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Abstract. Decision making is thought to involve a process of evidence
accumulation, modelled as a drifting diffusion process. This modeling
framework suggests that all single-stage decisions involve a similar evi-
dence accumulation process. In this paper we use decoding by machine
learning classifiers on intracranially recorded EEG (iEEG) to examine
whether different kinds of decisions (perceptual vs. memory) exhibit dy-
namics consistent with such drift diffusion models. We observed that
decisions are indeed decodable from brain activity for both perceptual
and memory decisions, and that the time courses for these types of de-
cisions appear to be quite similar. Moreover, the high spatial resolution
of iEEG revealed that perceptual and memory decisions rely on slightly
different brain areas. While the accuracy of decision decoding can stil
be improved, these initial studies demonstrate the power of decoding
analyses for testing computational models of cognition.

1 Introduction

Decision making is a basic cognitive process that comes to play in many different
tasks. Most of the research on decision making focuses on simple tasks such as
detecting the direction of randomly moving dots. The theories developed on the
basis of those experiments presume that all decisions between two alternatives
(at least those consisting of a single stage process) behave with similar dynamics.
Specifically, according to drift diffusion models (DDMs; Ratcliff, 1978), decisions
follow a drifting diffusion process, where the random walk is driven by the deci-
sion information. The DDM starts the process of evidence accumulation at the
moment the stimulus comes on the screen, and then slowly drifts towards one
of the decision thresholds which each correspond to a particular decision option.
As soon as the decision threshold is reached, the response corresponding to the
relevant decision option is given. The model has been found to produce excel-
lent fits to performance in a variety of tasks, as well as the detailed shape of
the associated response time distributions. The parameters of this model each
can be interpreted as specific cognitive processes such as attention allocation
in the drift rate parameter and speed-accuracy trade-off in the location of the
decision threshold (Ratcliff, 2016). In addition to the drift rate and the decision
threshold, the third main parameter of the model is the non-decision time, which



reflects non-decision-related processes such as preparing a motor response and
fixed delays in the perceptual system. By varying the values of these parameters,
subtle differences in shapes of the response time distributions can be reproduced.

While DDMs were developed exclusively based on behavioral data, more
recently it has also been suggested that the brain may implement such diffu-
sion processes. For example, in seminal work, Shadlen and colleagues observed
monotonously increasing firing rates of neurons in the lateral intraparietal area
while monkeys were deciding about the direction of randomly moving dots
(Shadlen and Newsome, 1996, Roitman & Shadlen, 2002). This neural signature
was modulated by the strength of the decision evidence (the proportion of dots
moving coherently) and the traces seemed to all move up to the same final firing
rate around the time of the response. Subsequent studies on monkeys in similar
tasks instead placed evidence accumulation in the frontal eye fields (Ferrera et
al., 2009, Hanes & Schall, 1996, Purcell et al., 2010), superior colliculus (Ding &
Gold, 2012) and caudate (Ding & Gold, 2010). Some of the differences between
studies could be traced back to the response modality (e.g., accumulation-like
activity is more likely in frontal eye field when monkeys use saccades to indicate
their response than when they use reaching).

In humans, accumulation processes have been studied as well, although in
that case the challenge is the trade-off between poor temporal resolution of
functional magnetic resonance imaging (fMRI) and the poor spatial resolution of
electroencephalograph (EEG). FMRI studies have suggested evidence accumula-
tion may take place in the dorsolateral prefrontal cortex (Heekeren et al., 2006),
inferior frontal gyrus (Ho et al., 2009, Krueger et al., 2017, Ploran et al., 2007)
but as demonstrated in a meta-analysis, in fact almost the whole brain (Mulder
et al., 2014). Using EEG, we found neural correlates of evidence accumulation
in parietal 4–9Hz theta oscillations when people were making decisions about
randomly moving dots (van Vugt et al., 2012). MEG (magnetoencephalography)
studies have implicated different brain regions in the accumulation process, such
as 14–24Hz beta oscillations over motor cortex; Donner et al., 2009). In addi-
tion to these brain oscillations, it has been suggested that two event-related
potentials–the centroparieto potential (CPP; O’Connor et al., 2012), and the
lateralized readiness potential (van Vugt et al., 2014)–reflect evidence accumu-
lation. While the CPP may arise from parietal cortex, the lateralized readiness
potential may come from premotor areas of the brain. However, none of this
localization is very specific since it is derived from scalp-recorded EEG, which
has poor localization.

An alternative approach to localizing the decision process in the brain has
been to use classifiers, which are increasingly popular in neuroscience. The first
studies using these methods focused on finding specific moments in time at which
decisions can be best classified, rather than tracking the complete decision pro-
cess over time. For example, Ratcliff and colleagues (2009) found that a logistic
regression-based classifier in the period around 400 ms post-stimulus exhibited
behavior consistent with evidence accumulation during a face-car discrimination
task–the output of this classifier covaried with between-trial differences in the



drift rate. Philliastides and colleagues (2014) followed up on this in a similar
face-house discrimination task and showed that a Fisher discriminant analysis
could also track the decision process over time and this process appeared to be
predominantly localized to parietal regions.

While these results are promising, they do not give very detailed localization
of the decision process and restrict themselves to the cortex due to the inherent
constraints of EEG data. Moreover, as is clear from the above discussion, dif-
ferent studies have claimed that evidence accumulation occurs in many different
brain areas, dependent on the study. One potential reason for contradictory re-
sults may be that decisions on the basis of different kinds of evidence may be
implemented by different brain regions. For this reason, it is worthwhile to exam-
ine whether evidence accumulation looks similar for different kinds of decisions,
such as perceptual decisions and decisions about remembered information.

To enhance spatial localization we decode decision information from intracranially-
recorded brain oscillations (rather than the scalp EEG used in most previous
studies). Intracranial EEG is data with a high degree of spatial and temporal
precision that can be obtained from epileptic patients who are implanted with
electrodes for clinical purposes (Jacobs & Kahana, 2010). To determine what
brain areas are involved in decision making, and where the decision information
is available over time, we ran a regularized logistic regression classifier in short
(50-ms) time bins, and assessed how classification accuracy develops for mem-
ory and perceptual decisions. We focused on classifying 4–9Hz theta oscillations,
since we previously demonstrated that those are most informative for decision
making (van Vugt et al., 2012). We then looked at the classifier weights to deter-
mine what Brodmann areas carry most of the decision information, and whether
those differed between perceptual and memory decisions.

2 Methods

2.1 Participants

Participants were recruited from the patients undergoing long-term invasive
monitoring for pharmacologically intractable epilepsy at Freiburg University
hospital (Germany). Sixteen individuals were recruited and participated in our
behavioral experiments.

2.2 Task

To be able to compare perceptual and memory decisions, we created a task
with perceptual and memory conditions that used the same set of stimuli. We
created synthetic face stimuli by means of the Basel Face model (Paysan et
al., 2009), which allowed us to manipulate the stimulus similarity (and hence task
difficulty) very precisely. In the perceptual condition (Fig. 1(a)), participants saw
two faces facing outward and had to determine whether this face belonged to
the same person (i.e., was simply a rotated version of the same face). In the



memory condition (Fig. 1(b)), participants were first shown two faces during a
2000–2075ms (jittered) study period, followed by a 1000–1150ms (jittered) blank
delay period, after which a probe face was shown. Participants were then asked
to indicate by a button press whether this probe face was identical to one of the
two faces presented in the study. The jitter in the task was used to ensure that
no spurious oscillatory phase-locking could occur.
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Fig. 1. Example trials of the perceptual (a) and memory (b) condition.

2.3 Recordings

Data were recorded with a 2000Hz sampling rate on the clinical EEG recording
system (Compumedics). We then segmented the data into trials of 4000 ms
duration, starting 200 ms prior to the onset of the probe stimulus. We checked
for the occurrence of epileptiform activity and one of the participants’ data had
to be discarded due to epileptic spikes in a majority of the trials. Trials whose
response time exceeded the trial segment duration (3800 ms) were discarded,
and the classifier analysis was done only on correct trials. Similarly, trials with
a kurtosis larger than 15 (indicative of epileptic spikes) were removed. The total
dataset involves 1178 electrodes.

2.4 Data analysis

Data were analyzed by means of in-house matlab code that was based on tool-
boxes developed by Jelmer Borst and Per Sederberg. First, we ensured that the
two classes to be separated (match/non-match decisions) had an equal number
of trials by randomly removing trials from the larger class. We then performed a
wavelet transform to obtain EEG time courses in the 4–9Hz theta band, which
previously has been shown to be important for decision making (van Vugt et
al., 2012). Next, we z-transformed all trials to ensure the data had an average
of zero and a standard deviation of one. We then vincentized the data–that is,
we turned each trial into an equal number of bins between the stimulus and



the response (with the exception of the first 300 ms, which contains roughly the
same peaks irrespective of the response time, so this period was not stretched
or compressed and simply divided into 6 bins of 50 ms duration). The number
of bins was chosen such that on average, bin duration would be approximately
50 ms.

For each time bin, we trained a regularized logistic regression model to dis-
tinguish between the match and non-match responses. Essentially, this model
tries to find a matrix W that maps between the n x p matrix of examples X

(p is the number of features, n is the number of trials) and the vector of labels
(match or non-match) Y: W = (XTX + λIp)

−1XTY . In this equation, Ip is
the p x p identity matrix and λ is the regularization matrix. The regularization
allows the algorithm to deal with many correlated predictors. For each classi-
fier the regularization parameter lambda was determined by means of a search
between 0 and 10,000 (Borst et al., 2013). The lambda that minimized the root-
mean-square prediction error across all labels was chosen. We then assessed the
classifier’s performance using 10-fold cross-validation.

3 Results

3.1 Accuracy across subjects

We first examined how well decisions could be decoded from intracranial EEG
data per participant. Fig. 2 illustrates the maximum accuracy across the decision
interval (between the moment the probe stimulus came on the screen and the
response). As can be seen, there are large differences between individuals in
classification accuracy, which ranges from close to chance (55%) to 76%. Most
accuracies significantly exceed chance according to a binomial proportion test
(see stars in Fig. 2; p < 0.016, reflecting a 5% False Discovery Rate).
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Fig. 2. Maximum decision decoding accuracy for each participant, separately for per-
ceptual and memory trials. Stars indicate classification accuracies that are larger than
chance.

Having established that decision classification is possible to some extent, we
can now examine our main question: what is the time course of these classifica-
tions, and does it differ between perceptual and memory decisions? Fig. 3 demon-
strates that while for some participants there is no classification possible, and



Table 1. DDM parameters (mean and standard error of the mean). Perceptual and
memory trials were split between low and high-similarity conditions (difficult and easy,
respectively). Decision threshold was kept fixed between all conditions. Non-decision
time was fixed between the similarity conditions. This model came out as best from a
BIC comparison of various model configurations.

condition drift decision threshold non-decision time (s)

perception low similarity -0.41 (0.13) 0.27 (0.025) 0.92 (0.15)
perception high similarity 0.24 (0.066) 0.27 (0.025) 0.92 (0.15)
memory low similarity -0.11 (0.014) 0.27 (0.025) 0.50 (0.047)
memory high similarity 0.11 (0.016) 0.27 (0.025) 0.50 (0.047)

the signal hovers around chance level, for others there is meaningful classifica-
tion, and consistent with the DDM, classification accuracy increases slowly over
time (the slope of the classification accuracy is larger than zero for both mem-
ory decisions (t(14)=2.55, p = 0.012) and for perceptual decisions (t(14)=3.04,
p = 0.0044)). Unexpectedly, classification accuracy appears to continue to in-
crease even after the response has been made. One possible interpretation of
such a pattern is provided by recent modeling studies that suggest that after the
decision has been made, the accumulation process continues with the objective
of estimating decision confidence (Pleskac & Busemeyer, 2010).

Comparing the two conditions, classifier accuracy appears to get higher for
perception than for memory trials (Mmemory=0.61;Mperception=0.64 ; t(14)=2.82,
p = 0.014). In short, while perceptual and memory decisions involve quite dif-
ferent tasks and response times, the decodable decision information forms quite
a similar trajectory for both, consistent with the DDM predictions. The only
difference is that the classifiers start to increase at different points in time, pre-
sumably because the response time in the perception condition is significantly
longer than in the memory condition. This difference in response time is presum-
ably caused by the fact that in the perception condition, participants need to first
mentally rotate the images before they can make their decision. DDM fits are
consistent with this idea (see parameters in Tab. 1): there is a significant effect
of task on the non-decision time parameter (F (1, 60)=14.1, p = 0.0004, similar
to previous studies of mental rotation decisions ). Another interesting finding is
that classification accuracy appears to continue increasing even after the deci-
sion has been made. This is consistent with some findings from experiments with
monkeys suggesting that after the decision has been made, participants continue
to accumulate information to make estimates of their confidence in the decision.

3.2 How do different brain areas contribute to classification?

Next, we asked what brain areas are involved in classification, and how these
regions differ between perceptual and memory decisions. Specifically, for every
Brodmann area, we reported the proportion of electrodes in that area that were
significantly involved in evidence accumulation (i.e., having z-scores larger than
2). Fig. 4 shows the electrodes that were, across participants most involved in



classification, separately for perception and memory decisions. It is clear that
most of these electrodes are in lateral parietal and temporal areas. Part of the
reason for that is of course that the locations that are relevant for clinical pur-
poses tend to be temporal areas, which are often the sources of epileptic seizures.
Table 2 demonstrates that the Brodmann areas that have the largest proportion
of electrodes carrying decision information are parietal areas (Brodmann area 7)
and perceptual-motor areas (Brodmann areas 1-2-3-5).
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Fig. 3. Time courses of classification accuracy in the 4–9Hz theta band for a partici-
pant with good classification (a) and for a participant with poor classification (b). For
comparison, two other participants are also shown ((c) and (d)). Vertical lines indicate
the average time of the response for the relevant condition (blue for perception, red for
memory).

Discussion

We examined the time course of the availability of decision information during
a perceptual and a memory decision task. As the DDM predicted, overall the
decoded decision evidence shows similar dynamics for perceptual and memory
decisions. The difference between the two lies in the time at which they move
upwards, which is later for the perception condition than for the memory con-
dition. This is not surprising given that for the perception task the response
time is significantly longer than in the memory task. The second question we
asked was whether accumulation in the perception and memory conditions relies



on different brain regions. Because we have no full brain coverage we can only
make tentative claims, but the data so far suggest that there are differences be-
tween those two types of decisions (see also Fig. 4). While memory decisions rely
predominantly on Brodmann area 7 (parietal cortex) and sensorimotor cortex,
perceptual decisions rely more on Brodmann area 13 (anterior insula) and 30
(visual area).

While we did obtain classification accuracies above chance, classification is
far from stellar. Potentially other classifiers such as lasso or artificial neural nets
could do better than these. On the other hand, such classifiers run a higher risk
of overfitting the data. Another potential approach could be to make use of the
known similarity structure of the face stimuli. Previous studies have shown that
such decoded similarity structures can help to track memory representations
in the brain (Zhang et al., 2015). In addition, we focused here on the theta
band, because that frequency was suggested by prior studies. Nevertheless, it
could easily be the case that for these data, better decision information could
be decoded from other frequencies. Finally, there are large differences between
individuals. We examined whether individual differences in task performance
(accuracy and response time) could account for these differences in classification
accuracy. We found that the data were too unreliable to make any connection
between task performance and classifier accuracies (all Bayes Factors between
0.4 and 2.2).

Table 2. Proportion of significant electrodes by Brodmann area for classification of
target-lure/match-nonmatch decisions on the basis of 4–9Hz theta activity. The Brod-
mann areas are ordered by proportion of significant electrodes. Only Brodmann areas
with more than 15 electrodes are included. Brodmann areas for which the proportion
of significant electrodes is zero: 9, 22, 28,40, 47 and hippocampus.

Brodmann area memory perception Nelectrodes Nparticipants

Brodmann area 7 0.17 0.06 18 1
Brodmann area 13 0.03 0.09 34 10
Brodmann area 20 0.01 0.07 179 13
Brodmann area 36 0.02 0.07 46 9
Brodmann area 37 0.01 0.04 98 12
Brodmann area 41/42 0.03 0.03 33 8
Amygdala 0.00 0.03 31 9
Brodmann area 21 0.01 0.03 246 13
Brodmann area 19 0.02 0.00 57 9
Brodmann area 38 0.02 0.00 101 10

Another weaker part of this study is that it did not make a direct connection
to DDM parameters. If the dynamics of the decoded decision process were to
covary with model parameter estimates (van Vugt et al., 2012), this would bolster
our confidence that we are in fact observing neural correlates of a drift diffusion
process. One approach that we can use in the future to examine this is to use
the classifier readout to separate the trials into low-evidence and high-evidence,



and then to fit the DDM separately to these classes of trials. Previous studies
using such an approach have demonstrated that such within-participant model
verification can be used to identify neural correlates of drift diffusion processes
(Ratcliff et al., 2009; Ratcliff et al., 2016b).

In short, we have demonstrated how decoding decision information from brain
data can help us to better understand the dynamics of decision making. This
builds on a larger body of work that uses classifiers to track covert cognitive
processes over time. As classifiers become more powerful and can deal with more
noisy data, these are very useful tools to help us uncover how the brain “does”
cognition. Moreover, we will gain a better and better time-resolved picture of
cognitive processes, which can subsequently inform computational models of
these processes.

Fig. 4. Electrodes that contribute significantly (z>2) to decision classification. Black
dots indicate electrodes that are not showing significant decision-related activity. Red:
perceptual decisions. Blue: memory decisions. The electrode locations for two partici-
pants were missing, so those are not included in this figure and in Table 1. In addition,
Brodmann areas having no electrodes in our dataset are also excluded from the table.
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