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A New Controllability Gramian for Semistable Systems and its
Application to Approximation of Directed Networks

Xiaodong Cheng, Student Member and Jacquelien M.A. Scherpen, Senior Member

Abstract— In this paper, we propose a new definition of a
controllability Gramian for semistable systems, which is then
used for model reduction of network systems. The system
under consideration is modeled as single integrators that inter-
connected with each other according to a connected directed
network. In the proposed method, the complexity of the network
is reduced through a graph clustering method which aggregates
the vertices if they respond similarly with respect to external
inputs. Here, the similarity of the vertices is computed based
on the new Gramian. The reduced-order model is obtained by
a Petrov-Galerkin projection where the projection matrices are
constructed from the resulting clustering. The reduced system
preserves the network structure, and the approximation error
between the full-order and reduced-order models is shown to be
always bounded. Finally, the proposed approach is illustrated
by an example.

I. INTRODUCTION

The study of network systems has become a popular
topic of interdisciplinary research in the recent decades,
since they represent complex systems appearing in a wide
range of scenarios, including social and ecological networks,
chemical reactions and physical networks, see e.g. [1]–[5].
However, large-scale networks usually pose a challenge for
both experiment and theory because of their high dimensions.
Therefore, it is worth addressing a structure preserving model
reduction problem, which aims to find a reduced-order model
inheriting a network structure as well as approximating the
behavior of the original high-dimensional system.

For general linear systems, methods such as balanced trun-
cation, Hankel norm approximation, and Krylov subspace
methods have been extensively studied [6]–[8]. Nevertheless,
those approaches do not guarantee to maintain a network
configuration of the reduced-order model, i.e., the obtained
model cannot be interpreted as a network again. A balanced
truncation method based on generalized Gramians is pro-
posed in [9], which yields a reduced network interpreted by
a smaller-sized Laplacian matrix. However, there is no direct
relation between the reduced and original networks, and the
states of the reduced-order system are mixtures of all the
original states.

Recently, graph clustering is introduced for model re-
duction of network systems, and the preservation of a net-
work structure is its major advantage. Related research for
undirected networks can be found in [10]–[15]. However,
many applications are modeled as Laplacian dynamics on
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directed networks. Examples can be found in, e.g., chemical
reaction networks, food web, and metabolic processes [1],
which usually describe mass/energy exchanges among dif-
ferent species. In [16], Markovian processes are considered
as semistable positive directed networks. The notion of
reducibility is introduced to characterize the uncontrollability
of state variables. Then, aggregating reducible variables
yields a reduced-order model that still contains the network
structural information. However, this method does not take
into account the Laplacian matrix of the underlying graph.
In contrast, the current paper considers the simplification of
a network as the reduction of its associated Laplacian matrix
such that the topology of the reduced network is reflected by
a lower-dimensional Laplacian matrix.

In our previous work, we have introduced a framework
of clustering-based model reduction for undirected networks
[14], [17], [18]. The behavior of each vertex is captured by a
transfer function from external inputs to an individual state.
Thus, the dissimilarity of a pair of vertices can be character-
ized by the norm of the transfer function discrepancy. Then,
some clustering algorithms are proposed to systematically
group these vertices with smaller dissimilarities.

In this paper, we extend our method to strongly con-
nected directed networks, which are modeled as Laplacian
dynamics. The definition of a semi-controllability Gramian is
generalized from [18], which provides us a convenient way to
compute the vertex dissimilarities. Besides, the hierarchical
clustering algorithm is adapted such that the corresponding
model reduction problem finds an appropriate network clus-
tering. In contrast to [16], the resulting reduced-order model
always guarantees a bounded approximation error, regardless
of the choices of clusters.

The rest of this paper is organized as follows: In Section
II, we introduce a notation of semi-controllability Gramian,
which is used to propose a scheme of model reduction of
directed networks in Section III. Section IV demonstrates
the effectiveness of the proposed method by an example.
Finally, concluding remarks are made in Section V.

Notation: Denoted R as the set of real numbers. R(s)
is the rational function field over R with variable s. For a
vector v ∈ Rn, vi is its i-th element. The cardinality of a set
V is given by |V|. The H2 norm of transfer function G(s)
is denoted by ‖G(s)‖H2

, respectively. The identity matrix
of size n is given as In, and 1n denotes a n-entries vector
of all ones. The subscript n is omitted when no confusion
arises. ei is the i-th column vector of In. Furthermore, tr(A)
denotes the trace of A.



II. SEMI-CONTROLLABILITY GRAMIAN

In this section, we introduce the concept of a semi-
controllability Gramian, which is extended from the defi-
nition of network controllability Gramian in [18]. The new
Gramian is the generalization of standard Gramians in [7]
and well-defined for all semistable systems.

Consider a general linear time-invariant system

Σs : ẋ = Ax+Bu, (1)

with states x ∈ Rn and inputs u ∈ Rk. The formal definition
of a semistable system is as follows.

Definition 1: [19] The system Σs is semistable if
lim
t→∞

x(t) exists for all initial conditions x(0) when u = 0.
Furthermore, a necessary and sufficient condition for the

semistability of Σs is given by the following lemma.
Lemma 1: [19] The system Σs is semistable if and only if

the zero eigenvalues of A are semisimple (i.e., the geometric
multiplicity of each eigenvalue coincides with its algebraic
multiplicity), and all the other eigenvalues have negative real
parts.

Recall from [7] the standard definition of controllability
Gramian.

Ps =

∫ ∞
0

eAtBBT eA
T tdt. (2)

It is clear that this definition is not applicable for the
semistable system Σs, since eAt does not necessarily con-
verge to zero as t → ∞, and the integral in (2) may
be unbounded. Hence, we propose a new definition of
controllability Gramian as follows.

Notice that all the zero eigenvalues of A in (1) are
semisimple. Assume that the algebraic multiplicity of the
zero eigenvalues is m. Then, there exists a decomposition of
A as follows.

A = UDU−1 =
[
U, Ū

] [0m×m
D̄

] [
V T

V̄ T

]
(3)

where D̄ ∈ R(n−m)×(n−m) is Hurwitz. The columns of
U ∈ Rn×m and V ∈ Rn×m are, respectively, the right
eigenvectors and left eigenvectors of A corresponding to the
zero eigenvalues. Ū is a matrix such that U =

[
U, Ū

]
is a

unitary matrix.
Denote the convergence matrix of the system Σs by

J := lim
t→∞

eAt = UV T . (4)

Then, the semi-controllability Gramian of Σs is defined as
follows.

Definition 2: Consider a semistable system Σs as in (1).
The semi-controllability Gramian is defined by

P =

∫ ∞
0

(eAt − J )BBT (eA
T t − J T )dt ∈ Rn×n, (5)

where J is a constant matrix defined in (4).
Remark 1: Let h(t) := eAtB be the impulse response of

Σs and h̃(t) := h(t) − JB. Equation (4) implies that h̃(t)
is an absolutely integrable function. Therefore, the integral
in (5) is finite.

Remark 2: The integral in (5) can be approximated by

P ≈
∫ Tc

0

(eAt − J )BBT (eA
T t − J T )dt, (6)

where Tc, satisfying eATcA ≈ 0, is similar to the definition
of convergence time in the context of consensus networks.
Moreover, the Lyapunov characteristic of P will be discussed
in the further version.

Under some conditions, the H2-norm of a semistable
system can be characterized by the semi-controllability
Gramian, as explained in the following lemma.

Lemma 2: Consider a semistable system Σs in (1) with
output y = Cx. The H2-norm of Σs exists if and only if
CJB = 0. Furthermore, if the H2-norm of Σs exists, then

‖Σs‖2H2
= tr(CPCT ). (7)

Proof: Recall the following equation from e.g. [7]

‖Σs‖2H2
= tr

(∫ ∞
0

CeAtBBT eA
T tCT dt

)
. (8)

Let g(t) := CeAtB. The above integral is finite if and only if
g(t) is absolutely integrable. Since g(t) is a smooth function
on R, the integrability id then equivalent to

lim
t→∞

g(t) = 0, i.e., C
(

lim
t→∞

eAt
)
B = CJB = 0. (9)

Hence,

tr(CPCT ) = tr

[∫ ∞
0

C(eAt − J )BBT (eA
T t − J T )CT dt

]
= tr

(∫ ∞
0

CeAtBBT eA
T tCT dt

)
= ‖Σs‖2H2

.

That completes the proof.
Directed networks with the so called Laplacian dynamics

[2] are special semistable systems. In the next section, we
apply the results developed in this section to the model
reduction problem of network systems.

III. MODEL REDUCTION OF DIRECTED NETWORK
SYSTEMS

A. Problem Formulation

This section provides the mathematical model of a network
system evolving over a strongly connected digraph. Then, it
formulates its model reduction problem.

In this paper, we consider an edge-weighted digraph,
which is defined by a triplet G = (V, E ,W) with V and
E ⊆ V × V as the sets of vertices and edges, respectively.
W ∈ Rn×n (n = |V|) is called the weighted adjacency
matrix. The (i, j) entry of W , denoted by wij , is positive
if the directed edge (i, j) ∈ E , and wij = 0 otherwise.
In general, wij 6= wji holds for weighted digraphs. The
Laplacian matrix of the digraph G is then defined by L ∈
Rn×n whose (i, j) entry is written as

Lij =

{ ∑n
j=1,j 6=i wij , i = j

−wij , otherwise.
(10)



The Laplacian dynamics on G can be modeled as the
following linear time-invariant system

Σ : ẋ = −Lx+ Fu, (11)

where L is the weighted digraph Laplacian matrix, and F is
the input matrix.

A typical example can be found in the chemical dynamics
[2], [20], where chemical species are the vertex states.
The directed edges represent a series of chemical reactions
converting source species to target species, and the edge
weights are the rate constants of the corresponding reactions.
As in [16], we assume L is irreducible (i.e., L is not similar
via a permutation to a block upper triangular matrix). Then,
the following lemma is given by [21].

Lemma 3: [21] If Laplacian matrix L is irreducible then
the following hold:
• The associated digraph G is (strongly) connected;
• L has a simple zero eigenvalue, whose associated left

eigenvector has all positive entries.
• 1 is a right eigenvector of L associated to the zero

eigenvalue.
Clearly, the network system Σ is semistable. Now, we

formulate the model reduction problem of system Σ in the
framework of Petrov-Galerkin projection as follows.

Problem 1: Given a network system Σ, find a projection
Γ = VWT with W,V ∈ Rn×r, r � n and WTV = I such
that the obtained reduced-order model

Σ̂ :

{
ż = −L̂z + F̂ u,
x̂ = Vz, (12)

where L̂ := WTLV and F̂ := WTF , approximates the
original system Σ in a way that ‖Σ − Σ̂‖ is small enough
in terms of H2- or H∞-norms, and L̂ is a Laplacian matrix
representing a smaller-sized connected digraph.

B. Projection by Graph Clustering

This subsection constructs the reduced network system
by the Petrov-Galerkin projection where the characteristic
matrix of graph clustering is used as the projection matrix.
First, some notions related to clustering are provided [14].

Definition 3: Consider a connected graph G = (V, E) with
V = {1, 2, · · · , n} the index set of vertices. A nonempty
subset of V , denoted by C, is called a cluster of graph G.
Then, graph clustering is defined as the partition of V into
r disjoint clusters which cover all the elements in V .

Definition 4: Consider a graph clustering
{C1, C2, · · · , Cr} of V with |V| = n. The characteristic
vector of the cluster Ci is denoted by a binary vector
π(Ci) ∈ Rn where 1T

nπ(Ci) = |Ci|, and the k-th element of
π(Ci) is 1 when k ∈ Ci and 0 otherwise. The characteristic
matrix of the clustering is a binary matrix defined by

Π := [π(C1), π(C2), · · · , π(Cr)] ∈ Rn×r. (13)
Next, we construct a reduced-order network system using

the clustering-based projection. By Lemma 3, the connect-
edness of the digraph G implies L has a simple eigenvalue
equal to zero. There fore Correspondingly, we denote the

right and left eigenvectors of this zeros eigenvalue by µ and
ν, respectively, which satisfy

Lµ = 0, and νTL = 0. (14)

Notice that all the entries of ν are real positive. Furthermore,
we choose µ = 1n/

√
n and νTµ = 1. Notice that the

matrices U and V in the algebraic result of Section II need to
be replaced in this section by vectors µ and ν, respectively.

Now, we consider the system Σ on digraph G of n vertices.
To formulate a reduced model of dimension r, we find a
graph clustering that groups the vertices of G into r clusters.
The following projection matrices are utilized.

WT = (ΠTNΠ)−1ΠTN, V = Π (15)

with N := diag(ν) and Π a characteristic matrix of the
graph clustering. Consequently, the r-dimensional simplified
network system in (12) is specified as

Σ̂ :

{
ż = −L̂z + F̂ u,
x̂ = Πz,

(16)

where

L̂ := (ΠTNΠ)−1ΠTNLΠ, and F̂ = (ΠTNΠ)−1ΠTNF.

Remark 3: NL is a Laplacian matrix associated to a
balanced digraph, i.e. in-degree and out-degree of each
vertex are equal [21]. For a balanced digraph, 1n is also a
left eigenvector of NL associated with the zero eigenvalue,
i.e., 1T

nNL = 0.
Remark 4: The reduced model Σ̂ preserves the network

structure since L̂ is a Laplacian matrix, which can be
interpreted as a reduced digraph. Moreover, 1r and ΠT ν
are right and left eigenvectors of L̂ associated to its zero
eigenvalue. We treat this further in Theorem 1.

Denote the transfer functions of Σ and Σ̂ by

η(s) = (sIn + L)
−1
F, and η̂(s) = Π(sIr + L̂)−1F̂ , (17)

respectively. As mentioned above, Σ is not asymptotically
stable, which means ‖η(s)‖H2

and ‖η(s)‖H∞ may be un-
bounded. The following theorem guarantees that the error
system Σ− Σ̂ is stable.

Theorem 1: Consider the network system Σ in (11) and
the reduced-order model Σ̂ in (16). For an arbitrary network
clustering, ‖η(s)− η̂(s)‖H2 is always bounded.

Proof: Consider the impulse responses of Σ and Σ̂,
respectively.

ξ(t) = e−LtF, and ξ̂(t) = Πe−L̂tF̂ . (18)

From (4), we have

lim
t→∞

ξ(t) = µνTF =
√

1/n1nν
TF. (19)

Observe that Π1r = 1n and ν = N1n. Then, we let

ν̂ = cΠT ν = c · (ΠTNΠ)1r, and µ̂ = 1r/
√
r, (20)



with c a constant scaler to be determined, which satisfy

ν̂T L̂ = c1T
r (ΠTNΠ) · (ΠTNΠ)−1ΠTNLΠ

= c1T
r ΠTNLΠ = c1T

nNLΠ = 0.

L̂µ̂ = (ΠTNΠ)−1ΠTNLΠ1r/
√
r

= (ΠTNΠ)−1ΠTNL1n/
√
r = 0.

(21)

Therefore, ν and µ are the left and right eigenvectors of L̂
corresponding to the zero eigenvalue, respectively. Further-
more, since νTµ = 1, it follows that

c =

√
r

1T
nN1n

=
√
r/n. (22)

Then the following equation follows from (4) as well.

lim
t→∞

ξ̂(t) = lim
t→∞

Πe−L̂tF̂ = Πµ̂ν̂T F̂

= Π
1r√
r

√
r1T

r (ΠTNΠ)√
n

(ΠTNΠ)−1ΠTNF

=
√

1/n1nν
TF = lim

t→∞
ξ(t).

(23)

By definition, the H2-norm of ηi(s)− η̂j(s) is given by

‖η(s)− η̂(s)‖2H2
=

∫ ∞
0

‖ξ(t)− ξ̂(t)‖22dt, (24)

Since ξ(t) and ξ̂(t) are bounded smooth functions of t, which
exponentially converge to the same value, the integral in (24)
is bounded.

Remark 5: Unlike the undirected case, L in (11) is asym-
metric in general, which means ν ∈ im(µ) does not nec-
essarily hold. The projections used in [11], [14] for undi-
rected networks may yield an unstable error system Σ− Σ̂.
Besides, in contrast to the model reduction approach of
directed networks in [16], our method always guarantees the
boundedness of the approximation error for any clustering.

C. Vertex Dissimilarity & Cluster Selection

In this subsection, the notation of semi-controllability
Gramian is applied to define the dissimilarity of vertices.
Based on that, hierarchical clustering algorithm is adapted
to find a suitable clustering.

First, the transfer functions from the external input to the
states of an individual vertex are denoted by

ηi(s) := eT
i η(s), i = {1, 2, · · · , n}. (25)

Then, the definition of dissimilarity is given as follows.
Definition 5: [17] Consider the network system Σ in

(11). The dissimilarity matrix is denoted byD, whose (i, j)-
entry represents the dissimilarity of vertices i and j,

Dij := ‖ηi(s)− ηj(s)‖H2
. (26)

Particularly, if Dij = 0, vertices i and j are 0-dissimilar.
Clearly, D is nonnegative, symmetric, and has zero diag-

onal elements. When the scale of the directed network is
large, the computation of D entry by entry may become a
formidable task. The proposed semi-controllability Gramian
provides an efficient computational method as stated in the
following theorem.

Theorem 2: For a connected directed network, each entry
in the dissimilarity matrix of Σ is finite, which is given by

Dij =
√

(eT
i − eT

j )P(ei − ej), (27)

where P is the semi-controllability Gramian of Σ.
Proof: Let C := eT

i − eT
j ∈ R1×n. For a connected

directed network,

J = µνT =
√

1/n1nν
T . (28)

Thus, CJF = 0. Lemma 2 then implies that Dij is bounded
for any i, j and D2

ij = CPCT .
Each entry of D quantifies the similarity of two vertices’

behaviors, which can be regarded as a special definition
of “distance”. With such a notion, we are able to build a
bridge from model reduction to the clustering problems in
data mining or computer graphics [22], [23]. In Algorithm
1, we adapt a ready-made algorithm in computer graphics,
the hierarchical clustering [22], [23], into a cluster selection
problem for the purpose of model reduction. First, the
dissimilarity between clusters Cp and Cq is approximated by

δ(Cp, Cq) =
1

|Cp| · |Cq|
∑
i∈Cp

∑
j∈Cq

Dij . (29)

The hierarchical clustering links the pairs of vertices that are
in close proximity and place them into binary clusters. Then,
the newly formed clusters can be merged into larger clusters
according to the cluster dissimilarity in (29).

Algorithm 1 Hierarchical Clustering
Input: L and F , model order n, desired order r
Output: L̂, F̂

1: Compute the semistable Gramian P
2: Use Theorem 2 to calculate the dissimilarity matrix D
3: Place each vertex into its own singleton cluster, that is
Ci ← {i} for all 1 ≤ i ≤ n

4: k ← n
5: while k > r do
6: Set δm to be an arbitrary large number
7: for i = 1 : k − 1 and j = 2 : i− 1 do
8: Compute δ(Ci, Cj) by (29)
9: if δm > δ(Ci, Cj) then

10: p← i, q ← j, δm ← δ(Ci, Cj)
11: end if
12: end for
13: Merge cluster p and q into a single cluster
14: k ← k − 1
15: end while
16: Compute Π ∈ Rn×r and obtain L̂ and F̂ in (16).

Remark 6: Note that Algorithm 1 is a greedy method. We
can also adapt other clustering strategies (e.g. K-means clus-
tering [22]) to our problem. Besides, the current clustering
algorithm does not focus on manipulating individual edges.
Nevertheless, it can be easily modified for the consideration
of edges. We just set the dissimilarity of vertices i and j to
be ∞ if they are not neighbors. As a result, the clustering
only aggregates vertices linked by edges.



D. Approximation Error

This subsection provides an efficient method to com-
pute the approximation error between the original and the
reduced-order network systems. To this end, an error system
is defined as follows.

Σe :

{
ω̇ = Aω + Bu,
δ = Cω, (30)

where

A = −
[
L 0

0 L̂

]
,B =

[
F

F̂

]
, C =

[
In −Π

]
.

Theorem 1 implies ‖Σe‖H2 is always bounded, regardless
of the choice of clusters. Furthermore, ‖Σe‖H2

is computed
as follows.

Theorem 3: The approximation error between Σ and Σ̂
is always bounded as

‖Σe‖H2 = ‖Σ− Σ̂‖H2 =
√
tr(CPeCT ). (31)

Proof: Due to the structure ofA, Σe is also a semistable
system, whose semi-controllability Gramian Pe is defined by
(5). Moreover, from (19) and (20), the convergence matrix
is given by

Je = −
[
µνT

µ̂ν̂T

]
= − 1√

n

[
1nν

T

1rν
T Π

]
, (32)

with ν the left eigenvector of L associated to the zero
eigenvalue.

Note that
ν = N1n = NΠ1r. (33)

Then, we obtain

CJeB = − 1√
n

[
In −Π

] [1nν
T

1rν
T Π

] [
F

F̂

]
= − 1√

n
1n

[
νT − νT Π(ΠTNP )−1ΠTN

]
F

= − 1√
n

1n

[
νT − 1T

r ΠTN
]
F = 0.

Hence, we can apply Lemma 2, which gives (31).

IV. ILLUSTRATIVE EXAMPLE

In this section, we adopt a sensor network example from
[24] to illustrate the feasibility of the proposed method. Fig.
1 depicts the topology of the directed network, which is
connected. We choose node 2 and node 7 as controlled nodes,
which are influenced by the external input signals. We apply
the hierarchical clustering algorithm to reduce the dimension
of the full-order network system to a 6-dimensional reduced-
order model. The result of the hierarchical clustering is given
as

C1 = {10, 11, 12, 13, 14}
C2 = {1, 4, 5}, C3 = {6, 8, 9},
C4 = {3}, C5 = {2}, C6 = {7}.

Then, the corresponding simplified network is shown in Fig.
2, which indicates that the network structure is preserved in
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Fig. 1. A directed sensor network which contains 14 nodes. The controlled
nodes are labeled as red blocks.
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  4   5

  6

Fig. 2. The reduced sensor network where the controlled nodes are labeled
as red blocks.

the new model. Now, to compare the behavior of the reduced-
order network to the original one, we use unit step signals
with 1s step time as external inputs for both systems. The
state trajectories of (11) and (16) are compared in Fig. 3.

Fig. 4 is called a dendrogram, which is in the shape of
a binary, hierarchical tree. From the dendrogram, the result
of graph clustering can be interpreted straightforwardly. The
bottom vertical lines are called leaves, which represent the
vertices on graph. Each fusion of two clusters is indicated
by the splitting of a vertical line into two branches, and the
horizontal position of the split, shown by the short horizontal
bar, reads the similarities between the two clusters. In Fig.
4, we can see there are two pairs of 0-dissimilar vertices,
namely 1 and 4, 13 and 14. Our algorithm first aggregates
these 0-dissimilar vertices, which generates a 13th order
reduced model without any approximation error, and then
apply Algorithm 1 to further reduce the order, see Fig. 5.

We also make a comparison between the hierarchical clus-
tering and a random clustering strategy in order to demon-
strate the effectiveness of hierarchical clustering. Here,
the random clustering randomly assigns n vertices into r
nonempty disjoint subsets. Fig. 5 shows the comparison
of their approximation errors for different reduced orders
r, where the curve of random clustering is plotted based
on an average of 50 times random cluster selection. The
result indicates that the hierarchical clustering algorithm has
better performance. When r = 6, the approximation error
‖Σ − Σ̂‖H2

is less than 0.2. The example shows that the
proposed method is feasible for model reduction of directed
network systems.
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Fig. 3. The state trajectories of the original and reduced directed networks,
which are depicted by solid and dash lines respectively. We use the same
color to mark the vertices within the same clusters.
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Fig. 4. Dendrogram shows the hierarchical of the graph clustering, where
the horizontal axis are labeled by vertex numberings, and the vertical axis
indicates the dissimilarity between clusters.
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Fig. 5. Approximation error comparisons of hierarchical clustering algo-
rithm with random clustering.

V. CONCLUSION

In this paper, we propose a mathematical framework for
model reduction of directed network systems. This method is
based on graph clustering where the vertices having similar
behaviors are aggregated. The clustering-based projection
maintains the structure of the Laplacian matrix in the reduced
model such that it can be interpreted as a network system.
Through an example of sensor networks, the efficiency of
the proposed method is verified.

Despite that we assume the strong connectedness of the
network, the result in this paper can be extended to the
weakly connected case. In such case, the network system
is still a semistable system, but the multiplicity of the zero
eigenvalues of the Laplacian matrix will be larger than one.
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