could replicate one of the 112 cis-
eQTL lincRNAs effects that we detected using arrays (with an

identical allelic direction; Figure S10). These results indicate that

cis-eQTL lincRNAs detected using conventional microarrays can

be replicated in sequencing-based datasets. However, it also

indicates that sample size is currently a limiting factor in finding

many more cis-eQTL lincRNAs in sequencing-based datasets.

Nevertheless, our results clearly indicate that there is a strong

genotype-lincRNA expression correlation that is tissue-dependent.

A considerable number of the observed lincRNA cis-eQTLs are

disease- or trait-associated SNPs. Since lincRNAs can regulate the

expression of protein-coding genes either in cis [3] or in trans [8],
lincRNA-eQTLs represent a novel link between non-coding SNPs

and the expression of protein-coding genes. Our examples show

that this link can be exploited to understand the process of gene-

regulation in more detail, which may assist us in characterizing

lincRNAs as another class of disease biomarkers.

Methods

Ethics statement
This study was approved by the Medical Ethical Board of

Maastricht University Medical Center (four non-blood tissues),

and local ethical review boards (1,240 peripheral blood samples) in

line with the guidelines of the 1975 Declaration of Helsinki.

Informed consent in writing was obtained from each subject

personally. The subject information is provided in Table S5.

Mapping probes to lincRNAs
A detailed mapping strategy of Illumina expression probe

sequences has been described previously [17]. We extracted 43,202

expression probes mapping to single genomic locations (hg18 build)

and excluded those that did not map or that mapped to multiple

different loci. LincRNA chromosomal coordinates (hg19 build) were

obtained from the lincRNA catalog (http://www.broadinstitute.org/

genome_bio/human_lincrnas/?q= lincRNA_catalog) and converted

to hg18 coordinates using UCSC’s LiftOver application (http://

genome.ucsc.edu/cgi-bin/hgLiftOver). Subsequently, we extracted

probes mapping to lincRNA exonic regions by employing BEDtools

[30].

Blood dataset of 1,240 samples
The blood dataset and a detailed eQTL mapping strategy have

been described previously [17]. Briefly, 1,240 peripheral blood

samples from unrelated, Dutch control subjects were investigated

(Table S5). Genotyping of these samples was performed according

to Illumina’s standard protocols (Illumina, San Diego, USA), using

either the HumanHap370 or 610-Quad platforms. Because the

non-blood samples (see below) were genotyped using Illumina

HumanOmni1-Quad BeadChips, we applied IMPUTE v2 [31] to

impute the genotypes of SNPs that were covered by the Omni1-

Quad chip but that were not included on the Hap370 or 610-

Quad platforms [31]. Anti-sense RNA was synthesized using the

Ambion Illumina TotalPrep Amplification Kit (Ambion, New

York, USA) following the manufacturer’s protocol. Genome-wide

gene expression data was obtained by hybridizing complementary

RNA to Illumina’s HumanHT-12v3 array and subsequently

scanning these chips on the Illumina BeadArray Reader.

Replication blood dataset of 891 samples
We used a dataset comprising peripheral blood samples of 891

unrelated individuals from the Estonian Genome Centre, Univer-

sity of Tartu (EGCUT) biobank cohort of 53,000 samples for

replication. Genotyping of these samples was performed according

to Illumina’s standard protocols, using Illumina Human370CNV

arrays (Illumina Inc., San Diego, US), and imputed using

IMPUTE v2 [31], using the HapMap CEU phase 2 genotypes

(release #24, build 36). Whole peripheral blood RNA samples

were collected using Tempus Blood RNA Tubes (Life Technol-

ogies, NY, USA), and RNA was extracted using Tempus Spin

RNA Isolation Kit (Life Technologies, NY, USA). Quality was

measured by NanoDrop 1000 Spectrophotometer (Thermo Fisher

Scientific, DE, USA) and Agilent 2100 Bioanalyzer (Agilent

Technologies, CA, USA). Whole-Genome gene-expression levels

were obtained by Illumina Human HT12v3 arrays (Illumina Inc,

San Diego, US) according to manufacturers’ protocols.

Four non-blood primary tissues
Previously we described tissue-dependent eQTLs in 74 liver

samples, 62 muscle samples, 83 SAT samples and 77 VAT

samples from a cohort of 85 unrelated, obese Dutch individuals (all

four tissues were available for 48 individuals) [18] (Table S5).

These samples were genotyped according to standard protocols

from Illumina, using Illumina HumanOmni-Quad BeadChips

(Omni1). Genome-wide gene expression data of all samples was

assayed by hybridizing complementary RNA to the Illumina

HumanHT-12v3 array and then scanning it on the BeadArray

Reader.

Cis-eQTL mapping
The method for normalization and principal component

analysis-based correction of expression data, along with the

methods to control population stratification and SNP quality,

were described previously [17,18]. The cis-eQTL analysis was

performed on probe-SNP combinations for which the distance

from the center of the probe to the genomic location of the SNP

was #250 kb. Associations were tested by non-parametric Spear-

man’s rank correlation test and the P values were corrected for

multiple testing by false-discovery rate (FDR) at P,0.05, in which

the distribution was obtained from permuting expression pheno-

types relative to genotypes 100 times within the HT12v3 dataset

and comparing those with the observed P-value distribution. At

FDR=0.05 level, the P-value threshold was 2.461024 for

significantly associated probe-SNP pairs in blood, 1.561025 in

SAT, 5.2161026 in VAT, 6.361026 in liver and 1.861026 in

muscle.

LincRNA function prediction
To predict the function(s) for lincRNAs, we interrogated the

GeneNetwork database (www.genenetwork.nl/genenetwork) that

has been developed in our lab (manuscript in preparation). In short,

this database contains data extracted from approximately 80,000

microarray experiments that is publically available from the Gene

Expression Omnibus; after extensive quality control, it contains

data on 54,736 human, 17,081 mouse and 6,023 rat Affymetrix

array experiments. Principal component analysis was performed

on probe-set correlation matrices of each of four platforms (two

human platforms, one mouse and one rat platform), resulting in

777, 377, 677 and 375 robust principal components, respectively.

Jointly these components explain between 79% and 90% of the

variance in the data, depending on the species or platform. Many

of these components are well conserved across species and

enriched for known biological phenomena. Because of this, we

were able to combine the results into a multi-species gene network

with 19,997 unique human genes, allowing us to utilize the

principal components to accurately predict gene function by using

a ‘guilt-by-association’ procedure (a description of the method is
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non-coding RNAs tend to be regulated by certain combinations of

transcription factors more often than others [27]. Thus, it could

still be possible that some transcription factors specifically regulate

lincRNA expression. We also observed a strong relationship

between whether or not a transcript is affected by cis-eQTLs and

its expression levels, where highly abundant transcripts were more

often affected by cis-eQTLs. This relationship was comparable

between lincRNA and protein-coding probes, although protein-

coding probes (matched for expression levels of lincRNA probes)

tend to show more cis-eQTLs (Figure 1B; 5.2% versus 10%).

Although this difference is not drastic, it may suggest that

lincRNAs exhibit another layer of gene regulation which is more

tissue-specific. Thus, we may expect to identify many more

lincRNA cis-eQTLs once larger datasets of different tissues

become available.

One limitation of our study is the lack of probes to

comprehensively map eQTLs to all the reported lincRNAs, as

we relied upon microarrays. Future analyses using RNA-sequenc-

ing datasets will undoubtedly provide much more insight into how

genetic variants affect lincRNA expression. So far, two landmark

RNA-sequencing based eQTL studies have been published using

60 (Montgomery et al) [28] and 69 samples (Pickrell et al) [29],

respectively. While Pickrell et al did not mention lincRNAs with a

cis-eQTL effect, Montgomery et al identified six cis-regulated

Figure 2. Distribution of lincRNA cis-eQTLs with respect to different transcripts. (A) The majority of the lincRNA cis-eQTLs are located
within the non-coding part of the genome and less than 6% of lincRNA cis-eQTLs are located within mRNA. (B) Distribution of lincRNA cis-eQTLs with
respect to distance to the lincRNA transcripts. The x-axis displays the 250 kb window used for cis-eQTL mapping and the y-axis displays the fraction of
lincRNA cis-eQTLs located within this window.
doi:10.1371/journal.pgen.1003201.g002

Figure 3. Localization of lincRNA cis-eQTLs in regulatory regions. (A) A plot to indicate the location of lincRNA cis-eQTLs in cell-specific
enhancers. The x-axis shows the different cell lines analyzed and the y-axis shows the fold enrichment of enhancers. (B) A plot to show the difference
in fold enrichment of enhancers for real lincRNA cis-eQTLs compared to permuted lincRNA cis-eQTLs. The significance of the difference in fold
enrichment was tested by T-test. The HaploReg database was used to analyze the fold enrichment of enhancers.
doi:10.1371/journal.pgen.1003201.g003
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lincRNAs (at a slightly higher FDR of 0.17). We re-analyzed these

two datasets and found that we could replicate one of the 112 cis-
eQTL lincRNAs effects that we detected using arrays (with an

identical allelic direction; Figure S10). These results indicate that

cis-eQTL lincRNAs detected using conventional microarrays can

be replicated in sequencing-based datasets. However, it also

indicates that sample size is currently a limiting factor in finding

many more cis-eQTL lincRNAs in sequencing-based datasets.

Nevertheless, our results clearly indicate that there is a strong

genotype-lincRNA expression correlation that is tissue-dependent.

A considerable number of the observed lincRNA cis-eQTLs are

disease- or trait-associated SNPs. Since lincRNAs can regulate the

expression of protein-coding genes either in cis [3] or in trans [8],
lincRNA-eQTLs represent a novel link between non-coding SNPs

and the expression of protein-coding genes. Our examples show

that this link can be exploited to understand the process of gene-

regulation in more detail, which may assist us in characterizing

lincRNAs as another class of disease biomarkers.

Methods

Ethics statement
This study was approved by the Medical Ethical Board of

Maastricht University Medical Center (four non-blood tissues),

and local ethical review boards (1,240 peripheral blood samples) in

line with the guidelines of the 1975 Declaration of Helsinki.

Informed consent in writing was obtained from each subject

personally. The subject information is provided in Table S5.

Mapping probes to lincRNAs
A detailed mapping strategy of Illumina expression probe

sequences has been described previously [17]. We extracted 43,202

expression probes mapping to single genomic locations (hg18 build)

and excluded those that did not map or that mapped to multiple

different loci. LincRNA chromosomal coordinates (hg19 build) were

obtained from the lincRNA catalog (http://www.broadinstitute.org/

genome_bio/human_lincrnas/?q= lincRNA_catalog) and converted

to hg18 coordinates using UCSC’s LiftOver application (http://

genome.ucsc.edu/cgi-bin/hgLiftOver). Subsequently, we extracted

probes mapping to lincRNA exonic regions by employing BEDtools

[30].

Blood dataset of 1,240 samples
The blood dataset and a detailed eQTL mapping strategy have

been described previously [17]. Briefly, 1,240 peripheral blood

samples from unrelated, Dutch control subjects were investigated

(Table S5). Genotyping of these samples was performed according

to Illumina’s standard protocols (Illumina, San Diego, USA), using

either the HumanHap370 or 610-Quad platforms. Because the

non-blood samples (see below) were genotyped using Illumina

HumanOmni1-Quad BeadChips, we applied IMPUTE v2 [31] to

impute the genotypes of SNPs that were covered by the Omni1-

Quad chip but that were not included on the Hap370 or 610-

Quad platforms [31]. Anti-sense RNA was synthesized using the

Ambion Illumina TotalPrep Amplification Kit (Ambion, New

York, USA) following the manufacturer’s protocol. Genome-wide

gene expression data was obtained by hybridizing complementary

RNA to Illumina’s HumanHT-12v3 array and subsequently

scanning these chips on the Illumina BeadArray Reader.

Replication blood dataset of 891 samples
We used a dataset comprising peripheral blood samples of 891

unrelated individuals from the Estonian Genome Centre, Univer-

sity of Tartu (EGCUT) biobank cohort of 53,000 samples for

replication. Genotyping of these samples was performed according

to Illumina’s standard protocols, using Illumina Human370CNV

arrays (Illumina Inc., San Diego, US), and imputed using

IMPUTE v2 [31], using the HapMap CEU phase 2 genotypes

(release #24, build 36). Whole peripheral blood RNA samples

were collected using Tempus Blood RNA Tubes (Life Technol-

ogies, NY, USA), and RNA was extracted using Tempus Spin

RNA Isolation Kit (Life Technologies, NY, USA). Quality was

measured by NanoDrop 1000 Spectrophotometer (Thermo Fisher

Scientific, DE, USA) and Agilent 2100 Bioanalyzer (Agilent

Technologies, CA, USA). Whole-Genome gene-expression levels

were obtained by Illumina Human HT12v3 arrays (Illumina Inc,

San Diego, US) according to manufacturers’ protocols.

Four non-blood primary tissues
Previously we described tissue-dependent eQTLs in 74 liver

samples, 62 muscle samples, 83 SAT samples and 77 VAT

samples from a cohort of 85 unrelated, obese Dutch individuals (all

four tissues were available for 48 individuals) [18] (Table S5).

These samples were genotyped according to standard protocols

from Illumina, using Illumina HumanOmni-Quad BeadChips

(Omni1). Genome-wide gene expression data of all samples was

assayed by hybridizing complementary RNA to the Illumina

HumanHT-12v3 array and then scanning it on the BeadArray

Reader.

Cis-eQTL mapping
The method for normalization and principal component

analysis-based correction of expression data, along with the

methods to control population stratification and SNP quality,

were described previously [17,18]. The cis-eQTL analysis was

performed on probe-SNP combinations for which the distance

from the center of the probe to the genomic location of the SNP

was #250 kb. Associations were tested by non-parametric Spear-

man’s rank correlation test and the P values were corrected for

multiple testing by false-discovery rate (FDR) at P,0.05, in which

the distribution was obtained from permuting expression pheno-

types relative to genotypes 100 times within the HT12v3 dataset

and comparing those with the observed P-value distribution. At

FDR=0.05 level, the P-value threshold was 2.461024 for

significantly associated probe-SNP pairs in blood, 1.561025 in

SAT, 5.2161026 in VAT, 6.361026 in liver and 1.861026 in

muscle.

LincRNA function prediction
To predict the function(s) for lincRNAs, we interrogated the

GeneNetwork database (www.genenetwork.nl/genenetwork) that

has been developed in our lab (manuscript in preparation). In short,

this database contains data extracted from approximately 80,000

microarray experiments that is publically available from the Gene

Expression Omnibus; after extensive quality control, it contains

data on 54,736 human, 17,081 mouse and 6,023 rat Affymetrix

array experiments. Principal component analysis was performed

on probe-set correlation matrices of each of four platforms (two

human platforms, one mouse and one rat platform), resulting in

777, 377, 677 and 375 robust principal components, respectively.

Jointly these components explain between 79% and 90% of the

variance in the data, depending on the species or platform. Many

of these components are well conserved across species and

enriched for known biological phenomena. Because of this, we

were able to combine the results into a multi-species gene network

with 19,997 unique human genes, allowing us to utilize the

principal components to accurately predict gene function by using

a ‘guilt-by-association’ procedure (a description of the method is
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available at www.genenetwork.nl/genenetwork). Predictions were

made based on pathways and gene sets from Gene Ontology,

KEGG, BioCarta, TransFac and Reactome.

Functional annotation of lincRNA cis-eQTLs
We employed the HaploReg web tool [26] to intersect SNPs

(and their perfect proxies, r2 = 1 using the CEU samples from the

1000 Genomes project) with regulatory information and also to

calculate the fold enrichment of cell-type specific enhancers. In

order to ascertain whether this enrichment was higher than

expected, we took eQTL results from 100 permutations (shuffling

the gene expression identifier labels): for each permutation we

determined the top 112 eQTL probes and took the corresponding

top SNPs and their perfect proxies (r2 = 1). We extracted the fold

enrichment of enhancers from HaploReg for these 100 sets of

SNPs as well, which then permitted us to estimate the significance

of enrichment of the real eQTL analysis, determined by fitting a

normal distribution on the 100 log-transformed permutation

enrichment scores.

Supporting Information

Figure S1 LincRNA probes show different expression charac-

teristics compared to other transcripts. The figure shows the

difference in quantile-normalized average expression intensity

between lincRNA probes and non-lincRNA probes. The signifi-

cance of difference in expression intensity was tested by the

Wilcoxon Mann Whitney test.

(TIF)

Figure S2 Replicated lincRNA cis-eQTLs show identical allelic

direction of effect in the both the discovery and replication

datasets. We compared the z-scores (association strength) of each

significantly associated probe-SNP pair in the discovery dataset

(Groningen HT12v3; N=1,240) with the replication dataset

(EGCUT; N=891).

(TIF)

Figure S3 lincRNA probes with cis-eQTL effect show higher

expression levels compared to lincRNA probes without cis-eQTL

effect. The significance of difference in expression intensity was

tested by the Wilcoxon Mann Whitney test.

(TIF)

Figure S4 LincRNA cis-eQTL SNPs mostly affect lincRNA

transcripts alone. Quantile-normalized average expression inten-

sity of cis-eQTL lincRNAs and their neighboring protein coding

genes without cis-eQTL.

(TIF)

Figure S5 Distribution of Z-scores of co-regulated lincRNA and

protein-coding genes. We compared the z-scores (association

strength) of each significantly associated probe-SNP pair for the 29

cis-eQTLs that affect both lincRNAs and protein-coding genes.

(TIF)

Figure S6 Number of specific and overlapping cis-eQTL

lincRNAs identified across five different tissues.

(TIF)

Figure S7 Plots to show the association of age-related macular

degeneration SNP rs13278062 with expression levels of lincRNA

LOC389641 and protein-coding gene TNFRSF10A in blood

(N= 1,249). The x-axis shows the number of samples according

to the genotypes at rs13278062 and the y-axis is the average

expression intensity of probes.

(TIF)

Figure S8 UCSC genome browser screen shot (http://genome.ucsc.

edu) to show the location of age-related macular degeneration SNP,

rs13278062. The x-axis is the chromosome location in the hg19

build and indicates the location of transcripts and regulatory

elements identified by ENCODE on chromosome 8.

(TIF)

Figure S9 A plot to show the number of lincRNA cis-eQTLs on

the y-axis within different regulatory regions on the x-axis.

(TIF)

Figure S10 Plots to show the cis-eQTL effect on lincRNA

XLOC_00197 from both microarray data (Groningen HT12v3;

N= 1,240) and RNA-sequencing data (Montgomery et al; N= 60).

The x-axis shows the number of samples according to the

genotypes at rs1120042 and rs2279692 (LD between these two

SNPs, R2= 0.96) in microarray data and RNA-sequencing data,

respectively.

(TIF)

Table S1 LincRNA cis-eQTLs in blood and four other non-

blood tissues.

(XLSX)

Table S2 Function prediction of lincRNAs affected by cis-

eQTLs using GeneNetwork.

(XLSX)

Table S3 Identification of co-expressed genes for lincRNA

LOC389641 using GeneNetwork.

(XLSX)

Table S4 Identification of co-expressed genes for lincRNA

LOC100131138 using GeneNetwork.

(XLSX)

Table S5 Characteristics of sample cohorts used for cis-eQTL

mapping.

(XLSX)
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available at www.genenetwork.nl/genenetwork). Predictions were

made based on pathways and gene sets from Gene Ontology,

KEGG, BioCarta, TransFac and Reactome.

Functional annotation of lincRNA cis-eQTLs
We employed the HaploReg web tool [26] to intersect SNPs

(and their perfect proxies, r2 = 1 using the CEU samples from the

1000 Genomes project) with regulatory information and also to

calculate the fold enrichment of cell-type specific enhancers. In

order to ascertain whether this enrichment was higher than

expected, we took eQTL results from 100 permutations (shuffling

the gene expression identifier labels): for each permutation we

determined the top 112 eQTL probes and took the corresponding

top SNPs and their perfect proxies (r2 = 1). We extracted the fold

enrichment of enhancers from HaploReg for these 100 sets of

SNPs as well, which then permitted us to estimate the significance

of enrichment of the real eQTL analysis, determined by fitting a

normal distribution on the 100 log-transformed permutation

enrichment scores.

Supporting Information

Figure S1 LincRNA probes show different expression charac-

teristics compared to other transcripts. The figure shows the

difference in quantile-normalized average expression intensity

between lincRNA probes and non-lincRNA probes. The signifi-

cance of difference in expression intensity was tested by the

Wilcoxon Mann Whitney test.

(TIF)

Figure S2 Replicated lincRNA cis-eQTLs show identical allelic

direction of effect in the both the discovery and replication

datasets. We compared the z-scores (association strength) of each

significantly associated probe-SNP pair in the discovery dataset

(Groningen HT12v3; N=1,240) with the replication dataset

(EGCUT; N=891).

(TIF)

Figure S3 lincRNA probes with cis-eQTL effect show higher

expression levels compared to lincRNA probes without cis-eQTL

effect. The significance of difference in expression intensity was

tested by the Wilcoxon Mann Whitney test.

(TIF)

Figure S4 LincRNA cis-eQTL SNPs mostly affect lincRNA

transcripts alone. Quantile-normalized average expression inten-

sity of cis-eQTL lincRNAs and their neighboring protein coding

genes without cis-eQTL.

(TIF)

Figure S5 Distribution of Z-scores of co-regulated lincRNA and

protein-coding genes. We compared the z-scores (association

strength) of each significantly associated probe-SNP pair for the 29

cis-eQTLs that affect both lincRNAs and protein-coding genes.

(TIF)

Figure S6 Number of specific and overlapping cis-eQTL

lincRNAs identified across five different tissues.

(TIF)

Figure S7 Plots to show the association of age-related macular

degeneration SNP rs13278062 with expression levels of lincRNA

LOC389641 and protein-coding gene TNFRSF10A in blood

(N= 1,249). The x-axis shows the number of samples according

to the genotypes at rs13278062 and the y-axis is the average

expression intensity of probes.

(TIF)

Figure S8 UCSC genome browser screen shot (http://genome.ucsc.

edu) to show the location of age-related macular degeneration SNP,

rs13278062. The x-axis is the chromosome location in the hg19

build and indicates the location of transcripts and regulatory

elements identified by ENCODE on chromosome 8.

(TIF)

Figure S9 A plot to show the number of lincRNA cis-eQTLs on

the y-axis within different regulatory regions on the x-axis.

(TIF)

Figure S10 Plots to show the cis-eQTL effect on lincRNA

XLOC_00197 from both microarray data (Groningen HT12v3;

N= 1,240) and RNA-sequencing data (Montgomery et al; N= 60).

The x-axis shows the number of samples according to the

genotypes at rs1120042 and rs2279692 (LD between these two

SNPs, R2= 0.96) in microarray data and RNA-sequencing data,

respectively.

(TIF)

Table S1 LincRNA cis-eQTLs in blood and four other non-

blood tissues.

(XLSX)

Table S2 Function prediction of lincRNAs affected by cis-

eQTLs using GeneNetwork.

(XLSX)

Table S3 Identification of co-expressed genes for lincRNA

LOC389641 using GeneNetwork.

(XLSX)

Table S4 Identification of co-expressed genes for lincRNA

LOC100131138 using GeneNetwork.

(XLSX)

Table S5 Characteristics of sample cohorts used for cis-eQTL

mapping.

(XLSX)
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T
he causal variants, genes and pathways in many genome-
wide association studies (GWAS) loci often remain elusive,
due to linkage disequilibrium (LD) between associated

variants, long-range regulation and incomplete biological knowl-
edge of gene function. To translate genetic associations into
biological insight, we need at a minimum to identify the genes
that account for associations as well as the pathways and tissue/
cell type context(s) in which the genes’ actions affect phenotypes.
Although cell-type-specific expression quantitative trait loci
(eQTLs) or coding (non-synonymous) variants in strong LD
with associated variants can potentially link these variants to
genes, overlap with eQTLs or coding variants may be coin-
cidental. In addition, coding variants in high LD with associated
variants are rarely observed, and eQTL data from non-
haematological cell types are rare. Direct functional follow-up
of the many potentially causal variants and genes is typically
difficult and expensive, so an attractive first step is to use
computational approaches to prioritize genes in associated loci
with respect to their likely biological relevance, and to identify
pathways and tissues to define their likely biological context. The
current paradigm for gene prioritization methods is to system-
atically search for commonalities in functional annotations
between genes from different associated loci, such as shared
features derived from text mining1 (which is limited by the
literature’s highly incomplete characterization of gene function)
or propensity to interact at the protein level2 (which is unlikely to
capture the full functional spectrum of a given gene or
phenotype3). The paradigm for gene set analysis is to search for
enrichment of the genes near associated variants in manually
curated gene sets or in gene sets derived from molecular
evidence4. Although certain pathways have been carefully
characterized, and manually curated gene sets and protein–
protein interaction maps can be of great value, pathway
annotation of genes remains sparse and skewed towards well-
studied genes5. At the same time, the availability of large, diverse,
genome-wide data sets, such as gene expression data, can
elucidate and annotate potential functional connections between
genes6. Given these limitations and opportunities, and the wide
spectrum of traits and diseases analysed in association studies,
there is a need for a general computational approach that
integrates diverse, non-hypothesis-driven data sets to prioritize
genes and pathways7,8.

With the goal of meeting this need, we develop and hereby
present a framework called Data-driven Expression Prioritized
Integration for Complex Traits (DEPICT, www.broadinstitu-
te.org/depict), which is not driven by phenotype-specific
hypotheses and considers multiple lines of complementary
evidence to accomplish gene prioritization, pathway analysis
and tissue/cell type enrichment analysis. This framework can
prioritize genes, pathways and tissue/cell types across many
different phenotypes9–13.

Results
Overview of the DEPICT methodology. DEPICT builds on our
recent work that used co-regulation of gene expression (derived
from expression data of 77,840 samples), in conjunction with
previously annotated gene sets, to accurately predict gene func-
tion based on a ‘guilt-by-association’ procedure6. We first
expanded this approach to include 14,461 existing gene sets,
representing a wide spectrum of biological annotations (including
manually curated pathways14–16, molecular pathways from
protein–protein interaction screens17 and phenotypic gene sets
from mouse gene knock-out studies18). By calculating, for each
gene, the likelihood of membership in each gene set (based
on similarities across the expression data; see Methods),

we generated 14,461 ‘reconstituted’ gene sets (see Fig. 1;
Supplementary Data 1). Rather than traditional binary gene sets
(genes are included or not included), these reconstituted gene sets
contain a membership probability for each gene in the genome;
conversely, a gene is functionally characterized by its membership
probabilities across the 14,461 reconstituted gene sets. Using
these precomputed gene functions and a set of trait-associated
loci, DEPICT assesses whether any of the 14,461 reconstituted
gene sets are significantly enriched for genes in the associated loci,
and prioritizes genes that share predicted functions with genes
from the other associated loci more often than expected by
chance. In addition, DEPICT utilizes a set of 37,427 human
microarrays to identify tissue/cell types in which genes from
associated loci are highly expressed. DEPICT uses precomputed
GWAS based on randomly distributed phenotypes to take sources
of confounding into account: it extracts gene-density-matched
input loci from these ‘null GWAS’, recomputes results and adjusts
the P values from the above three analyses for null expectation.
It also uses the null GWAS to adjust for multiple testing by
computing false discovery rates (FDRs, see Methods).

Calibration of locus definitions. Having developed this frame-
work, we first considered a key feature, the definition of an
associated locus—that is, given an associated variant, how many
of the nearby genes should be taken into consideration as
potentially causal? Using as a positive control Mendelian disease
genes that affect skeletal growth and are over-represented in
height-associated GWAS loci10,19, we evaluated DEPICT’s
performance using loci defined by different combinations of
genetic and physical distance from the lead associated variant
(Supplementary Data 2). We found that a locus definition of
r240.5 from the lead variant was optimal (Supplementary
Note 1). We repeated the analysis using genome-wide-
significant associations for low-density lipoprotein (LDL)
cholesterol20 and 14 Mendelian lipid genes20 as positive
controls and observed similar results (r240.4), indicating that
the calibration does not change drastically for other traits
(Supplementary Data 3).

Type-1 error rate analysis. We next tested whether DEPICT
properly controls the type-1 error rate. Running DEPICT with
random input loci based on either real genotype or simulated
genotype data, we observed nearly uniform distributions for gene
set enrichment, gene prioritization and tissue/cell type enrich-
ment P values (see Supplementary Fig. 1 and Methods). Impor-
tantly, we did not observe any correlation between gene length
and gene prioritization P values (Spearman r2¼ 7.70� 10� 5),
nor correlation with locus gene density (Spearman
r2¼ 7.53� 10� 8), two factors that have often confounded
pathway analyses21. We also did not observe any correlation
between tissue/cell type enrichment P values and the number of
samples available in the expression data sets for each annotation
(Spearman r2¼ 6.9� 10� 4), nor were results dependent on the
particular set of genotype data used to construct the null GWAS
(Supplementary Note 2). Together, these results indicated that
DEPICT results are not driven by bias in its data sources.

Benchmarking the gene set enrichment framework. We next
compared DEPICT with two GWAS pathway methods,
MAGENTA22 and GRAIL1 using GWAS results for three
phenotypes, each with 450 independent genome-wide
significant single-nucleotide polymorphisms (SNPs): Crohn’s
disease23, human height10 and LDL20. DEPICT’s gene set
enrichment functionality outperformed MAGENTA (a widely
used GWAS gene set enrichment tool) by identifying more
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relevant gene sets (both methods exhibited comparable type-1
error rates; Supplementary Figs 1 and 2) for all three phenotypes:
DEPICT identified 2.5 times as many significant gene sets
(FDRo0.05) for Crohn’s disease, 2.8 times as many significant
gene sets for height and 1.1 times as many significant gene sets for
LDL (Fig. 2; Supplementary Figs 3–5; Supplementary Data 4–6).
Many gene sets prioritized by DEPICT, but not MAGENTA,
appear biologically relevant (for example, regulation of immune
response, response to cytokine stimulus and toll-like receptor
signalling pathway for Crohn’s disease; Fig. 2). To test whether
our gene set reconstitution strategy was driving the performance
differences between MAGENTA and DEPICT, we ran
MAGENTA with non-probabilistic, binary (yes/no) versions of
the reconstituted gene sets (see Methods). We found a consistent
increase in the number of nominally significant gene sets when
MAGENTA was run with reconstituted gene sets for Crohn’s
disease, height and LDL (1.4, 1.6 and 1.7-fold increases,
respectively, in number of nominally significant gene sets using
the 95 percentile model; Supplementary Data 4–6; Supplementary
Figs 6–8). To assess whether the reconstituted gene sets enhance
the performance of DEPICT, we ran DEPICT using the original,

predefined gene sets. As expected, the number of prioritized gene
sets (FDRo0.05) dropped to 97.7, 92.9 and 20% for the Crohn’s
disease, height and LDL analyses, respectively (Supplementary
Data 4–6). Together, these analysis indicate that the gene set
reconstitution, combined with DEPICT’s ability to use
probabilistic gene sets, is responsible for the increased
performance of DEPICT compared with MAGENTA in gene
set enrichment analysis.

Benchmarking the gene prioritization framework. Using gene
lists from whole-blood expression quantitative locus data24,
rodent growth plate differential expression data25 and
Mendelian human lipid genes reported in literature20 (see
Methods), we constructed positive sets of genes to compare
DEPICT’s gene prioritization performance with GRAIL (a widely
used GWAS gene prioritization tool). DEPICT and GRAIL
performed similarly in analyses based on all genome-wide
significant loci with at least one positive gene, based on area
under a receiver-operating characteristic (ROC) curve (AUC,
Table 1; Supplementary Datas 7–9; Supplementary Fig. 9).
However, when restricting the height comparison with loci with
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T
he causal variants, genes and pathways in many genome-
wide association studies (GWAS) loci often remain elusive,
due to linkage disequilibrium (LD) between associated

variants, long-range regulation and incomplete biological knowl-
edge of gene function. To translate genetic associations into
biological insight, we need at a minimum to identify the genes
that account for associations as well as the pathways and tissue/
cell type context(s) in which the genes’ actions affect phenotypes.
Although cell-type-specific expression quantitative trait loci
(eQTLs) or coding (non-synonymous) variants in strong LD
with associated variants can potentially link these variants to
genes, overlap with eQTLs or coding variants may be coin-
cidental. In addition, coding variants in high LD with associated
variants are rarely observed, and eQTL data from non-
haematological cell types are rare. Direct functional follow-up
of the many potentially causal variants and genes is typically
difficult and expensive, so an attractive first step is to use
computational approaches to prioritize genes in associated loci
with respect to their likely biological relevance, and to identify
pathways and tissues to define their likely biological context. The
current paradigm for gene prioritization methods is to system-
atically search for commonalities in functional annotations
between genes from different associated loci, such as shared
features derived from text mining1 (which is limited by the
literature’s highly incomplete characterization of gene function)
or propensity to interact at the protein level2 (which is unlikely to
capture the full functional spectrum of a given gene or
phenotype3). The paradigm for gene set analysis is to search for
enrichment of the genes near associated variants in manually
curated gene sets or in gene sets derived from molecular
evidence4. Although certain pathways have been carefully
characterized, and manually curated gene sets and protein–
protein interaction maps can be of great value, pathway
annotation of genes remains sparse and skewed towards well-
studied genes5. At the same time, the availability of large, diverse,
genome-wide data sets, such as gene expression data, can
elucidate and annotate potential functional connections between
genes6. Given these limitations and opportunities, and the wide
spectrum of traits and diseases analysed in association studies,
there is a need for a general computational approach that
integrates diverse, non-hypothesis-driven data sets to prioritize
genes and pathways7,8.

With the goal of meeting this need, we develop and hereby
present a framework called Data-driven Expression Prioritized
Integration for Complex Traits (DEPICT, www.broadinstitu-
te.org/depict), which is not driven by phenotype-specific
hypotheses and considers multiple lines of complementary
evidence to accomplish gene prioritization, pathway analysis
and tissue/cell type enrichment analysis. This framework can
prioritize genes, pathways and tissue/cell types across many
different phenotypes9–13.

Results
Overview of the DEPICT methodology. DEPICT builds on our
recent work that used co-regulation of gene expression (derived
from expression data of 77,840 samples), in conjunction with
previously annotated gene sets, to accurately predict gene func-
tion based on a ‘guilt-by-association’ procedure6. We first
expanded this approach to include 14,461 existing gene sets,
representing a wide spectrum of biological annotations (including
manually curated pathways14–16, molecular pathways from
protein–protein interaction screens17 and phenotypic gene sets
from mouse gene knock-out studies18). By calculating, for each
gene, the likelihood of membership in each gene set (based
on similarities across the expression data; see Methods),

we generated 14,461 ‘reconstituted’ gene sets (see Fig. 1;
Supplementary Data 1). Rather than traditional binary gene sets
(genes are included or not included), these reconstituted gene sets
contain a membership probability for each gene in the genome;
conversely, a gene is functionally characterized by its membership
probabilities across the 14,461 reconstituted gene sets. Using
these precomputed gene functions and a set of trait-associated
loci, DEPICT assesses whether any of the 14,461 reconstituted
gene sets are significantly enriched for genes in the associated loci,
and prioritizes genes that share predicted functions with genes
from the other associated loci more often than expected by
chance. In addition, DEPICT utilizes a set of 37,427 human
microarrays to identify tissue/cell types in which genes from
associated loci are highly expressed. DEPICT uses precomputed
GWAS based on randomly distributed phenotypes to take sources
of confounding into account: it extracts gene-density-matched
input loci from these ‘null GWAS’, recomputes results and adjusts
the P values from the above three analyses for null expectation.
It also uses the null GWAS to adjust for multiple testing by
computing false discovery rates (FDRs, see Methods).

Calibration of locus definitions. Having developed this frame-
work, we first considered a key feature, the definition of an
associated locus—that is, given an associated variant, how many
of the nearby genes should be taken into consideration as
potentially causal? Using as a positive control Mendelian disease
genes that affect skeletal growth and are over-represented in
height-associated GWAS loci10,19, we evaluated DEPICT’s
performance using loci defined by different combinations of
genetic and physical distance from the lead associated variant
(Supplementary Data 2). We found that a locus definition of
r240.5 from the lead variant was optimal (Supplementary
Note 1). We repeated the analysis using genome-wide-
significant associations for low-density lipoprotein (LDL)
cholesterol20 and 14 Mendelian lipid genes20 as positive
controls and observed similar results (r240.4), indicating that
the calibration does not change drastically for other traits
(Supplementary Data 3).

Type-1 error rate analysis. We next tested whether DEPICT
properly controls the type-1 error rate. Running DEPICT with
random input loci based on either real genotype or simulated
genotype data, we observed nearly uniform distributions for gene
set enrichment, gene prioritization and tissue/cell type enrich-
ment P values (see Supplementary Fig. 1 and Methods). Impor-
tantly, we did not observe any correlation between gene length
and gene prioritization P values (Spearman r2¼ 7.70� 10� 5),
nor correlation with locus gene density (Spearman
r2¼ 7.53� 10� 8), two factors that have often confounded
pathway analyses21. We also did not observe any correlation
between tissue/cell type enrichment P values and the number of
samples available in the expression data sets for each annotation
(Spearman r2¼ 6.9� 10� 4), nor were results dependent on the
particular set of genotype data used to construct the null GWAS
(Supplementary Note 2). Together, these results indicated that
DEPICT results are not driven by bias in its data sources.

Benchmarking the gene set enrichment framework. We next
compared DEPICT with two GWAS pathway methods,
MAGENTA22 and GRAIL1 using GWAS results for three
phenotypes, each with 450 independent genome-wide
significant single-nucleotide polymorphisms (SNPs): Crohn’s
disease23, human height10 and LDL20. DEPICT’s gene set
enrichment functionality outperformed MAGENTA (a widely
used GWAS gene set enrichment tool) by identifying more
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relevant gene sets (both methods exhibited comparable type-1
error rates; Supplementary Figs 1 and 2) for all three phenotypes:
DEPICT identified 2.5 times as many significant gene sets
(FDRo0.05) for Crohn’s disease, 2.8 times as many significant
gene sets for height and 1.1 times as many significant gene sets for
LDL (Fig. 2; Supplementary Figs 3–5; Supplementary Data 4–6).
Many gene sets prioritized by DEPICT, but not MAGENTA,
appear biologically relevant (for example, regulation of immune
response, response to cytokine stimulus and toll-like receptor
signalling pathway for Crohn’s disease; Fig. 2). To test whether
our gene set reconstitution strategy was driving the performance
differences between MAGENTA and DEPICT, we ran
MAGENTA with non-probabilistic, binary (yes/no) versions of
the reconstituted gene sets (see Methods). We found a consistent
increase in the number of nominally significant gene sets when
MAGENTA was run with reconstituted gene sets for Crohn’s
disease, height and LDL (1.4, 1.6 and 1.7-fold increases,
respectively, in number of nominally significant gene sets using
the 95 percentile model; Supplementary Data 4–6; Supplementary
Figs 6–8). To assess whether the reconstituted gene sets enhance
the performance of DEPICT, we ran DEPICT using the original,

predefined gene sets. As expected, the number of prioritized gene
sets (FDRo0.05) dropped to 97.7, 92.9 and 20% for the Crohn’s
disease, height and LDL analyses, respectively (Supplementary
Data 4–6). Together, these analysis indicate that the gene set
reconstitution, combined with DEPICT’s ability to use
probabilistic gene sets, is responsible for the increased
performance of DEPICT compared with MAGENTA in gene
set enrichment analysis.

Benchmarking the gene prioritization framework. Using gene
lists from whole-blood expression quantitative locus data24,
rodent growth plate differential expression data25 and
Mendelian human lipid genes reported in literature20 (see
Methods), we constructed positive sets of genes to compare
DEPICT’s gene prioritization performance with GRAIL (a widely
used GWAS gene prioritization tool). DEPICT and GRAIL
performed similarly in analyses based on all genome-wide
significant loci with at least one positive gene, based on area
under a receiver-operating characteristic (ROC) curve (AUC,
Table 1; Supplementary Datas 7–9; Supplementary Fig. 9).
However, when restricting the height comparison with loci with
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no well-known Mendelian human skeletal growth gene, DEPICT
markedly outperformed GRAIL, prioritizing genes at many more
loci (DEPICT: 1.1 genes per locus, GRAIL: 0.4 genes per locus),
suggesting that DEPICT performs better at loci harbouring genes
with less well-established roles in literature (Supplementary
Data 10). We validated this observation using genes nearest to
height-associated SNPs as positive genes at these loci. The nearest
gene is an unbiased, but highly imperfect benchmark (for
example, only 13/21 Mendelian skeletal growth genes in a large
height GWAS19 were the nearest genes to a height-associated
SNP), so AUC is expected to be low using this benchmark.
Nonetheless, DEPICT not only prioritized more genes than
GRAIL, but also had a higher AUC (Supplementary Data 11).

Finally, DEPICT performed consistently better than a gene
expression-based version of GRAIL (Supplementary Data 7–9),
indicating that use of gene expression data in the prediction is not
driving DEPICT’s superior performance across several of
the comparisons. Together, these analyses indicate that DEPICT
performs particularly well for gene prioritization at what
are arguably the most important loci for new discovery: those
with biology that is less well captured in already published
literature.

Prioritization of genes outside genome-wide significant loci.
We hypothesized that DEPICT could also be used to prioritize
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Figure 2 | Comparison of DEPICT and MAGENTA for Crohn’s disease. Comparison of DEPICT, which was run with 63 genome-wide significant

Crohn’s disease SNPs as input, and MAGENTA, which was run using the complete list of Crohn’s disease summary statistics23 (downloaded from

www.ibdgenetics.org). DEPICT was run using 1,280 reconstituted gene sets, and MAGENTA was run using the predefined versions of the same 1,280

gene sets. Both methods were run with default settings and non-adjusted enrichment P values are plotted.
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genes outside genome-wide significant loci, based on predicted
functional relatedness to genes within genome-wide significant
loci. Similar to the gene prioritization implemented in DEPICT,
we prioritized genes with higher than expected pairwise simila-
rities to genes from trait-associated loci (across the 14,461 func-
tional predictions; see Methods). SNPs within or near (±50 kb)
the 3,022 genes that were functionally related to Crohn’s disease
loci genes (at FDRo0.05) had lower association P values than
SNPs in the same number of unrelated genes (genes with
FDR40.99; genomic inflation factor k¼ 1.49 versus k¼ 1.31),
indicating that DEPICT enriches for as-yet-unidentified genes
associated with Crohn’s disease. The enrichment was further
increased when considering only SNPs that overlap with eQTLs
in whole blood24 (k¼ 1.69 versus k¼ 1.25). A similar enrichment
of associations was seen for height (k¼ 1.92 versus k¼ 1.62) and
LDL (k¼ 1.06 versus k¼ 0.97).
To begin to assess the performance and specificity of DEPICT

across a wider range of phenotypes, we applied DEPICT to
61 phenotypes in the NHGRI GWAS Catalog26 that had at
least 10 genome-wide-significant (unadjusted association P value
o5� 10� 8) associations. DEPICT identified at least one
significantly enriched (P value o10� 6, the Bonferroni-corrected
significance threshold) reconstituted gene set for 39 of the 61
phenotypes (Fig. 3; Supplementary Data 12). To test whether
DEPICT identified similar gene sets for related phenotypes, we
clustered the 39 traits based on their gene set enrichment scores
across the 14,461 reconstituted gene sets (Fig. 3). Related traits
clustered with each other, but different phenotypes yielded quite
different gene sets. Furthermore, many of the top gene sets were
of clear relevance to the phenotype (Supplementary Data 12).
Thus, DEPICT is able to identify, with specificity, biologically
relevant gene sets for a wide range of human traits and diseases.
Consistent with these results, we recently used DEPICT to
analyse GWAS data for height, body mass index and waist–hip
ratio adjusted for body mass index (from the GIANT
Consortium)10,12,13 and for hypospadias9. For each phenotype,
DEPICT highlighted a distinct and biologically meaningful group
of known and novel genes, gene sets and tissue/cell types.

Discussion
We present a computational framework called DEPICT, which
enables gene prioritization, gene set enrichment analysis and
tissue/cell type enrichment analysis to generate specific testable
hypotheses that are critical to inform experimental follow-up of
GWAS. DEPICT implements these three distinct functionalities
into a single, publicly available tool. Apart from providing useful
insights into pathways and biological annotations of relevance to
a phenotype, a key application of the gene set enrichment
functionality is to use it for selecting in vitro phenotypes that may
serve as readouts in cellular assays used to validate prioritized
genes for a complex trait. A key advantage of DEPICT over
existing tools is the gene set reconstitution, which enables
prioritization of previously poorly annotated genes, as well as
more specific and powerful gene set enrichment analysis. By using
data sets and methods that are not specific to any particular
disease or trait, DEPICT does not depend on phenotype-specific
hypotheses (for example, particular neuronal gene sets being
important for schizophrenia).
On the basis of our current experience, we recommend

employing DEPICT on genome-wide significant loci as well as all
loci with association P values o10� 5 (see Supplementary Fig. 10
for results based on LDL loci using the relaxed threshold and
for an example on visualizing DEPICT results). We also
recommend a locus definition of r240.5 from lead SNPs. It is
important to note that reconstituted gene sets should be
interpreted in light of the genes that are mapped to them, rather
than strictly by their identifiers (which are carried over from the
predefined gene sets).
Despite DEPICT’s ability to identify relevant gene sets for a

large number of traits and diseases, the method may be less
sensitive to phenotypes caused by genes that have specialized
functions that cannot be well predicted based on integrating gene
expression data with the currently existing predefined gene sets.
Indeed, there are multiple ways in which the DEPICT framework
could be improved further. Additional future work includes
iteratively conditioning on significant genes, gene sets and tissue/
cell types to enhance prioritization of genes with weaker, yet

Table 1 | Overview of DEPICT and GRAIL comparison.

Comparison Trait/disease Gold standard genes Method ROC AUC F-measure
at P¼0.05

Maximum
F-measure

Prioriziation at loci with no Mendelian
human skeletal growth genes

Human height Nearest to associated SNPs DEPICT 0.63 0.66 0.74
GRAIL 0.60 0.47 0.74

Prioriziation at loci with no Mendelian
human skeletal growth genes

Human height Growth plate biology DEPICT 0.76 0.82 0.82
GRAIL 0.57 0.56 0.78

All loci, default method settings Crohn’s disease eQTLs DEPICT 0.68 0.60 0.62
GRAIL 0.71 0.39 0.69

Human height Growth plate biology DEPICT 0.78 0.80 0.82
GRAIL 0.64 0.59 0.70

LDL cholesterol Mendelian lipid disorders DEPICT NA 1.00 1.00
GRAIL NA 1.00 1.00

All loci, GRAIL with Gene Expression
Atlas data

Crohn’s disease eQTLs DEPICT 0.70 0.62 0.64
GRAIL (Exp.) 0.68 0.44 0.64

Human height Growth plate biology DEPICT 0.73 0.76 0.78
GRAIL (Exp.) 0.61 0.44 0.70

LDL cholesterol Mendelian lipid disorders DEPICT 0.83 0.92 0.92
GRAIL (Exp.) 0.79 0.83 0.92

AUC, area under the curve; DEPICT, Data-driven Expression Prioritized Integration for Complex Traits; eQTLs, expression quantitative trait loci; LDL, low-density lipoprotein; NA, not available; ROC,
receiver-operating characteristics curve; SNP, single-nucleotide polymorphism.
DEPICTand GRAIL1 ROC AUC estimates, and precision and recall estimates for genome-wide significant SNPs for Crohn’s disease23, human height10 and low-density lipoprotein cholesterol20. The height
comparison was conducted as loci with and without Mendelian human stature genes19 to assess which method performed best at loci without known height biology. All comparisons were conducted
based on all loci using the default version of GRAIL except the comparisons labelled ‘Exp.’, which were conducted using GRAIL with Human Gene Expression Atlas data40 instead of literature. NA because
there were the only positive genes in benchmarking loci.
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no well-known Mendelian human skeletal growth gene, DEPICT
markedly outperformed GRAIL, prioritizing genes at many more
loci (DEPICT: 1.1 genes per locus, GRAIL: 0.4 genes per locus),
suggesting that DEPICT performs better at loci harbouring genes
with less well-established roles in literature (Supplementary
Data 10). We validated this observation using genes nearest to
height-associated SNPs as positive genes at these loci. The nearest
gene is an unbiased, but highly imperfect benchmark (for
example, only 13/21 Mendelian skeletal growth genes in a large
height GWAS19 were the nearest genes to a height-associated
SNP), so AUC is expected to be low using this benchmark.
Nonetheless, DEPICT not only prioritized more genes than
GRAIL, but also had a higher AUC (Supplementary Data 11).

Finally, DEPICT performed consistently better than a gene
expression-based version of GRAIL (Supplementary Data 7–9),
indicating that use of gene expression data in the prediction is not
driving DEPICT’s superior performance across several of
the comparisons. Together, these analyses indicate that DEPICT
performs particularly well for gene prioritization at what
are arguably the most important loci for new discovery: those
with biology that is less well captured in already published
literature.

Prioritization of genes outside genome-wide significant loci.
We hypothesized that DEPICT could also be used to prioritize
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Figure 2 | Comparison of DEPICT and MAGENTA for Crohn’s disease. Comparison of DEPICT, which was run with 63 genome-wide significant

Crohn’s disease SNPs as input, and MAGENTA, which was run using the complete list of Crohn’s disease summary statistics23 (downloaded from

www.ibdgenetics.org). DEPICT was run using 1,280 reconstituted gene sets, and MAGENTA was run using the predefined versions of the same 1,280

gene sets. Both methods were run with default settings and non-adjusted enrichment P values are plotted.
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genes outside genome-wide significant loci, based on predicted
functional relatedness to genes within genome-wide significant
loci. Similar to the gene prioritization implemented in DEPICT,
we prioritized genes with higher than expected pairwise simila-
rities to genes from trait-associated loci (across the 14,461 func-
tional predictions; see Methods). SNPs within or near (±50 kb)
the 3,022 genes that were functionally related to Crohn’s disease
loci genes (at FDRo0.05) had lower association P values than
SNPs in the same number of unrelated genes (genes with
FDR40.99; genomic inflation factor k¼ 1.49 versus k¼ 1.31),
indicating that DEPICT enriches for as-yet-unidentified genes
associated with Crohn’s disease. The enrichment was further
increased when considering only SNPs that overlap with eQTLs
in whole blood24 (k¼ 1.69 versus k¼ 1.25). A similar enrichment
of associations was seen for height (k¼ 1.92 versus k¼ 1.62) and
LDL (k¼ 1.06 versus k¼ 0.97).
To begin to assess the performance and specificity of DEPICT

across a wider range of phenotypes, we applied DEPICT to
61 phenotypes in the NHGRI GWAS Catalog26 that had at
least 10 genome-wide-significant (unadjusted association P value
o5� 10� 8) associations. DEPICT identified at least one
significantly enriched (P value o10� 6, the Bonferroni-corrected
significance threshold) reconstituted gene set for 39 of the 61
phenotypes (Fig. 3; Supplementary Data 12). To test whether
DEPICT identified similar gene sets for related phenotypes, we
clustered the 39 traits based on their gene set enrichment scores
across the 14,461 reconstituted gene sets (Fig. 3). Related traits
clustered with each other, but different phenotypes yielded quite
different gene sets. Furthermore, many of the top gene sets were
of clear relevance to the phenotype (Supplementary Data 12).
Thus, DEPICT is able to identify, with specificity, biologically
relevant gene sets for a wide range of human traits and diseases.
Consistent with these results, we recently used DEPICT to
analyse GWAS data for height, body mass index and waist–hip
ratio adjusted for body mass index (from the GIANT
Consortium)10,12,13 and for hypospadias9. For each phenotype,
DEPICT highlighted a distinct and biologically meaningful group
of known and novel genes, gene sets and tissue/cell types.

Discussion
We present a computational framework called DEPICT, which
enables gene prioritization, gene set enrichment analysis and
tissue/cell type enrichment analysis to generate specific testable
hypotheses that are critical to inform experimental follow-up of
GWAS. DEPICT implements these three distinct functionalities
into a single, publicly available tool. Apart from providing useful
insights into pathways and biological annotations of relevance to
a phenotype, a key application of the gene set enrichment
functionality is to use it for selecting in vitro phenotypes that may
serve as readouts in cellular assays used to validate prioritized
genes for a complex trait. A key advantage of DEPICT over
existing tools is the gene set reconstitution, which enables
prioritization of previously poorly annotated genes, as well as
more specific and powerful gene set enrichment analysis. By using
data sets and methods that are not specific to any particular
disease or trait, DEPICT does not depend on phenotype-specific
hypotheses (for example, particular neuronal gene sets being
important for schizophrenia).
On the basis of our current experience, we recommend

employing DEPICT on genome-wide significant loci as well as all
loci with association P values o10� 5 (see Supplementary Fig. 10
for results based on LDL loci using the relaxed threshold and
for an example on visualizing DEPICT results). We also
recommend a locus definition of r240.5 from lead SNPs. It is
important to note that reconstituted gene sets should be
interpreted in light of the genes that are mapped to them, rather
than strictly by their identifiers (which are carried over from the
predefined gene sets).
Despite DEPICT’s ability to identify relevant gene sets for a

large number of traits and diseases, the method may be less
sensitive to phenotypes caused by genes that have specialized
functions that cannot be well predicted based on integrating gene
expression data with the currently existing predefined gene sets.
Indeed, there are multiple ways in which the DEPICT framework
could be improved further. Additional future work includes
iteratively conditioning on significant genes, gene sets and tissue/
cell types to enhance prioritization of genes with weaker, yet

Table 1 | Overview of DEPICT and GRAIL comparison.

Comparison Trait/disease Gold standard genes Method ROC AUC F-measure
at P¼0.05

Maximum
F-measure

Prioriziation at loci with no Mendelian
human skeletal growth genes

Human height Nearest to associated SNPs DEPICT 0.63 0.66 0.74
GRAIL 0.60 0.47 0.74

Prioriziation at loci with no Mendelian
human skeletal growth genes

Human height Growth plate biology DEPICT 0.76 0.82 0.82
GRAIL 0.57 0.56 0.78

All loci, default method settings Crohn’s disease eQTLs DEPICT 0.68 0.60 0.62
GRAIL 0.71 0.39 0.69

Human height Growth plate biology DEPICT 0.78 0.80 0.82
GRAIL 0.64 0.59 0.70

LDL cholesterol Mendelian lipid disorders DEPICT NA 1.00 1.00
GRAIL NA 1.00 1.00

All loci, GRAIL with Gene Expression
Atlas data

Crohn’s disease eQTLs DEPICT 0.70 0.62 0.64
GRAIL (Exp.) 0.68 0.44 0.64

Human height Growth plate biology DEPICT 0.73 0.76 0.78
GRAIL (Exp.) 0.61 0.44 0.70

LDL cholesterol Mendelian lipid disorders DEPICT 0.83 0.92 0.92
GRAIL (Exp.) 0.79 0.83 0.92

AUC, area under the curve; DEPICT, Data-driven Expression Prioritized Integration for Complex Traits; eQTLs, expression quantitative trait loci; LDL, low-density lipoprotein; NA, not available; ROC,
receiver-operating characteristics curve; SNP, single-nucleotide polymorphism.
DEPICTand GRAIL1 ROC AUC estimates, and precision and recall estimates for genome-wide significant SNPs for Crohn’s disease23, human height10 and low-density lipoprotein cholesterol20. The height
comparison was conducted as loci with and without Mendelian human stature genes19 to assess which method performed best at loci without known height biology. All comparisons were conducted
based on all loci using the default version of GRAIL except the comparisons labelled ‘Exp.’, which were conducted using GRAIL with Human Gene Expression Atlas data40 instead of literature. NA because
there were the only positive genes in benchmarking loci.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6890 ARTICLE

NATURE COMMUNICATIONS | 6:5890 |DOI: 10.1038/ncomms6890 |www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.



52

significant, relationships, and quantification of the relative
importance of significant predictions. Additional expression data
would enhance the data sources available for DEPICT, especially
for prioritization of tissues/cell types. Other data types, such as
epigenetic data, have yet to be integrated into the DEPICT
framework, and DEPICT does not yet use information that could
further prioritize genes within loci, such as LD with eQTLs or
missense variation, or being the nearest gene to the lead SNP.
Finally, DEPICT is currently optimized for GWAS results, but
could be adapted to other types of data sets (custom arrays,
exome chip or sequencing).
In conclusion, there is a need for approaches that are not

driven by phenotype-specific hypotheses and that consider
multiple lines of complementary evidence to accomplish gene
prioritization, pathway analysis and tissue/cell type enrichment
analysis. We have developed a computational and publicly
available tool—DEPICT—that can address this need by perform-
ing integrative analysis, thereby generating novel, testable

hypotheses from genetic association studies across a wide
spectrum of traits and diseases.

Methods
Data and software availability. The following sections describe the DEPICT
methodology in detail. DEPICT source code and example data are available at
https://github.com/DEPICTdevelopers. Ready-to-use software is available at
www.broadinstitute.org/depict.

Definition of associated loci. From the set of associated SNPs at a particular
threshold (such as genome-wide significance, Po5� 10� 8), we generated inde-
pendent ‘lead SNPs’ by retaining the most significant SNP from each set of SNPs
that are in LD (pairwise r240.1) and/or in proximity (physical distance of
o1Mb). We computed pairwise LD coefficients based on the imputation panel
used in the GWAS, either HapMap Project release 2 and 3 CEU genotype data27 or
1000 Genomes Project Phase 1 CEU, GBR and TSI genotype data28. We defined
positions in the human genome according to genome build GRCh37. Next, we
created lists of genes at associated loci by mapping genes to loci if they resided
within, or were overlapping with, boundaries defined by the most distal SNPs in
either direction with LD r240.5 to the given lead SNP (see Supplementary Note 1
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Figure 3 | DEPICT analysis using GWAS Catalog results. DEPICT identified at least one significant reconstituted gene set for 39 traits and diseases from

the GWAS Catalog (we investigated 61 traits with at least 10 independent genome-wide significant loci). (a) Unsupervised clustering of the 39 phenotypes

based on their gene set enrichment scores across all reconstituted gene sets yielded 7 clusters of phenotypes (roughly corresponding to metabolic, lipids,

haematological, autoimmune, blood pressure/cardiac conduction, growth/bone/menopause and a second autoimmune cluster), which indicates that

DEPICT is able to identify phenotypic-specific and biologically relevant gene sets for a wide range of phenotypes. The inset shows that the multiple sclerosis

and coeliac disease gene set enrichment scores are highly correlated and therefore were clustered within the same clade. (b) The number of genome-wide

significant loci for a given phenotype was positive correlated with the number of significant (FDRo0.05) reconstituted gene sets for that phenotype

(Pearson r2¼0.26, t-test P value¼6.86� 10� 5).
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for justification of this locus definition). If no genes were within the locus defined
by r240.5, the gene nearest to the given lead SNP was included. Loci with
overlapping genes were then merged. Due to the extended LD in the major
histocompatibility complex region and the resulting challenges in delineating
associated loci, genes within base pairs 25,000,000–35,000,000 on chromosome 6
were excluded. DEPICT takes as input a set of independent, associated SNPs and
automates all other steps outlined here.

Gene sets used in DEPICT. DEPICT is based on a large number of predefined
gene sets from diverse databases and data types (Supplementary Data 1). Gene
ontology15, Kyoto encyclopedia of genes and genomes14 and REACTOME16 gene
sets were mapped to Ensembl database identifiers. Molecular pathways were
constructed based on experimentally derived high-confidence protein–protein
interactions from the InWeb database17 by considering each of the 12,793 genes in
the database and annotating direct, high-confidence interaction partners of a given
gene as a molecular pathway (including the given gene itself). We defined high-
confidence interactions as pairs of gene products with InWeb-specific protein–
protein interaction confidence scores above 0.154, a cutoff previously justified17.
In addition, we constructed 2,473 phenotypic gene sets based on 211,882
phenotype–gene relationships from the Mouse Genetics Initiative18. These gene
sets were constructed by adding genes to the same gene set if they were related to
the same Mouse Genetics Initiative phenotype. From all repositories, we only
included gene sets with at least 10 genes and at most 500 genes.

Gene function prediction for gene set reconstitution. DEPICT performs gene
prioritization and gene set enrichment based on predicted gene function and
reconstituted gene sets (note that the reconstituted gene sets are a consequence of
the gene function prediction). Please refer to Fehrmann et al.6 (and
www.genenetwork.nl) for a detailed description of the gene function prediction
method. The main hypothesis behind the gene function prediction follows a guilt-
by-association logic: a gene that is co-regulated with say 20 other genes, which
perform a specific function, is likely to exhibit the same function. In Fehrmann
et al.6, we developed an approach that quantifies co-regulation between pairs of
genes based on gene expression data, even in instances where transcriptomic co-
regulation is subtle. In Fehrmann et al.6, we conducted the following steps to
predict functions of genes and construct reconstituted gene sets:

1. We first renormalized 77,840 microarrays from two human, one rat and one
mouse Affymetrix gene expression platform downloaded from the Gene
Expression Omnibus (GeO) database29 (Supplementary Data 13).

2. We constructed a probe–probe correlation matrix (using Pearson correlation to
compute all pairwise probesets correlations) for each of the four platforms.

3. We performed principal component analysis on each of the four correlation
matrices, and used Cronbach’s Alpha and Split-half reliability statistics to retain
777 and 377 eigenvectors (hereafter ‘transcriptional components’ or ‘TCs’;
Fehrmann et al.6) from the two human platforms, 677 TCs from the mouse
platform and 375 TCs from the rat platform.

4. We mapped all human genes to Ensembl identifiers30; mouse and rat genes were
mapped to their human homologues (Ensembl database orthology mapping).
The loadings of each gene on each TC are the elements of a gene-TC matrix
with 19,997 gene rows (the number of genes covered by the Affymetrix
platforms) and 2,206 TC columns.

We then used the gene-TC matrix to predict 19,997 genes’ function across the
14,461 functional annotations represented by the predefined gene sets, by doing the
following steps:

1. For each gene set, we computed the enrichment on each TC (using z-scores
derived from Welch’s t-test to assess whether the TC loadings from genes from
the given set significantly deviated from all other genes’ loadings). This resulted
in a TC profile for each gene set (a gene set-TC matrix of z-scores with 14,461
gene set rows and 2,206 TC columns).

2. To obtain gene function predictions and reconstituted gene sets, we quantified
each gene’s likelihood of being part of a given predefined gene set by correlating
the gene’s 2,206 TC loadings (from the gene-TC matrix) with the z-score TC
profile of each gene set (from the gene set-TC matrix). To avoid circularity in
cases where a particular gene was part of a predefined gene set, we left out that
gene from the gene set, recomputed the gene set z-score profiles along all TCs
and then computed the correlation of the gene with the gene set.

3. We converted the correlation P values to z-scores to obtain a gene-gene set
matrix of z-scores comprising 19,997 gene rows and 14,461 gene sets columns.
This matrix is used by DEPICT to perform gene prioritization and gene set
enrichment analysis.

Null GWAS construction. To take sources of confounding into account, DEPICT
makes use of precomputed GWAS based on randomly distributed phenotypes to
(‘null GWAS’). We computed 200 GWAS based on genome-wide CEU genotype
data from the Diabetes Genetics Initiative31 (DGI) and simulated Gaussian
phenotypes (random draws from N(0,1) distribution) with no genetic basis.

DEPICT gene prioritization. For gene prioritization, DEPICT employs a
phenotype- and mechanism-agnostic algorithm, which is predicated on a
previously formulated assumption that truly associated genes share functional
annotations1,17,32. In other words, genes within associated loci that are functionally
similar to genes from other associated loci are the most likely causal candidates.
DEPICT prioritizes genes based on three major steps: a scoring step, a bias
adjustment step and a FDR estimation step. In the scoring step, the method
quantifies the similarity of a given gene to genes from other associated loci by
correlating their reconstituted gene set memberships (across all 14,461 gene sets).
The bias adjustment step is designed to control inflation in gene scores caused by,
for example, gene length (longer genes are more likely to be part of associated
GWAS loci) or structure in the underlying expression data. In this step, the method
normalizes the given gene’s similarity score based on the distribution of the given
gene’s similarity to genes from 1,000 sets of gene-density-matched loci, derived
from the 200 pre-permuted null GWAS. In the last step, experiment-wide FDRs are
estimated by repeating the scoring and bias adjustment steps 20 times based on top
SNPs from precomputed null GWAS. For a given gene (gene x) that has a
prioritization P value y in the actual data, a FDR is calculated by first counting the
number of genes having a P value smaller or equal to y across all 20 null runs and
dividing this count by the rank of gene x in the actual data. We note that in the
version of DEPICT implemented in the studies of anthropometric traits10,12,13,
we included a correction for the number of genes at a given locus. Because this
correction does not change gene prioritization results markedly (gene set
enrichment results and tissue/cell type enrichment results are unchanged), we
recommend not using this correction because it imposes an overly conservative
correction on genes in relatively gene-poor loci. This correction was not
implemented in the version described here.

DEPICT reconstituted gene set enrichment. The gene set enrichment analysis
algorithm comprises the same three steps as employed in gene prioritization: a gene
set scoring step, a bias correction step and a FDR estimation step. For a given
reconstituted gene set, DEPICT quantifies enrichment by (1) summing the given
gene set membership z-scores (entries in the gene-gene set matrix) of all genes
within each associated locus and then computing the sum of sums across all loci;
(2) repeating step 1 a thousand times based on random loci that are matched by
gene density, and using the thousand null z-scores to adjust the real z-score by
subtracting their mean, dividing by their s.d. and converting the adjusted z-score to
a P value; and (3) repeating steps 1 and 2 twenty times to estimate experiment-wide
FDRs similar to the method described above.

DEPICT tissue/cell type enrichment analysis. DEPICT utilizes 37,427 human
Affymetrix HGU133a2.0 platform microarrays (approximately half of the
microarrays used to reconstituted gene sets) to assess whether genes in associated
loci are highly expressed in any of the 209 Medical Subject Heading (MeSH) tissue
and cell type annotations. The tissue/cell type expression matrix was constructed by
averaging gene expression levels of microarray samples with the same MeSH
annotation6. This process included N(0,1) normalizing across all tissue/cell type
annotations to remove effects of ubiquitously expressed genes, N(0,1) normalizing
the columns of the tissue/cell type expression matrix (to allow enrichment analysis
identical to the gene set enrichment analysis framework) and retaining only tissue/
cell type annotations covered by at least 10 microarrays. Conceptually, the resulting
gene-tissue/cell type expression matrix resembles the gene-gene set matrix, the only
difference being that columns represent the relative expression of genes in a given
tissue compared with the other tissues, as opposed to the likelihood of membership
of a gene in a gene set. Consequently, the tissue/cell type enrichment analysis
algorithm is conceptually identical to the gene set enrichment analysis algorithm.

Adjusting for confounding sources. For a given set of associated loci from the
‘real GWAS’ (the study of interest), DEPICT extracts the same number of inde-
pendent loci from the 200 precomputed null GWAS. For a given null GWAS, this
is accomplished by varying the SNP association P value cutoff until the number of
independent top loci is the same as the number of independent loci in the real
GWAS. The independent top loci from each null GWAS are then collected into a
single pool of loci. During the DEPICT gene prioritization, gene set enrichment
and tissue/cell type enrichment analyses, this pool of loci is used to sample 1,000
collections of gene density-matched ‘null loci’ (in each collection there are as many
null loci as the number of loci observed in the real GWAS). Null loci within a given
collection are not allowed to overlap (in terms of genes). During the DEPICT
background correction step, if a locus from the real GWAS is represented by
o10 gene-density-matched null loci, DEPICT iteratively includes larger and
smaller null loci (to avoid oversampling the same null loci during the 1,000
background runs). We employed different numbers of null GWAS contributing to
the pool of null loci, and observed no major differences between using 200, 500
or 900 null GWAS (Supplementary Note 3).

Type-1 error rate analyses. To compute type-1 error rates for the gene prior-
itization, gene set enrichment and tissue/cell type enrichment analyses, we first
computed 100 DGI null GWAS the same way as describe in the above section.
Spearman correlation coefficients were computed based on log10 transformed
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significant, relationships, and quantification of the relative
importance of significant predictions. Additional expression data
would enhance the data sources available for DEPICT, especially
for prioritization of tissues/cell types. Other data types, such as
epigenetic data, have yet to be integrated into the DEPICT
framework, and DEPICT does not yet use information that could
further prioritize genes within loci, such as LD with eQTLs or
missense variation, or being the nearest gene to the lead SNP.
Finally, DEPICT is currently optimized for GWAS results, but
could be adapted to other types of data sets (custom arrays,
exome chip or sequencing).
In conclusion, there is a need for approaches that are not

driven by phenotype-specific hypotheses and that consider
multiple lines of complementary evidence to accomplish gene
prioritization, pathway analysis and tissue/cell type enrichment
analysis. We have developed a computational and publicly
available tool—DEPICT—that can address this need by perform-
ing integrative analysis, thereby generating novel, testable

hypotheses from genetic association studies across a wide
spectrum of traits and diseases.

Methods
Data and software availability. The following sections describe the DEPICT
methodology in detail. DEPICT source code and example data are available at
https://github.com/DEPICTdevelopers. Ready-to-use software is available at
www.broadinstitute.org/depict.

Definition of associated loci. From the set of associated SNPs at a particular
threshold (such as genome-wide significance, Po5� 10� 8), we generated inde-
pendent ‘lead SNPs’ by retaining the most significant SNP from each set of SNPs
that are in LD (pairwise r240.1) and/or in proximity (physical distance of
o1Mb). We computed pairwise LD coefficients based on the imputation panel
used in the GWAS, either HapMap Project release 2 and 3 CEU genotype data27 or
1000 Genomes Project Phase 1 CEU, GBR and TSI genotype data28. We defined
positions in the human genome according to genome build GRCh37. Next, we
created lists of genes at associated loci by mapping genes to loci if they resided
within, or were overlapping with, boundaries defined by the most distal SNPs in
either direction with LD r240.5 to the given lead SNP (see Supplementary Note 1
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Figure 3 | DEPICT analysis using GWAS Catalog results. DEPICT identified at least one significant reconstituted gene set for 39 traits and diseases from

the GWAS Catalog (we investigated 61 traits with at least 10 independent genome-wide significant loci). (a) Unsupervised clustering of the 39 phenotypes

based on their gene set enrichment scores across all reconstituted gene sets yielded 7 clusters of phenotypes (roughly corresponding to metabolic, lipids,

haematological, autoimmune, blood pressure/cardiac conduction, growth/bone/menopause and a second autoimmune cluster), which indicates that

DEPICT is able to identify phenotypic-specific and biologically relevant gene sets for a wide range of phenotypes. The inset shows that the multiple sclerosis

and coeliac disease gene set enrichment scores are highly correlated and therefore were clustered within the same clade. (b) The number of genome-wide

significant loci for a given phenotype was positive correlated with the number of significant (FDRo0.05) reconstituted gene sets for that phenotype

(Pearson r2¼0.26, t-test P value¼6.86� 10� 5).
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for justification of this locus definition). If no genes were within the locus defined
by r240.5, the gene nearest to the given lead SNP was included. Loci with
overlapping genes were then merged. Due to the extended LD in the major
histocompatibility complex region and the resulting challenges in delineating
associated loci, genes within base pairs 25,000,000–35,000,000 on chromosome 6
were excluded. DEPICT takes as input a set of independent, associated SNPs and
automates all other steps outlined here.

Gene sets used in DEPICT. DEPICT is based on a large number of predefined
gene sets from diverse databases and data types (Supplementary Data 1). Gene
ontology15, Kyoto encyclopedia of genes and genomes14 and REACTOME16 gene
sets were mapped to Ensembl database identifiers. Molecular pathways were
constructed based on experimentally derived high-confidence protein–protein
interactions from the InWeb database17 by considering each of the 12,793 genes in
the database and annotating direct, high-confidence interaction partners of a given
gene as a molecular pathway (including the given gene itself). We defined high-
confidence interactions as pairs of gene products with InWeb-specific protein–
protein interaction confidence scores above 0.154, a cutoff previously justified17.
In addition, we constructed 2,473 phenotypic gene sets based on 211,882
phenotype–gene relationships from the Mouse Genetics Initiative18. These gene
sets were constructed by adding genes to the same gene set if they were related to
the same Mouse Genetics Initiative phenotype. From all repositories, we only
included gene sets with at least 10 genes and at most 500 genes.

Gene function prediction for gene set reconstitution. DEPICT performs gene
prioritization and gene set enrichment based on predicted gene function and
reconstituted gene sets (note that the reconstituted gene sets are a consequence of
the gene function prediction). Please refer to Fehrmann et al.6 (and
www.genenetwork.nl) for a detailed description of the gene function prediction
method. The main hypothesis behind the gene function prediction follows a guilt-
by-association logic: a gene that is co-regulated with say 20 other genes, which
perform a specific function, is likely to exhibit the same function. In Fehrmann
et al.6, we developed an approach that quantifies co-regulation between pairs of
genes based on gene expression data, even in instances where transcriptomic co-
regulation is subtle. In Fehrmann et al.6, we conducted the following steps to
predict functions of genes and construct reconstituted gene sets:

1. We first renormalized 77,840 microarrays from two human, one rat and one
mouse Affymetrix gene expression platform downloaded from the Gene
Expression Omnibus (GeO) database29 (Supplementary Data 13).

2. We constructed a probe–probe correlation matrix (using Pearson correlation to
compute all pairwise probesets correlations) for each of the four platforms.

3. We performed principal component analysis on each of the four correlation
matrices, and used Cronbach’s Alpha and Split-half reliability statistics to retain
777 and 377 eigenvectors (hereafter ‘transcriptional components’ or ‘TCs’;
Fehrmann et al.6) from the two human platforms, 677 TCs from the mouse
platform and 375 TCs from the rat platform.

4. We mapped all human genes to Ensembl identifiers30; mouse and rat genes were
mapped to their human homologues (Ensembl database orthology mapping).
The loadings of each gene on each TC are the elements of a gene-TC matrix
with 19,997 gene rows (the number of genes covered by the Affymetrix
platforms) and 2,206 TC columns.

We then used the gene-TC matrix to predict 19,997 genes’ function across the
14,461 functional annotations represented by the predefined gene sets, by doing the
following steps:

1. For each gene set, we computed the enrichment on each TC (using z-scores
derived from Welch’s t-test to assess whether the TC loadings from genes from
the given set significantly deviated from all other genes’ loadings). This resulted
in a TC profile for each gene set (a gene set-TC matrix of z-scores with 14,461
gene set rows and 2,206 TC columns).

2. To obtain gene function predictions and reconstituted gene sets, we quantified
each gene’s likelihood of being part of a given predefined gene set by correlating
the gene’s 2,206 TC loadings (from the gene-TC matrix) with the z-score TC
profile of each gene set (from the gene set-TC matrix). To avoid circularity in
cases where a particular gene was part of a predefined gene set, we left out that
gene from the gene set, recomputed the gene set z-score profiles along all TCs
and then computed the correlation of the gene with the gene set.

3. We converted the correlation P values to z-scores to obtain a gene-gene set
matrix of z-scores comprising 19,997 gene rows and 14,461 gene sets columns.
This matrix is used by DEPICT to perform gene prioritization and gene set
enrichment analysis.

Null GWAS construction. To take sources of confounding into account, DEPICT
makes use of precomputed GWAS based on randomly distributed phenotypes to
(‘null GWAS’). We computed 200 GWAS based on genome-wide CEU genotype
data from the Diabetes Genetics Initiative31 (DGI) and simulated Gaussian
phenotypes (random draws from N(0,1) distribution) with no genetic basis.

DEPICT gene prioritization. For gene prioritization, DEPICT employs a
phenotype- and mechanism-agnostic algorithm, which is predicated on a
previously formulated assumption that truly associated genes share functional
annotations1,17,32. In other words, genes within associated loci that are functionally
similar to genes from other associated loci are the most likely causal candidates.
DEPICT prioritizes genes based on three major steps: a scoring step, a bias
adjustment step and a FDR estimation step. In the scoring step, the method
quantifies the similarity of a given gene to genes from other associated loci by
correlating their reconstituted gene set memberships (across all 14,461 gene sets).
The bias adjustment step is designed to control inflation in gene scores caused by,
for example, gene length (longer genes are more likely to be part of associated
GWAS loci) or structure in the underlying expression data. In this step, the method
normalizes the given gene’s similarity score based on the distribution of the given
gene’s similarity to genes from 1,000 sets of gene-density-matched loci, derived
from the 200 pre-permuted null GWAS. In the last step, experiment-wide FDRs are
estimated by repeating the scoring and bias adjustment steps 20 times based on top
SNPs from precomputed null GWAS. For a given gene (gene x) that has a
prioritization P value y in the actual data, a FDR is calculated by first counting the
number of genes having a P value smaller or equal to y across all 20 null runs and
dividing this count by the rank of gene x in the actual data. We note that in the
version of DEPICT implemented in the studies of anthropometric traits10,12,13,
we included a correction for the number of genes at a given locus. Because this
correction does not change gene prioritization results markedly (gene set
enrichment results and tissue/cell type enrichment results are unchanged), we
recommend not using this correction because it imposes an overly conservative
correction on genes in relatively gene-poor loci. This correction was not
implemented in the version described here.

DEPICT reconstituted gene set enrichment. The gene set enrichment analysis
algorithm comprises the same three steps as employed in gene prioritization: a gene
set scoring step, a bias correction step and a FDR estimation step. For a given
reconstituted gene set, DEPICT quantifies enrichment by (1) summing the given
gene set membership z-scores (entries in the gene-gene set matrix) of all genes
within each associated locus and then computing the sum of sums across all loci;
(2) repeating step 1 a thousand times based on random loci that are matched by
gene density, and using the thousand null z-scores to adjust the real z-score by
subtracting their mean, dividing by their s.d. and converting the adjusted z-score to
a P value; and (3) repeating steps 1 and 2 twenty times to estimate experiment-wide
FDRs similar to the method described above.

DEPICT tissue/cell type enrichment analysis. DEPICT utilizes 37,427 human
Affymetrix HGU133a2.0 platform microarrays (approximately half of the
microarrays used to reconstituted gene sets) to assess whether genes in associated
loci are highly expressed in any of the 209 Medical Subject Heading (MeSH) tissue
and cell type annotations. The tissue/cell type expression matrix was constructed by
averaging gene expression levels of microarray samples with the same MeSH
annotation6. This process included N(0,1) normalizing across all tissue/cell type
annotations to remove effects of ubiquitously expressed genes, N(0,1) normalizing
the columns of the tissue/cell type expression matrix (to allow enrichment analysis
identical to the gene set enrichment analysis framework) and retaining only tissue/
cell type annotations covered by at least 10 microarrays. Conceptually, the resulting
gene-tissue/cell type expression matrix resembles the gene-gene set matrix, the only
difference being that columns represent the relative expression of genes in a given
tissue compared with the other tissues, as opposed to the likelihood of membership
of a gene in a gene set. Consequently, the tissue/cell type enrichment analysis
algorithm is conceptually identical to the gene set enrichment analysis algorithm.

Adjusting for confounding sources. For a given set of associated loci from the
‘real GWAS’ (the study of interest), DEPICT extracts the same number of inde-
pendent loci from the 200 precomputed null GWAS. For a given null GWAS, this
is accomplished by varying the SNP association P value cutoff until the number of
independent top loci is the same as the number of independent loci in the real
GWAS. The independent top loci from each null GWAS are then collected into a
single pool of loci. During the DEPICT gene prioritization, gene set enrichment
and tissue/cell type enrichment analyses, this pool of loci is used to sample 1,000
collections of gene density-matched ‘null loci’ (in each collection there are as many
null loci as the number of loci observed in the real GWAS). Null loci within a given
collection are not allowed to overlap (in terms of genes). During the DEPICT
background correction step, if a locus from the real GWAS is represented by
o10 gene-density-matched null loci, DEPICT iteratively includes larger and
smaller null loci (to avoid oversampling the same null loci during the 1,000
background runs). We employed different numbers of null GWAS contributing to
the pool of null loci, and observed no major differences between using 200, 500
or 900 null GWAS (Supplementary Note 3).

Type-1 error rate analyses. To compute type-1 error rates for the gene prior-
itization, gene set enrichment and tissue/cell type enrichment analyses, we first
computed 100 DGI null GWAS the same way as describe in the above section.
Spearman correlation coefficients were computed based on log10 transformed
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P values. We used an alternate approach to estimate type-1 error by replacing the
null GWAS with simulated GWAS that have positive signals but no underlying
biological basis. We simulated 50,000 individuals using HAPGEN33 using
parameters from the HapMap Project release 3 CEU population. From this,
we obtained 1,175,577 genotypes for all autosomes (chromosomes 1–22) and
calculated the allele frequency for each SNP using the 50,000 individuals. We then
randomly selected 1,000 SNPs to have an effect on the phenotype and assigned
effect sizes such that all SNPs jointly explain 45% of the total variance. The effect
size for each SNP was calculated as follows,

b ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

2pð1� pÞ

s
ð1Þ

where b is the effect size in s.d. units, s2 is the variance explained for each SNP, p is
the SNP’s minor allele frequency and d denotes a random variable with equal
probability of being þ 1 or � 1. Once each SNP’s effect size was determined, we
calculated the weighted allele score for each individual by summing up the SNP
minor allele dosages weighted by their effect size. The weighted allele score was
calculated as follows,

WAS ¼
XN

i¼1
biSNPi � 2bipi ð2Þ

where N is the number of SNPs (N¼ 1,000), bi is the effect size of the ith SNP as
calculated earlier, SNPi is the dosage of the minor allele for the ith SNP (0,1 or 2)
and pi is the minor allele frequency of the ith SNP. The subtraction of 2bipi served
to adjust the weighted allele score such that its mean was 0. We obtained the final
phenotypic z-score by adding a remaining noise term such that the total variance
was 1. The z-score was calculated as follows,

z-score ¼ WASþNð0; variance remainingÞ ð3Þ

where N(0, variance_remaining) is a randomly generated number sampled from a
Normal (N) distribution with mean 0 and variance 0.55. This process was repeated
100 times to obtain 100 sets of phenotypic z-scores for each of the 50,000
individuals. We used PLINK34 to perform GWAS on each set of phenotypes using
the 50,000 simulated genotype samples, and then, for each null GWAS, identified
the association P-value threshold that resulted in 100 fully independent loci
(DEPICT locus definition). Finally, we ran DEPICT with default settings on each of
the n¼ 100 sets of input SNPs.

Crohn’s disease DEPICT analysis. Summary statistics from GWAS-based meta
analysis of Crohn’s disease23 (downloaded from www.ibdgenetics.org) were used to
identify genome-wide significant loci (using PLINK and parameters ‘--clump-kb
1000 --clump-r2 0.01’). As input to DEPICT we used the resulting 63 genome-wide
significant (w2-test P value o5� 10� 8), which were located in 54 fully
independent loci based on DEPICT definitions of independence.

Human height DEPICT analysis. As input we used 697 genome-wide significant
human height associations identified in GWAS-based meta analysis10 (accessible
through http://www.broadinstitute.org/collaboration/giant), which were located in
566 fully independent loci based on DEPICT definitions of independence.

Low-density lipoprotein cholesterol DEPICT analysis. Summary statistics from
GWAS-based meta analysis of LDL20 (downloaded from www.sph.umich.edu/csg/
abecasis/public/lipids2010) were used to identify genome-wide significant loci
(using PLINK with parameters ‘--clump-kb 1000 --clump-r2 0.01’). As input to
DEPICT we used the resulting 67 independent loci, which resulted in 40 fully
independent loci used DEPICT definitions of independence.

Gene set enrichment benchmark. Due to the lack of an unbiased set of gold
standard pathways for any complex trait, we compared DEPICT and MAGENTA22

by counting the number of statistically significant gene sets predicted based on
Crohn’s disease, height and LDL loci. Prior to the benchmark, we estimated the
type-1 error rate of both methods by running them with summary statistics from
100 null GWAS constructed based on simulated Gaussian phenotypes with no
genetic basis, and HapMap Project release 2 imputed DGI Consortium genotype
data (Supplementary Figs 1 and 3). For the null analyses, the top 200 independent
loci from each null GWAS were used as input, whereas genome-wide significant
loci were used as input in the Crohn’s disease, height and LDL analyses. All
MAGENTA runs were based on the complete set of summary statistics. We
restricted the comparison to a list of 1,280 gene sets (gene ontology terms, Kyoto
encyclopedia of genes and genomes and REACTOME pathways) with overlapping
identifiers between both methods. DEPICT was run on reconstituted gene sets.
MAGENTA was run with default settings and both methods excluded the major
histocompatibility complex region. The non-probabilistic, binary (yes/no) version
of the reconstituted gene sets used in one of the MAGENTA comparisons were
constructed by applying a threshold on the gene scores for a given reconstituted
gene set (all genes above a permutation-based cutoff were considered part of the
given reconstituted gene sets, as reported in ref. 6). Entries with ‘NA’ in columns
‘DEPICT with predefined gene sets P’ and ‘DEPICT with predefined gene sets FDR’

in Supplementary Data 4–6 marked predefined gene sets for which enrichment
could not be computed in the DEPICT analysis based on predefined gene sets.

Gene prioritization benchmark. We ran each method (DEPICT and GRAIL1)
using their default settings on all genome-wide significant Crohn’s disease23,
height10 and LDL20 associations. To evaluate the methods’ performance on the
same set of positive genes (genes that are highly likely to be causal to the
phenotype) and negative genes (genes that are unlikely to be causal), we limited the
comparison to loci at which there was at least one positive gene present across
both methods, and discarded any genes at these benchmark loci that were not
considered by each method. For the Crohn’s disease comparison, we used as
positives 31 genes that were transcriptionally regulated in whole blood24 by a
genome-wide significant Crohn’s disease association or a SNP in high LD (r240.7)
with a genome-wide significant SNP. For the height comparison, we used as
positives a set of 44 genes that were within genome-wide significant height-
associated loci and differentially expressed in rodent growth plate expression
studies; we have previously shown that the rodent gene expression data are
enriched for genes in height-associated loci25 (Supplementary Table 2 in Lango
Allen et al.19). For the LDL comparison, we used as positives a set of seven genes
with reported Mendelian mutations proposed to cause lipid-related traits20. For all
three benchmarks, we removed negative genes that had a missense variant in
strong LD (r240.7) with an associated SNP; for the height and LDL benchmarks,
we removed negative genes that were transcriptionally regulated24 by a SNP in
strong LD (r240.7) with an associated SNP; in the height benchmark, we removed
negative genes that were differentially expressed in rodent growth plates versus
other tissues, spatially regulated across different growth plate zones (hypertrophic
versus proliferating, and proliferative versus resting) or temporally regulated in
growth plates between week 12 and week 3 at nominal significance in reference25,
and genes that were reported in the high-confidence list in ref. 19. After these steps,
we were able to use 42 negative genes across 18 loci as Crohn’s disease benchmarks
and 37 negative genes across 43 loci as height benchmarks. There were no negative
genes among the seven LDL benchmark loci. Positive and negatives genes, are
listed in Supplementary Data 7–9. Precision (the fraction of positive genes among
all prioritized genes at a given P-value threshold) and recall (the fraction of
correctly classified positive genes at a given P-value threshold also referred to as
sensitivity) estimates were used to measures accuracy and summarized using the
F-measure, which incorporates the ability to recall positive genes with a high
precision into a single measure. (Maximum precision implies no false positives,
whereas maximum recall implies no false negatives.) To measure the ability to
discriminate positive and negative genes at a relative scale, we also computed ROC
AUC estimates. To avoid circularity, the growth plate data25 and the eQTL data24

were not part of the data used by any of the three methods tested. The R software35

and the ROCR R library36 were used to construct the precision recall and ROC
curves and the AUC estimates.

Prioritizing genes outside genome-wide significant loci. To enable prioritiza-
tion of genes below the genome-wide significance threshold, we scored each gene
outside the genome-wide significant loci with respect to its similarity to genes
within associated loci. For a given gene outside genome-wide significant loci,
we (1) correlated (Pearson) its predicted functions across all 14,461 gene sets
to every gene in each of the trait-associated loci, (2) kept the lowest correlation
P value from each genome-wide significant locus, (3) converted the P values to
z-scores and (4) summed the z-scores and converted the sum back to a P value
(alternative hypothesis: gene functionally related to genes in trait-associated loci).
We computed FDRs, by redoing steps 1–4 based loci from null GWAS. Using
FDR o0.05 as the threshold, we identified 3,022, 5,916 and 1,901 related genes for
Crohn’s disease, height and LDL. For each of the three traits, we then calculated
genomic inflation factors for SNP P values in the functionally related genes and for
SNP P values in the same number of genes exhibiting the highest (non-significant)
FDRs. We added 50 kb flanking loci to gene boundaries (defined by the boundaries
of the most extreme transcripts) and required genes to be at least 1Mb away from
the nearest genome-wide significant locus.

GWAS catalog analysis. The GWAS Catalog26 was downloaded from www.
genome.gov/gwastudies/ (download date: 02 January 2014) and 61 phenotypes with
at least 10 fully independent regions (DEPICT definitions) based on genome-wide
associations were retained. Hierarchical clustering implemented in the R software
method ‘hclust’ was run with default settings (method¼ ‘complete-linkage’,
dist¼ ‘euclidean’). The DEPICT locus definitions for all GWAS catalog traits
can be downloaded from www.broadinstitute.org/mpg/depict.

Overlap of gene sets and visualization. A previous version of DEPICT used in
analyses of anthropometric traits10,12,13 computed gene set overlap by imposing a
threshold on which genes belong to a given reconstituted gene set and then used
the Jaccard index to compute pairwise overlaps. Overlapping reconstituted gene
sets were grouped as pathway families. Here, we instead computed the pairwise
Pearson correlation between all reconstituted gene sets and then used the Affinity
Propagation method37 to group similar reconstituted gene sets. We named each
cluster (‘meta gene set’) by the name of the representative gene set automatically
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identified by the Affinity Propagation method (for examples, see the top 10 gene set
enrichment meta gene sets for Crohn’s disease, height and LDL in Supplementary
Data 14–16). The R software35 and a R version of the Affinity Propagation
method38 was used setting the parameters ‘maxits’ to 10,000 and ‘convits’ to 1,000
to ensure conversion when thousands of reconstituted gene sets needed to be
clustered. We visualized the overlap between pathway families pathways using
Cytoscape39.
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P values. We used an alternate approach to estimate type-1 error by replacing the
null GWAS with simulated GWAS that have positive signals but no underlying
biological basis. We simulated 50,000 individuals using HAPGEN33 using
parameters from the HapMap Project release 3 CEU population. From this,
we obtained 1,175,577 genotypes for all autosomes (chromosomes 1–22) and
calculated the allele frequency for each SNP using the 50,000 individuals. We then
randomly selected 1,000 SNPs to have an effect on the phenotype and assigned
effect sizes such that all SNPs jointly explain 45% of the total variance. The effect
size for each SNP was calculated as follows,

b ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

2pð1� pÞ

s
ð1Þ

where b is the effect size in s.d. units, s2 is the variance explained for each SNP, p is
the SNP’s minor allele frequency and d denotes a random variable with equal
probability of being þ 1 or � 1. Once each SNP’s effect size was determined, we
calculated the weighted allele score for each individual by summing up the SNP
minor allele dosages weighted by their effect size. The weighted allele score was
calculated as follows,

WAS ¼
XN

i¼1
biSNPi � 2bipi ð2Þ

where N is the number of SNPs (N¼ 1,000), bi is the effect size of the ith SNP as
calculated earlier, SNPi is the dosage of the minor allele for the ith SNP (0,1 or 2)
and pi is the minor allele frequency of the ith SNP. The subtraction of 2bipi served
to adjust the weighted allele score such that its mean was 0. We obtained the final
phenotypic z-score by adding a remaining noise term such that the total variance
was 1. The z-score was calculated as follows,

z-score ¼ WASþNð0; variance remainingÞ ð3Þ

where N(0, variance_remaining) is a randomly generated number sampled from a
Normal (N) distribution with mean 0 and variance 0.55. This process was repeated
100 times to obtain 100 sets of phenotypic z-scores for each of the 50,000
individuals. We used PLINK34 to perform GWAS on each set of phenotypes using
the 50,000 simulated genotype samples, and then, for each null GWAS, identified
the association P-value threshold that resulted in 100 fully independent loci
(DEPICT locus definition). Finally, we ran DEPICT with default settings on each of
the n¼ 100 sets of input SNPs.

Crohn’s disease DEPICT analysis. Summary statistics from GWAS-based meta
analysis of Crohn’s disease23 (downloaded from www.ibdgenetics.org) were used to
identify genome-wide significant loci (using PLINK and parameters ‘--clump-kb
1000 --clump-r2 0.01’). As input to DEPICT we used the resulting 63 genome-wide
significant (w2-test P value o5� 10� 8), which were located in 54 fully
independent loci based on DEPICT definitions of independence.

Human height DEPICT analysis. As input we used 697 genome-wide significant
human height associations identified in GWAS-based meta analysis10 (accessible
through http://www.broadinstitute.org/collaboration/giant), which were located in
566 fully independent loci based on DEPICT definitions of independence.

Low-density lipoprotein cholesterol DEPICT analysis. Summary statistics from
GWAS-based meta analysis of LDL20 (downloaded from www.sph.umich.edu/csg/
abecasis/public/lipids2010) were used to identify genome-wide significant loci
(using PLINK with parameters ‘--clump-kb 1000 --clump-r2 0.01’). As input to
DEPICT we used the resulting 67 independent loci, which resulted in 40 fully
independent loci used DEPICT definitions of independence.

Gene set enrichment benchmark. Due to the lack of an unbiased set of gold
standard pathways for any complex trait, we compared DEPICT and MAGENTA22

by counting the number of statistically significant gene sets predicted based on
Crohn’s disease, height and LDL loci. Prior to the benchmark, we estimated the
type-1 error rate of both methods by running them with summary statistics from
100 null GWAS constructed based on simulated Gaussian phenotypes with no
genetic basis, and HapMap Project release 2 imputed DGI Consortium genotype
data (Supplementary Figs 1 and 3). For the null analyses, the top 200 independent
loci from each null GWAS were used as input, whereas genome-wide significant
loci were used as input in the Crohn’s disease, height and LDL analyses. All
MAGENTA runs were based on the complete set of summary statistics. We
restricted the comparison to a list of 1,280 gene sets (gene ontology terms, Kyoto
encyclopedia of genes and genomes and REACTOME pathways) with overlapping
identifiers between both methods. DEPICT was run on reconstituted gene sets.
MAGENTA was run with default settings and both methods excluded the major
histocompatibility complex region. The non-probabilistic, binary (yes/no) version
of the reconstituted gene sets used in one of the MAGENTA comparisons were
constructed by applying a threshold on the gene scores for a given reconstituted
gene set (all genes above a permutation-based cutoff were considered part of the
given reconstituted gene sets, as reported in ref. 6). Entries with ‘NA’ in columns
‘DEPICT with predefined gene sets P’ and ‘DEPICT with predefined gene sets FDR’

in Supplementary Data 4–6 marked predefined gene sets for which enrichment
could not be computed in the DEPICT analysis based on predefined gene sets.

Gene prioritization benchmark. We ran each method (DEPICT and GRAIL1)
using their default settings on all genome-wide significant Crohn’s disease23,
height10 and LDL20 associations. To evaluate the methods’ performance on the
same set of positive genes (genes that are highly likely to be causal to the
phenotype) and negative genes (genes that are unlikely to be causal), we limited the
comparison to loci at which there was at least one positive gene present across
both methods, and discarded any genes at these benchmark loci that were not
considered by each method. For the Crohn’s disease comparison, we used as
positives 31 genes that were transcriptionally regulated in whole blood24 by a
genome-wide significant Crohn’s disease association or a SNP in high LD (r240.7)
with a genome-wide significant SNP. For the height comparison, we used as
positives a set of 44 genes that were within genome-wide significant height-
associated loci and differentially expressed in rodent growth plate expression
studies; we have previously shown that the rodent gene expression data are
enriched for genes in height-associated loci25 (Supplementary Table 2 in Lango
Allen et al.19). For the LDL comparison, we used as positives a set of seven genes
with reported Mendelian mutations proposed to cause lipid-related traits20. For all
three benchmarks, we removed negative genes that had a missense variant in
strong LD (r240.7) with an associated SNP; for the height and LDL benchmarks,
we removed negative genes that were transcriptionally regulated24 by a SNP in
strong LD (r240.7) with an associated SNP; in the height benchmark, we removed
negative genes that were differentially expressed in rodent growth plates versus
other tissues, spatially regulated across different growth plate zones (hypertrophic
versus proliferating, and proliferative versus resting) or temporally regulated in
growth plates between week 12 and week 3 at nominal significance in reference25,
and genes that were reported in the high-confidence list in ref. 19. After these steps,
we were able to use 42 negative genes across 18 loci as Crohn’s disease benchmarks
and 37 negative genes across 43 loci as height benchmarks. There were no negative
genes among the seven LDL benchmark loci. Positive and negatives genes, are
listed in Supplementary Data 7–9. Precision (the fraction of positive genes among
all prioritized genes at a given P-value threshold) and recall (the fraction of
correctly classified positive genes at a given P-value threshold also referred to as
sensitivity) estimates were used to measures accuracy and summarized using the
F-measure, which incorporates the ability to recall positive genes with a high
precision into a single measure. (Maximum precision implies no false positives,
whereas maximum recall implies no false negatives.) To measure the ability to
discriminate positive and negative genes at a relative scale, we also computed ROC
AUC estimates. To avoid circularity, the growth plate data25 and the eQTL data24

were not part of the data used by any of the three methods tested. The R software35

and the ROCR R library36 were used to construct the precision recall and ROC
curves and the AUC estimates.

Prioritizing genes outside genome-wide significant loci. To enable prioritiza-
tion of genes below the genome-wide significance threshold, we scored each gene
outside the genome-wide significant loci with respect to its similarity to genes
within associated loci. For a given gene outside genome-wide significant loci,
we (1) correlated (Pearson) its predicted functions across all 14,461 gene sets
to every gene in each of the trait-associated loci, (2) kept the lowest correlation
P value from each genome-wide significant locus, (3) converted the P values to
z-scores and (4) summed the z-scores and converted the sum back to a P value
(alternative hypothesis: gene functionally related to genes in trait-associated loci).
We computed FDRs, by redoing steps 1–4 based loci from null GWAS. Using
FDR o0.05 as the threshold, we identified 3,022, 5,916 and 1,901 related genes for
Crohn’s disease, height and LDL. For each of the three traits, we then calculated
genomic inflation factors for SNP P values in the functionally related genes and for
SNP P values in the same number of genes exhibiting the highest (non-significant)
FDRs. We added 50 kb flanking loci to gene boundaries (defined by the boundaries
of the most extreme transcripts) and required genes to be at least 1Mb away from
the nearest genome-wide significant locus.

GWAS catalog analysis. The GWAS Catalog26 was downloaded from www.
genome.gov/gwastudies/ (download date: 02 January 2014) and 61 phenotypes with
at least 10 fully independent regions (DEPICT definitions) based on genome-wide
associations were retained. Hierarchical clustering implemented in the R software
method ‘hclust’ was run with default settings (method¼ ‘complete-linkage’,
dist¼ ‘euclidean’). The DEPICT locus definitions for all GWAS catalog traits
can be downloaded from www.broadinstitute.org/mpg/depict.

Overlap of gene sets and visualization. A previous version of DEPICT used in
analyses of anthropometric traits10,12,13 computed gene set overlap by imposing a
threshold on which genes belong to a given reconstituted gene set and then used
the Jaccard index to compute pairwise overlaps. Overlapping reconstituted gene
sets were grouped as pathway families. Here, we instead computed the pairwise
Pearson correlation between all reconstituted gene sets and then used the Affinity
Propagation method37 to group similar reconstituted gene sets. We named each
cluster (‘meta gene set’) by the name of the representative gene set automatically
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identified by the Affinity Propagation method (for examples, see the top 10 gene set
enrichment meta gene sets for Crohn’s disease, height and LDL in Supplementary
Data 14–16). The R software35 and a R version of the Affinity Propagation
method38 was used setting the parameters ‘maxits’ to 10,000 and ‘convits’ to 1,000
to ensure conversion when thousands of reconstituted gene sets needed to be
clustered. We visualized the overlap between pathway families pathways using
Cytoscape39.
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5.1 DISCUSSION

This thesis had two main aims: (1) to present a gene 
 expression-based method to predict novel functions for 
human genes, and (2) to present a follow-up method to 
suggest which genes and pathways may be relevant to 
different phenotypes, based on findings from genome- 
wide association studies.

5.1.1 GENE FUNCTION PREDICTION

In chapter 2, we reanalysed tens of thousands of 
high-quality human, mouse and rat microarrays and 
leveraged principal component analysis (PCA) to deter-
mine hundreds of biologically meaningful “transcrip-
tional components”. We corrected expression levels of 
cancer samples by removing variation based on tran-
scriptional components of non-cancer samples. We 
found that it was possible to identify deletions and du-
plications in cancer samples based on the residual ex-
pression.

To achieve the first aim of this thesis, we also used 
the transcriptional components to predict gene func-
tion. Treating each of these components equally, we 
diminished the effects of physiological or metabolic 
factors on gene expression and increased the effects 
of subtler, but still biologically relevant, factors. Then, 
we used established knowledge of biological pathways 
as gene sets to determine the extent to which each 
transcriptional component affects each pathway. In 
this way, we created a transcriptional “pathway profile” 
for each pathway and could then correlate each gene 
against each pathway profile. See figure 5.1 for an illus-
tration of this method. The end result of this prediction 
procedure was a score for every gene- pathway combi-
nation. We considered that these scores would indi-
cate how likely it is that any given gene is relevant for 
any given pathway, based on the gene expression data 
and pathway gene sets used. We used a permutation- 
based false discovery rate approach to assess the sig-
nificance of each prediction score.

This gene function prediction method and the ac-
companying website (genenetwork.nl/genenetwork) 
have been widely used to predict functions for genes 
of interest. According to Google Analytics data, the 
website still has more than a hundred active users 
every month.

As an example of the use of our gene function pre-
dictions, in 2012, the gene responsible for the Vel 
blood group, SMIM1, was found by analysing the ex-
omes of individuals who were negative for the Vel an-
tigen.1 Most Vel-negative individuals were homozy-
gous for a 17-nucleotide frameshift deletion in SMIM1. 

In the same study, a SNP in SMIM1 was found to in-
fluence the mean haemoglobin concentration of red 
blood cells. Our top-predicted Gene Ontology biolog-
ical process for SMIM1 was “haemoglobin metabolic 
process” (p = 1.3 × 10−16). Our predictions were used as 
computational evidence in the study. As an example of 
a social-science phenotype, we also predicted relevant 
pathways for candidate genes found in a GWAS of edu-
cational attainment.2 For the BSN and LRRN2 genes, we 
predicted “neurotransmitter secretion” (p = 1.0 × 10−30) 
and “synapse organisation” (p = 2.5 × 10−9) as the top 
Gene Ontology biological processes, respectively.

Our gene function prediction method is solely based 
on gene expression data whereas other methods, such as 
GeneMANIA, combine networks from different organ-
isms and data sources, including shared protein domains 
and physical interactions.3,4 The STRING database inte-
grates information of both physical and functional protein- 
protein interactions.5 However, the relevant predictions 
and widespread use of our expression- based method are 
due to several advantages that it has compared to previ-
ously suggested guilt-by- association approaches.

First, the gene expression data we used was, to 
our knowledge, the largest expression data set — 
77,840 human, mouse and rat microarrays — ever used 
for the purpose of predicting gene function. This large 
amount of data allowed us to extract more biologi-
cally meaningful information than had previously been 
possible. In total, we found 2206 transcriptional com-
ponents, each of which was enriched for at least one 
functional gene set.

Second, by treating each transcriptional component 
equally, we could increase the relative importance of 
subtle biological effects on gene expression. Since the 
first components explain most of the expression vari-
ance, their effects (such as physiological or metabolic 
phenomena, or cell cycle) overshadow the effects of 
later components. However, since the later compo-
nents — that only explain a small proportion of vari-
ance — were also biologically enriched, scaling the 
components equally allowed us to incorporate more 
subtle and non-prevalent biological processes into the 
gene function prediction approach.

Third, we used a “leave-one-out” cross-validation 
method when calculating the score for a gene towards 
a pathway to which it is already known to belong. In 
many approaches the data are split into a training set 
and validation set to assess the accuracy of the method. 
However, our leave-one-out method enabled us to 
systematically calculate scores for all gene-pathway 
combinations in a fair way: for every gene known to 
belong to a pathway, we pretended it did not belong 
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to that pathway when predicting the gene’s functions. 
Although this increased the computation time of our 
method dramatically, it could still calculate prediction 
scores for tens of thousands of genes and pathways, or 
for other gene sets, using hundreds of transcriptional 
components, in a matter of hours on a standard laptop.

Fourth, our prediction method not only gives a bi-
nary classification of genes to pathways, it also calcu-
lates a score for each gene-pathway combination that 
indicates the strength of that particular prediction. We 
further leveraged these scores in the DEPICT method 
described in chapter 4. DEPICT considers genes to be 
similar if their predicted functions are correlated and 
uses this similarity measure to prioritise those genes 
from GWAS loci that share functionality.

Although our gene prediction method has proven use-
ful, there are still several possibilities for improvement.

First, the approach of treating a pathway as merely 
a gene set, and utilising co-expression or co-regulation 
patterns across a heteregeneous variety of samples to 
predict which other genes are similar to that set, works 
very well for some, but not all, pathways. For example, 
for the “Unwinding of DNA” and “DNA strand elonga-
tion” Reactome pathways, our method gives area under 
the curve (AUC) values of 0.999 and 0.997, respectively. 
The high prediction accuracy may be due to the prev-
alence of DNA replication: it happens in all cells, so 
strong co-expression patterns of the genes responsi-
ble for the process can easily be found when analysing 
large numbers of samples.

On the other hand, for the “Transport of organic an-
ions” Reactome pathway, our method gives an AUC 
value of 0.424. This is the only pathway for which the 
AUC is below 0.5. On average, a random prediction 
would yield an AUC of 0.5. The poor prediction perfor-
mance for this pathway may be due to different regu-
lation in different tissues within the SLCO gene family 
that is involved in the pathway.6 This may hinder our 
ability to observe global co-expression or co- regulation 
patterns of these genes. Therefore, for certain path-
ways, it may be beneficial to restrict the analysis to rel-
evant tissues, or to develop a method that combines 
the different regulation patterns from different tissues 
instead of investigating all tissues at once.

Second, despite the usefulness of gene expression 
data, other layers of molecular data are available. For 
example, methylation measurements, protein-protein 
interactions, and chromosome conformation capture 
data could be used as additional data layers for pre-
dicting gene function. Because many genomic phe-
nomena are tissue-dependent and genes are regulated 
differently in different tissues and conditions, such as 
in the above SLCO example, it would be useful to in-
corporate multiple layers of molecular evidence from 

various tissues to arrive at more accurate and stable 
gene function predictions.

Third, although we found hundreds of biologically 
meaningful “transcriptional components” using PCA 
(chapter 2), there are other possible ways of trans-
forming gene expression data to subcomponents. In-
dependent component analysis (ICA) is a method that 
finds statistically independent signals that comprise 
the observed data.7 As PCA has been useful in identi-
fying biological effects in gene expression data despite 
the forced orthogonality of principal components, ICA 
holds the promise of capturing information about the 
tissue- or condition-dependent biological processes 
underlying the observed gene expression levels.

Fourth, our method utilised microarray-based gene 
expression data. Today, tens of thousands of RNA-seq 
samples are publicly available and can be used to over-
come the inherent bias from relying on the probes that 
are present on the microarray platforms. This is further 
discussed in section 5.1.3.

5.1.2 DEPICT

To achieve the second aim of this thesis — to suggest 
which genes and pathways may be relevant to different 
phenotypes — we devised and developed the  DEPICT 
method, which utilises our gene function predictions in 
combination with findings from genome-wide associa-
tion studies. The method has been successfully used to 
interpret results from several recent GWASs, including 
studies of human height,8 body mass index,⁹ body fat 
percentage and distribution,10,11 and schizophrenia.12 

For example, for human height, DEPICT prioritised 
ossification and skeletal growth pathways that had 
not previously been implicated in height. In addition, 
the prioritised genes were generally highly expressed 
in relevant tissues such as cartilage, joints and spine. 
For body mass index, DEPICT prioritised brain-related 
pathways and found that genes within the associated 
loci are enriched for expression in the brain and central 
nervous system, implicating neurological factors play a 
role in body mass index.

While the basic idea behind DEPICT — that phenotype- 
relevant genes in the different genetic loci found in a 
GWAS should share functionality — is not new and has 
been used in other methods such as GRAIL,13 it is the 
gene-pathway scores, calculated systematically from a 
large, heterogeneous expression dataset, that enable 
DEPICT to perform better than earlier methods. DEPICT 
systematically outperformed GRAIL in gene prioritisation 
when benchmarked against each other in Chron’s dis-
ease, human height, and lipoprotein cholesterol.  DEPICT 
also predicted more biologically relevant pathways for 
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all these phenotypes than MAGENTA,14 a widely used 
GWAS gene set enrichment tool.

While the DEPICT method has performed well un-
der the assumption that genes in different loci share 
functionality, for many complex traits there are several 
distinct biological processes affecting the phenotype. If 
some GWAS associated loci mainly affect one biologi-
cal process or pathway and certain other loci mainly af-
fect another process, and both processes are relevant 
for the phenotype, the simple functionality-sharing as-
sumption might dilute the findings of our method. One 
future research opportunity would be to investigate 
whether, for some complex traits, loci can be grouped 
according to their downstream consequences using 
eQTL and co-expression analyses combined with other 
layers of molecular data. Analysing gene expression, al-
ternative splicing, methylation and protein-protein in-
teractions separately in different tissues that are rele-
vant for a phenotype would help in understanding the 
context-dependent consequences of genetic variation. 
Groups of associated loci may then be found that con-
tribute differently to a given phenotype and, by utilis-
ing the DEPICT method on such groups of loci, new 
relevant genes and pathways might be prioritised that 
would otherwise not be considered significant.

Extending the above line of thinking leads to pos-
sibilities for analysis of epistatic effects, i.e. non- linear 
interactions between several genes or loci. Analyses of 
epistasis typically suffer from low statistical power,15 

but, if loci can be justifiably grouped according to their 
downstream consequences, the burden of statistical 
testing of all pairs of loci can be reduced.

5.1.3 RNA-SEQ

While gene expression levels from microarray experi-
ments have been hugely useful, new technologies to 
measure gene expression levels in cells have been 

developed during the last ten years and RNA-seq has 
become a widely-used method. Microarray studies are 
inherently limited by the choice of probes on the ar-
ray, which is based on known genomic information. Mi-
croarray measurements also have high background sig-
nal levels because of the cross-hybridisation method. 
In addition, the measured signals can suffer from sat-
uration. RNA-seq technologies do not have these lim-
itations, offering better sensitivity, a higher dynamic 
range, and truly genome-wide data from being able to 
measure the whole transcriptome in cells.16

In chapter 2, we reanalysed 77,840 high-quality hu-
man, mouse and rat microarrays freely available in Gene 
Expression Omnibus. As of August 2017, the European 
Nucleotide Archive (ENA) hosts more than 180,000 hu-
man RNA-seq samples and more than 190,000 mouse 
samples, and the numbers continue to grow at a fast 
rate17 (see figure 5.2). Although some of these samples 
have low coverage (i.e. a low number of reads) and some 
are of suboptimal quality, e.g. because of degraded RNA 
material, the available sample sizes are such that there is 
now a lot of potential to be realised in jointly reanalysing 
data from different RNA-seq experiments.

The data provided by RNA-seq platforms consist 
of complementary DNA (cDNA) reads. The lengths of 
the reads range from a few dozen to a few hundred 
bases. For subsequent genomic analysis, the reads 
are typically aligned to a reference genome. Aligning 
the reads in tens or hundreds of thousands of samples 
can be a time-consuming process even when using 
computer clusters. To quantify the numbers of tran-
scripts present in the samples in a substantially faster 
way, a method called “kallisto” has recently been de-
veloped.18 Instead of precisely mapping the RNA-
seq reads to a reference, kallisto leverages a pseu-
doalignment approach to directly map the reads to 
pre- determined transcripts. This makes the transcript 
quantification process two orders of magnitude faster 
than existing alignment-based methods, and large 

Figure 5.2 The total number of human and mouse samples in 
the European Nucleotide Archive. The numbers are growing  
fast and have nearly doubled each year during  the  last few  
years. Data  accessed on 18th August, 2017.



63

numbers of samples can be analysed with fewer com-
puting resources.

To be able to jointly analyse samples from differ-
ent experiments, the quantified transcript counts 

Figure 5.3 A web interface for investigating the expression of genes in different tissues. Here the expression of CHRNA2 is shown 
based on 32,000 RNA-seq samples.  CHRNA2 has been associated with susceptibility to lung cancer. 20 Human picture courtesy of 
Thomas Craig and Pytrik Folkertsma. Gene Network logo and look and feel by Clever°Franke.

have to be jointly normalised. Because many genes 
or transcripts are expressed in a tissue-specific or cell 
type-specific manner, and the overall expression is low 
for many non-coding genes that can regulate gene 
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expression in specific tissues, the normalisation pro-
cess is not trivial. Quantile normalisation is often used 
for microarray data, but for the sparser RNA-seq data 
it tends to induce spurious correlations between lower 
expressed genes. In our experience, the DESeq nor-
malisation method19 does not suffer from this problem 
and offers a more robust way of performing normali-
sation. (Comparison of normalisation methods and im-
plementing the DESeq method, personal communica-
tion, Sipko van Dam).

To predict functions for all known human genes, in-
cluding non-coding ones, we have jointly analysed hu-
man RNA-seq samples available in the ENA. We down-
loaded the raw data for 67,021 thousand samples that 
had been submitted to ENA before or during the first 
half of 2016 and that each had at least 500,000 reads. 
We quantified transcript counts in these samples us-
ing kallisto (version 0.42.4). We then applied a stringent 
quality control procedure, removing samples in which 
less than 70 % of reads mapped to the transcriptome. 
Judging by the principal component score distribu-
tion of the first principal component, we also removed 
4,619 of the remaining samples that were considered 
to be outliers. In addition, we removed 147 samples 
that had been run with a non-Illumina platform. For 
the remaining 31,995 samples that we deemed of high 
quality, we performed principal component analysis 

Figure 5.4 A web interface for investigating gene co-regulation networks and performing pathway analyses. Here a part of the co- 
regulation network of immune system genes is shown.

on the gene covariance matrix and identified 307 prin-
cipal components with a Cronbach’s alpha value higher 
than 0.7. Using these components, we then applied 
the method described in chapter 2 to construct a gene 
co-regulation network, predict gene functions, and as-
certain the extent of expression for each gene in se-
lected tissues (see figures 5.3 and 5.4).

In comparison with the microarray data that we 
used in the work described in chapter 2, we observed 
an increase in the average AUC for Reactome path-
ways: for microarrays, the average AUC was 0.86, 
while for the RNA-seq data it was 0.89. However, this 
difference can be partly explained by the higher num-
ber of lower expressed genes in RNA-seq data. Such 
genes typically have not been assigned to pathways 
and, because of their low expression, their predictions 
tend to be less significant than for the more highly ex-
pressed genes. This automatically yields a higher AUC 
value. For a fully justified comparison of prediction ac-
curacy between microarray and RNA-seq data, from 
the beginning the analyses should be restricted to 
the genes that are represented both on the microar-
ray platforms and in the RNA-seq data. We investi-
gated the function prediction results based on RNA-
seq data for lincRNAs whose expression we had found 
to be affected by disease-associated SNPs (see chap-
ter 3). The top-predicted Reactome pathways for each 
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lincRNA are shown in table 5.1. For the lincRNA that 
was affected by the SNP associated with age- related 
macular degeneration, we did not predict any signifi-
cant pathway based on microarray data. However, with 
the RNA-seq data, we predicted “regulation by c-FLIP”, 
a relevant pathway for the trait based on functional 
evidence,21,22 as the top pathway. In addition, for the 
lincRNA affected by SNPs associated with thyroid vol-
ume and function, we could not previously predict 
functions because there was no probe for that lincRNA 
on the microarray platforms. With the RNA-seq data, 
we predicted “eicosanoid ligand-binding receptors” as 
the top pathway. Now, it has been shown that thyrox-
ine replacement therapy can ameliorate abnormalities 
of serum eicosanoid levels.23 These results demon-
strate that jointly analysing large numbers of RNA-seq 
samples is useful for predicting functions for lincRNAs.

Although gene expression measurements can be of 
great value for gene predicting function, they only give 
direct information of the first step in the sequence of 
events from DNA to organism phenotype. Recent re-
search shows that methods that combine several data 
sources, co-function networks, and molecular data lay-
ers typically perform better than any single prediction 
approach.24 In addition, different combinations of data 
and methods show different performances in different 
gene function domains such as molecular function and 
biological process.25 Thus, to improve the gene function 
prediction approach described in this thesis, additional 
data layers, such as protein and methylation measure-
ments, should be used.

5.1.4 CLINICAL APPLICATIONS

In addition to predicting gene functions in the con-
text of pathways as we have described in chapter 2, 
we also used phenotype information from the Human 

Table 5.1 The top-predicted Reactome pathways for lincRNAs found to be a ected by disease-associated SNPs (see chapter 3). The 
top-predicted pathways using both microarray data and RNA-seq data are shown. 

associated 
SNP(s)

eQTL lincRNA GWAS trait(s) top-predicted Reactome
pathway (microarrays)

p-value 
( microarrays)

top-predicted 
 Reactome pathway 
(RNA-seq)

p-value 
(RNA-seq)

rs13278062 RP11-1149O23.3 Exudative agerelated
macular degeneration

Hormone ligandbinding
receptors

1.7 × 10−2 Regulation by c-FLIP 1.1 × 10−10

rs6490294 MAPKAPK5-AS1 Mean platelet volume Formation of ATP by chemios-
motic coupling

5.0 × 10−3 Mitochondrial
translation initiation

2.8 × 10−5

rs10849915 LINC01405 Alcohol consumption Striated muscle contraction 1.2 × 10−26 Striated muscle
contraction

2.7 × 10−12

rs7542900 LINC01057 Type 2 diabetes Trafficking of AMPA receptors 1.5 × 10−2 Transcriptional
regulation of pluripo-
tent stem cells

9.4 × 10−4

rs17767419,
rs3813582

LINC01229 Thyroid volume,
thyroid function

N/A N/A Eicosanoid ligand 
 binding receptors

2.8 × 10−3

Phenotype Ontology (HPO) for the RNA-seq data. 
The HPO provides sets of genes annotated to pheno-
typic abnormalities (later referred to as simply pheno-
types). Using these gene sets, we could predict which 
as yet unknown genes might also be relevant to vari-
ous phenotypes. For example, for the Vel blood group 
culprit, SMIM1, we predicted “Increased red cell os-
motic fragility” (p = 1.6 × 10−10) and “Abnormality of 
the heme biosynthetic pathway” (p = 1.2 × 10−9) as the 
top phenotypes.

HPO phenotype terms are used in clinics to char-
acterise patients’ phenotypes. Since we had compre-
hensively predicted scores for the likelihood of each 
human gene affecting each HPO phenotype, this led 
us to speculate that it should be possible to find pre-
viously unknown disease genes causing illness in indi-
vidual patients (this idea was raised in discussions with 
Lude Franke and Joeri van der Velde).

We devised a simple method to prioritise genes for 
an individual patient based on phenotypes that had 
been assigned to her or him in the clinic. We summed 
up the prediction Z-scores for each human gene over 
an individual patient’s phenotypes and subsequently 
ranked the genes based on the resulting total score.

To assess the performance of this method, we prior-
itised genes for a few critically ill newborns based on 
their phenotypes (they had each been given a genetic 
diagnosis). For example, one newborn with flexion con-
tracture and abnormality of muscle morphology was di-
agnosed, based on whole-genome sequencing, with a 
homozygous mutation in the KLHL41 gene (Cleo van 
Diemen et al., manuscript submitted). The gene ranked 
20th out of 56,439 in our prioritisation analysis, based 
solely on the patient’s two phenotypes. KLHL41 has not 
been associated to either of these two phenotypes in 
HPO. Our top-two predicted phenotypes for the gene 
are “Neck muscle weakness” (p = 7.1 × 10−18) and “EMG 
abnormality” (p = 1.1 × 10−16). Gene prioritisation results 
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for all six diagnosed newborns are shown in table 5.2. 
Further work with a large number of already diagnosed 
patients with different phenotypes needs to be done 
to benchmark this approach.

This gene prioritisation method can be made use-
ful for clinical purposes by utilising patients’ whole- 
genome or exome sequencing data. A patient’s variants 
can be classified and prioritised for clinical purposes 
using bioinformatic methods, such as the recently in-
troduced GAVIN.26 In combination with variant filter-
ing and prioritisation, the phenotype-based gene pri-
oritisation method offers possibilities to help clinicians 
reach a genetic diagnosis.

In addition, RNA-seq data from individual patients 
can be leveraged in diagnostics. Splice variants and 
exon skipping, for example, can be detected from an 
RNA-seq sample.27 One avenue for further research is 
to investigate whether it is possible to correct individ-
ual RNA-seq samples for “healthy variation”, to identify 
aberrantly expressed genes that might be relevant for 
the patient’s disease by using a similar methodology to 
that described in chapter 2, which we used to detect 
somatic copy number alterations in cancer samples.

5.2 PAST AND FUTURE PERSPECTIVES

During the last ten years, the technologies used in hu-
man genetics have improved tremendously. Nowadays, 
the sequencing of a whole genome or exome is much 
faster, more accurate, and less expensive than a dec-
ade ago. These technological advances have also led 
to substantial increases in the sample sizes now being 
studied. In 2007, GWASs consisted of a few thousand 
samples,28 whereas now the biggest studies include 
hundreds of thousands of individuals.8 As the cost of 
genotyping and sequencing continues to decrease, 
sample sizes are expected to grow towards millions.29

Table 5.2 Gene prioritisation results for six critically ill newborns.  The prioritisation is based solely  on a patient’s phenotypes, incor-
porating no genetic data. 

Human Phenotype Ontology phenotypes causal gene rank of the causal gene

leukoencelophalopathy, abnormal central nervous system myelination EIF2B5 1,029 / 56,439

microcephaly, abnormality of the nervous system EPG5 1,944 / 56,439

lactic acidosis,  abnormality of metabolism / homeostasis, abnormal respiratory system morphology GFER 2,992 / 56,439

cardiomyopathy, hepatomegaly GLB1 456 / 56,439

flexion contracture, myopathy KLHL41 20 / 56,439

global developmental delay, microcephaly, dystonia, hearing impairment, hypomyelination RMND1 2,308 / 56,439

In terms of gene expression studies, RNA-seq tech-
nologies have superseded microarrays in the last dec-
ade. Like GWASs, sample sizes of eQTL studies have in-
creased.30 Soon, hundreds of thousands of high- quality 
RNA-seq samples from diverse tissues and conditions 
will be publicly available for research. As we have 
learned about the diversity of the workings of genetic 
variants and genes depending on the tissue, cell type 
and external stimuli, this large amount of heterogene-
ous data will be useful in identifying so far unknown 
key biological processes and the genes driving them.

Despite the usefulness of RNA-seq experiments, 
“traditional” RNA-seq procedures have, for some re-
search questions, a major drawback: they measure gene 
expression from bulk populations of cells. Therefore, 
the resulting gene expression levels reflect the average 
expression in the cell population. To increase the proce-
dure’s resolution to the level of individual cells, single- 
cell RNA-seq (scRNA-seq) methods have been in de-
velopment for almost as long as RNA-seq technologies 
have existed.31 Although scRNA- seq methods still need 
to overcome technical artefacts and noise from sample 
preparation,32 they can now process hundreds of thou-
sands of cells in parallel, holding the promise of detailed 
views of the transcriptome in different developmental 
stages and during tissue differentiation. Novel cell types 
have already been identified using scRNA- seq.33

Bulk RNA-seq experiments have revealed that allele- 
specific expression (ASE), or imbalance of expression 
between maternal and paternal alleles, is prevalent in 
the mouse genome.34

Because of the possibility it offers of investigating 
the early developmental stages of organisms, scRNA- 
seq can lead us towards a better understanding of ASE 
and genomic imprinting.

To investigate phenotypic consequences of gene 
inactivations on the gene expression level, new tech-
nologies, such as Perturb-seq, have recently been 
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developed.³⁵,³⁶ Perturb-seq combines scRNA-seq with 
CRISPR-mediated perturbations such as gene inactiva-
tions. A major novel advantage of these new technolo-
gies is that they can be used to study the differences of 
gene knockout effects from cell to cell. Therefore, they 
hold the potential of expanding our understanding of 
gene regulatory networks.

For protein-coding genes, the abundance of RNA 
does not necessarily directly translate into the amount 
of protein. Proteomic approaches are needed to accu-
rately determine protein quantities in cells. Protein- 
protein interaction data can be used to leverage phys-
ical contacts between individual proteins. Methylation 
influences gene expression, and methylation data can 
explain phenotypic variation to an extent comparable 
with genetic data.³⁷ During the last few years, the mi-
crobiome composition has been found to influence phe-
notypes, and the influence of human genetics on the 
microbiome has been studied extensively.³⁸ Jointly ana-
lysing individuals’ genetic data, gene expression, meth-
ylation, microbiome composition and lifestyle, and com-
bining this with detailed phenotypic information, such 
as in the Dutch LifeLines DEEP project,39 holds potential 
not for only predicting gene function, but also for use in 
personalised medicine.

Today, there are major efforts to create large bio-
banks of both genetic and health record data, such as 
the population-based Estonian Biobank of the Esto-
nian Genome Centre,40 or the FinnGen project, which 
combines data from all the Finnish biobanks.41 Analys-
ing medical history in combination with genetic data 
on a large scale holds great promise for personalised 
medicine. For example, drug responses for diseases 
that are currently diffcult to medicate correctly, such 
as depression, might be predicted from an individual’s 
genetic make-up.

In the last few decades, traditional statistical ap-
proaches have been extensively used in analysing ge-
netic data. In the last few years, however, sophisticated 
machine learning (or deep learning) methods have be-
come increasingly popular.42 These neural network- 
based methods can perform remarkably well as predic-
tors or classifiers on suffciently large datasets, but their 
internal workings can be diffcult to interpret. As the 
amount of data on various molecular levels grows, and 
deep learning methods develop further, together with 
our understanding of them, traditional statistics will in-
creasingly give way to these more powerful approaches.

In conclusion, as sample sizes in genetic studies will 
continue to increase rapidly, we will discover novel 
genetic variation underlying disease and gain a more 
comprehensive view of how genetic variation affects 
phenotypic variation. However, especially for rare 
diseases, there is a practical limit on the number of 

samples that can be collected, so the focus of research 
should not only be on variant hunting, but also on the 
biological interpretation of the findings. Recent tech-
nologies such as scRNA-seq will yield further insights 
into organism development and tissue differentiation, 
which will expand our knowledge of disease aetiolo-
gies. Reverse genetics methods, such as Perturb-seq, 
can increase our understanding of the diversity of gene 
regulation and function. Novel computational meth-
ods should be developed to point to not only the sta-
tistical relationships in the data, but also the biologi-
cal processes driving the observations. These methods 
should incorporate multiple layers of molecular data to 
be able to yield a more comprehensive picture of ge-
netics in disease and health.

“In coming years, doctors increasingly will be able 
to cure diseases like Alzheimer’s, Parkinson’s, diabetes 
and cancer by attacking their genetic roots”, said US 
President Bill Clinton upon announcing the completion 
of the draft sequence of the human genome in 2000.43 
Since then this kind of optimism has faded as we have 
come to better appreciate the true complexity of many 
complex traits. However, with the current technolog-
ical advances, we are working in an extremely inter-
esting period of time for human genetics. Because we 
now know enough to understand how little we know, 
there are many great opportunities for further re-
search in this wonderful field of science that studies 
the basis of life!
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6.1 SUMMARY

Human genetics is an exciting, multidisciplinary field of 
science. Its focus of investigation is on hereditary dis-
eases in humans, with the ultimate aim of alleviating 
suffering by treating and preventing various diseases.

The biggest project in biology to date, the Human 
Genome Project, was completed in 2003 and it unrav-
elled the DNA sequence of the human genome. Since 
then, the cost and time needed for sequencing and 
genotyping human genomes have fallen dramatically,  
which now allows for massive studies to be performed 
consisting of hundreds of thousands of individuals. In 
the near future, studies of millions of people are likely 
to appear.

As a result of the large-scale studies during the past 
decade, we have come to appreciate the true com-
plexity of genetics. In genome-wide association stud-
ies, hundreds of genetic variants have been associated 
with a specific phenotype or disease. However, these 
variants together typically only explain a small pro-
portion of the heritability of the phenotype, while the 
mechanisms by which such variants lead to disease are 
still mostly unknown.

DNA is a marvellous molecule. It contains informa-
tion which enables it to replicate itself and make the or-
ganism develop in its environment. In cells, parts of DNA 
(i.e. genes) are transcribed into RNA. Some RNA mole-
cules (protein-coding genes) are further translated into 
proteins. Other RNAs play different roles, such as reg-
ulating the transcription of other genes.

RNA transcription (gene expression) is the first 
step in the DNA-to-phenotype process. Therefore, 
studying abundances of RNA in samples from various 
tissues can help us to understand the cellular phe-
nomena that lead to disease. 

In this thesis, I report on my research using pub-
licly available gene expression data on a large scale to 
predict the functions of genes and to prioritize genes 
and pathways that may be relevant to different phe-
notypes and diseases.

In chapter 1, I present a brief history of genetics de-
scribing the major advances that have led us to the cur-
rent state of the field. I also introduce the aims and 
content of this thesis.

In chapter 2, I describe the use of gene expression 
data from 77,840 public microarrays. Using these data 
in combination with established pathway information, 
we predicted functions for all the human genes rep-
resented on the microarrays. We also used the gene 
expression data to identify somatic copy number alter-
ations in cancer samples.

In chapter 3, I describe how we found large 
non-coding RNAs whose expression levels were 

influenced by genetic variants. We also predicted rel-
evant functions for some of these RNAs whose ex-
pression was affected by disease- associated variants.

In chapter 4, I report on how we leveraged the gene 
function predictions from chapter 2 to prioritize genes 
and pathways that may be relevant to various pheno-
types, based on findings from genome-wide associa-
tion studies. We developed a computational method 
called DEPICT that can be used to interpret the results 
of any genome-wide association study.

In chapter 5, I discuss the findings of this work, as 
well as its strengths and limitations. I also consider 
some future directions and clinical applications.

In chapter 6, I present the summary of this work.

6.2 SAMENVATTING

Humane genetica is een spannend en multidisciplinair 
vakgebied. De focus van onderzoek binnen de humane 
genetica ligt op erfelijke ziekten, en het doel van het 
onderzoek is het verlichten van lijden door het behan-
delen en voorkomen van diverse ziekten.

Het grootste project in de biologie tot dusver, het 
Humane Genoomproject (the Human Genome Project), 
is in 2003 afgerond en onthulde voor het eerst de hele 
DNA-sequentie van het menselijke genoom. Sindsdien 
zijn de kosten van en tijd die nodig is voor sequencing 
en genotypering van menselijke genen drastisch ge-
daald. Dit maakt grote studies van honderden duizen-
den individuen, en in de nabije toekomst, van miljoe-
nen individuen, mogelijk.

Als gevolg van deze grootschalige genetische stu-
dies, realiseren we ons voor het eerst hoe complex de 
genetica van de mens eigenlijk is. Honderden geneti-
sche varianten blijken  in genoomwijde associatiestu-
dies met een specifiek fenotype of ziekte geassocieerd. 
Deze varianten verklaren echter meestal slechts een 
klein deel van de erfelijkheid van dit fenotype. Boven-
dien zijn de mechanismen waarmee deze varianten tot 
ziekte leiden meestal nog steeds onbekend.

DNA is een prachtig en veelzijdig molecuul, het be-
vat informatie waarmee het repliceert en waarmee het 
organisme zich in zijn omgeving kan ontwikkelen. In 
cellen worden delen van het DNA (de genen) overge-
schreven naar RNA. Sommige RNA-moleculen (van 
voor eiwit coderende genen) worden verder omgezet 
naar eiwitten (translatie). Andere RNA-moleculen spe-
len uiteenlopende rollen, zoals bijvoorbeeld het regu-
leren van de transcriptie van andere genen.

RNA transcriptie (ook wel genexpressie genoemd) is 
de eerste stap in het process van DNA naar fenotype. 
Daarom kan het bestuderen van kwantiteit aan RNA in 
monsters uit verschillende weefsels ons helpen bij het 
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begrijpen van cellulaire fenomenen die tot ziekte lei-
den. In dit proefschrift heb ik grote hoeveelheden pu-
bliek beschikbare genexpressiegegevens gebruikt om 
de functies van genen te voorspellen en genen en de 
gen-specifieke netwerken (in het Engels: pathways) te 
prioriteren die relevant kunnen zijn voor verschillende 
fenotypen en ziekten.

In hoofdstuk 1 presenteer ik een korte geschiede-
nis van genetica die de vooruitgang tot aan de huidige 
stand van het veld beschrijft. Ik zet hier ook de doelen 
van mijn onderzoek en de inhoud van dit proefschrift 
verder uiteen.

In hoofdstuk 2 gebruikten we genexpressiegegevens 
van 77.840 microarrays en gepubliceerde gen-netwerk 
informatie om functies voor alle menselijke genen ver-
tegenwoordigd op de microarrays te voorspellen. We 
hebben deze genexpressiegegevens ook gebruikt om 
somatische copynumbervariaties in kankermonsters te 
identificeren.

In hoofdstuk 3 vonden we grote niet-coderende 
RNA’s, waarvan de expressieniveaus door genetische 
varianten beïnvloed werden. We hebben ook rele-
vante functies voor sommige van deze RNA’s voor-
speld waarvan de expressie door ziekteverwante vari-
anten beïnvloed werden. In hoofdstuk 4 hebben we de 
genfunctievoorspellingen uit hoofdstuk 2 aangewend 
om genen en pathways te prioriteren die relevant 
kunnen zijn voor verschillende fenotypen, gebaseerd 
op bevindingen van genoomwijde associatiestudies. 
We ontwikkelden een berekeningsmethode genaamd 
 DEPICT die gebruikt kan worden om resultaten van 
een genoomwijde associatiestudie te interpreteren.

In hoofdstuk 5 heb ik de bevindingen van dit werk 
besproken, evenals de sterke punten en beperkingen 
ervan. Ik heb ook een aantal toekomstige richtlijnen en 
klinische toepassingen overwogen.

In hoofdstuk 6 heb ik dit werk samengevat.

6.3 YHTEENVETO

Ihmisgenetiikka on jännittävä, monitieteinen tutkimusala, 
joka keskittyy perinnöllisten sairauksien tutkimiseen. Sen 
perimmäinen määränpää on ihmisten kärsimyksen vä-
hentäminen sairauksia hoitamalla ja ehkäisemällä.

Biologian historian tähän mennessä suurin edesot-
tamus, the Human Genome Project (Ihmisgenomipro-
jekti), päättyi vuonna 2003. Siinä selvitettiin ihmisen 
genomin DNA-sekvenssi. Sittemmin ihmisten geno-
mien sekvensoinnin ja genotyypityksen hinta on laske-
nut huimasti samalla kun niihin tarvittava aika on ly-
hentynyt. Tämän ansiosta nykyään tehdään massiivisia, 
satojatuhansia ihmisia käsittäviä tutkimuksia. Lähitule-
vaisuudessa otosten koot liikkuvat jo miljoonissa.

Kymmenen viime vuoden aikana tehtyjen laajamittais-
ten tutkimusten tuloksena olemme alkaneet ymmärtää 
genetiikan monimutkaisuutta aiempaa paremmin. Koko 
genomin laajuisissa assosiaatiotutkimuksissa on löydetty 
satoja geneettisiä variantteja, joilla on yhteys tiettyyn 
fenotyyppiin tai sairauteen. Nämä variantit yhdessä selit-
tävät kuitenkin tyypillisesti vain pienen osan fenotyypin 
periytyvyydestä. Erityisen huomionarvoista on, että syyt, 
miksi nämä variantit johtavat sairauden syntymiseen, 
ovat suurelta osin yhä tuntemattomia.

DNA on verraton molekyyli. Se sisältää tietoa, jonka 
avulla se monistaa itseään ja saa organismin kehittymään 
ympäristössään. Soluissa osia DNA:sta (geenit) luetaan 
RNA:ksi (transkriptio). Jotkin RNA-molekyylit eli proteii-
neja koodaavat geenit käännetään edelleen proteiineiksi 
(translaatio). Osalla RNA-molekyyleistä on muita rooleja, 
kuten toisten geenien transkription säätely.

RNA:n transkriptio eli geenien ilmentyminen on en-
simmäinen askel DNA:sta fenotyyppiin johtavassa pro-
sessissa. Siksi RNA:n määrien tutkiminen eri kudoksista 
otetuista näytteistä voi auttaa ymmärtämään solupro-
sesseja, jotka johtavat sairauksiin.

Tässä väitöskirjassa hyödynnetään suuria määriä jul-
kisesti saatavilla olevaa geenien ilmentymisdataa. Sen 
avulla ennustetaan geenien toimintoja sekä priorisoi-
daan geenejä ja biologisia reittejä, jotka voivat olla mer-
kityksellisiä eri fenotyyppeihin tai sairauksiin liittyen.

Luvussa 1 kerrotaan genetiikan lyhyt historia ku-
vailemalla kehityskulkua, joka on tuonut meidät tämän 
kiehtovan tieteenalan nykyiseen vaiheeseen. Samalla 
esitellään väitöskirjan tavoitteet ja sisältö.

Luvussa 2 hyödynnetään geenien ilmentymisdataa 
77 840 mikrosirusta. Käyttämällä sitä yhdessä tunne-
tun reittitiedon kanssa ennustetaan laskennallisesti 
toimintoja kaikille ihmisgeeneille, jotka ovat edustet-
tuina näillä mikrosiruilla. Geenien ilmentymisdataa 
käytetään myös somaattisten kopiolukumuutosten 
tunnistamiseen syöpänäytteissä.

Luvussa 3 paljastetaan pitkiä ei-koodaavia RNA:ita, 
joiden ilmentymistasoihin tietyt geneettiset variantit 
vaikuttavat. Lisäksi ennustetaan oleellisia toimintoja 
tietyille näistä RNA:ista, joiden ilmentymistasot riippu-
vat sairauksiin yhdistetyistä varianteista.

Luvussa 4 hyödynnetään luvun 2 geenitoimintoen-
nusteita. Näin pystytään priorisoimaan koko genomin laa-
juisten assosiaatiotutkimusten tulosten pohjalta geenejä 
ja reittejä, jotka voivat olla oleellisia eri fenotyypeille. Sa-
malla esitellään laskennallinen menetelmä nimeltään DE-
PICT, jota voidaan käyttää koko genomin laajuisten asso-
siaatiotutkimusten tulosten tulkintaan.

Luvussa 5 pohditaan tämän työn tuloksia, vahvuuk-
sia ja rajoituksia. Samassa luvussa esitellään myös joitain 
tulevaisuuden kehityssuuntia ja kliinisiä sovelluksia.

Luku 6 on yhteenveto tutkimuksesta.
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6.4 SAMMANFATTNING

Humangenetik är ett spännande, tvärvetenskapligt 
vetenskapsområde, vars forskning fokuserar på ärft-
liga sjukdomar hos människan. Dess yttersta mål är 
att lindra människors lidande genom att behandla och 
förhindra olika sjukdomar.

Det största projektet hittills i biologins historia, the 
Human Genome Project, färdigställdes år 2003. Där 
fastställdes det mänskliga genomets DNA-sekvens. 
Sedan dess har kostnaden och tiden som krävs för se-
kvensering och genotypning av mänskliga genom min-
skat drastiskt. Detta möjliggör massiva studier som nu-
mera kan omfatta hundratusentals individer. I en nära 
framtid kommer studier bestående av miljoner männ-
iskor att utföras.

Som ett resultat av de stora studierna under det 
senaste decenniet har den genetiska komplexiteten 
börjat förstås allt bättre. I associationsstudier som om-
fattar genomet i sin helhet (genome-wide association 
studies), har hundratals genetiska varianter samman-
kopplats med en specifik fenotyp eller sjukdom. Emel-
lertid representerar dessa varianterna tillsammans 
typiskt endast en liten del av en fenotyps ärftlighet. 
Särskilt noterbart är, att de mekanismer genom vilka 
dessa varianter leder till sjukdom, fortfarande mesta-
dels är okända.

DNA är en underbar molekyl. Den innehåller infor-
mation genom vilken den replikerar själv och gör att 
organismen utvecklas i sin miljö. I celler transkriberas 
delar av DNA (gener) till RNA. Vissa RNA-molekyler 
(proteinkodande gener) läses vidare till proteiner (tran-
slation). Andra RNA-molekyler har andra funktioner, 
såsom regleringen av transkriptionen av andra gener.

RNA-transkription (genuttryck) är det första steget 
i DNA-till-fenotyp-processen. Därför kan studier av 
kvantiteten av RNA i prover från olika vävnader hjälpa 
oss att förstå cellulära fenomen som leder till sjukdom. 

I denna avhandling används omfattande mängder 
ofentligt tillgänglig genuttryck-data. Med hjälp av dessa 
kan funktioner av gener förutsägas, samt gener och 
biologiska reaktionsvägar som kan vara relevanta för 
olika fenotyper och sjukdomar prioriteras. 

I kapitel1 presenteras en kort genetikens historia 
som beskriver de framsteg somhar lett till det nuva-
rande läget. Samtidigt introduceras denna avhandlings 
mål och innehåll. 

I kapitel 2 används genuttryck-data från 77 840 
mikromatriser. Dessa data används i kombination 
med fastställd information om reaktionsvägar för att 
förutsäga funktioner för alla mänskliga gener som är 
representerade i mikromatriserna. Dessa genuttryck- 
data används också för att identifiera somatiska kopi-
antalförändringar i cancerprover.

I kapitel 3 presenteras långa icke-kodande RNA- 
molekyler, vars uttrycksnivåer påverkades av genetiska 
varianter. Dessutom förutsägs relevanta funktioner för 
vissa av dessa RNA-molekyler, vilkas uttryck påverk-
ades av sjukdomsassocierade varianter.

I kapitel 4 används förutsägelser av genfunktioner 
från kapitel 2 som möjliggör prioritering av gener och 
reaktionsvägar som kan vara relevanta för olika feno-
typer baserat på resultaten av genome-wide associa-
tion studies. Samtidigt presenteras en beräkningsme-
tod som kallas DEPICT, vilken kan används för att tolka 
resultat från genome-wide association studies.

I kapitel5 diskuteras resultaten av denna avhandling, 
liksom dess starkheter och begränsningar. Dessutom 
övervägs några möjligheter för framtida utveckling 
samt kliniska tillämpningar av detta arbete. 

I kapitel 6 sammanfattas detta arbete.

6.5 RESUMEN 

La genética humana es un campo de ciencia emocio-
nante y multidisciplinario. Su foco de investigación 
se centra en las enfermedades hereditarias en hu-
manos. El objetivo final es aliviar el sufrimiento me-
diante el tratamiento y la prevención de diversas en-
fermedades. 

El estudio más importante en biología hasta la fe-
cha, el Proyecto Genoma Humano, fue completado en 
2003 y desentrañó la secuencia de ADN del genoma 
humano. Desde entonces, el costo y el tiempo para 
secuenciar y genotipificar genomas humanos han dis-
minuido drásticamente, lo que ahora permite estudios 
masivos compuestos por cientos de miles de personas. 
En un futuro cercano, es probable que aparezcan estu-
dios de millones de personas. 

Como resultado de los estudios a gran escala de la 
pasada década, hemos aprendido a apreciar la verda-
dera complejidad de la genética. En estudios de aso-
ciación del genoma com-pleto, cientos de variantes ge-
néticas se han asociado con un fenotipo o enfermedad 
específica. Sin embargo, estas variantes juntas gene-
ralmente solo explican una pequeña proporción de la 
heredabilidad del fenotipo, y los mecanismos por los 
cuales tales variantes conducen a la enfermedad toda-
vía son en su mayoría desconocidos. 

El ADN es una molécula maravillosa. Contiene in-
formación que le permite replicarse y hacer que un 
organismo se desarrolle en su entorno. En las célu-
las, partes de ADN (genes) se transcriben en ARN. 
Algunas moléculas de ARN (genes codificantes) se 
traducen en proteínas. Otros ARN desempeñan dif-
erentes roles, como la regulación de la transcripción 
de otros genes. 
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La transcripción de ARN (expresión génica) es el 
primer paso en el proceso de ADN a fenotipo. Por lo 
tanto, estudiar de la abundancia de ARN en mues-
tras de diversos tejidos puede ayudarnos a compren-
der los fenómenos celulares que conducen a diver-
sas enfermedades. 

Para esta tesis, utilicé bases de datos de expre-
sión génica a gran escala disponibles públicamente, 
para predecir las funciones de los genes, además de 
priorizar genes y vías que pueden ser relevantes en 
diferentes fenotipos y enfermedades. 

En el capítulo 1, presento una breve historia de 
la genética describiendo los principales avances que 
han conducido al estado actual del campo. Además, 
también presento los objetivos y el contenido de 
esta tesis. 

En el capítulo 2, describo el uso de los datos pú-
blicos de expresión génica de 77.840 microarreglos. 
Usando estos datos en combinación con la informa-
ción de la vías biológicas establecida, predijimos fun-
ciones para todos los genes humanos que fueron re-
presentados en los microarreglos. También utilizamos 
los datos de expresión génica para identificar altera-
ciones del número de copias somáticas en muestras 
de cáncer. 

En el capítulo 3, describo cómo encontramos ARN 
largos no codificantes, cuyos niveles de expresión fue-
ron influenciados por variantes genéticas. También 
predijimos funciones relevantes para algunos de estos 
ARN, cuya expresión se vio afectada por variantes aso-
ciadas con enfermedades. 

En el capítulo 4, muestro cómo aprovechamos 
las predicciones de la función de los genes del capí-
tulo 2 para priorizar los genes y las vías que pueden 
ser relevantes para diversos fenotipos, basado en los 
resultados de los estudios de asociación del genoma 
completo. Desarrollamos un método computacional 
llamado DEPICT que se puede utilizar para interpretar 
los resultados de cualquier estudio de asociación del 
genoma completo. 

En el capítulo 5, analizo los resultados de este 
trabajo, así como sus fortalezas y limitaciones. Tam-
bién considero algunas direcciones futuras y aplica-
ciones clínicas. 

En el capítulo 6 presento un resumen de este trabajo.

6.6 ZUSAMMENFASSUNG

Humangenetik ist ein spannendes und multidisziplinäres 
Wissenschaftsgebiet. Im Mittelpunkt der Forschung 
der Humangenetik stehen Erbkrankheiten mit dem 
Forschungsziel das Leiden durch die Behandlung und 
Vorbeugung von verschiedenen Krankheiten zu lindern. 

Das bisher größte Projekt der Biologie, das Hu-
mangenomprojekt (the Human Genome Project), 
wurde 2003 abgeschlossen und ergab zum ersten Mal 
die DNA-Sequenz des men-schlichen Genoms. Seit-
dem sind die Kosten und die Zeit für die Sequenzi-
erung und Genotypisierung des menschlichen Genoms 
drastisch gesunken. Dies ermöglicht große Studien mit 
Hunderttausenden von Individuen und in naher Zu-
kunft mit Millionen von Individuen.

Als Ergebnis dieser groß angelegten genetischen 
Studien stellten wir zum ersten Mal fest, wie kom-
plex die Genetik des Menschen tatsächlich ist. Hun-
derte von genetischen Varianten sind in genomweiten 
Assoziationsstudien mit einem spezifischen Phänotyp 
oder einer bestimmten Krankheit assoziiert. Diese Va-
rianten erklären jedoch meist nur einen kleinen Teil der 
Vererbung dieses Phänotyps. Wichtig ist, dass die Me-
chanismen, durch die diese Varianten zu Krankheiten 
führen, meist noch unbekannt sind.

Die DNA ist ein wunderbares und vielseitiges Mol-
ekül. Es enthält Information durch die es sich selbst 
repliziert und den Organismus in seiner Umgebung 
entwickeln lässt. In Zellen werden Teile der DNA (die 
Gene) in RNA transkribiert. Einige RNA-Moleküle (von 
Protein- kodierende Gene) werden ferner in Proteine 
übersetzt (die Translation). Andere RNAs spielen an-
dere Rollen, wie zum Beispiel die Regulation der Tran-
skription anderer Gene.

Die RNA-Transkription (Genexpression) ist der erste 
Schritt im Prozess von der DNA zum Phänotyp. Daher 
kann das Erforschen der RNA-Menge in Proben aus 
verschiedenen Geweben helfen, zelluläre Phänomene, 
die zu Krankheiten führen, zu verstehen. 

In dieser Arbeit habe ich große Mengen öfentlich ver-
fügbarer Genexpressionsdaten verwen-det, um Funktio-
nen von Genen vorherzusagen und Gene und Signalwege, 
die für verschiedene Phänotypen und Krankheiten rele-
vant sein könnten, zu priorisieren.

In Kapitel 1 stellte ich eine kurze Geschichte der Ge-
netik vor die den Fortschritt auf dem aktuellen Stand der 
Technik beschreibt. Des Weiteren habe ich die Ziele und 
den Inhalt dieser Arbeit dargelegt.

In Kapitel 2 haben wir Genexpressionsdaten der 
77 840 Microarrays ausgewertet. Wir nutzten die Da-
ten in Verknüpfung mit bereits etablierten Signalwe-
gen, um Funktionen aller menschlichen Gene, die auf 
den Microarrays dargestellt sind, vorherzusagen. Dar-
über hinaus haben wir diese Genexpressionsdaten zur 
Identifikation somatischer Kopienzahlvariationen in 
Krebsproben verwendet.

In Kapitel 3 haben wir lange nicht-kodierende 
RNAs, deren Expression durch genetische Varian-
ten beeinflusst werden, gefunden. Wir haben zudem 
relevante Funktionen für einige dieser RNAs, deren 



Expression durch krankheitsassoziierte Varianten be-
einflusst wurde, prognostiziert.

In Kapitel 4 wurden die Genfunktionsvorhersagen 
von Kapitel 2 basierend auf Ergebnissen von genom-
weiten Assoziationsstudien genutzt, um Gene und Si-
gnalwege, die für verschiedene Phänotypen relevant 
sein können, zu priorisieren. Wir haben eine Compu-
termethode namens DEPICT entwickelt, mit der Er-
gebnisse aus einer genomweiten Assoziationsstudie 
interpretiert werden können.

 In Kapitel 5 habe ich die Ergebnisse dieser Arbeit, 
sowie ihre Stärken und Grenzen diskutiert und darüber 
hinaus einige zukünftige Ausrichtungen und klinische 
Anwendungen betrachtet.

In Kapitel 6 habe ich diese Arbeit zusammengefasst.
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ABBREVIATIONS

ASE Allele-specific expression Gene expression levels measured separately for each of the two 
parental alleles

AUC Area under the (receiver 
operating characteristic) 
curve

The probability that a classifier will rank a randomly chosen 
positive instance higher than a randomly chosen negative 
instance

cDNA Complementary DNA DNA synthesised from an RNA template

CRISPR Clustered Regularly 
Interspaced Short 
Palindromic Repeats

Bacterial DNA sequences that are useful in genome editing

DEPICT Data-driven Expression 
Prioritized Integration for 
Complex Traits

A method for prioritizing genes, pathways and tissues based on 
gene expression data, established pathways and GWAS loci

DNA Deoxyribonucleic acid A molecule that contains an organism’s genetic information

ENA European Nucleotide 
Archive

An archive that provides a compherensive record of the world’s 
nucleotide sequencing information

eQTL Expression quantitative 
trait locus

A genetic locus that affects RNA expression levels

GAVIN Gene-Aware Variant 
INterpretation for medical 
sequencing

A computational method for classifying genetic variants for 
clinical diagnostics

GEO Gene Expression Omnibus A public functional genomics data repository

GRAIL Gene Relationships Across 
Implicated Loci

A computational tool to examine relationships between genes in 
disease-associated genetic loci

GWAS Genome-wide association 
study

An investigation of a group or groups of individuals to find 
genetic variants associated with a phenotype

HGP Human Genome Project An international research project from 1990 to 2003 
thatdetermined the sequence of base pairs of human DNA

HPO Human Phenotype 
Ontology

A standardized vocabulary of phenotypic abnormalities 
encountered in human disease

ICA Independent component 
analysis

A statistical method for separating a multivariate signal into 
additive subcomponents

lincRNA Large/long intergenic non-
coding RNA

A transcript longer than 200 nucleotides that doesn’t code for a 
protein

PCA Principal component 
analysis

A statistical method for transforming a set of observations
into orthogonal components

RNA Ribonucleic acid An essential molecule in many cellular processes

RNA-seq RNA sequencing A technology to measure the quantity of RNA in a sample

scRNA-seq Single-cell RNA sequencing A technology to measure the quantity of RNA in an individual cell

SNP Single nucleotide 
polymorphism

A variation in a single nucleotide that occurs at a specific 
position in the genome

USA United States of America
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lieve in inpedendent causal SNPs.

Corien, thank you so much for your long-standing 
help. Cold comfort for change. As a detail, I enjoyed 
our interpretation of dreams and such.

Danny, thanks for the interesting discussions. 
“Self-confidence is like money: it doesn’t exist.” It was 
great that you put your LaTeX  thesis in GitHub. It 
saved a lot of time for me.

Dasha, it was nice to go climbing together. I 
learned a lot of the sport from you. You’re a very 
sweet person.

Dennis, thank you for suggesting technologies 
such as React and help with the API definitions!

Essi, kiitos kannustuksesta!
Fiaz, ya mon. You’ve been a great traveling com-

panion. Let’s get our minds off our heads more.
Freerk, you’re an awesome person. I hope we can 

find a new beer for you in the party.
Gabriela, oye! Your love, while not always well re-

ceived, was the best thing that happened to me. I’m 
very grateful for all the support.

Genaro, thanks for all the fun times and swim-
ming! Estamos chupando tranquilos. 

Gosia, I learned a lot from you as you’re very strong 
and fight in the face of bad attitude. Full speed. And 
thanks for the hangover beer!

Harm-Jan, I couldn’t have wished for a better fel-
low PhD student next to me. Thank you for the sup-
port and all the fun things such as rearranging keys.

Heather, you’re the best. Thank you so much for 
caring and helping me through some of the most dif-
ficult days of my life. That ice cream was awesome.

Hedi, schönen Dank für Deine Hilfe bei der Über-
setzung! Und für die Umarmungen! 
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Your help was invaluable.

Javier, thank you for the fun times and reflection! 
Jihane, your decency was important among the wild.
Jing, your cheerfulness was amazing. Sometimes 
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it’s the small things: thank you for sending me that 
job posting!

Joeri, could be worse! You brought HPO ideas 
and clinical viewpoints and affinity propagation and 
you’re awesome.

Johan, you are rather convincing. Your ability to lis-
ten, and your carefully but confidently stated insights 
and directions have been of enormous help to me.

Juti, meigäläinen teigäläinen... tattis haljasista 
separoinneista ja huikeista keskusteluista. Attic So-
ciety forever.

Kieu, your smile brings a cheer!
Kim, your positivity and seeming immunity to ad-

verse situations were astonishing. Your pragmatic 
thinking helped me a lot, from work to relationships.

Lasse, kiitos että olet isoveljeni! 
Lassi, kiva kun tulit käymään!
Lude, thank you for supervising my PhD research. 

I learned a lot about science from you, from statis-
tical genetics via generation of hypotheses to pres-
entation of results. I enjoyed our — to use a word 
we both love — brainstorming sessions, in which it 
sometimes seemed there was only one mind in the 
room. I also learned a lot from the later ego fights. I 
believe you also influenced the discovery of my tal-
ent in visualisation and interface design. My fondest 
memory is from the ESHG conference in Amsterdam 
where we inhaled helium from party balloons. I apol-
ogize for the poem and other insults.

Luzma, thank you for nice company and showing 
around in Spain!

Mamen, you’re a very warm person. Don’t worry 
about the English: you speak more important languages.

Manski, olen hyvin kiitollinen isoveljellisestä 
avunannosta ja kaikenlaisista tykittelyistä vuosien 
varrella. Korviini on kantautunut uutta tietoa äijän ni-
men etymologiasta. Kuten tässä vaiheessa hyvin tie-
detään — oli kyse g) “en, etiikasta” tai e) “ty, molo”, g) 
I/O:ista — ilmeisin selitys ei aina ole se oikea. Koko 
tarina jää myöhemmin kerrottavaksi, mutta kuulinpa 
hiljan (en siis muinaisina aikoina) Ansbachissa kysyt-
tävän, onko ukkeli

a) M. A. ns. Numminen,
b) M. A. ns. Alanko vai
c) M. A. ns. Kimmo Kinnunen.
Manu, kiitoksia saunoista ja nauruista ja harras-

tushommista. 
Marc Jan, the nicest Dutch man on earth volgens mij.
Maria, you are awesome and a great cheer for the 

deparment. Thank you for your emotional support. 
Don’t let them wear your awesome smile off you. 
Muchas gracias por tu ayuda con el resumen!

Marijn, thank you for your support when I needed it!

Mitja, you’re a great friend and I’ve spent some of 
the most memorable times with you. Mountains, lakes, 
spritzers, barbecue, parties, social philosophy, sailing, 
psychedelia and Aki Kaurismäki. Who else could I have 
all this with? Beloved is the one who sits down.

Niek, you’re very cool. And you understand hitch-
hiking.

Noortje, you’re an amazing person. I will always 
remember your angelic help during a sad moment. 
Also, I can’t thank you enough for establishing con-
tact across the ocean!

Olga, thank you for good company!
Patrick, you’re brilliant and strong in the face of 

adversity. I wish I learned more of your pragmatic 
thinking.

Pieter, thank you for all the computational help, 
geeky discussions, and whatnot! 

Pomme, kiitos kämpästä, tuli tarpeeseen!
Pytrik, you’re great! Your capacity to learn com-

bined with your design skills yielded very cool things!
Rob, thank you for providing means for excellent 

exercise for my earthly temple-vehicle.. where pleas-
ure meets pain. Sorry for forgetting my automated 
class enrollment program running when going for va-
cation. I love burpees.

Rodrigo, you smooth motherfucker. Fun times.. 
hähhähhää! Number six! 

Rudolf, I learned statistics and good thinking from you!
Saana, olen hyvin kiitollinen tuesta ja ymmärryk-

sestä.
Sampsa. “Suomalainen ajattelee, että muut ovat 

häntä huonompia. Hollantilainen ajattelee, että hän 
on muita parempi.” on eräs huikeimmista huomioista 
ihmiskunnan historiassa. Toivottavasti päästään taas 
pian seuraamaan muurahaisten edesottamuksia Au-
ringon paistaessa parahultaisesti.

Sasha, thank you for wisdom, climbing company 
and D’. You were right about the alphabetical order 
of genes but I’m stubborn.

Sebo, thank you for believing in me and Gene Net-
work fandom! 

Taru, kiitoksia jargonin suomentamisesta!
Tessa, you did some of the most important Gene 

Networkwork. I shouldn’t have asked you to do 
something and proceed to do it myself anyway. Defi-
nitely learned from that.

Thomas, “mihin ikinä mä menin...”, kiitoksia veljel-
lisistä meiningeistä.

Timo, kiitos yösijasta, hyvästä seurasta ja kaikesta 
hauskasta!

Tõnu, your dedication to science is astonishing. 
Thank you for inspiration! 

Tune, thank you for making our work visible!
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Urmo, you brought proper Nordic (Northern?) 
spirit in. Also, thank you for showing around Tartu!

Vesa ja Terhi, kiitos että olin aina tervetullut! 
Olette parhaita.

Vinod, thank you for lincRNA adventures, badmin-
ton and inspiration! You’re super cool. 

Wille, kiitos yksiinvetäisyn finskaamisesta! Aina 
oppii kielestä näin muodoin.

Wouter, people have often acknowledged me for 
philosophical discussions. I find this slightly strange 
because I didn’t have a proper philosophical discus-
sion before you entered.

Yang, thank you for bringing smile and for the bad-
minton company. I wish we could do it more.

Zuzanna, thank you for coming to see me, twice! 
That meant a lot. Also, thanks for the vodka...

Viimeiseksi vaan ei vähäisimmäksi, minä ja järkeni 
kiittää säilymisestään kaikkia kun kävi visiitillä kaukai-
sessa Groningenissa: Anu, Eemil, Hedi, Heikki, Heikki, 
Iivari, JP, JP, Janski, Jaska, Johanna, Jokke, Jude, Jussi, 
Juti, Lassi, Leila, Lemmy, Lilli, Linda, Manski, Maria, 
Matti, Merirosvo, Mikko, Mokki, Osku, Pachva, Puti, 
Riikka, Ripa, Saana, Salama, Samppi, Santtu, Terhi, 
Thomas, Timo, Vekkuli, Vesa, Ville ja Wille.

Last, thank you everyone who provided me with 
a place to rest my head during my travels. You know 
who you are.

Lopuksi kiitän Ismo Alankoa jatkuvasta tuesta, 
inspiraatiosta, neuvonannosta sekä erinomaisista 
vaikutteista.
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