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Chapter 1

Introduction

V
arious social and technological developments have resulted in an increased
share of renewable generation within our energy mix, posing significant chal-

lenges to the planning and operation of the existing (energy) networks. Although
the shift towards more sustainable energy generation can be seen throughout the
whole energy chain, it is the effect on the electricity network that received most at-
tention. Besides the fact that the availability of electricity is essential to our modern
society, it is the physical nature of the grid that poses unique and difficult challenges.
Traditionally, power networks addressed uncertainty of demand, by controlling the
supply. However, due to the increased share of volatile and uncontrollable sources,
like wind and solar energy, the uncertainty of the generation side needs to be mana-
ged as well. Within such management, the IT-infrastructure plays an important role,
and therefore, future ‘smarter’ grids cannot be longer regarded as a pure physical
network, and requires the incorporation of the cyber-infrastructure into the physical
model. As the resulting cyber-physical network will consist of many small devices,
addressing the stability of such a network becomes more difficult. Modeling each
individual device is infeasible, yet their combined response must be accurately des-
cribed. It is therefore important to derive general properties of systems, without
explicitly modelling each component in detail, that are useful to study and improve
the stability of the overall network. Furthermore, the collective behaviour of the
network must be close to optimal to avoid inefficiencies, and requires coordina-
tion among the individual parts. This requires the development of new distributed
control schemes that exploit the, widely distributed, sensors and actuators. It is in-
feasible for a centralized controller to address every controllable load individually,
yet actions taken by local controllers must be consistent with global performance
objectives. Although contributions from many disciplines are required to make the
energy chain more sustainable, the field of system and control theory can provide
an important role in creating a reliable network due to its holistic view on the whole
system. This work particulary contributes to the establishment of system theoreti-
cal properties of the physical power network, the cyber network, and its intercon-
nection. This enables the design op distributed controllers that improve the stability
of the network, while increasing the (economic) efficiency of its operation.
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1.1 Outline of this thesis

This thesis consists of three main parts, each addressing a particular aspect of the
the distributed control of smart grids. Every part consists of a separate introduction
and a statement of its contributions. Part I, focusses on the design of distributed
controllers, achieving output regulation in a network, by optimally allocating the
inputs in distribution networks. Chapter 1 (high voltage networks) and Chapter 2
(microgrids), discuss electrical networks, where the considered output of the system
is the frequency deviation. In Chapter 3, a general class of flow networks is studied
that includes the model of a high voltage direct current network. The considered
model differs particularly from the aforementioned chapters in that the network
does not dissipate energy. The stability analysis in this part, as well as in Part II
and Part III, relies foremost on an incremental passivity property of the underlying
network, the internal model principle and an invariance principle. A continuous
consensus algorithm is employed to achieve the desired optimality features. In Part
II, we continue studying high voltage networks and incorporate the generation side
in a more realistic manner. Commonly, the generation side is modelled by a second
order turbine-governor system. Since the turbine-governor system does not enjoy
a useful passivity property, the stability analysis is more challenging. We propose
two methods. First, in Chapter 4, an overall dissipation inequality is developed for
the combined generator and turbine-governor dynamics. Second, in Chapter 5, a
sliding mode control strategy is employed to constrain the turbine-governor to a
manifold where a passivity property is recovered. Part III relaxes the requirement
of continuous communication between the controllers to achieve optimality. Par-
ticularly, we study the interconnected continuous physical system and the discrete
communication layer, leading to hybrid dynamics of the overall cyber-physical sy-
stem. In Chapter 6 we study a centralized control scheme, whereas in Chapter 7 we
study a distributed setting. Eventually, we provide some conclusions and directions
for future research.

1.2 List of publications

Journal publications

• S. Trip, M. Bürger and C. De Persis – “An internal model approach to (optimal)
frequency regulation in power grids with time-varying voltages,” Automatica, vol.
64, pp. 240–253, 2016. (Chapter 2)

• S. Trip, T.W. Scholten and C. De Persis – “Optimal regulation of flow networks
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with transient constraints,” 2017, under review. (Chapter 4)

• S. Trip and C. De Persis – “Distributed optimal Load Frequency Control with non-
passive dynamics,” IEEE Transactions on Control of Network Systems, 2017, to
appear. (Chapter 5)

• S. Trip, M. Cucuzella, C. De Persis, A.J. van der Schaft and A. Ferrara – “Passi-
vity based design of sliding modes for optimal Load Frequency Control,” 2017, under
review. (Chapter 6)

• S. Trip, C. De Persis and P. Tesi – “Coordination of nonlinear cyber-physical sy-
stems, from a continuous consensus to a discrete broadcasting protocol (tentative),”
2017, in preparation. (Chapter 8)

• M. Cucuzella, S.Trip, C. De Persis, A. Ferrara and A.J. van der Schaft – “A
robust consensus algorithm for current sharing and voltage regulation in DC Micro-
grids,” 2017, under review.

• M. Cucuzzella, R. Lazzari, S. Trip, S. Rosti, C. Sandroni and A. Ferrara – “Sli-
ding mode voltage control of boost-based DC microgrids,” 2017, under review.

• T.W. Scholten, S.Trip and C. De Persis – “Pressure Regulation in Large Scale Hy-
draulic Networks with Positivity Constraints (tentative),” 2017, in preparation.

Conference publications

• M. Bürger, C. De Persis and S. Trip – “An internal model approach to (optimal)
frequency regulation in power grids,” Proceedings of the 2014 21st International
Symposium on Mathematical Theory of Networks and Systems (MTNS), pp.
577–583, Groningen, the Netherlands, 2014. (Chapter 2)

• S. Trip, M. Bürger and C. De Persis – “An internal model approach to frequency
regulation in inverter-based microgrids with time-varying voltages,” Proceedings of
the IEEE 53rd Conference on Decision and Control (CDC),” pp. 223–228, Los
Angles, CA, USA, 2014. (Chapter 3)

• S. Trip, T.W. Scholten and C. De Persis – “Optimal regulation of flow networks
with input and flow constraints,” Proceedings of the 2017 IFAC World Congress,
pp. 9854–9859, Toulouse, FR, 2017. (Chapter 4)

• S. Trip and C. De Persis – “Optimal frequency regulation in nonlinear structure
preserving power networks including turbine dynamics: an incremental passivity
approach,” Proceedings of the 2016 American Control Conference (ACC), pp.
4132–4137, Boston, MA, USA, 2016. (Chapter 5)
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• S. Trip and C. De Persis – “Optimal generation in structure-preserving power net-
works with second order turbine-governor dynamics,” Proceedings of the 15th Eu-
ropean Control Conference (ECC), pp. 916–921, Aalborg, DK, 2016. (Chapter
5)

• M. Cucuzella, S. Trip, C. De Persis and A. Ferrara – “Distributed second or-
der sliding modes for Optimal Load Frequency Control,” Proceedings of the 2017
American Control Conference (ACC), pp. 3451–3456, Seattle, WA, USA, 2017.
(Chapter 6)

• S. Trip, M. Cucuzella, A. Ferrara and C. De Persis – “An energy function based de-
sign of second order sliding modes for Automatic Generation Control,” Proceedings
of the 2017 IFAC World Congress, pp. 12118–12123, Toulouse, FR, 2017.

• S. Trip and C. De Persis – “Communication requirements in a master-slave control
structure for optimal load frequency control,” Proceedings of the 2017 IFAC World
Congress, pp. 10519–10524, Toulouse, FR, 2017. (Chapter 7)

• T.W. Scholten, S. Trip, and C. De Persis – “Pressure Regulation in Large Scale Hy-
draulic Networks with Input Constraints,” Proceedings of the 2017 IFAC World
Congress, pp. 5534–5539, Toulouse, FR, 2017.

Book chapters

• S. Trip and C. De Persis – “Frequency regulation in power grids by optimal load and
generation control” In A. Beaulieu, J. Wilde, and J.M.A. Scherpen (Ed.), “Smart
grids from a global perspective”, Springer International Publishing, pp. 129–146,
2016. (Chapter 2)

1.3 Notation

Let 0 be the vector or matrix of all zeros of suitable dimension and let 1n be the vec-
tor containing all ones of length n. A diagonal matrix, with diagonal elements given
by vector x, is denoted by diag(x) and occasionally by [x]. We define R(f(x)) to be
the range of function f(x). A steady state solution to system ẋ = f(x), satisfying
0 = f(x), is denoted by x, i.e. 0 = f(x), except in Chapter 2, where x denotes also
a solution to the regulator equations. In case the argument of a function is clear
from the context, we occasionally write f(x) as f(·) or f . Let A be a matrix, then
Im(A) is the image ofA and Ker(A) is the kernel of A. In case A is a positive definite
(positive semi-definite) matrix, we write A ∈ Rn×n>0 (A ∈ Rn×n≥0 ), or A > 0 (A ≥ 0).
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Similarly, for negative definite (negative semi-definite) matrices. Lastly, we denote
the cardinality of a set V as |V|.

1.4 Preliminaries

In this section a minimum amount of preliminaries are provided, that are useful
to the development of the various results appearing in this thesis. An important
topic that is left out here, is a discussion on power networks. The considered po-
wer network models in this thesis are standard, and derivations as well as further
discussions can be found in e.g (Machowski et al. 2008) and (Kundur et al. 1994).

1.4.1 Nonlinear systems

We suppose the reader is familiar with standard notions for the analysis and con-
trol of nonlinear system, and foremost with dissipative systems (Willems 2007).
For detailed discussions on nonlinear systems, the textbooks (van der Schaft 1999),
(Haddad and Chellaboina 2008) and (Sepulchre et al. 1997), provide excellent star-
ting points. We merely recall a few essential definitions and results, starting with
‘incremental passivity’.

Definition 1.4.1 (Incremental passivity, (Pavlov and Marconi 2008)). Consider the
system

ẋ = f(x, u)

y = h(x),
(1.1)

with state x ∈ Rn input u ∈ Rm and output y ∈ Rm. We say that (1.1) is incremen-
tally passive if there exists a continuous differentiable, positive definite, radially unbounded,
storage function S(x1, x2) : R≥0 × R2n → R≥0 such that for any two inputs u1(t) and
u2(t) and any two solutions of system (1.1) x1(t), x2(t) corresponding to these inputs, the
respective outputs y1(t) = h(x1(t)) and y2(t) = h(x2(t)) satisfy the inequality

Ṡ = ∂S
∂x1

f(x1, u1) + ∂S
∂x2

f(x2, u2) ≤ (y1 − y2)T (u1 − u2). (1.2)

The following extension will be useful as well.

Definition 1.4.2 (Output strictly incremental passivity). We say that (1.1) is output
strictly incrementally passive if in Definition 1.4.1, (1.3) is replaced by

Ṡ = ∂S
∂x1

f(x1, u1) + ∂S
∂x2

f(x2, u2) ≤ −ρ(y1 − y2) + (y1 − y2)T (u1 − u2), (1.3)

where ρ(y1 − y2) : R2n → R≥0 is a positive definite function.
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Note that in Definition 1.4.1, the storage function S is required to be radially
unbounded, which is absent in (Pavlov and Marconi 2008, Definition 1). To accom-
modate the possibility that S is not radially unbounded, we introduce the following
definition:

Definition 1.4.3 (Incremental cyclo-passivity). We say that (1.1) is incrementally cyclo-
passive if in Definition 1.4.1, (1.3) the incremental storage function S is not required to be
radially unbounded.

The definition of ‘incremental cyclo-passivity’ is particularly useful, if we can can
only establish that the incremental storage function S(x1, x2) is positive definite at
a point (x1, x2). Often it is useful to establish incremental passivity with respect to a
particular solution (often the steady state solution), and we introduce the following
definition:

Definition 1.4.4 (Incremental passivity with respect to a particular solution). We say
that (1.1) is incrementally passive with respect to a particular solution x2(t), with input
u2(t) satisfying

ẋ2 = f(x2, u2)

y2 = h(x2),
(1.4)

if in Definition 1.4.1, the dissipation inequality holds with respect to the particular solution
x2(t), instead of any solution to (1.1).

In case incremental passivity is established with respect to a steady state solu-
tion, (1.4) becomes

0 = f(x, u)

y = h(x).
(1.5)

Remark 1.4.5 (Equilibrium independent passivity). Note that the definition above shows
similarities with the definition of ‘equilibrium independent passivity’ (Hines et al. 2011).
However, the ‘integrator system’

ẋ = u (1.6)

y = x, (1.7)

is not equilibrium independent passive, as the definition in (Hines et al. 2011) requires that
for a given u, there exists a unique x, such that (in this case) 0 = u. On the other hand,
(1.6) is according to our definition ‘incrementally passive with respect to the steady (x, u)

satisfying 0 = u’, as can be established by considering the incremental storage function
S = 1

2 (x− x)T (x− x).
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Until now we considered dynamical systems with input u. One of the objecti-
ves of this work is to design (feedback) controllers, obtaining eventually a closed
loop system. We recall three lemmas that will be essential to study the asymptotic
behaviour of the closed loop (autonomous) system.

Lemma 1.4.6 (Stability (Sepulchre et al. 1997)). Let 0 be an equilibrium of system

ẋ = f(x), (1.8)

and suppose that f is locally Lipschitz continuous. Let S : Rn → R≥0 be a continuous
differentiable, positive definite and radially unbounded function S(x) such that

Ṡ =
∂S(x)

∂x
f(x) ≤ 0. ∀x ∈ Rn (1.9)

Then, x = 0 is globally stable and all solutions to (1.8) converge to the set E where Ṡ = 0.

Lemma 1.4.7 (LaSalle’s invariance principle, (Sepulchre et al. 1997)). Let Ω be a posi-
tive invariant set of

ẋ = f(x). (1.10)

Suppose that every solution starting in Ω converges to a set E ⊂ Ω and let M be the largest
invariant set contained in E. Then, every bounded solution starting in Ω converges to M
as t→∞.

Lemma 1.4.8 (Convergence to a constant vector (Haddad and Chellaboina 2008)).
Consider the system

ẋ = f(x), (1.11)

and let Ω be an open neighborhood of f−1(0). Suppose the positive orbit of (1.11) is bounded
for all x ∈ Ω and assume that there exists a continuously differentiable function S : Ω→ R

such that

Ṡ =
∂S(x)

∂x
f(x) ≤ 0, ∀x ∈ Ω. (1.12)

If every point in the largest invariant subset M of

{x ∈ Ω :
∂S(x)

∂x
f(x) = 0} (1.13)

is Lyapunov stable, then 1.11 converges to a constant vector.
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1.4.2 Optimization

The optimization problems we consider are convex, and we exploit a few standard
properties of this class of problems. For a more detailed discussion on the topic of
convex optimization, possibly in relation to networks, the reader can consult e.g.
(Boyd and Vandenberghe 2004) and (Bertsekas 1998). We present a few basic, but
essential, results from (Boyd and Vandenberghe 2004) that are tailored to our needs.
Consider the optimization problem

min
x
C(x)

s.t Ax− b = 0,
(1.14)

with C(x) a strictly convex function.

Assumption 1.4.9 (Feasibility). There exists a solution x? to (1.14), with optimal value
of p? = C(x?).

Definition 1.4.10 (Lagrangian function). The Lagrangian function of (1.14) is

L(x, λ) = C(x)− λT (Ax− b), (1.15)

where λ is the Lagrange multiplier.

Based on the definition of the Lagrangian function, we can formulate the so-
called ‘dual problem’.

Definition 1.4.11 (Dual problem). The dual problem of (1.14) is

max
λ

g(λ), (1.16)

with

g(λ) = min
x
L(x, λ). (1.17)

The optimal value is given by d? = g(λ?).

In case p? = d?, we say that strong duality holds. For the considered case we
have that strong duality always holds, if the primal problem is feasible.

Lemma 1.4.12 (Slater’s condition). Strong duality holds if (1.14) is feasible.

Having formulated the primal and the dual problem, one can obtain the follo-
wing results that are useful to explicitly characterize the solution to (1.14).
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Lemma 1.4.13 (Saddle point). Let Assumption 1.4.9 hold. x? is optimal for (1.14) and λ?

is optimal for (dual problem) if and only if (x?, λ?) is a saddle point of (1.15), i.e.

L(x?, λ) ≤ L(x?, λ?) ≤ L(x, λ?). (1.18)

Lemma 1.4.14 (First order optimality conditions). The vector x? is optimal for 1.14 if
and only if there exists a λ? such that

∇C(x?)−ATλ? = 0

Ax? − b = 0.
(1.19)

Note that ∂L(x,λ)
∂x = ∇C(x)−ATλ and ∂L(x,λ)

∂λ = Ax− b.

1.4.3 Hybrid systems

The combination of discrete and continuous time dynamics, results in a so-called
hybrid system. In this thesis we follow closely the formalism introduced in (Goebel
et al. 2012). We recall a few basic notations and concepts that are helpful to un-
derstand the exposition in Chapter 7 and Chapter 8. Foremost, we recall some de-
finitions and results that allows us to introduce an invariance principle for hybrid
systems. The considered hybrid systems are of the form

ẋ ∈ F (x) for x ∈ C
x+ ∈ G(x) for x ∈ D,

(1.20)

where

• C is the flow set,

• F is the flow map,

• D is the jump set,

• G is the jump map.

The hybrid system, with state x ∈ Rn, is denoted as H = (C,F,D,G), or briefly H.
A subset E ⊂ R≥0 × Z≥0 is a hybrid time domain if for all (T,K) ∈ E, E ∩ ([0, T ] ×
{0, . . . ,K}) =

⋃
k∈{0,...,K−1}([tk, tk+1], k) for some finite sequence of times 0 = t0 ≤

t1, . . . ,≤ tK . A function φ : E → Rn is a hybrid arc ifE is a hybrid time domain and if
for each k ∈ Z≥0, t→ φ(t, k) is locally absolutely continuous on Ik = {t : (t, k) ∈ E}.
The hybrid arc φ → dom φ → Rn is a solution to (1.20) if: (i) φ(0, 0) ∈ C ∪D; (ii) for
any k ∈ Z≥0, φ(t, k) ∈ C and (d/dt)φ(t, k) ∈ F (φ(t, k)) for almost all t ∈ Ik (recall
that Ik = {t : (t, k) ∈ dom φ}; (iii) for every (t, k) ∈ dom φ such that (t, k + 1) ∈
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dom φ, φ(t, k) ∈ D and φ(t, k + 1) ∈ G(φ(t, k). A solution to (1.20) is: nontrivial if
dom φ contains at least two points; maximal if it cannot be extended; complete if dom φ

is unbounded; precompact if it is complete and the closure of its range is compact,
where the range of φ is rge φ := {y ∈ Rn : ∃(t, k) ∈ dom φ such that y = φ(t, k)}.

Lemma 1.4.15 (Nominally well-posedness). A hybrid system H = (C,F,D,G) is no-
minally well-posed if it satisfies the following hybrid basic conditions:

1. C and D are closed subsets of Rn,

2. F : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to C, C ⊂
dom F , and F (x) is convex for every x ∈ C,

3. G : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to D, D ⊂
dom G.

Definition 1.4.16 (Weakly invariant). A set S ⊂ Rn is weakly invariant for system
(1.20) if it is:

1. weakly forward invariant, i.e., for any ξ ∈ S there exists a least one complete
solution φ with initial condition ξ such that rge φ ⊂ S;

2. weakly backward invariant, i.e., for any ξ ∈ S and τ > 0, there exists a least
one solution φ such that for some (t∗, k∗) ∈ dom φ, t∗ + k∗ ≤ τ , it is the case that
φ(t∗, k∗) = ξ and φ(t, k) ∈ S for all (t, k) ∈ dom φ with t+ k ≤ t∗ + k∗.

Lemma 1.4.17 (An invariance principle). Assume the hybrid system is nominally well
posed. Consider a continuous function V : Rn → R, continuously differentiable on a
neighborhood of C. Suppose that for a given U ⊂ Rn.

uC(z) ≤ 0, uD ≤ 0 for all z ∈ U. (1.21)

Let a precompact φ∗ ∈ SH be such that rge φ∗ ⊂ U . Then, for some r ∈ V (U), φ∗

approaches the nonempty set which is the largest weakly invariant subset of

Υ = V −1(r) ∩ U ∩
[
u−1
C (0) ∪

(
u−1
D (0) ∩G(u−1

D (0))
)]
. (1.22)
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Optimal coordination of power
networks





Introduction

P
ower networks can be regarded as dynamical networks that interact with the
environment. As such, they are often affected by external perturbations, e.g. a

change in power demand, that can disrupt their desired output or state. An impor-
tant objective in AC power networks is to maintain the frequency close to their no-
minal value. By regarding the frequency as the output of the network, we can there-
fore study the frequency regulation objective, within the setting of output regulation
theory for dynamical systems on networks. Depending on the specific application,
another common requirement is to optimally distribute the input to the network
among the various nodes. Traditionally, the associated optimization problems are
considered static and their study have long history within the field of network op-
timization (Bertsekas 1998), (Rockafellar 1984). In the case of power networks, the
optimal allocation of generated power is commonly called ‘economic dispatch’. Due
to an increasing volatility of the disturbances, the networks must on the other hand
react dynamically on changes in the external conditions. In these cases continuous
feedback controllers are required that dynamically adjust inputs at the nodes and
the design of such controllers is a subject of Part I.

In Part I we design distributed controllers achieving output regulation and op-
timality for three different, but related, models. Particularly, we develop our met-
hodology for high voltage networks, modelled by interconnected control areas. Au-
tomatic regulation of the frequency in power networks is traditionally achieved by
primary proportional control (droop-control) and a secondary PI-control. In this
secondary control, commonly known as automatic generation control (AGC), each
control area determines its “Area Control Error” (ACE) and changes its production
accordingly to compensate for local load changes in order to regulate the frequency
back to its nominal value and to maintain the scheduled power flows between diffe-
rent area’s. By requiring each control area to compensate for their local load changes
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the possibility to achieve economic efficiency is lost. Indeed, the scheduled pro-
duction in the different control area’s is currently determined by economic criteria
relatively long in advance. To be economically efficient an accurate prediction of
load changes is necessary. Large scale introduction of volatile renewable energy
sources and the use of electrical vehicles will however make accurate prediction dif-
ficult as the net load (demand minus renewable generation) will change on faster
time scales and by larger amounts. A more detailed account on the Optimal Load
Frequency control is provided in Part II of this thesis.

Another example of power networks are the ‘so-called’ microgrids. Microgrids
are generally either AC or DC. We study the AC variant, that shows many simi-
larities with the high voltage power network discussed above. The DC microgrid
on the other hand has been studied in e.g. (De Persis et al. 2016) and (Zhao and
Dörfler 2015). Recently, research focus has shifted from centralized control in micro-
grids (Guerrero et al. 2011), towards distributed control (Simpson-Porco et al. 2013),
(De Persis and Monshizadeh 2017), (Dörfler et al. 2016) (Shafiee et al. 2014), (Trip
et al. 2014). Here, optimal allocation of the input to the microgrid, is called ‘active
power sharing’, where the objective is to let each inverter generate the same (or
proportionally to their rating) amount of power.

Beside the two particular examples of electricity networks, flow or distribu-
tion networks are used to model the distribution of a quantity. The design and
regulation of these networks received significant attention due to its many appli-
cations, including supply chains (Alessandri et al. 2011), heating, ventilation and
air conditioning (HVAC) systems (Gupta et al. 2015), data networks (Moss and
Segall 1982), water irrigation (Lee et al. 2017), traffic networks (Iftar 1999), (Coogan
and Arcak 2015) and compartmental systems (Blanchini et al. 2016), (Como 2017).
Besides these many interesting application, we are particularly interested in its use
to model multi-terminal high voltage direct current networks, where the proposed
controllers achieve sharing in the current injections to the network, maintaining de-
sired voltage levels.

Contributions

Due to the difficulty of precisely predicting the power demand, the design of algo-
rithms controlling the power generation, maintaining the network at nominal ope-
rating conditions, while retaining economic efficiency has attracted considerable at-
tention and a vast amount of literature is available. The aim this part is to provide a
different framework in which the problem can be tackled exploiting the incremen-
tal passive nature of the dynamical system adopted to model the power network
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and internal-model-based controllers ((Pavlov and Marconi 2008), (Bürger and De
Persis 2015)) able to achieve an economically efficient power generation control in
the presence of unknown, and possibly time-varying, power demand. And alt-
hough the proposed incrementally passive controllers share similarities with others
presented in the literature, the way in which they are derived is new and show a few
advantages. First, we allow for time-varying power demand (disturbances) in the
power network, and based on the internal-model principle, the proposed control-
lers can deal with this scenario and it turns out that proportional-integral controllers
that are more often found in the literature are a special instance of these controllers.
Furthermore, being based on output regulation theory for systems over networks
((Bürger and De Persis 2015), (Bürger and De Persis 2013), (Wieland et al. 2011),
(Isidori et al. 2014), (De Persis and Jayawardhana 2014)), our approach has the po-
tential to deal with fairly rich classes of external perturbations (Cox et al. 2012),
(Serrani et al. 2001), thus paving the way towards regulators in the presence of a
large variety of consumption patterns. Passivity is an important feature shared by
more accurate models of the power network, as already recognized for different
models in e.g. (Shaik et al. 2013), (Caliskan and Tabuada 2014), (Schiffer et al. 2013),
implying that the methods that are employed in this part might be used to deal with
more complex (and more realistic) dynamical models. Although we do not pursue
the most extensive level of generality in this work, the passivity framework allows
us to include voltage dynamics in our model, a feature that is usually neglected in
other approaches (Andreasson et al. 2013), (Zhang and Papachristodoulou 2015) (Li
et al. 2016). Furthermore, passivity is a very powerful tool in the analysis and de-
sign of dynamical control networks (Arcak 2007), (Bai et al. 2011), (van der Schaft
and Maschke 2013), such that the obtained results might turn out to be useful besi-
des our focus on power networks. An example is given in Chapter 4, that is dealing
with a more general class of flow networks. Also, to show incremental passivity, we
introduce storage functions that interestingly can be interpreted as energy functi-
ons, thus establishing a connection with classical work in the field of power systems
(see e.g. (Bergen and Hill 1981), (Chiang et al. 1995) and references therein), that can
guide a further investigation of the problem.

Outline

Chapter 2

In Chapter 2 we provide a framework in which the problem of economically efficient
frequency regulation in power networks can be tackled, exploiting the incremental
passive nature of the dynamical system and internal-model-based controllers. We
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focus on a third-order model with time-varying voltages known as ‘flux-decay mo-
del’ (Section 2.1), which, although simplistic, is tractable and meaningful. We move
along the lines of (Bürger and De Persis 2015), (Bürger and De Persis 2013), where
a framework to deal with nonlinear output agreement and optimal flow problems
for dynamical networks has been proposed. After showing (Section 3.2) that the
dynamical model adopted to describe the power network is an incrementally pas-
sive system with respect to solutions that are of interest (solutions for which the
frequency deviation is zero), we provide a systematic method to design internal-
model-based power generation controllers that are able to balance power demand,
while minimizing the generation costs at steady state. This design is carried out
first by solving the regulator equations (Pavlov and Marconi 2008), (Bürger and De
Persis 2015) associated with the frequency regulation problem. Among the feedfor-
ward power generation inputs that solve the regulator equations, we single out the
one for which the static optimal generation problem is solved (Section 3.3). Distri-
buted controllers are proposed for the case of constant power demand (Section 3.4)
and the case of time-varying demand (Section 3.5). For both cases we provide a case
study in Section 3.6.

Chapter 3

In Chapter 3 we study frequency regulation and power sharing in AC microgrids.
We adopt a third-order inverter model, allowing for time-varying voltages, and the-
refore addressing a more general setting than typical first order inverter models
that assume constant voltages (Section 3.1). Although the problem considered is
well known and different control strategies have been suggested, the way we ana-
lyze the problem and design the controllers is new. After studying the stability of
a microgrid, with constant inputs (Section 3.2), we show that the microgrid is an
incrementally passive system, so we can build upon our previous result on optimal
frequency regulation in an ordinary power network (Chapter 2). The incremental
passivity property of the system at hand enables us, along the lines of Chapter 2,
to develop distributers controllers that regulate the frequency and share the active
power generation optimally among the inverters (Section 3.3). In Section 3.4 we
provide a case study of a small inverter network, and additionally consider voltage
controllers that have been left out in the stability analysis.

Chapter 4

In Chapter 4 we consider a general class of flow networks, where edges are used to
model the exchange of material (flow) between the nodes (Section 4.1). We propose



27

a distributed controller, dynamically adjusting inputs and flows, to achieve optimal
output regulation under capacity constraints on the input and the flows and in the pre-
sence of unknown demand (disturbances). The various control objectives and the
underlying constraints will be discussed first (Section 4.2), whereafter the propo-
sed controllers at the nodes and the flow controllers are introduced in Section 4.3.
The controllers on the edges render the flow network incrementally passive with
respect to the desired steady state. This passivity property is then exploited in the
design of a distributed controller acting on the nodes. Optimal coordination among
the inputs, minimizing a suitable cost function, is achieved by exchanging relevant
information over a communication network, whereas the constraints are enforced
by using suitably selected saturation functions. Global convergence to the desired
steady state is proven relying on Lyapunov arguments and an invariance principle
(Section 4.4). We provide two case studies (a district heating system and a multi-
terminal high voltage direct current network) to illustrate how physical systems are
described as a flow network and to demonstrate the performance of the proposed
solution (Section 4.5).
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Chapter 2

Optimal frequency regulation in power
networks with time-varying disturbances

Abstract

This chapter studies the problem of frequency regulation in power networks under unknown
and possible time-varying load changes, while minimizing the generation costs. We
formulate this problem as an output agreement problem for distribution networks and
address it using incremental passivity and distributed internal-model-based controllers.
Incremental passivity enables a systematic approach to study convergence to the optimal
steady state with zero frequency deviation and to design the controller in the presence
of time-varying voltages, whereas the internal-model principle is applied to tackle the
uncertain nature of the loads.

2.1 Control areas with dynamic voltages

The history of power network modelling is rich and the models we adopt can be
found in most textbooks on power systems such as (Machowski et al. 2008) and
(Kundur et al. 1994).We focus on an extended swing equation that captures, beside
the frequency dynamics, also the essential voltage dynamics (Chiang et al. 1995). In
this chapter we show that the considered model possesses some incremental passi-
vity properties that are essential to our approach to the problem. We assume that
the power network is partitioned into smaller areas, such as control areas, where the
dynamic behavior of an area can be described by an equivalent single generator as
a result of coherency and aggregation techniques (Chakrabortty et al. 2011), (Ourari
et al. 2006). As a consequence we do not distinguish between individual generator
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and load buses. This is in contrast with the structure-preserving models, where the
load buses are explicitly modelled (see also Chapter 5), or with Kron-reduced mo-
dels, where load buses can be eliminated by modeling them as constant admittances
or currents (see also Chapter 3).

Consider a power network consisting of n areas. The network is represented by a
connected and undirected graph G = (V, E), where the nodes, V = {1, . . . , n}, repre-
sent control areas and the edges, E = {1, . . . ,m}, represent the transmission lines
connecting the areas. The network structure can be represented by its correspon-
ding incidence matrix B ∈ Rn×m. The ends of edge k are arbitrarily labeled with a
‘+’ and a ‘−’. Then

Bik =


+1 if i is the positive end of k
−1 if i is the negative end of k
0 otherwise.

Every node represents an aggregated area of generators and loads and its dynamics
are described by the so called ‘flux-decay’ or ‘single-axis’ model. It extends the
classical second order ‘swing equations’, that describe the dynamics for the voltage
angle δ and the frequency ω, by including a differential equation describing voltage
dynamics. A detailed derivation can be found e.g. in (Machowski et al. 2008).

The dynamics of node i are given by:

δ̇i = ωbi

Miω̇
b
i = ui −

∑
j∈Ni

ViVjBij sin
(
δi − δj)−Di

(
ωbi − ωn

)
− Pdi

Tdoi
(Xdi −X

′
di)
V̇i =

Efi
(Xdi −X

′
di)
− 1−Bii(Xdi −X

′

di)

(Xdi −X
′
di)

Vi +
∑
j∈Ni

VjBij cos
(
δi − δj).

(2.1)

where B denotes the susceptance and Ni is the set of nodes connected to node i
by a transmission line. In high voltage transmission networks we consider here,
the conductance is close to zero and therefore neglected, i.e. we assume that the
network is lossless. An overview of the used symbols is provided in Table 2.1. We
focus on (optimal) frequency regulation and in order to keep the analysis concise
we assume that Efi is constant and do not explicitly include exciter dynamics. To
study the interconnected power network we write system (2.1) compactly for all
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State variables

δi Voltage angle
ωi Frequency deviation
Vi Voltage

Parameters

Mi Moment of inertia
Di Damping constant
Tdoi Direct axis transient open-circuit constant
Xdi Direct synchronous reactance
X
′

di Direct synchronous transient reactance
Xdi Direct synchronous reactance
X ′di Direct synchronous transient reactance
Bij Transmission line susceptance

Inputs

ui Controllable power generation
Efi Constant exciter voltage
Pdi Unknown power demand

Table 2.1: Description of the used symbols.

buses i ∈ V as
η̇ = BTω

Mω̇ = u− BΓ(V ) sin(η)−Dω − Pd
T V̇ = −E(η)V + Efd
y = ω,

(2.2)

where ω is the frequency deviation ωb−ωn, B is the incidence matrix corresponding
to the topology of the network, Γ(V ) = diag{γ1, . . . , γm}, with γk = ViVjBij =

VjViBji and the index k denoting the line {i, j}, Efd = (
Ef1

(Xd1−X
′
d1)
, . . . ,

Efn

(Xdn−X
′
dn)

)T ,

η = BT δ andE(η) is a matrix such thatEii =
1−Bii(Xdi−X

′
di)

Xdi−X
′
di

andEij = −Bij cos(ηk),

where again the index k denotes the line {i, j}. We write explicitly the relation y = ω,
to stress that only the frequency (deviation) is measured in the system.

Remark 2.1.1 (Reactance and suscpentance). In a realistic network the reactance is hig-
her than the transient reactance, i.e. Xdi > X

′

di > 0 and the self-susceptance Bii satisfies
Bii < 0 and due to the shunt susceptance |Bii| >

∑
j∈Ni

|Bij | . It follows that E(η) is a
strictly diagonally dominant and symmetric matrix with positive elements on its diagonal
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and is therefore positive definite.

2.2 Incremental passivity of the multi-machine power
network

The purpose of this section is to show that system (2.2) is incrementally passive
(see Definition 1.4.1), when we consider u as the input and ω as the output. This
property turns out to be fundamental in the subsequent analysis pursued in this
chapter. While showing the incremental passivity property, a storage function is de-
rived, based upon which the forthcoming analysis of the response of system (2.2)
to the power generation u and the load Pd is carried out. Following (Bürger and
De Persis 2015) , to show incremental passivity, system (2.2) is first interpreted as
two subsystems interconnected via constraints that reflect the topology of the net-
work. As a matter of fact, observe that system (2.2) can be viewed as the feedback
interconnection of the system

Mω̇ = u+ µ−Dω − Pd
y = ω

(2.3)

with the system

η̇ = v

T V̇ = −E(η)V + Efd
λ = Γ(V ) sin(η).

(2.4)

These systems are interconnected via the relations

v = BT y
µ = −Bλ, (2.5)

where the incidence matrix B reflects the topology of the network. Before studying
the incremental passivity of the system it is convenient to recall its equilibria, which
we will do in the next subsection.

2.2.1 Equilibria of the power network

As a first step we characterize the constant steady state solution (η, ω, V ) of (2.2),
with a generation u = u, and in the case in which ω is a constant belonging to the
space Ker(BT ), i.e. it is a constant vector with all elements being equal. The steady



2.2. Incremental passivity of the multi-machine power network 33

state solution necessarily satisfies

0 = BTω
0 = u− BΓ(V ) sin(η)−Dω − Pd
0 = −E(η)V + Efd.

(2.6)

Notice that η is the vector of relative voltage angles that guarantee the power ex-
change among the buses at steady state. The solution to (2.6) can be characterized
as follows:

Lemma 2.2.1 (Steady state frequency deviation). If there exists (η, ω, V ) ∈ Im(BT ) ×
Rn ×Rn>0 such that (2.6) holds, then necessarily ω = 1nω∗, with

ω∗ =
1Tn (u− Pd)
1TnD1n

=

∑
i∈V(ui − Pdi)∑

i∈V Di
, (2.7)

and the vector u− Pd must satisfy(
I − D1n1

T
n

1TnD1n

)
(u− Pd) ∈ D, (2.8)

where

D ={v ∈ Im(B) : v = BΓ(V ) sin(η), η ∈ Im(BT ), V ∈ Rn>0}. (2.9)

Proof. From the first line of (2.6), the steady state frequency necessarily satisfies ω =

1nω
∗, with ω∗ ∈ R. Premultiplying both sides of the second equation with 1T yields

0 = 1Tn (u− Pd)− 1TnD1nω∗, (2.10)

from where 2.7 immediately follows. Condition (2.8) is then a result from substitu-
ting the obtained expression for ω into the second line of (2.6), �

Notice that, in view of (2.6), the requirement for ω to be a constant vector re-
quires the vector u − Pd to be constant as well. A characterization of the equilibria
for a related system has been similarly discussed in (Simpson-Porco et al. 2013),
(Schiffer et al. 2013), (Zhao et al. 2014) and has its antecedents in e.g. (Bergen and
Hill 1981). Motivated by the result above, (2.8) is introduced as a feasibility condi-
tion that formalizes the physical intuition that the network is capable of transferring
the electrical power at its steady state.

Assumption 2.2.2 (Feasibility). For a given u − Pd, there exist η ∈ Im(BT ), V ∈ Rn>0

and Efd ∈ Rn for which (2.8) is satisfied and 0 = −E(η)V + Efd.
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In some specific cases, the characterization above can be made more explicit. If
the graph has no cycles, then (2.8) holds provided that u − Pd and V are such that
(Simpson-Porco et al. 2013)

‖Γ(V )−1B†
(
I − D1n1

T
n

1TnD1n

)
(u− Pd)‖∞ < 1, (2.11)

in which case η is obtained from

sin(η) = Γ(V )−1B†
(
I − D1n1

T
n

1TnD1n

)
(u− Pd), (2.12)

with B† the Moore-Penrose pseudo-inverse.

2.2.2 Incremental passivity

Having characterized the steady state solution of system (2.2) and having assumed
that such a steady state solution exists, we are ready to state the main result of this
section concerning the incremental passivity of the system with respect to the steady
state solution. The proof of the incremental passivity of system (2.2) can be split in a
number of basic steps. First, one can show that system (2.3) is incrementally passive
with respect to the equilibrium solution, namely:

Lemma 2.2.3 (Incremental passivity of (2.3)). System (2.3) with inputs u and µ and
output y = ω, is an output strictly incrementally passive system with respect to a constant
solution ω. Namely, there exists a regular storage function S1(ω, ω) which satisfies the
incremental dissipation inequality Ṡ1(ω, ω) = −ρ(y−y)+(y−y)T (µ−µ)+(y−y)T (u−u),

where Ṡ1 represents the directional derivative of S1 along the solutions to (2.3) and ρ : Rn →
R≥0 is a positive definite function.

Proof. Consider the regular storage function S1(ω, ω) = 1
2 (ω − ω)TM(ω − ω). We

have

Ṡ1 = (ω − ω)T (u+ µ−Dω − Pd)
= (ω − ω)T (−D(ω − ω) + (µ− µ) + (u− u))

= −(y − y)TD(y − y) + (y − y)T (µ− µ) + (y − y)T (u− u),

(2.13)

which proves the claim. Notice that in the second equality above, we have exploited
the identity 0 = u+ µ−Dω − Pd. �

Second, we can prove a similar statement for system (2.4) under the following
condition:
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Assumption 2.2.4 (Steady state voltage angles and voltages). Let ηk ∈ (−π2 , π2 ) for all
k ∈ E and let V ∈ Rn>0 be such that

E(η) − diag(V )−1|B|Γ(V )diag(sin(η))

diag(cos(η))−1diag(sin(η))|B|Tdiag(V )−1 > 0,
(2.14)

where |B| is the incidence matrix with all elements positive.

Confirming inequality (2.14) can be done using only local information as is stated
in the following lemma (De Persis and Monshizadeh 2017):

Lemma 2.2.5 (A local condition to satisfy (2.14)). Inequality (2.14) holds if for all i ∈ V
it holds that

1

Xdi −X ′di
−Bii +

∑
k∼{i,j}∈E

Bij(V i + V j sin2(ηk))

V i cos(ηk)
> 0. (2.15)

The role of Assumption 2.2.4 is to guarantee the existence of a suitable incremen-
tal storage function with respect to the constant solution (η, V ), as becomes evident
in the following lemma.

Lemma 2.2.6 (Hessian matrix). Let Assumption 2.2.4 hold. Then the storage function

S2(η, η, V, V ) = −1TΓ(V ) cos(η) + 1TΓ(V ) cos(η)

−
(
Γ(V ) sin(η)

)T
(η − η)

−Efd(V − V )

+ 1
2V

TFV − 1
2V

T
FV ,

(2.16)

where Fii =
1−Bii(Xdi−X

′
di)

Xdi−X
′
di

, has a strict local minimum at (η, V ).

Proof. First we consider the gradient of S2, which is given by

∇S2 =
[
∂S2
∂η

∂S2
∂V

]T
=

[
Γ(V ) sin(η)− Γ(V ) sin(η)

E(η)V − Efd

]
. (2.17)

It is immediate to see that we have ∇S2|η=η,V=V = 0. As the gradient of S2 is zero
at (η, V ), for S2 to have a strict local minimum it is sufficient that the Hessian is
positive definite at (η, V ). The Hessian is given by

∇2S2 =

[
Γ(V )diag(cos(η)) HT (η, V )

H(η, V ) E(η)

]
, (2.18)
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where H(η, V ) = diag(V )−1|B|Γ(V )diag(sin(η)). Since Γ(V )diag(cos(η)) is posi-
tive definite for η ∈ (−π2 , π2 )m it follows by invoking the Schur complement that
∇2S2|η=η,V=V > 0 if and only if

E(η) − diag(V )−1|B|Γ(V )diag(sin(η))

diag(cos(η))−1diag(sin(η))|B|Tdiag(V )−1 > 0.
(2.19)

�

Remark 2.2.7 (Boundedness of trajectories). Assuming η ∈ (−π2 , π2 )m is standard in
power network stability studies and is also referred to as a security constraint (Dörfler et al.
2016). Assumption 2.2.4 is a technical condition that allows us to infer boundedness of
trajectories. An analogous condition (for a related model in a different reference frame)
has been proposed in (Schiffer et al. 2013). In the case of constant voltages Assumption
2.2.4 becomes less restrictive and only the assumption η ∈ (−π2 , π2 )m is required (Bürger
et al. 2014). We notice indeed that by setting V = V , the storage function (2.16) reduces to
−1TΓ(V ) cos(η) + 1TΓ(V ) cos(η) −

(
Γ(V ) sin(η)

)T
(η − η), which is regularly used in

stability studies of the power grid (see e.g. formula (22) in (Bergen and Hill 1981)) and has
been adopted to study the stability of constant steady states of incrementally passive systems
(Bürger and De Persis 2015) .

We are now ready to prove that the feedback path (2.4) is incrementally passive
with respect to the equilibrium when Assumption 2.2.4 holds.

Lemma 2.2.8 (Incremental passivity of (2.4)). Let Assumptions 2.2.2 and 2.2.4 hold.
System (2.4) with input v and output λ is an incrementally passive system, with respect to
the constant equilibrium (η, V ) which fulfills (2.14). Namely, there exists a storage function
S2(η, η, V, V ) which satisfies the incremental dissipation inequality

Ṡ2(η, η, V, V ) = −‖∇V S2‖2T−1 + (λ− λ)T (v − v), (2.20)

where Ṡ2 represents the directional derivative of S2 along the solutions to (2.4) and ‖∇V S2‖2T−1

is the shorthand notation for (∇V S2)TT−1∇V S2.

Proof. Consider the storage function S2 given in (2.16). Under Assumption 2.2.4
we have that S2 is a positive definite function in a neighborhood of (η, V ). Since
T V̇ = −∇V S2, it is straightforward to check that the dissipation inequality writes
as

Ṡ2(η, η, V, V ) = −‖∇V S2‖2T−1 + (Γ(V ) sin(η)− Γ(V ) sin(η))T η̇

= −‖∇V S2‖2T−1 + (λ− λ)T (v − v),
(2.21)

where the last equality trivially holds since η̇ = v = 0. This proves the claim. �
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The interconnection of incrementally passive systems via (2.5) is known to be
still incrementally passive. Bearing in mind Lemma 2.2.3 and Lemma 2.2.8 the next
theorem follows immediately, proving that system (2.2) is output strictly incremen-
tally passive with u as an input and y = ω as an output. We can exploit this feature to
further design incrementally passive controllers that generate u while establishing
desired properties for the overall closed-loop system.

Theorem 2.2.9 (Incremental passivity of (2.2)). Let Assumptions 2.2.2 and 2.2.4 hold.
System (2.2) with input u and output y = ω is an output strictly incrementally passive sy-
stem, with respect to the constant equilibrium (η, ω, V ) which fulfills (2.14). Namely, there
exists a storage function S(ω, ω, η, η, V, V ) = S1(ω, ω) + S2(η, η, V, V ) which satisfies the
following incremental dissipation inequality

Ṡ(ω, ω, η, η, V, V ) = −ρ(y − y)− ‖∇V S2‖2T−1 + (y − y)T (u− u), (2.22)

where Ṡ represents the directional derivative of S along the solutions to (2.2) and ρ is a
positive definite function.

Proof. The results descends immediately from Lemma 2.2.3 and Lemma 2.2.8 bea-
ring in mind the interconnection constraints (2.5). �

Remark 2.2.10 (Energy functions). A function similar to S (but in a different coordinate
frame) was considered in e.g. (Chu and Chiang 1999) and are studied as ‘energy functions’
of the underlying system. Here we provide a different construction that shows that S is an
incremental storage function with respect to which incremental passivity is proven. High-
lighting this property is crucial in the approach and analysis we pursue. Furthermore, in
the forthcoming analysis, we extend the storage function S with a term that takes into ac-
count the addition of the controller and use it to infer convergence properties of the overall
closed-loop system.

The incremental passivity property of system (2.2) established above has the im-
mediate consequence that the response of the system converges to an equilibrium
when the power injection u and the load Pd are such that the total imbalance u− Pd
is a constant. For the sake of completeness, the details are provided in Corollary
2.2.11 below.

Corollary 2.2.11 (Approaching an equilibrium). Let Assumptions 2.2.2 and 2.2.4 hold.
There exists a neighborhood of initial conditions around the equilibrium (η, ω, V ), where
ω = 1nω∗ is as characterized in Lemma 2.2.1, such that the solutions to (2.2) starting from
this neighborhood approach an equilibrium where ω = 1nω∗.
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Proof. Bearing in mind Theorem 2.2.9 and setting u = u and y = ω, the overall
storage function S(ω, ω, η, η, V, V ) = S1(ω, ω) + S2(η, η, V, V ) satisfies

Ṡ = −(ω − ω)TD(ω − ω)− (ω − ω)TB(λ− λ)

+ (λ− λ)TBT (ω − ω)− ‖∇V S2‖2T−1

= −(ω − ω)TD(ω − ω)− ‖∇V S2‖2T−1 ,

(2.23)

where we have exploited the fact that BTω = 0, since ω ∈ Im(1). As Ṡ ≤ 0 and
(η, ω, V ) is a strict local minimum as a consequence of Assumption 2.2.4, there ex-
ists a compact level set Υ around the equilibrium (η, ω, V ), which is forward inva-
riant. By LaSalle’s invariance principle, the solution starting in Υ asymptotically
converges to the largest invariant set contained in

Υ ∩ {(η, ω, V ) : ω = ω, ‖∇V S2‖ = 0}. (2.24)

Since we have T V̇ = −∇V S2, on such invariant set the system is

η̇ = 0

0 = u−Dω − BΓ(V ) sin(η)− Pd
0 = −E(η)V + Efd,

(2.25)

Since on the invariant set η̇ = ω̇ = V̇ = 0, system (2.2) approaches the set of equili-
bria contained in Υ. Consider a forward invariant set Ω ⊆ Υ around (η, ω, V ), where
it holds that ∂2S

∂(η,ω,V )2 > 0. As a result any, equilibrium in Ω is Lyapunov stable. It
then follows from Lemma 1.4.8 that the solution starting in Ω converges to a point.
I.e., we can conclude that the system approaches the set where where V = Ṽ and
η = η̃ are constants. Therefore, one can conclude that the system indeed converges
to an equilibrium as characterized in Lemma 2.2.1. �

Remark 2.2.12 (Multiple equilibria). We cannot claim that η̃ = η and Ṽ = V , since the
system could converge to any equilibrium within Υ. This is due to the fact that we have not
made any assumptions on the property of the equilibrium (η, ω, V ) being isolated. In order
to establish that the equilibrium is isolated we should ask that the determinant of the Jacobian
matrix at the equilibrium is nonsingular, as follows from the inverse function theorem. This
is not automatically guaranteed by (η, ω, V ) being a strict local minimum of the storage
function. To better elucidate this claim, first we notice that system (2.2) can be written in
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the form

 η̇

Mω̇

T V̇

 =


 0 BT 0

−B 0 0

0 0 0

−
0 0 0

0 D 0

0 0 I


︸ ︷︷ ︸

J−R


I 0 0

0 M−1 0

0 0 I


︸ ︷︷ ︸

Q

∇S +

0I
0


︸︷︷︸
g

(u− u),

where J is a skew-symmetric matrix and R is a diagonal positive semi-definite matrix and

∇S =

Γ(V ) sin(η)− Γ(V ) sin(η)

M(ω − ω)

E(η)V − Efd

 . (2.26)

Set u = u. Then LaSalle’s invariance principle outlined in the proof above shows that
the solution converges to the largest invariant set where ∇ST (J − R)Q∇S = 0, that is
∇STRQ∇S = 0. By the structure of R and Q, the latter identity is equal to ∇ωS = 0

(that is, ω = ω) and ∇V S = 0. In view of the second equation in (2.6) and of these
identities, on this largest invariant set we have B(Γ(Ṽ ) sin(η̃)−Γ(V ) sin(η)) = 0. If B has
full-column rank, that is if the graph is acyclic, then Γ(Ṽ ) sin(η̃) − Γ(V ) sin(η) = 0. This
would imply that any point on the invariant set satisfies∇S = 0 and it is therefore a critical
point for S. Since we have assumed that (η, ω, V ) is a strict minimum for S then we could
conclude that every trajectory locally converges to (η, ω, V ). However, in the general case in
which the graph is not acyclic, then there could be constant vector (Ṽ , η̃) 6= (V , η) such that
B(Γ(Ṽ ) sin(η̃)−Γ(V ) sin(η)) = 0 (and E(η̃)Ṽ −Efd = 0). In this case, convergence can
only be guaranteed to an equilibrium (η̃, ω, Ṽ ) characterized in Lemma 2.2.1, as remarked
in the result above.

2.3 Minimizing generation costs

Before we address the design of controllers generating u, we discuss a desired opti-
mality property the steady state input u should have. This is achieved by realizing
that the share of total production each generator has to provide to balance the total
electricity demand can be varied. Indeed, from equality (2.7) it can be seen that only
the sum of the generators’ production is important to characterize the steady state
frequency. Generally, different generators have different associated cost functions,
such that there is potential to reduce costs when the share of generation among the
generators is coordinated in an economically efficient way. In this section we charac-
terize such an optimal generation that minimizes total costs. We consider only the
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costs of power generation u, as it is predominant over the excitation and transmis-
sion costs. The corresponding network optimization problem we tackle is therefore
as follows:

minu C(u) = minu
∑
i∈V Ci(ui)

s.t. 0 = 1Tn (u− Pd),
(2.27)

where Ci(ui) is a strictly convex cost function associated to generator i. Comparing
the equality constraint to (2.7), it is immediate to see that the solution to (2.27) im-
plies a zero frequency deviation at steady state. The relation of (2.27) with the zero
steady state frequency deviation as characterized in (2.6) with ω = 0 will be made
more explicit at the end of this section. Following standard literature on convex
optimization we introduce the Lagrangian function L(u, λ) = C(u) + λ1Tn (u− Pd),
where λ ∈ R is the Lagrange multiplier. Since C(u) is strictly convex we have that
L(u, λ) is strictly convex in u and concave in λ. Therefore, there exists a saddle point
solution to maxλ minu L(u, λ).Applying first order optimality conditions, the saddle
point (u, λ) must satisfy

∇C(u) + 1nλ = 0

1Tn (u− Pd) = 0.
(2.28)

In the remainder we assume thatC(u) is quadratic1, i.e. C(u) = 1
2u

TQu =
∑
i∈N

1
2qiu

2
i ,

with qi > 0. We make now explicit the solution to the previous set of equations in
the case of quadratic cost functions.

Lemma 2.3.1 (Optimal generation). Let C(u) = 1
2u

TQu, with Q > 0 and diagonal.
There exists a solution (u, λ) to (2.28) if and only if the optimal control is

u = Q−1 1n1
T
nPd

1TnQ
−11n

, (2.29)

and the optimal Lagrange multiplier is

λ = − 1TnPd
1TnQ

−11n
. (2.30)

Proof. For the considered quadratic cost function, the optimality conditions become

Qu+ 1nλ = 0

1Tn (u− Pd) = 0.
(2.31)

Expression (2.29) and (2.30) are obtained by solving 2.31 for u and λ. �

1 The results hold for linear-quadratic cost functions as well, i.e. C(u) = 1
2
uTQu + RTu + 1Tn s. In

that case u = Q−1(θ − R), where θ =
1n1

T
n (Pd+Q

−1R)

1TnQ
−11n

∈ Im(1n). For the sake of brevity we focus in

this chapter on the quadratic case, and explicitly consider the linear and constant components of the cost
function in e.g. Chapter 5 and Chapter 6 that also deal with optimal frequency control.
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For the optimal control characterized above to guarantee a zero frequency devi-
ation, the equalities (2.6) should now be satisfied with u as in (2.29) and ω = 0. In
this case, the second equality becomes

BΓ(V ) sin(η) =
(
Q−1 1n1

T
n

1TnQ
−11n

− In
)
Pd. (2.32)

The equality (2.32) shows that an optimal solution may require a nonzeroBΓ(V ) sin(η)

at steady state. That implies that at steady state power flows may be exchanged
among the control areas in the network and that the local demand Pdi may not ne-
cessarily be all compensated by ui. In fact, from (2.29) it is seen that to balance the
overall demand 1TPd each generator should contribute an amount of power that is
inversely proportional to its marginal cost qi. From (2.29), we also notice that the op-
timal power generation is independent of the steady state voltage V . Motivated by
Lemma 2.3.1 and the remark that led to (2.32), we introduce the following condition
that replaces the previous Assumption 2.2.2:

Assumption 2.3.2. For a given Pd, there exist η ∈ Im(BT ), V ∈ Rn>0 and Efd ∈ Rn for
which (

Q−1 1n1
T
n

1TnQ
−11n

− In
)
Pd ∈ D, (2.33)

with D defined as in Lemma 2.2.1, is satisfied and 0 = −E(η)V + Efd.

We can relate optimization problem (2.27) to another optimization problem in
which the zero frequency deviation requirement at steady state is more explicit.

Lemma 2.3.3 (An equivalent optimization problem). Let Assumption 2.3.2 hold and let
C(u) = 1

2u
TQu, with Q > 0 and diagonal. Then the optimal u solving (2.27) is equivalent

to the optimal u′ solving

minu,η C(u) = minu,η
∑
i∈V Ci(ui)

s.t. 0 = u− BΓ(V ) sin(η)− Pd
η ∈ Im(BT ).

(2.34)

Proof. By multiplying both sides of the equality constraint of (2.34) from the left
by 1Tn , we obtain the constraint of (2.27). Hence, u′ satisfies (2.27), and we have
C(u) ≤ C(u′). By the equality constraint in (2.27), we have u−Pd ∈ Im(1n)⊥. Thus,
u − Pd ∈ Ker(BT )⊥ which yields u − Pd ∈ Im(B). Therefore, u − Pd = Bv for
some vector v. By the choice v = Γ(V ) sin(η), which exists under Assumption 2.3.2,
u− Pd = Bv satisfies (2.34) and we have C(u′) ≤ C(u). Consequently, C(u′) = C(u)

which results in u′ = u due to the strict convexity of C(·). �
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Lemma 2.3.3 provides insights on how the nonconvex optimization problem
(2.34) can be solved for u′ by (2.27) without the approximation sin(η) = η as long
as Assumption 2.3.2 holds. This can be seen as an alternative approach to solving
for (2.34) by an equivalant ‘DC’ problem (see e.g. (Dörfler et al. 2016)) where the
constraint reads as 0 = u − BΓ(V )ηDC and requires the graph to be a tree (Dörfler
and Bullo 2013). The characterization of u in (2.29) will enable the design of con-
trollers regulating the frequency in an optimal manner, which we pursue in the next
section. We also remark that even in the case in which Pd is a time-varying signal,
the optimal power generation control that guarantees a zero frequency deviation is
still given by u in (2.29). This property will be used in Section 2.5. Finally, we notice,
following (Bürger and De Persis 2015) , that the optimal generation u characterized
above can be interpreted as the optimal feedfoward control which solves the regu-
lator equations connected with the frequency regulation problem. We will elaborate
on this more in the next section.

Remark 2.3.4 (Positivity of the voltages). It is worth stressing that the explicit request of
having V ∈ Rn>0 in Assumptions 2.2.2, 2.2.4 and 2.3.2 is not necessary. As a matter of fact,
for any V which satisfies−E(η)V +Efd = 0, it trivially holds true that V = E(η)−1Efd.
Let Efd ∈ Rn>0. Since E(η) has all the off-diagonal entries non-positive, then it is inverse-
positive ((Plemmons 1977), Theorem 1, F15), i.e. each entry of the inverse E(η)−1 is non-
negative. Furthermore, since E(η)−1 is invertible, each row has at least one strictly positive
entry. Therefore, the product V = E(η)−1Efd must necessarily return a vector with all
strictly positive entries.

2.4 Economic efficiency in the presence of constant po-
wer demand

Corollary 2.2.11 shows attractivity of the steady state solution under a constant im-
balance vector u − Pd, which generally results in a nonzero steady state frequency
deviation. In this section we consider the problem of designing the generation u in
such a way that at steady state the system achieves a zero frequency deviation. We
adopt the framework provided in (Bürger and De Persis 2015) This framework pro-
vides a constructive and straightforward procedure to the design of the frequency
regulator. We start the analysis by reminding that Theorem 2.2.9 states the incre-
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mental passivity property of the system

η̇ = BTω
Mω̇ = u−Dω − BΓ sin(η)− Pd
T V̇ = −E(η)V + Efd
y = ω.

(2.35)

The incremental passivity property holds with respect to two solutions of (2.35). As
one of the two solutions, we adopt here a solution to the regulator equations (2.36)
below. This is the state (η, ω, V ), the feedforward input u and the output y = ω = 0

such that
η̇ = BTω = 0

0 = u− BΓ(V ) sin(η)− Pd
0 = −E(η)V + Efd
y = ω = 0.

(2.36)

Among the many possible choices, we focus on the steady state solution that arises
from the solution of the optimal control problem in the previous section, namely

u = Q−1 1n1
T
nPd

1TnQ
−11n

, (2.37)

characterized in (2.29) above, and η such that

BΓ(V ) sin(η) =
(
Q−1 1n1

T
n

1TnQ
−11n

− In
)
Pd. (2.38)

The framework presented in (Bürger and De Persis 2015) prescribes to design an
incrementally passive feedback controller that is able to generate the feedforward
input (2.37). The interconnection of the process (2.35) and of the incrementally feed-
back controller to be introduced below yields a closed-loop system whose solutions
asymptotically converge to the desired steady state solution. This idea is made pre-
cise in the theorem below, that is the main result of the section and where we pro-
pose a dynamic controller that converges asymptotically to the optimal feedforward
input that guarantees zero frequency deviation. The result deals with constant po-
wer demand, the extension to time-varying power demands being postponed to a
later section. As will become clear it is essential that the controllers exchange infor-
mation, leading to the following assumption.

Assumption 2.4.1 (Communication graph). The undirected graph reflecting the topo-
logy of information exchange among the nodes is connected.
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Theorem 2.4.2 (Optimal regulation in the presence of constant unknown demand).
Consider the system (2.35) with constant power demand Pd and let Assumptions 2.2.4, 2.3.2
and 2.4.1 hold. Then controllers at the nodes2

θ̇i =
∑
j∈N comm

i
(θj − θi)− q−1

i ωi

ui = q−1
i θi,

(2.39)

for i ∈ V, where N comm
i denotes the set of neighbors of node i in a graph describing the

exchange of information among the controllers, guarantee the solutions to the closed-loop
system that start in a neighborhood of (η, ω, V , θ) to converge asymptotically to the largest
invariant set where ωi = 0 for all i ∈ V , ‖∇V S2‖ = 0, and θ = θ, θ being the vector

θ =
1n1

T
nPd

1TnQ
−11n

, (2.40)

such that u = Q−1θ satisfies

˙̃η = 0

0 = u− BΓ(Ṽ ) sin(η̃)− Pd
0 = −E(η̃)Ṽ + Efd

y = 0.

(2.41)

Proof. Bearing in mind Theorem 2.2.9, one can notice that the incremental storage
function S(ω, ω, η, η, V, V ) = S1(ω, ω) + S2(η, η, V, V ) satisfies Ṡ = −(ω− ω)TD(ω−
ω)− ‖∇V S2‖2T−1 + (ω − ω)T (u− u), thus showing that the system is output strictly
incrementally passive. This equality holds in particular for ω = 0, u given in (2.29)
and η, V as in Assumption 2.3.2. The internal model principle design pursued in
(Bürger and De Persis 2015) and (Bürger and De Persis 2013) prescribes the design of
a controller able to generate the feedforward input u. To this purpose, we introduce
the overall controller

θ̇ = −Lcomθ +H
T
v

u = Hθ,
(2.42)

where θ ∈ Rn, Lcom the Laplacian associated with a graph that describes the ex-
change of information among the controllers, and with the term H

T
v needed to

guarantee the incremental passivity property of the controller Here, v ∈ Rn is an
extra control input to be designed later, while H = H

T
= Q−1. If v = 0 and

θ(0) =
1n1

T
nPd

1T
nQ
−11n

, then θ(t) := θ(0) satisfies the differential equation in (2.42) and

2 For linear-quadratic cost functions the controller output becomes ui = q−1
i (θi − ri).
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moreover the corresponding output H θ(t) is identically equal to the feedforward
input u(t) defined in (2.29), provided that H = Q−1. More explicitly, we have

θ̇ = −Lcomθ
u = H θ.

(2.43)

Notice that this is a manifestation of the internal model principle, that is the ability
of the controller to generate, in open-loop and when properly initialized, the pres-
cribed feedforward input. Consider now the incremental storage function Θ(θ, θ) =
1
2 (θ − θ)T (θ − θ). It satisfies

Θ̇(θ, θ) = (θ − θ)T (−Lcomθ +H
T
v + Lcomθ)

= −(θ − θ)TLcom(θ − θ) + (θ − θ)THT
v

= −(θ − θ)TLcom(θ − θ) + (u− u)T v.

(2.44)

We now interconnect the third-order model (2.35) and the controller (2.42), obtaining

η̇ = BTω
Mω̇ = Hθ − BΓ(V ) sin(η)−Dω − Pd
T V̇ = −E(η)V + Efd

θ̇ = −Lcomθ +H
T
v

y = ω.

(2.45)

Observe that the quadruple (η, ω, V , θ) is a solution to the closed-loop system just
defined when v = 0. Consider the incremental storage function

Z(η, η, ω, ω, V, V , θ, θ) = S(η, η, ω, ω, V, V ) + Θ(θ, θ), (2.46)

where (η, V ) fulfills Assumption 2.2.4. Following the arguments of Lemma 2.2.6, it is
immediate to see that under condition (2.14) we have that ∇Z|η=η,ω=ω,V=V ,θ=θ = 0

and∇2Z|η=η,ω=ω,V=V ,θ=θ > 0, such that Z has a strict local minimum at (η, ω, V , θ).
It turns out that

Ż = −(ω − ω)TD(ω − ω)− ‖∇V S2‖2T−1

+ (ω − ω)T (u− u)− (θ − θ)TLcom(θ − θ)
+ (u− u)T v.

(2.47)

As we are still free to design v, the choice v = −(ω − ω) = −ω returns

Ż = −(ω − ω)TD(ω − ω)− ‖∇V S2‖2T−1

−(θ − θ)TLcom(θ − θ) ≤ 0.
(2.48)
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As Ż ≤ 0, there exists a compact level set Υ around the equilibrium (η, ω, V , θ)

which is forward invariant. By LaSalle’s invariance principle the solution starting in
Υ asymptotically converges to the largest invariant set contained in Υ∩{(η, ω, V, θ) :

ω = ω = 0, ‖∇V S2‖ = 0, θ = θ + 1nα}, where α : R≥0 → R is a function and θ =

θ + 1nα follows from the communication graph being connected, i.e. Ker(Lcom) =

Im(1n). On such invariant set the system is

η̇ = BTω = 0

0 = −B(Γ(V ) sin(η)− Γ(V ) sin(η))−H1nα
0 = −E(η)V + Efd

θ̇ + 1nα̇ = −Lcom(θ + 1nα).

(2.49)

In the second equality above, we have exploited the identity 0 = Hθ−BΓ(V ) sin(η)−
Dω − Pd. Bearing in mind that H = Q−1, it follows that necessarily α = 0 (it is
sufficient to multiply both sides of the second line in (2.49) by 1Tn ). Hence on the
invariant set θ = θ and the output of the controller is Hθ which equals the optimal
feedforward input (2.37). We conclude that the dynamical controller guarantees
asymptotic regulation to zero of the frequency deviation and convergence to the op-
timal feedforward input. Furthermore, we can similarly as in the proof of Corollary
2.2.11, conclude that solutions to the closed-loop system that start in a neighborhood
of (η, ω, V , θ) converge to a constant vector. �

The interpretation of the theorem is straightforward: it shows that the dynamic
controllers based on an internal model design synchronize to a steady state solution
of the exosystem that generates the feedforward input that minimizes generation
costs and is able to guarantee a zero frequency deviation. These controllers must be
initialized in the vicinity of θ which represents a nominal estimate of the total de-
mand. Starting from this initial guess, the controllers adjust the power production
depending on the frequency deviation which in turn depends on actual (and unmea-
sured) demand.

2.5 Frequency regulation in the presence of time-varying
power demand

Until now we assumed that the power demand term Pd is unknown but constant,
as is a standard practice in current research. Future smart grids should however
be able to cope with rapid fluctuations of the power demand at the same timescale
as the dynamics describing the physical infrastructure, such that approximating the
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power demand by a constant can become unrealistic. This asks for controllers able
to deal with time-varying power demand. In the previous section we studied within
the framework of (Bürger and De Persis 2015) dynamical controllers able to achieve
zero frequency deviation with steady state optimal production in the presence of
constant power demand. Since the framework lends itself to deal with time-varying
disturbances, it is natural to wonder whether the approach can be used to design
frequency regulators in the presence of time-varying power demand. This is inves-
tigated in this section.

Although the power demand is not known, we will assume that it is the output of
a known exosystem, as it is customary in output regulation theory. Let Pd depend
linearly on σ, namely, let

Pd = Πσ, (2.50)

for some matrix Π, where σ is the state variable of the exosystem

σ̇ = s(σ). (2.51)

Here the map s is assumed to satisfy the incremental passivity property (s(σ) −
s(σ′))T (σ − σ′) ≤ 0 for all σ, σ′. It will be useful to limit ourselves to the case
s(σ) = Sσ, with S a skew-symmetric matrix. In this case, the exosystem (2.50),
(2.51) generates linear combinations of constant and sinusoidal signals. We will ho-
wever continue to refer to s(σ) for the sake of generality, using explicitly Sσ only
when needed. The choice (2.51) is further motivated by spectral decomposition
of load patterns (Aguirre et al. 2008), ocean wave energy (Falnes 2007) and wind
energy (Van der Hoven 1957), (Milan et al. 2013) that indicate that the net load
can indeed be approximated by a superposition of a constant and a few sinusoi-
dal signals. More explicit, we model the power demand Pdi as a superposition of
a constant power demand (Π1iσ1), a periodic power demand that can be compen-
sated optimally (Π2iσ2(t)) and a periodic power demand that cannot be compen-
sated optimally (Π3iσ3i(t)), such that Pdi(t) = Π1iσ1 + Π2iσ2(t) + Π3iσ3i(t). The
reason why we distinguish between Π2iσ2 and Π3iσ3i becomes evident in the next
subsection. Similarly, we write the steady state input as a sum of its components,
ui(t) = u1i + u2i(t) + u3i(t). The explicit dependency on time will be dropped in
the remainder and was added here to stress the differences between constant and
time-varying signals.

Example 2.5.1 (Exosystem). Consider the case of a periodic power demand with frequency
µ superimposed to a constant power demand. This demand can be modeled as Pdi = Π1iσ1+
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Π2iσ2 where σ̇ = Sσ with

S =

[
0 01×2

02×1 S2

]
=

0 0 0

0 0 µ

0 −µ 0

 , (2.52)

Π1i is a real number and Π2i = q−1
i [1 0] = q−1

i R2. In this case R2 = [1 0] and notice that
the pair (R2, S2) is observable.

2.5.1 Economically efficient frequency regulation in the presence
of a class of time-varying power demand

We focus in this subsection on the case in which the power demand at each node
has the form Pdi = Π1iσ1 + Π2iσ2, where σ1, σ2 will be specified below. At steady
state we have that η̇ = 0, V̇ = 0 and therefore power flows between different control
areas need to be constant. This observation restricts the class of time-varying power
demand that can be compensated for by an optimal generation u. We will make this
more specific. Recall that the optimal power generation at steady state is given by

u = Q−1 1n1
T
nPd

1TnQ
−11n

, (2.53)

characterized in (2.29) above. In this case, the second equality in (2.36) writes as in
(2.32)

BΓ(V ) sin(η) =
(
Q−1 1n1

T
n

1TnQ
−11n

− In
)
Pd. (2.54)

This implies that the quantity on the right-hand side must be constant and that there
must exist a vector η ∈ Im(BT ) which satisfies the equality. If we differentiate in
the disturbance term Πσ between a constant component Π1σ1 and a time-varying
component Π2σ2, i.e. Πσ = Π1σ1 + Π2σ2, and there exists a solution to the identity
(2.54) when Πσ is replaced by Π1σ1, then such a solution continues to exist provided

that the time-varying component of Πσ belongs to the null space of (Q−1 1n1
T
n

1T
nQ
−11n

−
In). The null space above can be easily characterized.

Lemma 2.5.2 (Nullspace). The null space of (Q−1 1n1
T
n

1T
nQ
−11n

−In) is given by Im(Q−11n).

Proof. First consider the matrix −1TnQ−11n · (Q−1 1n1
T
n

1T
nQ
−11n

− In), which takes the
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expression

LT =


LT11 −q−1

1 . . . −q−1
1

−q−1
2 LT22 . . . −q−1

2
...

...
...

...
−q−1

n −q−1
n . . . LTnn

 , (2.55)

where LTii = (
∑
j∈V\{i} q

−1
j ). Hence, L is the Laplacian matrix of a weighted com-

plete graph. The rank of the Laplacian matrix of a connected graph is n − 1. Thus
the rank of the matrix LT is also n−1. Since the rank of a matrix is not altered by the

multiplication by a nonzero constant, one infers that the matrix (Q−1 1n1
T
n

1T
nQ
−11n

− In)

has rank n−1 as well. Thus its null space has dimension 1. Now, it is easily checked

that the range of Q−11n is included in the null space of (Q−1 1n1
T
n

1T
nQ
−11n

− In). �

From Lemma 2.5.2 it follows that the time varying component Π2σ2 of the unknown
demand must satisfy Π2σ2 ∈ Im(Q−11n). This leads to the following model for the
power demand

σ̇1 = 0

σ̇2 = s2(σ2)

Pd = Π1σ1 +Q−11nR2σ2,

(2.56)

where Π1 is a diagonal matrix, R2 is some suitable row vector such that the pair
(R2, S2) is observable and thatQ−11nR2σ2 generates the desired time-varying com-
ponent of the power demand. Notice that the frequencies of the sinusoidal modes
in the power demand have to be the same for all nodes. As a result, if we consider
the contribution of the time-varying component of the disturbance to the optimal
steady-state controller, it must be true that

u2 = Q−11n1
T
nΠ2σ2

1TnQ
−11n

= Q−11nR2σ2, (2.57)

where we have exploited the identity Π2σ2 = Q−11nR2σ2. This identity will also
be used later in this section. This characterization points out that, for the existence
of a steady state solution with a zero frequency deviation in the presence of time-
varying demand, the exchange of power among the different areas must be constant
at steady state and this requires that the intensity of the power demand at one ag-
gregate area should be inversely proportional to the power production cost at the
same area. We stress that this is not a limitation of the approach pursued, but rat-
her a constraint imposed by the model of the power network and the optimal zero
frequency regulation problem. We are now ready to state the main result of this
section:



50 2. Optimal frequency regulation in power networks with time-varying disturbances

Theorem 2.5.3 (Optimal regulation in the presence of a class of varying demand).
Let Assumptions 2.2.4, 2.3.2 and 2.4.1 hold and suppose that there exists a solution to
the regulator equations (2.36) with Pd as in (2.56). Then, given the system (2.35), with
exogenous power demand Pd generated by (2.56), with s2(σ2) = S2σ2, S2 skew-symmetric
and with purely imaginary eigenvalues3, and (R2, S2) an observable pair, the controllers at
the nodes

θ̇1i =
∑
j∈N comm

i
(θ1j − θ1i)− q−1

i ωi

θ̇2i = S2θ2i − q−1
i RT2 ωi

ui = q−1
i θ1i + q−1

i R2θ2i,

(2.58)

for all i = 1, 2, . . . , n, guarantee the solutions to the closed-loop system that start in a
neighborhood of (η, ω, V , θ) to converge asymptotically to the largest invariant set where
ωi = 0 for all i ∈ V , ‖∇V S2‖ = 0 and u = u, with u the optimal feedforward input.

Proof. We follow the proof of Theorem 2.4.2 mutatis mutandis. For the sake of ge-
nerality we continue to use s2(σ2) instead of S2σ2, referring to the latter only for
those passages in the proof where the linearity of the map s2 simplifies the analysis.
We consider controllers at the nodes of the form (2.58) where the first term of ui is
inspired by the analogous term in the case of constant power demand (see Theorem
2.4.2) while the second term is suggested by (2.57). In stacked form, with ω = 0, the
controllers write as

θ̇1 = −Lcomθ1

θ̇2 = s2(θ2)

u = Q−1θ1 +Q−1(In ⊗R2)θ2,

where s2(θ) = (s2(θ21)T . . . s2(θ2n)T )T , s2(·) is the subvector of s(·) that generates
the time-varying component of σ and θ2 = (θT21 . . . θ

T
2n)T .4 Under appropriate ini-

tialization, the system above generates the optimal feedforward input u. In fact, if

θ1(0) =
1n1

T
nΠ1σ1(0)

1T
nQ
−11n

, θ2(0) = 1n ⊗ σ2(0), then Q−1θ1 +Q−1(In ⊗R2)θ2, where θ1, θ2

satisfy
0 = −Lcomθ1

θ̇2 = s2(θ2),

coincides with u defined in (2.53). Following (Bürger and De Persis 2015) , the sta-
bilizing inputs v1 and v2 are introduced in the controller above to make it incremen-
tally passive. We obtain

θ̇1 = −Lcomθ1 +Q−1v1

θ̇2 = s2(θ2) + (In ⊗RT2 )Q−1v2

u = Q−1θ1 +Q−1(In ⊗R2)θ2.

(2.59)

3The zero does not belong to the spectrum of S2.
4In the case s2(θn) = S2θn, we have s2(θ) = (In ⊗ S2)θ2.
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The incremental storage function

Θ(θ, θ) =
1

2
(θ1 − θ1)T (θ1 − θ1) +

1

2
(θ2 − θ2)T (θ2 − θ2)

satisfies
Θ̇(θ, θ) = −(θ1 − θ1)Lcom(θ1 − θ1)T

+(θ1 − θ1)Q−1v1

+(θ2 − θ2)T (s2(θ2)− s2(θ2))

+(θ2 − θ2)T (In ⊗RT2 )Q−1v2.

Consider the incremental storage function

Z(η, η, ω, ω, V, V , θ, θ) = S(η, η, ω, ω, V, V ) + Θ(θ, θ), (2.60)

where (η, V ) fulfills Assumption 2.2.4. Following the arguments of Lemma 2.2.6, it is
immediate to see that under condition (2.14) we have that ∇Z|η=η,ω=ω,V=V ,θ=θ = 0

and∇2Z|η=η,ω=ω,V=V ,θ=θ > 0, such that Z has a strict local minimum at (η, ω, V , θ).
Under the stabilizing feedback v1 = −(ω − ω), v2 = −(ω − ω), the function
Z(ω, ω, η, η, V, V , θ, θ) = S(ω, ω, η, η, V, V ) + Θ(θ, θ) along the solutions to

η̇ = DTω

η̇ = 0

Mω̇ = −Dω − B(Γ(V ) sin(η)− Γ(V ) sin(η))

+Q−1(θ1 − θ1) +Q−1(In ⊗R2)(θ2 − θ2)

ω̇ = 0

T V̇ = −E(η)V + Efd

V̇ = 0

θ̇1 = −Lcomθ1 −Q−1ω

θ̇1 = 0

θ̇2 = s2(θ2)− (In ⊗RT2 )Q−1ω

θ̇2 = s2(θ2)

satisfies
Ż = −(ω − ω)TD(ω − ω)− ‖∇V S2‖2T−1

−(θ1 − θ1)TLcom(θ1 − θ1),

where we have exploited the identities

u1 − u1 = Q−1(θ1 − θ1)

u2 − u2 = Q−1(In ⊗R2)(θ2 − θ2).

As Ż ≤ 0, one infers convergence to the largest invariant set of points where ω = 0,
‖∇V S2‖ = 0, θ1 = θ1 + 1nα, where α : R≥0 → R is a function. On the invariant set
the dynamics take the form
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η̇ = 0

0 = −B(Γ(V ) sin(η)− Γ(V ) sin(η))

+Q−11nα+Q−1(In ⊗R2)(θ2 − θ2)

0 = −E(η)V + Efd

θ̇1 + 1nα̇ = −Lcom(θ1 + 1nα)

θ̇2 − θ̇2 = s2(θ2 − θ2),

(2.61)

From the fourth line in (2.61) we infer that α is a constant. The second line with
η = η̃ then implies that q−1

i R2(θ2i − θ2i) = ci is a constant as well. Since the term
R2(θ2i − θ2i) contains only sinusoidal modes, necessarily ci = 0 and from the pair
(R2, S2) being observable it follows that θ2i = θ2i. Equal to the proof of Theorem
2.4.2, pre-multiplying the second line in (2.61) by 1Tn shows that α = 0 and therefore
that θ1 = θ1. We can now conclude that u1 = u1 and u2 = u2, that is the input u
converges to the optimal (time-varying) feedforward input, as claimed. �

2.5.2 Frequency regulation in the presence of a wider class of time-
varying power demand

We continue the previous subsection by considering frequency regulation in the case
the power demand is generated by the exosystem

σ̇1 = 0

σ̇2 = s2(σ2)

σ̇3 = s3(σ3)

Pd = Π1σ1 +Q−11nR2σ2 +R3σ3,

(2.62)

where additionally to (2.56) we have s3(θ) = (s31(θ31)T . . . s3n(θ3n)T )T and R3 =

block.diag(R31, . . . , R3n). Notice that s3i(θ3i) and R3i can now vary from node to
node. As shown in the previous subsection u cannot satisfy (2.53) any longer due
to the presence of σ3. However, compensating for σ3 is still a meaningful control
task, for otherwise the frequency deviation would not converge to zero any longer.
Furthermore, for those cases for which the component Π1σ1 + Q−11nR2σ2 is much
greater in magnitude than R3σ3, u will satisfy (2.53) approximately. In order to
regulate the frequency deviation to zero when the power demand is generated by
(2.62) we propose controllers inspired by the previous subsection and we adjust the
proof of Theorem 2.5.3 accordingly.

Corollary 2.5.4 (Regulation in the presence of varying demand). Let Assumptions
2.2.4, 2.3.2 and 2.4.1 hold and suppose that there exists a solution to the regulator equations
(2.36) with Pd as in (2.62). Then, given the system (2.35), with exogenous power demand Pd
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generated by (2.62), sk(σk) = Skσk, Sk skew-symmetric and with purely imaginary eigen-
values for k = 2, 3, and ((R2 R3i), block.diag(S2, S3i)) an observable pair, the controllers
at the nodes

θ̇1i =
∑
j∈N comm

i
(θ1j − θ1i)− q−1

i ωi

θ̇2i = S2θ2i − q−1
i RT2 ωi

θ̇3i = S3iθ3i −RT3iωi
ui = q−1

i θ1i + q−1
i R2θ2i +R3iθ3i,

(2.63)

for all i = 1, 2, . . . , n, guarantee the solutions to the closed-loop system that start in a
neighborhood of (η, ω, V , η) to converge asymptotically to the largest invariant set where
ωi = 0 for all i ∈ V , ‖∇V S2‖ = 0 and u = u = u1 + u2 + u3.

Proof. By adding 1
2 (θ3−θ3)T (θ3−θ3) to the overall storage function (2.60) and follo-

wing the same lines of reasoning as the proof of Theorem 2.5.3 we can conclude that
the system converges to the largest invariant set of points where ω = 0, ‖∇V S2‖ = 0,
θ1 = θ1 + 1nα, where α : R≥0 → R is a function. On the invariant set the dynamics
take the form

η̇ = 0

0 = −B(Γ(V ) sin(η)− Γ(V ) sin(η))

+Q−11nα+Q−1(In ⊗R2)(θ2 − θ2)

+R3(θ3 − θ3)

0 = −E(η)V + Efd

θ̇1 + 1nα̇ = −Lcom(θ1 + 1nα)

θ̇2 − θ̇2 = s2(θ2 − θ2)

θ̇3 − θ̇3 = s3(θ3 − θ3)

from where we can conclude in a similar way as in the proof of Theorem 2.5.3 that
(θ1, θ2, θ3) converges to (θ1, θ2, θ3) and therefore that u converges to u. �

Remark 2.5.5 (Additional gains). The focus of this work is on the asymptotic behavior of
the system. To obtain a desirable transient response, we can adjust the controller of Corollary
2.5.4, by including additional controller gains α, β1, β2 ∈ R>0, and β3 ∈ Rn>0 resulting in
a controller of the form

θ̇1 = −αLcomθ1 − β1Q
−1ω

θ̇2 = s2(θ2)− β2(In ⊗RT2 )Q−1ω

θ̇3 = s3(θ3)−RT3 diag(β3)ω

u = β1Q
−1θ1 + β2Q

−1(In ⊗R2)θ2 + diag(β3)R3θ3.

The tuning of the various parameters depends on the system at hand and is outside of the
scope of this work. We notice however that the optimality features of the controller are
preserved under the addition of the various gains.
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Remark 2.5.6 (Non-harmonic disturbances). Controller (2.58) (as well as the other con-
trollers introduced in the previous sections) are designed to counteract disturbances genera-
ted by exosystems (2.62). These controllers are also robust to other perturbations. Consider
system (2.35) with a disturbance −Ql in addition to −Pd. Assume that −Ql has a finite
L2-norm, namely

∫∞
0
‖Ql(s)‖2ds < ∞. In the presence of Ql, the incremental model is

modified in such a way that the function Z(ω, ω, η, η, V, V , θ, θ) satisfies

Ż = −(ω − ω)TD(ω − ω)− ‖∇V S2‖2T−1

−(θ1 − θ1)TLcom(θ1 − θ1)− (ω − ω)TQl.

Further manipulations show that

Ż ≤ −(ω − ω)T D̃(ω − ω)− ‖∇V S2‖2T−1

−(θ1 − θ1)TLcom(θ1 − θ1) + γ(Ql)TQl,

where γ = 1
2ε , Ã = A− ε

2I , and ε is a number satisfying 0 < ε < 2 mini{Ai}. Integrating
both sides yields

Z(t)− Z(0) ≤ γ
∫ t

0

‖Ql(s)‖2ds ≤ γ
∫ ∞

0

‖Ql(s)‖2ds.

This shows that, for initial conditions of the system which are sufficiently close to a strict
local minimum of Z and for disturbancesQl with a sufficiently small L2-norm, the solutions
of the system remain in a compact level set of Z and as such are bounded and exist for all
time. Furthermore,

(ω(t)− ω)T D̃(ω(t)− ω) ≤ Z(0) + γ
∫∞

0
‖Ql(s)‖2ds.

Since the left-hand side is bounded for all time, we have

mini{D̃i} supt≥0 ‖ω(t)− ω‖2 ≤ Z(0) + γ
∫∞

0
‖Ql(s)‖2ds,

which shows the existence of a finiteL2-to-L∞ gain from the disturbanceQl to the frequency
deviation ω − ω. Similarly, one can show the existence of a finite L2-to-L2 gain (Kundur
et al. 2004).

This section contributed to the development of distributed and dynamic con-
trollers based on an internal model design able to generate a time-varying feedfor-
ward input such that a zero frequency deviation is obtained in the presence of time-
varying power demand. Furthermore we characterized the time-varying power de-
mand that can be compensated optimally under the requirement of zero frequency
regulation.
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2.6 Case study

We illustrate the performance of the controllers on a connected four area network
(see (Nabavi and Chakrabortty 2013) how a four area network equivalent can be
obtained for the IEEE New England 39-bus system or the South Eastern Austra-
lian 59-bus system). This simulation is carried out on the network provided in (Li
et al. 2014) and its network topology is shown in Figure 2.1. The values of cost coef-

Area 4

Area 1

Area 3

Area 2

B14 = −21.0 B12 = −25.6

B23 = −33.1B34 = −16.6

Figure 2.1: A four area equivalent network of the power grid, where Bij denotes
the susceptance of the transmission line connecting two areas. The dashed lines
represent the communication links.

ficients, generator and transmission line parameters are a slight modification of the
ones provided in (Li et al. 2014), (Ourari et al. 2006) and (Bergen and Vittal 2000).
An overview of the numerical values of the relevant parameters is provided in
Table 2.2. The communication among the controllers is depicted in Figure 2.1 as
well and differs from the topology of the power grid. As a first scenario the po-
wer demand Pd (per unit) is assumed to be constant and therefore the controller of
Section 2.4 is applicable. The system is initially at steady state with a constant load
Pd(t) = (2.00, 1.00, 1.50, 1.00)T , t ∈ [0, 10) and according to their cost functions ge-
nerators take a different share in the power generation such that the total costs are
minimized. At timestep 10 the load5 is increased to Pd(t) = (2.20, 1.05, 1.55, 1.10)T ,
t ≥ 10 . The frequency response to the control input is given in Figure 2.2, where
the base frequency is 120π rad/s. From Figure 2.2 we can see how the frequency
drops due to the increased load. Furthermore we note that the controller regula-
tes the power generation such that a new steady state condition is obtained where
the frequency deviation is again zero and costs are minimized. To elaborate on this
we note that the generation costs at t = 100 are 3.36 × 104 $/h (assuming a base

5 We can interpret an increase of load also as a sudden drop of uncontrollable (renewable) generation.
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A
re

a
1

A
re

a
2

A
re

a
3

A
re

a
4

Mi 5.22 3.98 4.49 4.22
Di 1.60 1.22 1.38 1.42
Tdoi 5.54 7.41 6.11 6.22
Xdi 1.84 1.62 1.80 1.94
X
′

di 0.25 0.17 0.36 0.44
Efdi 4.41 4.20 4.37 4.45
Bii -49.61 -61.66 -52.17 -40.18
qi 1.00 0.75 1.50 0.50

Table 2.2: An overview of the numerical values used in the simulations. System
parameters are provided in ‘per unit’, except Tdoi (seconds). The generation cost
coefficient qi is given in $104

h .

power of 1000 MVA), which is substantially lower than the generation costs when
every control area would produce only for its own demand (4.79 × 104 $/h). Since
we did not include excitor dynamics in this simulation, the voltages are not regula-
ted. Nevertheless the voltages do not deviate much from their nominal value of 1
per unit. At timestep 70 the communication link between area 1 and area 3 is lost,
without effecting the frequencies. This is expected since the controller states are al-
ready in consensus and it provides numerical evidence that our approach is robust
to changes in the communication network as long as the graph stays connected.

As a second scenario we consider a time-varying load as in (2.62), where the
constant demand of scenario 1 is modulated by sinusoidal terms with periods of
30 seconds. We note that the controller design does not require that all loads vary
with the same frequency and is only assumed here for notational convenience. The
resulting load profile is given by

Pd(t) = (2.00, 1.00, 1.50, 1.00)T + 0.040× sin(
2πt

30
)(1.10, 1.20, 0.98, 1.00)T (2.64)

for t ∈ [0, 10) and

Pd(t) = (2.20, 1.05, 1.55, 1.10)T + 0.044× sin(
2πt

30
)(1.04, 1.30, 0.99, 1.00)T , (2.65)

for t ≥ 10. Notice that the sinusoidal term does not belong to Im(Q−11n). Ac-
cordingly we rely on the controller proposed in Section 2.5.2 with β3 = 0.51n (see
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Figure 2.2: Frequency response and control input using the controller of Section 2.4.
The constant load is increased at timestep 10, whereafter the frequency deviation is
regulated back to zero and generation costs are minimized.

Remark 2.5.5) with matrices

S3i =

[
0 2π

30
−2π
30 0

]
, R3i =

[
1 0

]
. (2.66)

From Figure 2.3 we can see how the controller provides a time-varying input such
that the frequency deviation is driven to zero even in the presence of a time-varying
load. Since the time-varying load does not belong to Im(Q−11n), the time-varying
power generation is not economically optimal anymore. One can check however
that the constant term of the generation still converges to the optimum and is equal
to the optimal generation in scenario 1. An example of optimal generation in the
presence of a time-varying load, where the time-varying load belongs to Im(Q−11n),
is provided in (Bürger et al. 2014) under the assumption of constant voltages.
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Figure 2.3: Frequency response and control input using the controller of Section 2.5.2.
The time-varying load is increased at timestep 10, whereafter the frequency is regu-
lated back to zero. The costs associated to the constant term of the generation are
minimized.
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Chapter 3

Active power sharing in microgrids

Abstract

This chapter studies the problem of frequency regulation and active power sharing in
inverter-based microgrids with time-varying voltages. Building upon the result in the
previous chapter, we propose the design of internal-model-based controllers and analyze
it within an (incrementally) passivity framework. A small case study indicates the ef-
fectiveness of the proposed solution.

3.1 A microgrid model

Consider a microgrid consisting of n generation and m load buses. Every genera-
tion bus represents an inverter, connected to a DG unit and a battery. The loads are
modelled as constant impedances and corresponding load buses are eliminated, re-
sulting in a Kron-reduced network. Consequently, the network is represented by a
connected and undirected graph G = (V, E), where V = {1, . . . , n} is the set of no-
des (generation buses) and E = {1, . . . ,m} is the set of distribution lines connecting
the nodes. The network structure can be represented by its corresponding incidence
matrix B ∈ Rn×m. The ends of edge k are arbitrary labeled with a ‘+’ and a ‘−’.
Then

Bik =


+1 if i is the positive end of k
−1 if i is the negative end of k
0 otherwise.

3.1.1 A network of inverters

The inverter at the node i is assumed to be able to regulate its frequency instanta-
neous and its voltage in a delayed manner. The inverter is therefore represented
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by

δ̇i = uδi ,

τVi
V̇i = −Vi + uVi ,

(3.1)

where δi and Vi are the voltage angle and voltage respectively, and τVi
∈ R>0 is the

time constant of the filter. The considered controllers are given by

uδi = ωd − kPi
(Pmi − P di − pi),

uVi = V di − kQi
(Qmi −Qdi − qi),

(3.2)

where ωd, V d, P d, Qd ∈ Rn are respectively the desired frequency, desired voltage,
active power setpoint and reactive power setpoint, and are determined according
to economic and technical criteria. The constants kPi

∈ R>0 and kQi
∈ R>0 are

the frequency and voltage droop gains respectively. pi and qi are additional control
inputs which we will design later to achieve frequency and voltage regulation.

Remark 3.1.1 (Inverter model and controller). The inverter model (3.1) and controller
(3.2) are identical to the ones in (Schiffer et al. 2013), when we set pi = 0 and qi = 0.
We refer the reader to (Schiffer et al. 2013) and (Schiffer et al. 2015) for a more in depth
treatment of physical interpretation and underlying assumptions.

The measured active and reactive powers (Pmi and Qmi ) are obtained through
filters with time constants τPi and τQi :

τPi
Ṗmi = −Pmi + Pi

τQiQ̇
m
i = −Qmi +Qi,

(3.3)

where the power flows are given by

Pi = GiiV
2
i −

∑
j∈Ni

(
BijViVj sin(δi − δj) +GijViVj cos(δi − δj)

)
Qi = −BiiV 2

i −
∑
j∈Ni

(
GijViVj sin(δi − δj)−BijViVj cos(δi − δj)

)
,

(3.4)

where Bij and Gij denote the susceptance and the conductance of the distribution
line respectively. Additionally, we have Bii = B̂ii +

∑
j∈Ni

Bij and Gii = Ĝii +∑
j∈Ni

Gij , where B̂ii and Ĝii denote the shunt susceptance and shunt conductance.
In the subsequent analysis we approximate the terms involving G by an unknown
constant, i.e.

Pi =
∑
j∈Ni

|Bij |ViVj sin(δi − δj) + P0i,

Qi = |Bii|V 2
i −

∑
j∈Ni

|Bij |ViVj cos(δi − δj) +Q0i.
(3.5)
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The approximation above (including a lossless network as a particular case by set-
ting P0i = Q0i = 0) is common in power grid studies and is made in order to derive
a suitable Lyapunov function for the stability analysis. Assuming τVi

� τPi
' τQi

we can simplify the used model by setting τVi = 0, resulting in

δ̇i = ωi

τPi
ω̇i = −ωi + ωd − kPi

(Pi − P d0i) + uPi

τQi V̇i = −Vi + V di − kQi(Qi −Qd0i) + uQi ,

(3.6)

with

uPi = −kPi
(pi + τPi

ṗi)

uQi = −kQi(qi + τQi q̇i).
(3.7)

For all nodes the system writes as:

δ̇ = ω

TP ω̇ = −ω + 1nω
d −KP (P − P d0 ) + uP

TQV̇ = −V + V d −KQ(Q−Qd0) + uQ,

(3.8)

where the used symbols follow straightforwardly from the node dynamics, and are
vectors or matrices with appropriate dimensions. Since the dynamics are driven by
the differences in the voltage angles we introduce η = BT δ and write (3.8) as:

η̇ = BTω,
TP ω̇ = −ω + 1nω

d −KP (Bdiag(BT+V )diag(BT−V )Be sin(η)− P d0 ) + uP ,

TQV̇ = −V + V d −KQ(diag(V )BnV

− |B|diag(BT+V )diag(BT−V )Be cos(η)−Qd0) + uQ,

(3.9)

where B is the corresponding incidence matrix. Its positive entries are given by B+

and its negative entries by B−, such that we have B = B+ + B−. Furthermore |B| =
B+ − B− denotes the incidence matrix with all elements positive. The susceptance
of the transmission lines is denoted by Be = diag(Bk), where Bk = |Bij | = |Bji| is
the susceptance of transmission line k connecting nodes i and j. The shunt suscep-
tance of the nodes is given by Bn = diag(|Bii|). To simplify the notation further we
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introduce

P d0 = P d0 − P0

Qd0 = Qd −Q0

MP = K−1
P TP

MQ = K−1
Q TQ

Θ(V ) = diag(V )BnV

Γ(V ) = diag(BT+V )diag(BT−V )Be.

(3.10)

Remark 3.1.2 (A new voltage dependent variable). Notice that Γ(V ) is a diagonal
matrix with Γ(V )kk = |Bij |ViVj = |Bji|VjVi when edge k is incident to nodes i and j.
Θ(V ) is a vector with Θ(V )i = |Bii|V 2

i .

Using the new variables (3.10), system (3.9) can be written as

η̇ = BTω
MP ω̇ = −K−1

P (ω − 1nωd) + P d0 − BΓ(V ) sin(η) + uP

MQV̇ = −K−1
Q (V − V d) +Qd0 −Θ(V ) + |B|Γ(V ) cos(η) + uQ,

(3.11)

which we will use throughout this chapter.

3.2 Stability with constant control inputs

First we investigate the stability of the equilibria of system (3.11) under the assump-
tion uP = uP and uQ = uQ are constant. This study has been already pursued in
e.g. (Schiffer et al. 2013) or in (Simpson-Porco et al. 2013) for a first order model.
The approach in this work descends however from the results provided in Chapter
2 and can provide new insight into this problem. Furthermore it paves the way for
allowing dynamic controlled uP and uQ in later sections, relying on (incremental)
passivity and the internal model approach. Our analysis is based on characterizing
the equilibria and providing conditions when those equilibria are locally attractive.

3.2.1 Equilibria

Before characterizing the equilibria, we need the following assumption, which gua-
rantees the existence of an equilibrium:
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Assumption 3.2.1 (Feasibility). For a given uP + P d0 and uQ + Qd0, there exist η ∈
Im(BT ) ∩ (−π2 , π2 )m, ω ∈ Ker(BT ) and V ∈ Rn>0 such that

0 = −K−1
P (ω − 1nωd)− BΓ(V ) sin(η) + P d0 + uP

0 = −K−1
Q (V − V d)−Θ(V ) + |B|Γ(V ) cos(η) +Qd0 + uQ.

(3.12)

Under this assumption the equilibria can be characterized as follows:

Lemma 3.2.2 (Equilibria). The equilibria of (3.11) are given by

ω = 1nω∗, (3.13)

where

ω∗ = ωd +
1Tn (P d0 + uP )

1TnK
−1
P 1n

, (3.14)

BΓ(V ) sin(η) =
(
In −

−K−1
P 1n1

T
n

1TnK
−1
P 1n

)
(P d0 + uP ), (3.15)

and V any vector fulfilling Assumption 3.2.1.

3.2.2 Local attractivity

Having characterized the equilibria of system (3.11), we are now ready to investigate
the stability properties of the steady state solution. Recall the underlying assump-
tion that V ∈ Rn>0, and that therefore there exists a compact set around V which
only contains positive values of V . To analyze the stability consider the incremental
storage function:

S(ω, ω, η, η, V, V )

=
1

2
(ω − ω)TMP (ω − ω)

− 1TmΓ(V ) cos(η) + 1TmΓ(V ) cos(η)− (Γ(V ) sin(η))T (η − η)

+ 1TnK
−1
Q (V − V )− (K−1

Q V d +Qd0 + uQ)T (ln(V )− ln(V ))

+
1

2
1Tn (Θ(V )−Θ(V )).

(3.16)

The former terms involving η and ω descend from Chapter 2, whereas latter terms
were used previously to analyze voltage stability (Schiffer et al. 2014). Notice that
the storage function is not bounded, since unboundedness of η implies that the term
(Γ(V ) sin(η))T η is unbounded as well. In order to invoke LaSalle’s invariance prin-
ciple we therefore require condition 3.17, in the lemma below, to be satisfied.
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Lemma 3.2.3 (Local minimum of (3.16)). The storage function (3.16) has, under As-
sumption 3.2.1, a local minimum at an equilibrium point (η, ω, V ), if the following condi-
tion is met ( ∂2S

∂2V
− ∂2S
∂V ∂η

∂2S
∂2η

∂2S
∂η∂V

)∣∣∣
η=η,ω=ω,V=V

> 0, (3.17)

where
∂2S
∂η∂V

= (|B|Γ(V )diag(sin(η)))Tdiag(V )−1,

∂2S
∂V ∂η

= diag(V )−1(|B|Γ(V )diag(sin(η))),

∂2S
∂2η

= diag(Γ(V ) cos(η)),( ∂2S
∂2V

)
ii

=
(
|Bii|+

KQV
d +Qd0 + uQ

V 2
i

)
,

(3.18)

and ( ∂
2S
∂2V )ij = (−|Bij | cos ηk) for i 6= j, where edge k is incident to nodes i and j. When

node i is not connected to node j we take |Bij | = 0.

Proof. First we consider the gradient of the storage function.

∇S =
[
∂S
∂η

T ∂S
∂ω

T ∂S
∂V

T
]T

=

Γ(V ) sin(η)− Γ(V ) sin(η)

MP (ω − ω)

(−V̇ TMQdiag(V )−1)T

 (3.19)

Since V̇ |η=η,ω=ω,V=V = 0 it is immediate to see that we have ∇S|η=η,ω=ω,V=V = 0.
As the gradient of S is zero at an equilibrium point it is sufficient for S to have a local
minimum when the Hessian is positive definite at an equilibrium. The Hessian is
given by

∇2S =

diag(Γ(V ) cos(η)) 0 ∂2S
∂η∂V

0 MP 0
∂2S
∂V ∂η 0 ∂2S

∂2V

 , (3.20)

where ( ∂2S
∂V ∂η )T = ∂2S

∂η∂V = (|B|Γ(V )diag(sin(η)))Tdiag(V )−1, ( ∂
2S
∂2V )ii = |Bii| +

KQV
d+Qd

0+uQ

V 2
i

and ( ∂
2S
∂2V )ij = −|Bij | cos ηk for i 6= j, where edge k is incident to no-

des i and j. Since Mp and diag(Γ(V ) cos(η)) are positive definite matrices, it follows
by invoking the Schur complement that∇2S|η,ω,V > 0 if and only if( ∂2S

∂2V
− ∂2S
∂V ∂η

∂2S
∂2η

∂2S
∂η∂V

)∣∣∣
η=η,ω=ω,V=V

> 0. (3.21)

�
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We are now ready to state the main result of this section, that is, any solution
starting sufficiently close to an equilibrium where the storage function S has a local
minimum, asymptotically converges to an equilibrium fulfilling Assumption 3.2.1.

Theorem 3.2.4 (Convergence to an equilibrium). Given system (3.11), if the equilibrium
fulfills condition (3.17), then the system locally asymptotically converges to an equilibrium
fulfilling Assumption 3.2.1.

Proof. Since the storage function has a local minimum at the equilibria we can in-
voke LaSalle’s invariance principle. For this we show that Ṡ ≤ 0, with the equality
holding only at the equilibria. In fact,

Ṡ =
∂S
∂η

η̇ +
∂S
∂ω

ω̇ +
∂S
∂V

V̇ , (3.22)

where
∂S
∂η

η̇ = −(ω − ω)TB(Γ(V ) sin(η)− Γ(V ) sin(η)),

∂S
∂ω

ω̇ = (ω − ω)T (−K−1
P ω +K−1

P ω)

+ (ω − ω)TB(Γ(V ) sin(η)− Γ(V ) sin(η),

∂S
∂V

V̇ = −V̇ TMQdiag(V )−1V̇ ,

(3.23)

yielding

Ṡ = −(ω − ω)TK−1
P (ω − ω)− V̇ TMQdiag(V )−1V̇ . (3.24)

Recalling that V ∈ Rn>0, we have that Ṡ ≤ 0 and therefore there exists a compact le-
vel set Υ around the equilibrium (η, ω, V ), which is forward invariant. By LaSalle’s
invariance principle the solution starting in Υ converges asymptotically to the lar-
gest invariant set contained in Υ ∩ {(η, ω, V ) : ω = ω, V̇ = 0}. On such invariant set
the system is

η̇ = BTω,
0 = −K−1

P (ω − 1nωd)− BΓ(V ) sin(η) + P d0 + uP ,

0 = −K−1
Q (V − V d)−Θ(V ) + |B|Γ(V ) cos(η) +Qd0 + uQ.

(3.25)

Recall that ω = 1nω
∗, such that η̇ = BT1nω∗ = 0. Since on the invariant set η̇ =

ω̇ = V̇ = 0, system (3.11) approaches the set of equilibria contained in Υ. Consider
a forward invariant set Ω ⊆ Υ around (η, ω, V ), where it holds that ∂2S

∂(η,ω,V )2 > 0.
Since every equilibrium in Ω is Lyapunov stable, it then follows from Lemma 1.4.8
that the solution starting in Ω converges to a point. I.e., we can conclude that the
system approaches the set where where V = Ṽ and η = η̃ are constants. �
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3.3 Frequency regulation by dynamic control inputs

In the previous section we investigated the stability of system (3.11) with constant
uP = uP . As shown in Lemma 3.2.2 this generally results in a steady state frequency
ω deviating from the desired frequency ωd. In this section we adopt the approach
pursued in Chapter 2, and based on incremental passivity and the internal model
approach, we design a dynamic and distributed controller providing a control input
uP (t) such that ω = 1nω

d is locally asymptotically stable, i.e. the frequency is stabi-
lized at its desired value. Before proposing a stabilizing controller we first discuss
possible values of the steady state control input.

3.3.1 Power sharing

From Lemma 3.2.2 it is immediate to see that any input uP , satisfying 1Tn (P d0 +

uP ) = 0, implies that a stable equilibrium satisfies ω = ωd. Among the possible
choices of uP , we focus on the steady state input solving the following optimization
problem:The control input uP is a solution to the following optimization problem:

min
uP ,v

1

2
(uP )TRuP = min

uP ,v

∑
i∈V

1

2
ri(u

P
i )2

s.t. 0 = −BΓ(V )v + P d0 + uP ,

(3.26)

where we have set sin(η) = v. The equality constraint in the optimization pro-
blem coincides with the frequency dynamics in (3.11) at steady state where ω =

1nω
d. Following standard literature on convex optimization (see e.g. (Boyd and

Vandenberghe 2004)) we introduce the Lagrangian function

L(uP , v, λ) = (uP )TRuP + λT
(
−BΓ(V )v + P d0 + uP

)
. (3.27)

Assume that R is a positive diagonal matrix and therefore R is strictly convex. It
follows that L(uP , v, λ) is convex in (uP , v) and concave in λ. Therefore there exists
a saddle point solution to

max
λ

min
uP ,v

L(uP , v, λ).

Applying first order optimality conditions, the saddle point (uP , v, λ) must satisfy

RuP + λ = 0,

Γ(V )BTλ = 0,

−BΓ(V )v + P d0 + uP = 0.

(3.28)
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Solving this set of equations for uP it is straightforward to show that

uP = −R−1 1n1
T
nP

d
0

1TnK
−1
p 1n

. (3.29)

Remark 3.3.1 (Active power sharing). Active power sharing is an important aspect
in microgrids. Some results on obtaining a desirable power sharing are provided e.g. in
(Simpson-Porco et al. 2013) and (Schiffer et al. 2013). Note that in the present setting, the
matrix R can be chosen to obtain an appropriate active power sharing. For instance the
choice R = In results in uPi = uPj = uP∗ for all i, j, whereas R = K−1

P results in uPi
proportional to its droop gain.

3.3.2 Stability

Relying on results of the previous section and our previous work (Bürger et al. 2014),
we can design a controller which makes the system (3.11) locally asymptotically
converging to an equilibrium where ω = 11ω

d, and thus provides frequency control,
which is comparable to secondary control in the classic power grid. The stability
result of the previous section assumed uP = uP and uQ = uQ are constants. If we
let uP be any control input, it is immediate to see from Lemma 3.2.4 that system
(3.11) is incrementally passive from the input u = uP to the output y = ω.

Corollary 3.3.2 (Incremental passivity). Let condition (3.17) hold. Then for system (3.11)
there exists a regular storage function S ′(η, η, ω, ω) which satisfies the following incremen-
tal dissipation inequality

Ṡ ′ ≤ −(y − y)TK−1
P (y − y) + (y − y)T (u− u), (3.30)

where u = uP and y = ω.

As the main result of this section we propose a dynamic controller that conver-
ges asymptotically to the feedforward input (3.29) and guarantees an asymptotical
convergence of the frequency ω to its desired value 1nωd.

Theorem 3.3.3 (Frequency regulation and active power sharing). Given system (3.11),
and assuming that condition (3.17) holds, the controllers at the nodes

θ̇i =
∑

j∈N comm
i

(θj − θi)− r−1
i (ωi − ωd),

uPi = r−1
i θi, i ∈ V

(3.31)

where N comm
i denotes the set of neighbors of node i in a graph describing the exchange of

information among the controllers, guarantee locally the solutions to the closed-loop system
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to converge asymptotically to the largest invariant set where ωi = ωd for all i ∈ V , and
θ = θ, θ being the vector

θ =
1n1

T
nP

d
0

1TnR
−11n

, (3.32)

such that uP = −R−1θ, is as in (3.29).

Proof. Bearing in mind Corollary 3.3.2 we have that system (3.11), with dynamic
uP and constant uQ is incrementally passive from the input uP to the output ω.
The internal model principle design pursued in (De Persis 2013), (Bürger and De
Persis 2013) and (Bürger and De Persis 2015) prescribes the design of a controller
able to generate the feedforward input uP . To this purpose, we introduce the overall
controller

θ̇ = −Lcomθ +H
T
v,

uP = Hθ,
(3.33)

where θ ∈ Rn, Lcom the Laplacian associated with a graph that describes the ex-
change of information among the controllers, and with the term H

T
v needed to

guarantee the incremental passivity property of the controller (see (Bürger and De
Persis 2013), (Bürger and De Persis 2015) for details). Here v ∈ Rn is an extra control
input to be designed later, while H = H

T
= −R−1.

If v = 0 and θ(0) =
1n1

T
nP

d
0

1T
nR
−11n

, then θ(t) := θ(0) satisfies the differential equation in

(3.33) and moreover the corresponding outputH θ(t) is identically equal to the feed-
forward input uP (t) defined in (3.29), provided that H = −R−1. More explicitly, we
have

θ̇ = −Lcomθ,
uP = −R−1 θ.

(3.34)

Consider now the incremental storage function

Φ(θ, θ) =
1

2
(θ − θ)T (θ − θ)

It satisfies along the solutions to (3.33)

Φ̇(θ, θ) = (θ − θ)T (−Lcomθ −R−1v + Lcomθ)
≤ −(θ − θ)TR−1v = (uP − uP )T v.

(3.35)
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We now interconnect system (3.11) and the controller (3.33), obtaining

η̇ = BTω,
MP ω̇ = −K−1

P (ω − 1nωd)− BΓ(V ) sin(η) + P d0 −R−1θ,

MQV̇ = −K−1
Q (V − V d)−Θ(V ) + |B|Γ(V ) cos(η) +Qd0 + uQ,

θ̇ = −Lcomθ −R−1v.

(3.36)

Consider the incremental storage function

Z(ω,1nω
d, η, η, V, V , θ, θ) = S(ω,1nω

d, η, η, V, V ) + Φ(θ, θ), (3.37)

where (ηT ,1Tnω
d, V

T
)T fulfills Assumption 3.2.1. Following the argumentation of

Lemma 3.2.3, it is immediate to see that under condition (3.17) we have that
∇Z|η=η,ω=ω,V=V ,θ=θ = 0 and ∇2Z|η=η,ω=ω,V=V ,θ=θ > 0, such that Z has a local
minimum at its equilibrium. It turns out that

Ż = −(ω − 1nωd)TK−1
P (ω − 1nωd)

− V̇ TMQdiag(V )−1V̇

+ (ω − 1nωd)T (u− u)

− (θ − θ)TLcom(θ − θ) + (u− u)T v.

(3.38)

As we are still free in designing v, the choice v = −(ω − 1nωd) returns

Ż = −(ω − 1nωd)TK−1
P (ω − 1nωd)

− V̇ TMQdiag(V )−1V̇

− (θ − θ)TLcom(θ − θ) ≤ 0

(3.39)

As Ż ≤ 0, there exists a compact level set Υ around the equilibrium (η,1nω
d, V , θ),

which is forward invariant. By LaSalle’s invariance principle the solution starting in
Υ asymptotically converges to the largest invariant set contained in Υ∩{(η, ω, V, θ) :

ω = 1nω
d, V̇ = 0, θ = θ + 1nα(t)}. On such invariant set the system is

η̇ = BT1nωd,
0 = −B(Γ(V ) sin(η)− Γ(V ) sin(η))−R−11nα(t),

0 = −K−1
Q (V − V d) +Qd0 −Θ(V ) + |B|Γ(V ) cos(η) + uQ,

θ̇ = −Lcom(θ + 1nα(t)).

(3.40)

Premultiplying the second line in (3.40) by 1Tn yields 1TnR−11nα(t) = 0. As R−1

is a positive definite diagonal matrix it follows that necessary α(t) = 0 and there-
fore the control input uP converges to the optimal control input uP given by (3.29).
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Figure 3.1: A microgrid consisting of 4 interconnected inverters.

Recall that ω = 1nω
d, such that η̇ = BT1nωd = 0. Since on the invariant set

η̇ = ω̇ = V̇ = θ̇ = 0, the solutions to system (3.11) controlled by (3.31) appro-
ach the set of equilibria contained in Υ. Consider a forward invariant set Ω ⊆ Υ

around (η, ω, V , θ), where it holds that ∂2Z
∂(η,ω,V,θ)2 > 0. Since every equilibrium in Ω

is Lyapunov stable, it then follows from Lemma 1.4.8 that the solution starting in Ω

converges to a point. �

Bearing in mind that pi is applied to the physical system, which is related to uPi
via (3.7), the following corollary provides the overall controller:

Corollary 3.3.4 (Applied control input). The control input p, applied to the controllers
(3.2) is generated by the following system:

θ̇ = −Lcomθ −R−1(ω − 1ωd),
uP = −R−1θ,

TP ẋ
P = −xP −K−1

P uP ,

p = xP .

(3.41)

3.4 Case study

We will illustrate the performance of the controller proposed in Theorem 3.3.3 on
an academic example of a microgrid. Consider a network of four interconnected
inverters, as shown in Figure 3.1. Noticing that ω is independent of the voltages,
we propose additionally the following decentralized controller aiming at voltage
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regulation:

µ̇i = −(Vi − V di )

uQi = µi.
(3.42)

The control objective chosen in this simulation is to let the system converge to the
desired values ωd = 50 and V d = (1, 1, 1, 1)T . The system is initially at steady state
with P d0 = (0.02, 0.15, 0.1, 0.1)T for t ∈ [0, 25) and Qd = (0.202, 0.014, 0.0131, 0.089)T

for t ∈ [0, 45). At timestep t > 25, P d0 is changed to P d0 = (0.04, 0.4, 0.2, 0.2)T and at
timestep t > 45, Qd0 is changed to Qd0 = (3.78, 1.8, 0, 4)T . The frequency and voltage
response to the control inputs is provided in Figure 3.2. From Figure 3.2 we can
see how the controller proposed in Theorem 3.3.3 regulates the frequency after a
disturbance back to its desired value. Furthermore we notice that controller (3.42) is
able regulate the voltage to its desired value. Although the proven results hold only
locally, the simulations provide evidence that the proposed controllers perform well
in a wide range around the desired values.
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Figure 3.2: Frequency and voltage response to changing values of P d0 and Qd0 and its
corresponding control inputs uP and uQ. The value of P d0 is changed at timestep 25
and Qd0 at timestep 45.
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Chapter 4

Output regulation of flow networks with
input and flow constraints

Abstract

In this chapter we show how techniques that were proven useful in the previous chap-
ters can be adapted, to study the (optimal) coordination of general flow networks with
storage capabilities at the nodes. Particularly, we show how a class of high voltage di-
rect current (HVDC) networks fit within the considered model of a flow network. The
control objective is to regulate the measured output (e.g storage levels or voltages) to-
wards the desired value. In contrast to Chapter 2 and Chapter 3, the subsystems at the
nodes are not ‘output strictly incrementally passive’ (i.e. the nodes are undamped), po-
sing new challenges to the controller design. We present a distributed controller that
dynamically adjusts the node injections and flows, to achieve output regulation in the
presence of an unknown disturbance, while satisfying given input and flow constraints.
Optimal coordination among the inputs, minimizing a suitable cost function, is achieved
by exchanging information over a communication network. Exploiting an incremental
passivity property, the desired steady state is proven to be globally asymptotically stable
under the closed loop dynamics. In addition to the study of a multi-terminal HVDC
network, a study on a district heating system shows the the effectiveness of the proposed
solution.

4.1 Flow networks

Consider a network of physically interconnected undamped dynamical systems. The
topology of the system is described by a graph G = (V, E), where V = {1, ..., n} is
the set of nodes and E = {1, ...,m} is the set of edges connecting the nodes. We
represent the topology by its corresponding incidence matrix B ∈ Rn×m, where B is
defined by arbitrarily labelling the ends of the edges in E with a ‘+’ and a ‘−’, and
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letting

Bik =


+1 if node i is the positive end of edge k

−1 if node i is the negative end of edge k

0 otherwise.

The evolution of state xi at node i is given by1

τxi
ẋi(t) =−

∑
k∈Ni

Bikufk(t) + upi(t)− di

yi(t) = hi(xi(t)),

(4.1)

where upi(t) is the input, τxi
a constant, Ni is the set of edges connected to node i,

ufk(t) is the flow on edge k, yi = hi(xi) is the measured output at node i with hi(·)
a continuously differentiable and strictly increasing function and di is a constant
unknown disturbance. We can represent the complete network compactly as

τxẋ =− Buf + up − d
y = h(x).

(4.2)

System (4.2) has been studied in various settings where the state x is often identified
with the storage or inventory at the nodes. We provide two case studies where
system (4.2) is applicable in Section 6 of this chapter.

4.2 Optimal regulation with input and flow constraints

In this section we discuss the control objective and the various input and flow con-
straints under which the objective should be reached. We start with discussing the
two control objectives. The first objective is concerned with the output y = h(x) in
(4.2), at steady state.

Objective 4.2.1 (Output regulation). Let y ∈ R(h(x)) be a desired constant setpoint,
then the output y = h(x) of (4.2) asymptotically converges to y, i.e.

lim
t→∞

‖h(x(t))− y‖ = 0. (4.3)

Any constant steady state x that satisfies h(x) = y necessarily implies that system
(4.2) satisfies

0 =− Buf + up − d. (4.4)

1We assume that on every node i there is an input upi. An extension towards the partial absence
of inputs can be achieved by following a similar argumentation as is presented in this chapter (Trip,
Scholten and De Persis 2017b).
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Premultiplying both sides of (4.4) with 1T results in

0 = 1Tup − 1T d, (4.5)

such that at a steady state the total input to the network needs to be equal to the
total disturbance. Since any up solving (4.5) is not unique when n ≥ 2, it is natural
to wonder if the total input can be coordinated optimally among the nodes. To this
end, we assign a strictly convex linear-quadratic cost function Ci(upi) to each node
of the form

Ci(upi) =
1

2
qiu

2
pi + riupi + si, (4.6)

with qi ∈ R>0 and si, ri ∈ R. The total cost can be expressed as

C(up) =
∑
i∈V

Ci(upi)

=
1

2
uTpQup + rTup + s,

(4.7)

where Q = diag(q1, . . . , qn), r = (r1, . . . , rn)T and s = Σni=1si. Minimizing (4.7)
while satisfying the equilibrium condition

0 =− Buf + up − d, (4.8)

gives rise to the following optimization problem:

minimize
up,uf

C(up)

subject to 0 = −Buf + up − d.
(4.9)

It is possible to explicitly characterize the solution to (4.9), similarly as we have done
in Lemma 2.3.1:

Lemma 4.2.2 (Solution to optimization problem (4.9)). The solution to (4.9) is given by

up = Q−1(µ− r), (4.10)

where

µ =
11T

1TQ−11
(d+Q−1r). (4.11)

Remark 4.2.3 (Identical marginal costs). Note that we can rewrite (4.10) as

µ = Qup + r, (4.12)

and that µ ∈ Im(1). It follows that at the solution to (4.9) we have that for all i ∈ V the
so-called marginal costs qiupi + ri are identical.
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We are now ready to state the second control objective.

Objective 4.2.4 (Optimal feedforward input). The input at the nodes asymptotically
converge to the solution to (4.9), i.e.

lim
t→∞

‖up(t)− up‖ = 0, (4.13)

with up as in (4.10).

We now turn our attention to possible constraints on the input and the flows
under which the objectives should be reached. First, in physical systems the input
up is generally constrained by a minimum value (often zero, preventing a negative
input) and maximum value, representing e.g. a production capacity.

Constraint 4.2.5 (Input limitations). The inputs at the nodes satisfy

u−p <up(t) < u+
p for all t ≥ 0, (4.14)

where u−p , u+
p ∈ Rn are constant vectors and the inequalities hold componentwise.

Second, the flows on the edges are often constrained to be unidirectional and to
be within the capacity of the edges.

Constraint 4.2.6 (Flow capacity). The flows on the edges satisfy

u−f <uf (t) < u+
f for all t ≥ 0, (4.15)

where u−f , u
+
f ∈ Rm are constant vectors and the inequalities hold componentwise.

Note that physical limitations and safety requirements demand that the con-
straints should be satisfied for all time and not only at a steady state.

Remark 4.2.7 (Unconstrained case). The unconstrained case can be regarded as a par-
ticular example of the considered setting. This is obtained by taking as a lower and upper
bound for upi, ufi respectively −∞ and∞.

Before we design a distributed control scheme in the next section, we assume
that the considered problem is feasible.

Assumption 4.2.8 (Feasibility). For a given d, its corresponding up given by (4.10) satis-
fies u−p < up < u+

p , and there exists a, possibly non-unique, u−f < uf < u+
f that satisfies

0 =− Buf + up − d. (4.16)
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4.3 Controller design

In this section we propose distributed input and flow controllers that satisfy the va-
rious objectives and constraints discussed in the previous section, whereas the sta-
bility of the closed loop system is discussed in the next section. For convenience we
summarize the objectives and constraints yielding the following controller design
problem.

Problem 4.3.1 (Controller design problem). Design distributed controllers that regulate
inputs up at the nodes and the flows uf on the edges, such that

lim
t→∞

‖h(x(t))− y‖ = 0

lim
t→∞

‖up(t)− up‖ = 0,
(4.17)

where up is as in (4.10). Furthermore,

u−p <up(t) < u+
p

u−f <uf (t) < u+
f ,

(4.18)

should hold componentwise for all t ≥ 0.

First, we focus on the input controller. Inspired by the result in (Trip and De Persis
2016a) (see also Section 8.5), where a similar control problem is considered in the set-
ting of power networks, we propose the controller

τθ θ̇ =− g(θ) + φ− (h(x)− y)

τφφ̇ =− φ+ g(θ)− βQLcom(Qφ+ r)

up = g(θ),

(4.19)

where Lcom is the Laplacian matrix reflecting the communication topology, β ∈ R>0

and g(θ) : Rn → Rn is a mapping with suitable properties that will be discussed in
Assumption 3 below. Note that only information on qiφi+ ri needs to be exchanged
among neighbours. As we will discuss in the stability analysis in the next section,
controller (4.19) ensures that g(θ) converges to φ, whereas the communication term
ensures that additionally at steady state a consensus is obtained in the marginal
costs, i.e. Qg(θ)+r ∈ Im(1). In order to guarantee that all marginal costs converge to
the same value we make the following assumption on the communication network.

Assumption 4.3.2 (Communication network). The graph reflecting the communication
topology is undirected and connected.
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Now let us focus on the flow controller. We consider a controller of the following
form

τλλ̇ = BT (h(x)− y)

uf = f(λ),
(4.20)

whereB is again the incidence matrix reflecting the topology of the physical network
and f(λ) : Rn → Rn is a mapping with suitable properties discussed in Assumption
3 below. Note that the flow controller on edge k only requires information of its
adjacent nodes. Together with the information exchange among neighbours in (4.19)
we have that the proposed control scheme is indeed fully distributed.

The proposed controller guarantees that constraints (4.14) and (4.15) are satisfied by
properly selecting f(λ) and g(θ). Since we have that up = g(θ) and uf = f(λ), the
following assumption is sufficient to ensure that the inputs and flows do not exceed
their limitations.

Assumption 4.3.3 (Bounded controller outputs). Mappings g(θ) and f(λ), in respecti-
vely (4.19) and (4.20) are continuously differentiable and strictly increasing, satisfying

u−f < f(λ) < u+
f

u−p < g(θ) < u+
p ,

(4.21)

where the inequalities hold componentwise. Moreover, g(θ) and f(λ) are such that uf ∈
R(f(λ)) and up ∈ R(g(θ)), with uf and up as in Assumption 4.2.8.

Note that Assumption 4.3.3 is not restrictive as it includes e.g. ξ(z) = z in ab-
sence of any constraints and also the constraint enforcing functions ξ(z) = tanh(z),
ξ(z) = arctan(z) (see also the case studies in Section 4.5).

Before we analyse the stability of the system we investigate the properties of the
steady state. To do so, we write system (4.2) in closed loop with controllers (4.19)
and (4.20), obtaining

τxẋ =− Bf(λ) + g(θ)− d

τλλ̇ = BT (h(x)− y)
(4.22a)

τθ θ̇ =− g(θ) + φ− (h(x)− y)

τφφ̇ =− φ+ g(θ)− βQLcom(Qφ+ r).
(4.22b)

We will now show that under Assumptions 4.2.8–4.3.3 there exists at least one ste-
ady state of system (4.22). Moreover, all steady states of system (4.22) satisfy the
control objectives.
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Lemma 4.3.4 (Satisfying objectives 1 and 2). Let Assumptions 4.2.8, 4.3.2 and 4.3.3
hold, then there exists a steady state of system (4.22). Moreover, all steady states satisfy
h(x) = y and g(θ) = up, where up is the optimal control input given by (4.10).

Proof. Due to Assumption 4.2.8 and 4.3.3 we have that there exists a λ and θ such
that

0 = −Bf(λ) + g(θ)− d, (4.23)

where g(θ) = up and up as in (4.10). Moreover, from y ∈ R(h(x)), there exists a x
such that

0 = h(x)− y. (4.24)

When we additionally take φ = up it is immediate to veriy that

0 =− Bf(λ) + g(θ)− d
0 = BT (h(x)− y)

0 =− g(θ) + φ− (h(x)− y)

0 =− φ+ g(θ)− βQLcom(Qφ+ r),

(4.25)

is satisfied and proves existence of a steady state. We will now show that (4.25)
necessarily implies that h(x) = y and g(θ) = up. From 0 = BT (h(x)− y), it follows
that h(x)− y = c1(t)1, where c1(t) ∈ R is a function. It follows that

g(θ)− φ = c1(t)1. (4.26)

Substituting this in the last equation of (4.25) yields

0 = c1(t)1− βQLcom(Qφ+ r)

= c1(t)Q−11− βLcom(Qφ+ r).
(4.27)

Premultiplying both sides of the previous equation by 1T yields

0 = c1(t)1TQ−11. (4.28)

Since Q is a diagonal matrix with only positive elements, it follows that c1(t) = 0

and that h(x) = y. As a consequence we have that φ = g(θ) such that

0 =− βQLcom(Qg(θ) + r). (4.29)

Since also

0 =− βQLcom(Qup + r), (4.30)
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we have that g(θ) = up + c2(t)Q−11, where c2(t) ∈ R is a scalar. Premultiplying the
first equation of (4.25) by 1T and exploiting that 1T (up − d) = 0 yields

0 = 1T (up + c2(t)Q−11− d)

= c2(t)1TQ−11,
(4.31)

such that c2(t) = 0 and consequently g(θ) = up. �

4.4 Stability analysis

In this section we analyze the stability of the closed-loop system (4.22). The analysis
is foremost based on LaSalle’s invariance principle and exploits useful properties
of interconnected incrementally passive systems (Definition 1.4.1). Throughout the
coming discussion we will regularly use a storage function containing the term

U(z) =

∫ z

z

ξ(y)− ξ(z)dy, (4.32)

where z ∈ R. We can show that U(z) is radially unbounded, i.e. lim‖z‖→∞ U(z) =

∞, under suitable restrictions on ξ. In fact, a sufficient condition on ξ is that it is
strictly increasing as we will show below.

Lemma 4.4.1 (Radial unboundedness). Let ξ(z) be a strictly increasing continuous
function, then U(z) as in (4.32) is radially unbounded.

Proof. First, consider the case where z → ∞. Since ξ(z) is strictly increasing and
continuous we have that there exists a z+ > z, such that ξ(z) − ξ(z) > ε, for ε > 0

and z > z+. We have that

lim
z→∞

U(z) = lim
z→∞

∫ z

z

ξ(y)− ξ(z)dy,

=

∫ z+

z

ξ(y)− ξ(z)dy + lim
z→∞

∫ z

z+

ξ(y)− ξ(z)dy

≥
∫ z+

z

ξ(y)− ξ(z)dy + lim
z→∞

∫ z

z+

εdy

=∞.

(4.33)

A similar argument holds for the case where z → −∞. �

We now proceed with establishing the incremental passivity property of (4.22a).
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Lemma 4.4.2 (Incremental passivity of (4.22a)). Let Assumptions 4.2.8, 4.3.2 and 4.3.3
hold. System (4.22a) with input g(θ) and output h(x) is an incrementally passive system,
with respect to (x, θ, λ) satisfying

0 =− Bf(λ) + g(θ)− d
0 = BT (h(x)− y).

(4.34)

Namely, there exists a radially unbounded storage function S1(x, x, λ, λ) which satisfies the
following incremental dissipation equality

Ṡ1 = (h(x)− h(x))T (g(θ)− g(θ)), (4.35)

along the solutions to (4.22a).

Proof. Consider the storage function

S1 =
∑
i∈V

τxi

∫ xi

xi

hi(y)− hi(xi)dy

+
∑
i∈E

τλk

∫ λk

λk

fk(y)− fk(λk)dy.

(4.36)

Since hi(xi) and fk(λk) are strictly increasing functions we have, exploiting Lemma
3, that S1 is radially unbounded. Furthermore, we have that along the solutions to
(4.22a) S1 satisfies

Ṡ1 = (h(x)− h(x))T τxẋ+ (f(λ)− f(λ))T τλλ̇

= (h(x)− h(x))T (−Bf(λ) + g(θ)− d)

+ (f(λ)− f(λ))TBT (h(x)− y)

= (h(x)− h(x))T (−(Bf(λ)− f(λ)) + (g(θ)− g(θ))

+ (f(λ)− f(λ))TBT (h(x)− y)

= (h(x)− h(x))T (g(θ)− g(θ)),

(4.37)

where we have exploited (4.34) in the last equality and that h(x) = y. �

We now prove a similar result for (4.22b).

Lemma 4.4.3 (Incremental passivity of (4.22b)). Let Assumptions 4.2.8, 4.3.2 and 4.3.3
hold. System (4.22a) with input−h(x) and output g(θ) is an incrementally passive system,
with respect to (x, θ, φ) satisfying

0 =− g(θ) + φ− (h(x)− y)

0 =− φ+ g(θ)− βQLcom(Qφ+ r).
(4.38)
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Namely, there exists a radially unbounded storage function S2(θ, θ, φ, φ) which satisfies the
following incremental dissipation equality

Ṡ2 =− (g(θ)− φ)T (g(θ)− φ)− β(Qφ+ r)TLcom(Qφ+ r)

− (g(θ)− g(θ))T (h(x)− h(x))
(4.39)

along the solutions to (4.22b).

Proof. Consider the storage function

S2 =
∑
i∈V

τθi

∫ θi

θi

gi(y)− gi(θi)dy +
1

2
(φ− φ)T τφ(φ− φ). (4.40)

Since gi(θi) is a strictly increasing function we have, exploiting Lemma 3, that S2

is radially unbounded. Furthermore, we have that along the solutions to (4.22b) S2

satisfies

Ṡ2 = (g(θ)− g(θ))T τθ θ̇ + (φ− φ)T τφφ̇

= (g(θ)− g(θ))T (−g(θ) + φ− (h(x)− y))

+ (φ− φ)T (−φ+ g(θ)− βQLcom(Qφ+ r))

=− (g(θ)− φ)T (g(θ)− φ)− β(Qφ+ r)TLcom(Qφ+ r)

− (g(θ)− g(θ))T (h(x)− h(x)),

(4.41)

where we have exploited (4.38), h(x) = y, (Qφ+ r)TLcom = 0 and that φ = g(θ). �

Exploiting the previous lemmas, we are now ready to prove the main result of
this chapter.

Theorem 4.4.4 (Main result). Let Assumptions 4.2.8, 4.3.2 and 4.3.3 hold. System (4.22)
globally approaches the set where h(x) = y and where up = up as given in (4.10). Moreover,
up and uf satisfy constraints (4.14) and (4.15) for all t ≥ 0.

Proof. Satisfying constraints (4.14) and (4.15) for all t ≥ 0 follows from the design of
g(θ) and f(λ) and Assumption 3. From Lemma 4.4.2 and Lemma 4.4.3 we have that
S = S1 + S2 satisfies along the solutions to (4.22)

Ṡ =− (g(θ)− φ)T (g(θ)− φ)− β(Qφ+ r)TLcom(Qφ+ r). (4.42)

Since S is radially unbounded we can conclude that all solutions to (4.22) remain
bounded. We can therefore invoke LaSalle’s invariance principle and infer that the
system approaches the largest invariant set contained in the set where Ṡ = 0. This
set where Ṡ = 0 is characterized by

Υ = {x, λ, θ, φ|φ = g(θ), Qφ+ r ∈ Im(1)} , (4.43)
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where Qφ + r ∈ Im(1) follows from the communication graph being connected.
Bearing additionally in mind that

Qg(θ) + r ∈ Im(1), (4.44)

we have that on the invariant set that

g(θ) = g(θ) +Q−11c(t), (4.45)

where c(t) : R→ R is a function. On this set, the solutions to (4.22) satisfy

τxẋ =− Bf(λ) + g(θ) +Q−11c(t)− d

τλλ̇ = BT (h(x)− y)

τθ θ̇ =− (h(x)− y)

τφφ̇ = 0.

(4.46)

We now argue that on the invariant set we need to have

(x− x) = 0. (4.47)

Bearing in mind that φ = g(θ) and since the solutions to (4.46) are differentiable, we
have that on the invariant set φ̇ = ∂g(θ)

∂θ θ̇. Since g(θ) is a strictly increasing mapping,
it follows that ∂g(θ)

∂θ 6= 0 and that θ̇ = 0. Therefore, h(x) = y on the invariant set and
consequently x = x.

Next we prove that on the invariant set g(θ) = g(θ). Note that it is sufficient to prove
that c(t) = 0. Since x is constant and x = x we obtain that ẋ = 0. From this, together
with (4.46) we can conclude that we approach the set where

0 =− Bf(λ) + g(θ) +Q−11c(t)− d. (4.48)

Pre-multiplying both sides with 1T yields

0 = 1T (g(θ)− d) + 1TQ−11c(t)

= 1TQ−11c(t).
(4.49)

Since Q−1 is a diagonal matrix with only positive elements, we have that c(t) = 0.
We can therefore conclude that we indeed approach the set where h(x) = h(x) and
where up = g(θ) = g(θ) = up and that the constraints (4.14) and (4.15) are satisfied
for all t ≥ 0. �
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Remark 4.4.5 (Avoiding oscillations). It is natural to compare (4.19) with a controller of
the form

τθ θ̇ =− βQLcom(Qg(θ) + r)− (h(x)− y)

up = g(θ),
(4.50)

as both admit a steady state where h(x) = y and g(θ) = up. However, in contrast to (4.22)
for which we will prove global convergence to the desired state, system

τxẋ =− Bf(λ) + g(θ)− d

τλλ̇ = BT (h(x)− y)

τθ θ̇ =− βQLcom(Qg(θ) + r)− (h(x)− y),

(4.51)

can converge (depending on Q) to a limit cycle exhibiting oscillatory behavior (Scholten
et al. 2016).

Remark 4.4.6 (Local results). Note that the global convergence result is a consequence
of the strictly increasing behavior of the nonlinear functions fk(λk), gi(θi) and hi(xi). In
case that the functions are increasing on a finite interval, a local result of Theorem 1 can be
derived. An important class of functions for which this holds are odd functions that are not
necessarily increasing on the whole domain, such as the sinusoidal function.

4.5 Case study

To illustrate how various physical systems can be regarded as a flow network and
to show the performance of the proposed controllers we consider two case studies.
The first case study considers a district heating system, whereas the second case
study considers a multi-terminal HVDC network.

4.5.1 District heating systems

Building upon the results presented in (Scholten et al. 2015), we consider a district
heating system with a topology as depicted in Figure 4.1. Each node represents a
producer, a consumer and a stratified storage tank (see Figure 4.2). The storage tank
consists of a hot and a cold layer of water, both with variable volumes. We denote
the volume of the hot layer of water at node i as xi (m3), which is also the output of
the system, i.e. hi(xi) = xi. The various nodes are interconnected via a pipe network
G. Following (Scholten et al. 2015), the dynamics for the hot layer can be derived by
applying mass conservation laws resulting in the following representation of the
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Figure 4.1: Topology of the considered heat network. The arrows indicate the re-
quired flow directions in the heat network, while the dashed lines represent the
communication network used by the controllers.
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Figure 4.2: A node in the district heating network.

district heating system:

ẋ = −Buf + up − d, (4.52)

where uf (m3/h) denotes the flow through the pipes. Moreover, up (m3/h) and d

(m3/h) are respectively the flows trough the heat exchangers of the producers and
the consumers. It is immediate to see that (4.52) has identical dynamics as (4.2) if we
set τx = I . The controllers (4.19) and (4.20) are therefore applicable and we study the
obtained closed-loop system. We perform a simulation over a 40 hour time interval
in which we evaluate the response to a change in demand at t = 12 and change in
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Figure 4.3: Volumes, flows and productions of the district heating system during a
40 hour period. The optimal production up as in (4.10) is indicated by dotted lines
in the lower plot.

setpoint at t = 24. The cost functions of the four producers are purely quadratic, i.e.
s = r = 0 and

Q = diag
(

10 9 7 6
)
.
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Initially the volume is identical to the first setpoint x(0) = x =
[
200 200 200 200

]T
for all t < 24. The initial demand is given by d =

[
30 30 30 30

]T
for all t < 12,

which is increased at t = 12 to d =
[
35 35 35 35

]T
The setpoint for the volume

x is increased at t = 24 to x =
[
210 210 210 210

]T
. To guarantee uni-directional

flows and positive production we require uf > 0, up > 0 and due to capacity con-
straints we additional require them to be upper bounded by 14 m3/h and 52 m3/h,
respectively. To enforce these constraints the input is designed as

ufi(λi) = 7(tanh(λi) + 1)

upi(θi) = 26(tanh(θi) + 1),

where tanh(·) is the hyperbolic tangent function. Finally we let τλ = I , τθ = I ,
τφ = 0.005 · I and β = 10.
The resulting response of the system can be found in Figure 4.3, where we can cle-
arly see the effects of the increased demand at t = 12 and change in setpoint at
t = 24. More specifically, in the upper plot we can see that the controllers indeed let
the volumes in the four storage tanks to converge towards the desired setpoints of
200m3 (t < 24) and 210m3 (t ≥ 24). In the middle plot we see that the flows in the
pipes remain within the constraint 0 < uf < 14 throughout the entire simulation.
Finally, in the bottom plot we see the production at the four nodes and the optimal
productions denoted by the dotted lines. We observe that the production converges
towards the optimal value up and satisfies 0 < up < 52 for the entire period.

4.5.2 Multi-terminal HVDC networks

As a second case study we consider multi-terminal high voltage direct current (HVDC)
networks that have been recently studied in e.g. (Andreasson et al. 2016). We as-
sume that the lines connecting the terminals are lossless such that the overall net-
work dynamics are given by

CV̇ =− Bλ+ up − d

Lλ̇ = BTV,
(4.53)

where V are the voltages at the terminals, λ are the currents through the lines, d
are uncontrollable current injections and up are controllable current injections. The
corresponding circuit is provided in Figure 4.4, where Ci is the capacitance at the
terminals and Lk is the inductance of line k. The first objective is to stabilize the
voltages around the desired setpoint V which is identical for each terminal such
that BTV = BT (V − V ). The second objective is to share the controllable current
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S1 V2

V4 V3

up1 − d1

up4 − d4

up2 − d2

up3 − d3

Figure 4.4: Topology of a four bus multi-terminal HVDC network. We take Ci =

57µF and Lk = 0.0135H . for i, k ∈ {1, . . . , 4}.

injections equally among the terminals. Although the currents over the lines follow
from physical principles and can not be independently controlled, they have the
same dynamics as (4.20) if we set τλ = L. The controllers (4.19) are applied to the
network with β = 100, Q = I, s = 0, r = 0, τθ = 100, τφ = 0.02. The topology of the
communication network is identical to the topology of the physical network. The
desired voltage is V = 165kV throughout the simulation. Initially all di have a value
of 100A. At t = 0.02s, the value of d2 increased to 140A, whereas d3 is decreased to
80A. To prevent low and high current injections during the transient we require for
all nodes that 90A ≤ upi(t) ≤ 120A is satisfied. To achieve this we let

gi(θi) = 90 + 15 (tanh(θi) + 1) , (4.54)

while fi(λi) = λi, for all i ∈ {1, . . . , 4}. The response to the change in demand is
given in Figure 4.5, from where we conclude that the voltages converge towards
their set point of 165kV , while up satisfies its constraints at all time.
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Part II

Optimal load frequency control
with non-passive dynamics





Introduction

Whenever there is an imbalance between generation and load, the frequency
in the power network deviates from its nominal value. This makes fre-

quency regulation, or ‘Load Frequency Control’ (LFC), a critical task to maintain
the stability of the network. Whereas primary droop control is utilized to act fast on
smaller fluctuations to prevent destabilization, the frequency in the power network
is conventionally regulated by ‘Automatic Generation Control’ (AGC) that acts on
the reference setting of the governors. To do so, each control area determines its
‘Area Control Error’ (ACE) and changes the setpoints accordingly to compensate
for local load changes and to maintain the scheduled tie-line power flows between
the different areas (Machowski et al. 2008), (Wood and Wollenberg 1996). Howe-
ver, due to an ever increasing penetration of renewable energy it is uncertain if the
current AGC implementations are still adequate (Apostolopoulou et al. 2016). The
use of smart grids, computer-based control and communication networks offer on
the other hand possibilities to improve the current practices (Pandey et al. 2013),
(Ibraheem et al. 2005). Various solutions have been proposed to improve the per-
formance of the AGC (Pan and Liaw 1989), (Liu and Ilić 2012), (Zhang et al. 2013),
(Mi et al. 2013), (Yousef et al. 2014). Specifically, the effect of a large share of vola-
tile renewable energy sources has been investigated (Variani and Tomsovic 2013),
(Xu et al. 2016). Economic efficiency over slower timescales is achieved by a tertiary
optimization layer, commonly called the economic dispatch, that is outside of the
conventional LFC loop.

Since the AGC was designed to be completely decentralized where each control area
only reacts to its own ACE, there is loss of economic efficiency on the fast timesca-
les of LFC. Instead of enforcing a predefined power flow over tie-lines, it is cost
effective to coordinate the various regulation units within the whole system. This
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becomes especially relevant with a larger share of renewable energy sources where
generation cannot be as accurately predicted as in the past. It is therefore desirable
to further merge the secondary LFC and the tertiary optimization layer, which we
call ‘optimal Load Frequency Control’ (OLFC). Proposed solutions to obtain OLFC
can be roughly divided into two approaches. The first approach formulates the La-
grangian dual of the economic dispatch problem and solves the optimization pro-
blem based on a distributed primal-dual gradient algorithm that runs in parallel
with the network dynamics (Zhang and Papachristodoulou 2015), (Li et al. 2016),
(Stegink et al. 2017), (You and Chen 2014), (Kasis et al. 2016), (Jokic et al. 2009),
(Mudumbai et al. 2012), (Miao and Fan 2016), (Cai et al. 2015), (Apostolopoulou
et al. 2015),(Yi et al. 2015), (Cherukuri and Cortés 2016), (Yi et al. 2016). The ad-
vantage of this approach is that capacity constraints and convex cost functions can
be straightforwardly incorporated. A drawback is however that information on the
amount of uncontrollable generation and load needs to be available, which is ge-
nerally unknown in LFC where only the frequency is used as a proxy for the im-
balance. This issue is alleviated by the second approach, realizing that in the un-
constrained case the marginal costs of the various generation units are identical at a
cost effective coordination. In this approach optimality is achieved by employing a
distributed consensus algorithm that converges to a state of identical marginal costs
(Bürger et al. 2014), (Trip et al. 2016), (Schiffer and Dörfler 2016), (Zhao et al. 2015),
(Monshizadeh et al. 2016), (Andreasson et al. 2013), (Kar and Hug 2012), (Binetti
et al. 2014), (Rahbari-Asr et al. 2014), (Yang et al. 2013), (Yang et al. 2016). Although
OLFC has been proposed as viable alternative to the conventional AGC, it poses the
fundamental question if incorporating the economic dispatch into the LFC deterio-
rates the stability of the power network (Alvarado et al. 2001).

Contributions

Part II of this thesis continues and extends the study of the closed loop stability of
OLFC and the power network. Particularity, we build upon the results presented
in Chapter 2, where we exploit an incremental passivity property of the power net-
work to design distributed controllers achieving OLFC. However, on the generation
side there are still remaining challenges to include realistic models required in the
study of frequency regulation. This is mainly due to the fact the the most commonly
used second order model of the turbine-governor dynamics does not allow for a
passive interconnection with the power network. Despite the recent advances in the
analysis of OLFC in closed loop with the power network that allows to study the sta-
bility in presence of detailed generator models (Trip et al. 2016), (Stegink et al. 2016)
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and improved network representations (Schiffer and Dörfler 2016), including the
important turbine-governor dynamics is indeed less understood. We notice that the
referred studies on AGC include a second order model for the turbine-governor dy-
namics, whereas none of analytical studies on the stability of OLFC include such
dynamics and are generally restricted to at most a first order model. Part II makes
the noteworthy extension towards closing this gap and incorporates the second or-
der turbine-governor dynamics in the stability analysis of the OLFC. We propose
two approaches to incorporate the second order turbine-governor dynamics. In the
first approach, which we present in Chapter 5, we develop an overall dissipation
inequality for the combined power network and turbine-governor system. In the
second approach, presented in Chapter 6, we apply a distributed sliding mode con-
troller to recover a suitable passivity property of the turbine-governor system once
the system reaches the sliding manifold. A detailed outline is provided below.

Outline

Chapter 5

In Chapter 5 we study the so-called ‘Bergen-Hill’ network model that represents
various relevant power network configurations (Section 5.1). After discussing its
equilibria and the optimal generation (Section 5.2), we establish an incremental pas-
sivity of the network (Section 5.3). This passivity property of the power network is
then exploited to study the stability of the network, including the second order mo-
del for the turbine-governor with a constant setpoint. To prove asymptotic stability
of the power network we study the eigenvalues of a Hamiltonian matrix depending
on (local) system parameters. Doing so, we connect frequency control in power net-
works to the study of Hamiltonian matrices (Section 5.4). As a result of the constant
setpoint, the frequency deviation will generally converge to a nonzero value. The-
refore, we relax the requirement of a constant setpoint to the governor and provide
a dynamic controller, continuously adjusting the setpoint, to obtain OLFC. Here, we
incorporate the first order and second order turbine-governor models in a unifying
way. Including the second order turbine-governor dynamics is especially challen-
ging as they are non-passive and we cannot rely on the standard methodology for
interconnecting passive systems. Instead, we develop a suitable dissipation inequa-
lity for the interconnected generator and turbine-governor. Due to the advantage of
reduced generation and demand information requirements, we focus in Chapter 5
on a distributed consensus based controller, where information on marginal costs is
exchanged among neighbouring buses. Nevertheless, we provide some guidelines
how the higher order turbine-governor dynamics can be included in primal-dual
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based approaches as well. Along the stability analysis for the second order turbine-
governor model we establish a locally verifiable range of acceptable droop constants
that allows us to infer frequency regulation. As a result of the distributed and mo-
dular design of the controllers, the proposed solution permits to straightforwardly
include load control along the generation control and we provide a brief discussion
on this topic. A case study confirms that disregarding the range of acceptable droop
constants in the controller design can lead to instability (Section 5.6). We therefore
argue that the design of an OLFC algorithm needs to carefully incorporate the effect
of the turbine-governor dynamics.

Chapter 6

In Chapter 6 we provide an alternative approach to Chapter 5, to incorporate second
order turbine-governor dynamics into an OLFC scheme. Specifically, we propose a
distributed sliding mode (SM) controller (Utkin 1992, Edwards and Spurgen 1998)
to obtain OLFC. Sliding mode control has been used to improve the conventional
AGC schemes (Mi et al. 2013), possibly together with fuzzy logic (Ha 1998) and dis-
turbances observers (Mi et al. 2016). However, the proposed use of SM to obtain a
distributed OLFC scheme is new and can offer a few advantages over the previous
results on OLFC. In comparison with the Chapter 5, we do not impose constraints
on the droop gains. We adopt the nonlinear model of a power network, including
voltage dynamics that we have studied before in Chapter 2. We briefly recall its
dynamics and an useful passivity property (Section 6.1). The generation side is,
compared with Chapter 3, extended with a second order turbine-governor model.
The proposed control scheme continuously adjusts the governor set point, to obtain
the objectives of OLFC which we briefly recall in Section 6.2. We propose a distri-
buted SM controller that is shown to achieve frequency control, while minimizing
generation costs (Section 6.3). This result is obtained by avoiding the measurement
of the power demand and the use of observers (Rinaldi et al. 2017), which is an
element concurring to the ease of practical implementation of the proposed cont-
rol strategy. Conventional SM controllers can suffer from the notorious drawback
known as chattering effect, due to the discontinuous control input. To alleviate this
issue, we incorporate the Suboptimal Second Order Sliding Mode (SSOSM) control
algorithm (Bartolini et al. 1998a), leading to a continuous control input. A desired
passivity property of the controlled turbine-governor system prescribes the design
of a suitable manifold. Particularly, the non-passive turbine-governor system, con-
strained to this manifold, is shown to be incrementally passive. This permits a pas-
sive feedback interconnection with the power network, once the closed-loop system
evolves on the sliding manifold, and we use this fact to show asymptotic conver-
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gence to the desired state (Section 6.4). We believe that the chosen approach, where
the design of the sliding manifold is inspired by desired passivity properties, of-
fers new perspectives on the control of networks that have similar control objectives
as the one presented, e.g. achieving power sharing in microgrids. A case study
confirms the obtained theoretical results, where we study the performance of the
controllers on an academic example of the power network (Section 6.5)
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Chapter 5

Dissipation inequalities for non-passive
dynamics

Abstract

Motivated by an increase of renewable energy sources we propose a distributed optimal
Load Frequency Control scheme achieving frequency regulation and economic dispatch.
Based on an energy function of the power network we derive an incremental passivity
property for a well known nonlinear structure preserving network model, differentia-
ting between generator and load buses. Exploiting this property we design distributed
controllers that adjust the power generation. Notably, we explicitly include the turbine-
governor dynamics where first order and the widely used second order dynamics are
analyzed in a unifying way. Due to the non-passive nature of the second order turbine-
governor dynamics, incorporating them is challenging and we develop a suitable dissi-
pation inequality for the interconnected generator and turbine-governor. This allows us
to include the generator side more realistically in the stability analysis of optimal Load
Frequency Control than was previously possible.

5.1 The Bergen-Hill model

In this chapter we consider the nonlinear structure-preserving model of the power
network proposed in (Bergen and Hill 1981) that we will extend in the following
sections to include turbine-governor and load dynamics. The network consists of
ng generator buses and nl load buses. Each bus is assumed to be either a generator
or a load bus, such that the total number of buses in the network is ng + nl = n.
The network is represented by a connected and undirected graph G = (Vg ∪ Vl, E),



100 5. Dissipation inequalities for non-passive dynamics

where Vg = {1, . . . , ng} is the set of generator buses, Vl = {ng + 1, . . . , n} is the
set of load buses and E = {1, . . . ,m} is the set of transmission lines connecting the
buses. The network structure can be represented by its corresponding incidence
matrix B ∈ Rn×m. The ends of transmission line k are arbitrarily labeled with a ‘+’
and a ‘−’. The incidence matrix is then given by

Bik =


+1 if i is the positive end of k
−1 if i is the negative end of k
0 otherwise.

Following (Bergen and Hill 1981), generator bus i ∈ Vg is modelled as

δ̇i = ωgi

Miω̇gi =−Dgiωgi −
∑
j∈Ni

ViVjBij sin(δi − δj) + Pti,
(5.1)

where Ni is the set of buses connected to bus i. In high voltage tranmission net-
works considered here, the conductance is close to zero and therefore neglected,
i.e. we assume the network to be lossless. The uncontrollable loads1 are assumed
(Bergen and Hill 1981), (Kundur et al. 1994) to consist of a constant and a frequency
dependent component. We model a load bus for i ∈ Vl therefore as

δ̇i = ωli

0 =−Dliωli −
∑
j∈Ni

ViVjBij sin(δi − δj)− Pdi. (5.2)

An overview of the used symbols is provided in Table 5.1. Since the power flows
are determined by the differences in voltage angles, it is convenient to introduce
ηk = δi − δj , where ηk is the difference of voltage angles across line k joining buses i
and j. For all buses the dynamics of the power network are written as

η̇ = BTω
Mω̇g =−Dgωg − BgΓ sin(η) + Pt

0 =−Dlωl − BlΓ sin(η)− Pd,
(5.3)

where ω = (ωTg , ω
T
l )T , η = BT δ and Γ = diag{Γ1, . . . ,Γm}, with Γk = ViVjBij =

VjViBji and the index k denoting the line {i, j}. The matrices Bg ∈ Rng×m and Bl ∈
Rnl×m are obtained by collecting from B the rows indexed by Vg and Vl respectively.
The remaining symbols follow straightforwardly from the node dynamics and are

1Controllable loads can be incorporated as well. The discussion on this topic is postponed to Remark
5.5.12 to facilitate a concise treatment.
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State variables

δi Voltage angle
ωgi Frequency deviation at the generator bus
ωli Frequency deviation at the load bus

Parameters

Mi Moment of inertia
Dgi Damping constant of the generator
Dli Damping constant of the load
Bij Susceptance of the transmission line
Vi Voltage

Controllable input

Pti Turbine output power
Uncontrollable input

Pdi Unknown constant power demand

Table 5.1: Description the variables and parameters appearing in the power network
model.

diagonal matrices or vectors of suitable dimensions. It is possible to eliminate ωl
in (5.3) by exploiting the identity ωl = D−1

l (−BlΓ sin(η) − Pd) and realizing that
BTω = BTg ωg + BTl ωl (Monshizadeh and De Persis 2015). As a result we can write
(5.3) equivalently as

η̇ = BTg ωg + BTl D−1
l (−BlΓ sin(η)− Pd)

Mω̇g =−Dgωg − BgΓ sin(η) + Pt.
(5.4)

We will however keep ωl when it enhances the readability.

Remark 5.1.1 (Control areas). In the absence of load buses, the considered model appears
in the study of automatic generation control of control areas, where a control area is described
by an equivalent generator. A control area is then typically modelled as

δ̇i = ωgi

Miω̇gi =−Dgiωgi −
∑
j∈Ni

ViVjBij sin(δi − δj) + Pti − Pdi, (5.5)

where the loads are collocated at the equivalent generator. All results in this chapter also
hold for this particular case.

Remark 5.1.2 (Microgrids). Besides modelling high voltage power networks, system (5.3)
has also been used to model (Kron reduced) microgrids (Schiffer 2015), (Trip et al. 2014),
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(Dörfler et al. 2016), (Shafiee et al. 2014), (De Persis and Monshizadeh 2017), (Schiffer
et al. 2014). Smaller synchronous machines and inverters are then represented by (5.1) and
(5.2) respectively.

5.2 Steady state and optimality

Before addressing the turbine-governor dynamics that adjust Pt, we discuss the ste-
ady state frequency deviation under constant generation P t. In particular we study
the optimal value of P t that allows for a zero frequency deviation at steady state,
i.e. ω = 0. The steady state (η, ω, P t) of (5.3) necessarily satisfies

0 = BTω
0 =−Dgωg − BgΓ sin(η) + P t

0 =−Dlωl − BlΓ sin(η)− Pd.
(5.6)

We make the natural assumption that a, possibly non-unique, solution to (5.21) ex-
ists, which corresponds to the ability of the network to transfer the required power
at steady state.

Assumption 5.2.1 (Solvability). For a given Pd ∈ Rnl and P t ∈ Rng , there exist η ∈
Im(BT ), ω ∈ Ker(BT ) and such that (5.21) is satisfied.

From algebraic manipulations of (5.21) we can derive the following lemma that
makes the frequency deviation at steady state ω explicit.

Lemma 5.2.2 (Steady state frequency deviation). Let Assumption 5.2.1 hold, then ne-
cessarily ω = 1nω∗, with

ω∗ =
1Tng

P t − 1Tnl
Pd

1Tng
Dg1ng

+ 1Tnl
Dl1nl

, (5.7)

where 1n ∈ Rn is the vector consisting of all ones.

We recover therefore the well known fact that the total generation needs to be
equal to the total load in order to have a zero frequency deviation in a lossless net-
work. As we only require the total generation to be equal to the total load, it is natu-
ral to wonder if we can distribute the generation in an optimal manner. To this end,
we assign to every generator a strictly convex linear-quadratic cost function that re-
lates the generated power Pti to the generation costs Ci(Pti), typically expressed in
$/MWh, i.e.

Ci(Pti) =
1

2
qiP

2
ti + riPti + si. (5.8)
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To formalize the notion of optimality, we pose the following optimization pro-
blem:

min
Pt

C(Pt)

s.t. 0 = 1Tng
P t − 1Tnl

Pd,
(5.9)

where C(Pt) =
∑
i∈Vg Ci(Pti). Defining furthermore Q = diag(q1, . . . , qng

), R =

(r1, . . . , rng )T and s = (s1, . . . , sng )T we can compactly write

C(Pt) =
1

2
PTt QPt +RTPt + 1Tng

s. (5.10)

From the discussion of Lemma 5.2.2, we note that satisfying the equality constraint
in (5.9) implies ω = 0. The solution to (5.9), indicated by the superscript opt, there-
fore satisfies

0 = BT0

0 =−Dg0− BgΓ sin(η) + P
opt

t

0 =−Dl0− BlΓ sin(η)− Pd.

(5.11)

It is possible to explicitly characterize the solution to (5.9).

Lemma 5.2.3 (Optimal generation). The solution P
opt

t to (5.9) satisfies

P
opt

t = Q−1(λ
opt −R), (5.12)

where

λ
opt

=
1ng

(1Tnl
Pd + 1Tng

Q−1R)

1Tng
Q−11ng

. (5.13)

The first derivative of the cost function is commonly called the ‘marginal cost
function’. From (5.12) and (5.13) it is then immediate to see that

QP
opt

t +R = λ
opt ∈ Im(1ng ), (5.14)

which implies that at the solution to (5.9) all marginal costs are identical.

Remark 5.2.4 (Information requirements). Solving (5.9) explicitly requires the know-
ledge of the total load 1Tnl

Pd. A popular approach to solve (5.9) in a distributed fashion is
based on primal-dual gradient dynamic. These approaches do generally require knowledge of
the loads. A remarkable feature of the proposed distributed controllers, that will be discussed
in the remaining of this chapter, is that they solve (5.9) without such measurements at the
cost of the restriction to linear-quadratic cost functions and the absence of generation and
power flow constraints.
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The focus of this section was the characterization of the (optimal) steady state
of the power network under constant power generation. In the next section we
establish a passivity property of the power network that will be useful to design
controllers that dynamically adjust Pt such that Pt converges to the optimal steady
state P

opt

t .

5.3 An incremental passivity property of the Bergen-
Hill model

We now establish a passivity property for the considered power network model,
that is essential to the stability analysis in the following section.

Lemma 5.3.1 (Incremental cyclo-passivity of (5.4)). Let Assumption 5.2.1 hold. System
(5.4) with input Pt and output ωg is an output strictly incrementally cyclo-passive system,
with respect to (η, ωg) satisfying

0 = BTg ωg + BTl D−1
l (−BlΓ sin(η)− Pd)

0 =−Dgωg − BgΓ sin(η) + P t.
(5.15)

Namely, there exists a storage function U(ωg, ωg, η, η) which satisfies the following incre-
mental dissipation inequality

U̇ =− ‖ωg − ωg‖2Dg
− ‖ωl − ωl‖2Dl

+ (ωg − ωg)T (Pt − P t), (5.16)

where U̇ represents the derivative of U(ωg, ωg, η, η) along the solutions to (5.4).

Proof. Consider the incremental storage function

U(ωg, ωg, η, η) =
1

2
(ωg − ωg)TM(ωg − ωg)

− 1TΓ cos(η) + 1TΓ cos(η)− (Γ sin(η))
T

(η − η).
(5.17)
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We have that U(ωg, ωg, η, η) satisfies along the solutions to (5.4)

U̇ = (ωg − ωg)T (−Dgωg − BgΓ sin(η) + Pt)

+ (Γ sin(η)− Γ sin(η))T (BTg ωg + BTl D−1
l (−BlΓ sin(η)− Pd))

=− ‖ωg − ωg‖2Dg
+ (ωg − ωg)T (Pt − P t)

+ (Γ sin(η)− Γ sin(η))TBTl (ωl − ωl)
=− ‖ωg − ωg‖2Dg

+ (ωg − ωg)T (Pt − P t)

+ (Γ sin(η)Bl + Pd)
TD−1

l Dl(ωl − ωl)
− (Γ sin(η)Bl + Pd)

TD−1
l Dl(ωl − ωl)

=− ‖ωg − ωg‖2Dg
− ‖ωl − ωl‖2Dl

+ (ωg − ωg)T (Pt − P t),

(5.18)

where we exploit identity (5.15) in the second equation. �

Note that the result of Lemma 5.3.1 holds in particular if we take ω = 0 and
P t = P

opt

t . We now consider what conditions ensure that storage function (5.17) has
a local minimum at a steady state satisfying (5.15).

Assumption 5.3.2 (Steady state angle differences). The differences in voltage angles η
in (5.21) satisfy ηk ∈ (−π2 , π2 ) ∀k ∈ E .

Note that Assumption 5.3.2 is generally satisfied under normal operating condi-
tions of the power network, where a small difference in voltage angle is also referred
to as phase-cohesiveness (Dörfler et al. 2013) and is preferred to avoid instability af-
ter perturbations (North American Electric Reliability Corporation (NERC) 2016).

Lemma 5.3.3 (Local minimum of (5.17)). Let Assumption 5.3.2 hold. Then the storage
function (5.17) has a local minimum at (η, ωg).

Proof. We first recall the definition of a Bregman distance (Bregman 1967). Let F :

X → R be a continuously differentiable and strictly convex function defined on a
closed convex set X . The Bregman distance associated with F for the points x, x is
defined as

DF (x, x) = F (x)− F (x)−∇F (x)T (x− x). (5.19)

A useful property of DF is that it is positive definite in its first argument, due to
the strict convexity of F . Lemma 5.3.3 then follows from (5.17) being the Bregman
distance associated with the function F (ωg, η) = 1

2ω
T
gMωg − 1TmΓcos(η), which is

strictly convex at the point (ωg, η) under Assumption 5.3.2. �
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State variables

Pgi Governor output
Pti Turbine output power

Parameters

Tgi Governor time constant
Tti Turbine time constant
Ki Droop constant

Controllable input

θi Power generation control

Table 5.2: Description of the variables and parameters appearing in the turbine-
governor dynamics.

Remark 5.3.4 (Boundedness of solutions). In the proofs of Theorem 5.4.6 and Theorem
5.5.9 we require Assumption 5.3.2 and subsequently Lemma 5.3.3 to ensure that there exists
a compact forward invariant set around an equilibrium of (5.3). This allows us to apply
LaSalle’s invariance principle in the stability analysis.

In this section we have established that the power network model (5.3) is an out-
put strictly incrementally cyclo-passive system. Furthermore we have shown that
under Assumption 5.3.2, the incremental storage function U has a local minimum at
its steady state.

5.4 Primary frequency control and Hamiltonian matri-
ces

In this section we study the stability of the structure preserving power network pre-
sented in Section 5.1 in closed loop with the second order turbine governor model

TgṖg =− Pg −K−1
i ωg + θ

TtṖt =− Pt + Pg,
(5.20)

where the input θ is a constant setpoint. The various symbols are described in Table
5.2 The steady state solution of the closed loop system (5.3) and (5.20) necessarily
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satisfies
0 = BTω
0 = −Dgωg − BgΓ sin(η) + P t
0 = −Dlωl − BlΓ sin(η)− Pd
0 = −P g −K−1ωg + θ

0 = −P t + P g.

(5.21)

As a result of Assumption 5.2.1, a solution to (5.21) exists. From algebraic mani-
pulations of (5.21) we can derive the following lemma that makes the frequency
deviation at steady state ω explicit.

Lemma 5.4.1 (Steady state frequency deviation). Let Assumption 5.2.1 hold, then ne-
cessarily ω = 1nω∗, with

ω∗ =
1Tng

θ − 1Tnl
Pd

1Tng
Dg1ng

+ 1Tnl
Dl1nl

+ 1Tng
K−11ng

, (5.22)

where 1n ∈ Rn is the vector consisting of all ones.

It is clear from Lemma 5.4.1 that it is desirable to have a small value of Ki in
order to have a small frequency deviation at steady state. Before we continue with
the stability analysis we repeat a useful result which is presented in a more general
form in (Isidori 2000).

Lemma 5.4.2 ((Isidori 2000), Theorem 10.9.1). There exists a symmetric matrix Xi > 0

such that
XiARi +ATRiXi +XiBRiB

T
RiXi + CTRiCRi < 0, (5.23)

if and only if all the eigenvalues of ARi have negative real part and the Hamiltonian matrix

Hi =

[
ARi BRiB

T
Ri

−CTRiCRi −ATRi

]
, (5.24)

has no eigenvalues on the imaginary axis.

The relevance of Lemma 5.4.2 will become evident in the proof of Lemma 5.4.5,
where we study asymptotic stability of the steady state. More explicit, we can prove
asymptotic stability if the following assumption is satisfied, which relates the para-
meters of generator i to the Hamiltonian matrix defined in Lemma 5.4.2.

Assumption 5.4.3 (A generator related Hamiltonian matrix). Let for all i ∈ Vg the
Hamiltonian matrix

Hi =

[
ARi BRiB

T
Ri

−CTRiCRi −ATRi

]
, (5.25)
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be such that it has not eigenvalues on the imaginary axis, where

ARi =

[
− 1

2T
−1
gi − 1

4T
−1
gi K

−1
i D−1

gi
1
2T
−1
ti − 1

2T
−1
ti

]
BRiB

T
Ri =

[
1
4D
−1
gi T

−2
gi T

−2
ti 0

0 0

]
CTRiCRi =

[
0 0

0 1
4D
−1
gi

]
,

(5.26)

Remark 5.4.4 (Determining the eigenvalues of Hi). Determining the eigenvalues of
Hi ∈ R4×4 in Assumption 5.4.3 is straightforward and can be done locally for every ge-
nerator. It is possible to give an analytic expression of the eigenvalues of matrix Hi, since
the associated characteristic polynomial is of fourth order. Obtaining explicit bounds on
the generator parameters such that Assumption 5.4.3 is satisfied is left for future research.
Furthermore, an interesting question is how system parameters should be altered if the Ha-
miltonian matrix does have eigenvalues on the imaginary axis (Grivet-Talocia 2004), (Alam
et al. 2011).

A fundamental ingredient to prove asymptotic stability is the existence of an
incremental storage function, which has a local minimum at the steady state solution
to (5.21), and is negative semi-definite along the solutions to (5.3). The result of the
following lemma contributes to establishing such existence and will be exploited in
the proof of Theorem 5.4.6.

Lemma 5.4.5 (Existence of a dissipation inequality). Let Assumption 5.4.3 hold and
define with a slight abuse of notation U̇gi = −Dgi(ωgi − ωgi)2 + (ωgi − ωgi)(Pti − P ti).
There exists an incremental storage function

Zi = 1
2

(
Pgi − P gi
Pti − P ti

)T
Xi

(
Pgi − P gi
Pti − P ti

)
, (5.27)

where Xi > 0, such that U̇gi + Żi < 0.

Proof. We first write

U̇gi = (ωgi − ωgi)T
W1i︷ ︸︸ ︷[
−Dgi

]
(ωgi − ωgi) + (ωgi − ωgi)T

W2i︷ ︸︸ ︷[
0 1

](Pgi − P gi
Pti − P ti

)
.

Bearing in mind the turbine-governor dynamics (5.20) and exploiting the last two
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identities in (5.21), it follows that Zi satisfies along the solutions to (5.20)

Żi =

(
Pgi − P gi
Pti − P ti

)T
Xi

W3i︷ ︸︸ ︷[
−T−1

gi 0

T−1
ti −T−1

ti

](
Pgi − P gi
Pti − P ti

)

+

(
Pgi − P gi
Pti − P ti

)T
Xi

W4i︷ ︸︸ ︷[
−T−1

gi K
−1
i

0

]
(ωgi − ωgi)

(5.28)

Defining xi = ((ωgi − ωgi)T , (Pgi − P gi)T , (Pti − P ti)T )T and Xi = XT
i , we have

U̇gi + Żi = xTi

WTi︷ ︸︸ ︷[
W1i

1
2 (W2i +WT

4iX
T
i )

1
2 (WT

2i +XiW4i)
1
2 (XiW3i +WT

3iXi)

]
xi.

(5.29)

Since W1i < 0 it follows that WTi < 0 if and only if the Schur complement of W1i in
WTi is negative definite. The Schur complement of W1i in WTi is given by

Si = 1
2 (XiW3i +WT

3iXi)− 1
2 (WT

2i +XiW4i)W
−1
1i

1
2 (W2i +WT

4iX
T
i )

= Xi(
1
2W3i − 1

4W4iW
−1
1i W2i) + (− 1

4W
T
2iW

−1
1i W

T
4i + 1

2W
T
3i)Xi

− 1
4XiW4iW

−1
1i W

T
4iXi − 1

4W
T
2iW

−1
1i W2i.

(5.30)

Defining
ARi = 1

2W3i − 1
4W4iW

−1
1i W2i

BRi = 1
2W4i(−W−1

1i )
1
2

CRi = 1
2 (−W−1

1i )
1
2W2i,

(5.31)

one can notice that the condition Si = XiARi+A
T
RiXi+XiBRiB

T
RiXi+C

T
RiCRi < 0 is

an algebraic Riccati inequality with unknown Xi. It follows from Lemma 5.4.2 that
there exists a positive definite solution Xi > 0 to the inequality Si < 0 if and only
if ARi = 1

2W3i − 1
4W4iW

−1
1i W2i = 1

2W3i − BRiCRi is Hurwitz and the Hamiltonian
matrix Hi, defined in Assumption 5.4.3, has no eigenvalues on the imaginary axis.
The latter condition is trivially satisfied by Assumption 5.4.3 and straightforward
calculations show that

ARi =

[
− 1

2T
−1
gi − 1

4T
−1
gi K

−1
i D−1

gi
1
2T
−1
ti − 1

2T
−1
ti

]
, (5.32)

and that its characteristic polynomial is given by pARi
(s) = s2 + 1

2 (T−1
gi + T−1

ti )s +
1
8T
−1
gi T

−1
ti (2 + K−1

i D−1
gi ). It is straightforward to confirm that pARi

(s) has only ne-
gative roots. We can therefore conclude that under Assumption 5.4.3, there exists
indeed a positive definite matrix Xi > 0, such that U̇gi + Żi < 0. �
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We are now ready to present the main result of this section, namely that the
solution to (5.21) is locally asymptotically stable under the assumptions discussed.

Theorem 5.4.6 (Stability of the equilibrium frequency). Consider system (5.3) with
constant power demand Pd and constant control input θ Let Assumptions 5.2.1, 5.3.2 and
5.4.3 hold. Then, the solutions to the closed loop system (5.3) and (5.20) that start in a
neighborhood of (η, ω = 1nω

∗, P g, P t) converge asymptotically to the largest invariant set
where ω = 1nω

∗ characterized in Lemma 5.4.1, Pg = P g and Pt = P t.

Proof. Bearing in mind Lemma 5.3.1, we recall that the incremental storage function

U(ωg, ωg, η, η) =
1

2
(ωg − ωg)TM(ωg − ωg)

− 1TΓ cos(η) + 1TΓ cos(η)− (Γ sin(η))
T

(η − η).
(5.33)

satisfies along the solutions to (5.3)

U̇ =− ‖ωg − ωg‖2Dg
− ‖ωl − ωl‖2Dl

+ (ωg − ωg)T (Pt − P t). (5.34)

We rewrite U̇ as
U̇ =

∑
i∈Vg U̇gi − ‖ωl − ωl‖

2
Dl
,

where U̇gi = −Di(ωgi − ωgi)2 + (ωgi − ωgi)(Pti − P ti). Notice that the expression
of U̇gi is the same as in Lemma 5.4.5. From Lemma 5.4.5 and Assumption 5.4.3 it
follows that there exists an incremental storage function

Zi = 1
2

(
Pgi − P gi
Pti − P ti

)T
Xi

(
Pgi − P gi
Pti − P ti

)
,

where Xi > 0, such that U̇gi + Żi < 0. As a consequence of Assumption 5.2.1,
the total incremental storage function U +

∑
i∈Vg Zi has a strict local minimum at

(η, ω, P g, P t). Furthermore, U +
∑
i∈Vg Zi satisfies along the solutions to the closed

loop system (5.3) and (5.20) U̇+
∑
i∈Vg Żi ≤ 0. Therefore, there exists a compact level

set Υ around the equilibrium (η, ω = 1nω
∗, P g, P t), which is forward invariant. By

LaSalle’s invariance principle the solution starting in Υ asymptotically converges to
the largest invariant set contained in Υ ∩ {(η, ω, P g, P t) : ω = ω, Pg = P g, Pt = P t},
where ω = 1nω

∗ characterized in Lemma 5.4.1. �

Remark 5.4.7 (Relation to other studies). A related study on primary frequency control
is performed in (Zhao and Low 2014) and requires K−1

i < Dgi for the system at hand in
order to prove asymptotic stability of the steady state. Assumption 5.4.3 is less conservative,
but requires additional knowledge of Tgi and Tti.
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A consequence of the analysis in this section is that the power network will ge-
nerally converge to a steady state frequency deviation ω∗ unequal to zero. In the
next section we address this issue by designing additional secondary control, which
regulates the frequency and minimizes generation costs.

5.5 Optimal turbine-governor control

The generated power Pti at generator i is the output of the turbine-governor system.
Various turbine-goveror models appear in the literature. In this section we consider
two of the most widely used models that have fundamentally different properties.
We therefore partition the set of generators Vg = (Vg1 ∪ Vg2) into the sets Vg1 and
Vg2, where the turbine-governor dynamics are described by first order and second
order dynamics respectively. Being able to incorporate both types in a single frame-
work, unifies the various modelling assumptions appearing in conventional AGC
and OLFC and increases the modelling flexibility.

The first order and second order turbine-governor dynamics will be discussed sepa-
rately and controllers are proposed that achieve frequency regulation. To facilitate
the controller design using only local information we write (5.18), taking therein and
in the remainder of this work ω = 0 and P t = P

opt

t , as

U̇ =− ‖ωg − 0‖2Dg
− ‖ωl − 0‖2Dl

+ (ωg − ωg)T (Pt − P
opt

t )

=
∑
i∈Vg

U̇gi(ωgi, Pti, P
opt

ti ) +
∑
i∈Vl

U̇li(ωli),
(5.35)

where we define with a slight abuse of notation

U̇gi(ωgi, Pti, P
opt

ti ) =−Dgiω
2
gi + ωgi(Pti − P

opt

ti )

U̇li(ωli) =−Dliω
2
li.

(5.36)

For the sake of exposition we only consider decentralized controllers in subsections
5.5.1 and 5.5.2 that guarantee frequency regulation without achieving optimality.
These results are then instrumental to Subsection 5.5.3 where a distributed control
architecture is proposed with controllers that exchange information on their margi-
nal costs with their neighbours over a communication network to achieve optima-
lity.
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5.5.1 First order turbine-governor dynamics

We start with the first order turbine-governor dynamics of a single generator i ∈ Vg1.
The dynamics are given by

TtiṖmi =− Pti −K−1
i ωgi + θi, (5.37)

where θi is an additional control input to be designed. An overview of the used
symbols is provided in Table 5.2. In comparison with the previous section, we do
not assume that θ is constant. Instead, consider the following controller at bus i:

Tθi θ̇i =− θi + Pti, (5.38)

where the controller time constant Tθi can be chosen to obtain a desirable rate of
change of the control input θi. As explained before, an additional communication
term will be added to controller (5.38) in subsection 5.5.3 to enforce optimality at
steady state. The following lemma provides an intermediate result that is useful
later on.

Lemma 5.5.1 (Incremental passivity of (5.37), (5.38)). System (5.37), (5.38) with input
−ωgi and output Pti is an incrementally passive system, with respect to (θi, P

opt

ti ) satisfying

0 =− P optti −K−1
i 0 + θ

opt

i (5.39)

0 =− θopti + P
opt

ti , (5.40)

Namely, there exists a positive definite storage function Z1i(θi, θ
opt

i , Pti, P
opt

ti ) which satis-
fies the following incremental dissipation inequality

Ż1i =−Ki(θi − Pti)2 − ωgi(Pti − P
opt

ti ), (5.41)

where Ż1i represents the derivative of Z1i(θi, θ
opt

i , Pti, P
opt

ti ) along the solutions to (5.37),
(5.38).

Proof. Consider the incremental storage function

Z1i =
TθiKi

2
(θi − θ

opt

i )2 +
TPti

Ki

2
(Pti − P

opt

ti )2. (5.42)

We note that Z1i satisfies along the solutions to (5.37), (5.38),

Ż1i =− (θi − θ
opt

i )Kiθi + (θi − θ
opt

i )KiPti

− (Pti − P
opt

ti )KiPti + (Pti − P
opt

ti )Kiθi

− (Pti − P
opt

ti )ωgi

=−Ki(θi − Pti)2 − (Pti − P
opt

ti )ωgi,

(5.43)

where we exploit identity (5.39) in the second equation. �
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The interconnection of generator dynamics (5.3) and turbine-governor dynamics
(5.37) including controller (5.38) can be understood as a feedback interconnection of
two incrementally passive systems. The following corollary is then an immediate
result from this observation.

Corollary 5.5.2 (Passive interconnection). Along the solutions to (5.3), (5.37) and (5.38),
Z1i(θi, θ

opt

i , Pti, P
opt

ti ) satisfies for i ∈ Vg1

U̇gi + Ż1i =−Dgiω
2
gi −Ki(θi − Pti)2 ≤ 0, (5.44)

where U̇gi and Ż1i are given in (5.36) and (5.41) respectively.

We now perform a similar analysis for the second order turbine-governor dyna-
mics.

5.5.2 Second order turbine-governor dynamics

Consider the second order turbine-governor dynamics of a single generator i ∈ Vg2.
The dynamics are given by

TgiṖgi =− Pgi −K−1
i ωgi + θi

TtiṖmi =− Pti + Pgi,
(5.45)

where θi is again an additional dynamic control input to be designed. In contrast to
the first order dynamics, the second order dynamics do not possess a useful passi-
vity property. This can be readily concluded from the observation that system (5.45)
with input ωgi and output Pti has relative degree 2. We now propose a different
controller than (5.38) to accommodate the higher order turbine-governor model, na-
mely

Tθi θ̇i =− θi + Pgi − (1−K−1
i )ωgi, (5.46)

where K−1 is the droop constant appearing in (5.45). Similar to (5.38) we postpone
adding an additional communication term until the next subsection.

Lemma 5.5.3 (Storage function for second order dynamics). There exists a positive
definite storage function Z2i(θi, θ

opt

i , Pgi, P gi, Pti, P
opt

ti ) which satisfies along the solutions
to (5.3), (5.45) and (5.46)

U̇gi + Ż2i =

 ωgi
Pgi − Pti
Pgi − θi

T Wi

 ωgi
Pgi − Pti
Pgi − θi

 , (5.47)
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with

Wi =

 −Dgi − 1
2K
−1
i − 1

2 − 1
2K
−1
i + 1

2

− 1
2K
−1
i − 1

2 −TgiT−1
ti − 1

2

− 1
2K
−1
i + 1

2 − 1
2 −1

 . (5.48)

Proof. Consider the incremental storage function

Z2i =
Tθi
2

(θi − θ
opt

i )2 +
1

2
Tgi(Pgi − P

opt

gi )2 +
1

2
Tgi(Pgi − Pti)2

=
Tθi
2

(θi − θ
opt

i )2 + Tgi(Pgi − P
opt

gi )2

+
Tgi
2

(Pti − P
opt

ti )2 − Tgi(Pgi − P
opt

gi )(Pti − P
opt

ti ).

(5.49)

It can be readily confirmed that Z2i is positive definite. We have that
Z2i(θi, θ

opt

i , Pgi, P gi, Pti, P
opt

ti ) satisfies along the solutions to (5.45), (5.46),

Ż2i = (θi − θ
opt

i )(−θi + Pgi − (1−K−1
i )ωgi)

+ 2(Pgi − P
opt

gi )(−Pgi −K−1
i ωgi + θi)

+ TgiT
−1
ti (Pti − P

opt

ti )(−Pti + Pgi)

− TgiT−1
ti (Pgi − P

opt

gi )(−Pti + Pgi)

− (Pti − P
opt

ti )(−Pgi −K−1
i ωgi + θi)

=− TgiT−1
ti (Pgi − Pti)2 − (Pgi − θi)2

−K−1
i (Pgi − Pti)ωgi −K−1

i (Pgi − θi)ωgi
− (Pgi − Pti)(Pgi − θi)

− (θi − θ
opt

i )ωgi,

(5.50)

where we exploited in the second identity the fact that in steady state

0 =− P optgi −K−1
i 0 + θ

opt

i

0 =− P optti + P
opt

gi

0 =− θopti + P
opt

gi − (1−K−1
i )0.

(5.51)

We recall that U̇gi = −Dgiω
2
gi + ωgi(Pti − P

opt

ti ) and notice that

ωgi(Pti − P
opt

ti )− (θi − θ
opt

i )ωgi

= ωgi(Pti − θi)
= ωgi(Pgi − θi)− ωgi(Pgi − Pti).

(5.52)

The expression for Wi then follows from writing U̇gi + Ż2i as a quadratic form. �
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We now address under what conditions Wi is negative definite, which is impor-
tant for the stability analysis in the next subsection.

Assumption 5.5.4 (Conditions on K−1
i ). Let the permanent droop constant Ki be such

that the following inequalities hold

1− Tti
Tgi
−
√
αi < K−1

i < 1− Tti
Tgi

+
√
αi, (5.53)

where

αi = T 2
tiT
−2
gi (4TgiT

−1
ti − 1)(DgiTgiT

−1
ti − 1). (5.54)

Additonally, let Dgi, Tgi, Tti be such that

4TgiT
−1
ti > 1

DgiTgiT
−1
ti > 1,

(5.55)

are satisfied.

Remark 5.5.5 (Locally verifiable). The power network generally consists of many gene-
rators. It is therefore important to note that the validity of Assumption 5.5.4 can be checked
at each generator using only information that is locally available.

Lemma 5.5.6 (Negative definiteness of Wi). Let Assumption 5.5.4 hold. Then Wi < 0.

Proof. Inequality (5.55) guarantees that

Xi =

[
−TgiT−1

ti − 1
2

− 1
2 −1

]
< 0. (5.56)

It follows that Wi < 0 if and only if the Schur complement of Xi in Wi is negative
definite. This Schur complement is given by

Si =−Dgi −
[
− 1

2K
−1
i − 1

2

− 1
2K
−1
i + 1

2

]T
X−1
i

[
− 1

2K
−1
i − 1

2

− 1
2K
−1
i + 1

2

]
, (5.57)

and is quadratic in K−1
i . By Cramer’s rule we have

X−1
i =

1

TgiT
−1
ti − 1

4

[
−1 1

2
1
2 −TgiT−1

ti

]
, (5.58)

and a straightforward calculation yields

Si =−Dgi +
1
4TgiT

−1
ti K

−2
i + ( 1

2 −
1
2TgiT

−1
ti )K−1

i + 1
2 + 1

4TgiT
−1
ti

TgiT
−1
ti − 1

4

. (5.59)
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The solution to Si = 0 is given by the quadratic formula resulting in

K−1
i =

−bi
2ai
±

√
b2i − 4aici

4a2
i

, (5.60)

with

ai =
1

4
TgiT

−1
ti

bi =
1

2
− 1

2
TgiT

−1
ti

ci =−Dgi(TgiT
−1
ti −

1

4
) +

1

2
+

1

4
TgiT

−1
ti .

(5.61)

Algebraic manipulations then yield

−bi
2ai

= 1− Tti
Tgi

b2i − 4aici
4a2
i

= T 2
tiT
−2
gi − TtiT

−1
gi (4 +Dgi) + 4Dgi

= T 2
tiT
−2
gi (4TgiT

−1
ti − 1)(DgiTgiT

−1
ti − 1)

= αi.

(5.62)

It can now be readily confirmed that Si < 0 when (5.53) holds, where
√
αi is real as

a result of inequality (5.55). �

5.5.3 Stability analysis and optimal distributed control

Having discussed the separate control of the various turbine-governors, we now
turn our attention to the question of how the different controllers in the network
can cooperate to ensure minimization of the generation costs at steady state. To this
end we add an additional communication term to controllers (5.38) and (5.46) repre-
senting the exchange of information on the marginal costs among the controllers

Tθi θ̇i =− θi + Pti −K−1
i qi

∑
j∈N com

i

(qiθi + ri − (qjθj + rj)), ∀i ∈ Vg1 (5.63)

Tθi θ̇i =− θi + Pgi − (1−K−1
i )ωgi − qi

∑
j∈N com

i

(qiθi + ri − (qjθj + rj)), ∀i ∈ Vg2

(5.64)

where N com
i is the set of buses connected via a communication link to bus i. The

additional communication term can be interpreted as a consensus algorithm, where
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generator i compares its marginal cost with the marginal costs of connected genera-
tors, such that the overall network converges to the state where there is consensus
in the marginal costs (see Theorem 5.5.9). Due to the modified dynamics of the con-
troller state θi, the derivatives of Z1i and Z21 along the solutions to (5.63), (5.64) need
to be reevaluated. We exploit the result in the proof of Theorem 1, but is discussed
separately for the sake of readability.

Remark 5.5.7 (Communication induced modifications). As a result of the additional
communication term in (5.63), (5.64), the expressions for Ż1i and Ż2i given in respectively
(5.41) and (5.50) need to be modified. Notice that

qi
∑

j∈N com
i

(qiθi + ri − (qjθj + rj)) =
(
QLcom(Qθ +R)

)
i
, (5.65)

where Lcom is the Laplacian matrix reflecting the topology of the communication network.
Therefore, we add the following term to Ż1i and Ż2i

−(θi − θ
opt

i )
(
QLcom(Qθ +R)

)
i

(5.66)

Summing over all buses i ∈ Vg then yields

−
∑
i∈Vg

(θi − θ
opt

i )
(
QLcom(Qθ +R)

)
i

=− (θ − θopt)TQLcom(Qθ +R)

=− (Qθ +R− (Qθ
opt

+R))TLcom(Qθ +R− (Qθ
opt

+R)),

(5.67)

where we exploited

Lcom(Qθ
opt

+R) = 0, (5.68)

which is a result of θ
opt

= P
opt

t , Qθ
opt

+R ∈ Im(1ng
) and Ker(Lcom) = Im(1ng

).

The communication network is utilized to ensure that all marginal costs con-
verge to the same value throughout the network (see the proof of Theorem 1), lea-
ding to the following assumption:

Assumption 5.5.8 (Connectivity). The graph reflecting the topology of information ex-
change among the controllers is undirected and connected, but can differ from the topology
of the power network.

We are now ready to state the main result of this section.
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Theorem 5.5.9 (Distributed optimal LFC). Let Assumptions 1, 2, 3 and 4 hold. Con-
sider the power network (5.3), turbine-governor dynamics (5.37), (5.45) and the distri-
buted controllers (5.63), (5.64). Then, solutions that start sufficiently close to (η, ω =

0, P
opt

t , P
opt

g , θ
opt

) converge to the set where we have frequency regulation and where the
power generation solves optimization problem (5.9), i.e. ω = 0 and P t = P

opt

t .

Proof. As a result of Lemma 5.3.1, Corollary 1, Lemma 5.5.3 and Remark 5.5.7, we
have that U +

∑
i∈Vg1 Z1i +

∑
i∈Vg2 Z2i satisfies

U̇ +
∑
i∈Vg1

Ż1i +
∑
i∈Vg2

Ż2i

= −‖ωl‖2Dl
+
∑
i∈Vg1

−Dgiω
2
gi −Ki(θi − Pti)2

+
∑
i∈Vg2

 ωgi
Pgi − Pti
Pgi − θi

T Wi

 ωgi
Pgi − Pti
Pgi − θi


− (Qθ +R− (Qθ

opt
+R))TLcom(Qθ +R− (Qθ

opt
+R))

≤ 0,

(5.69)

along the solutions to the power network (5.3), turbine-governor dynamics (5.37),
(5.45) and the distributed controllers (5.63), (5.64). Particularly, it follows from As-
sumption 5.5.8 that Wi < 0. Since (η, ω = 0, P

opt

t , P
opt

g , θ
opt

) is a strict local mini-
mum of U +

∑
i∈Vg1 Z1i +

∑
i∈Vg2 Z2i as a consequence of Assumption 5.3.2, there

exists a compact level set Υ around (η, ω = 0, P
opt

t , P
opt

g , θ
opt

) which is forward
invariant. By LaSalle’s invariance principle, any solution starting in Υ asymptoti-
cally converges to the largest invariant set contained in Υ ∩ {(η, ω, Pt, Pg, θ) : ω =

0, Pt = θ,Qθ + R = Qθ
opt

+ R + c(t)1}, where c(t) : R≥0 → R is a function, and
Qθ + R = Qθ

opt
+ R + c(t)1 follows from the connectedness of the communication

graph. On this invariant set the power network satisfies

0 = BT0

0 =−Dg0− BgΓ sin(η) + P
opt

t + c(t)Q−11ng

0 =−Dl0− BlΓ sin(η)− Pd.

(5.70)

Premultiplying the second and third line of (5.70) with 1Tn , we have

1Tn

[
−Dg0− BgΓ sin(η) + P

opt

t + c(t)Q−11ng

−Dl0− BlΓ sin(η)− Pd.

]
= 0. (5.71)
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Since 1Tn

[
Dg

Dl

]
= 0, 1Tng

P
opt

t − 1Tnl
Pd = 0 and Q−1 is a diagonal matrix with only

positive elements, it follows that necessarily c(t) = 0. We can therefore conclude that
the system indeed converges to the set where ω = 0 and Pt = P

opt

t , characterized in
Lemma 5.2.3. �

Remark 5.5.10 (Region of attraction). The local nature of our result is a consequence of
the considered incremental storage function having a local minimum at the desired steady
state. Nevertheless, the provided results are helpful to further characterize various sublevel
sets of the incremental storage function (Dvijotham et al. 2015), (Vu and Turitsyn 2016),
(De Persis and Monshizadeh 2017), for instance by numerically assessing the sublevel sets
that are compact. We leave a thorough analysis of the region of attraction as an interesting
future direction.

Remark 5.5.11 (Primal-dual based approaches). A popular alternative to the consen-
sus based algorithm (5.63), (5.64) is a primal-dual gradient based approach. To obtain a
distributed solution, optimization problem (5.9) is equivalently replaced2 by

min
Pt

C(Pt)

s.t. 0 = −Bv +

[
Pt
−Pd

]
.

(5.72)

The associated Lagrangian function is given by

L(Pt, λ) = C(Pt) + λT
(
− Bv +

[
Pt
−Pd

] )
, (5.73)

where λ is called the Lagrange multiplier. Under convexity of (5.72), strong duality holds
and the solution to (5.72) is equivalent (Boyd and Vandenberghe 2004) to the solution to

max
λ

min
Pt

L(Pt, λ). (5.74)

Following (Zhang and Papachristodoulou 2015), (Li et al. 2016), (Stegink et al. 2017), a
continuous primal-dual algorithm can be exploited to solve (5.74). However, since the evo-
lution of Pt is described by the turbine dynamics, we cannot design its dynamics. Bearing in
mind that controller (5.38) and (5.46) enforce a steady state where Pt = θ, we solve instead

max
λ

min
θ
L(θ, λ), (5.75)

2See Lemma 2.3.3 for a discussion on the equivalence of (5.9) and (5.72).
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where the dynamics of θ can be freely adjusted. Inspired by the results in (Zhang and
Papachristodoulou 2015), (Li et al. 2016), (Stegink et al. 2017), we replace the communi-
cation term in (5.63), (5.64),

−qi
∑

j∈N com
i

(qiθi + ri − (qjθj + rj)) (5.76)

by

∂L

∂θi
= −∇Ci(θi) + λi, (5.77)

yielding the modified controllers

Tθi θ̇i =− θi + Pti −K−1
i (∇Ci(θi)− λi), ∀i ∈ Vg1 (5.78)

Tθi θ̇i =− θi + Pgi − (1−K−1
i )ωgi − (∇Ci(θi)− λi). ∀i ∈ Vg2 (5.79)

The variables v and λ evolve according to

v̇ =
∂L

∂v
= −BTλ

λ̇ =− ∂L

∂λ
= Bv −

[
θ

−Pd

]
.

(5.80)

The analysis of Theorem 5.5.9 can now be repeated with the additional storage term

Z3 =
1

2
(v − v)T (v − v) +

1

2
(λ− λ)T (λ− λ). (5.81)

We notice that in this case only convexity of C(·) is required and that the load Pd appears in
(5.80).

Remark 5.5.12 (Load control). Incorporating load control in the LFC has been recently
studied in e.g. (Zhao et al. 2013), (Chen et al. 2012), (Weckx et al. 2015) and can be incorpo-
rated within the presented framework with minor modifications with respect to the previous
discussion. To do so, we modify the dynamics at the load buses i ∈ Vl to become

δ̇i = ωli

0 =−Dliωli −
∑
j∈Ni

ViVjBij sin(δi − δj)− Pli − uli, (5.82)

where uli is the additional controllable load. Associated to every controllable load is a strictly
concave benefit function of the form

CBi (uli) =
1

2
qiu

2
li + riuli + si, (5.83)
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which is a common approach to quantify the benefit of the consumed power. Instead of
minimizing the total generation costs as in (5.9) we now aim at maximizing the so-called
‘social welfare’ (Berger and Schweppe 1989), (Kiani and Annaswamy n.d.),

max
ul,Pt

CB(ul)− C(Pt)

s.t. 0 = 1Tng
P t − 1Tnl

(Pd + ul),
(5.84)

whereCB(ul)−C(Pt) =
∑
i∈Vl C

B
i (uli)−

∑
i∈Vg Ci(Pti). Notice that (5.84) is equivalent

to (5.9) in the absence of controllable loads. A straightforward but remarkable extension of
Lemma 5.3.1 is that U(ωg, ωg, η, η) as in (5.17) now satisfies along the solutions to (5.3)
and (5.82)

U̇ =− ‖ωg − ωg‖2Dg
− ‖ωl − ωl‖2Dl

+ (ωg − ωg)T (Pt − P t)
− (ωl − ωl)T (ul − ul),

(5.85)

i.e. the power network is also output strictly cyclo-incrementally passive with respect to
the additional input-output pair (ul,−ωl). This property allows to incorporate load control
in the same manner as the generation control. A thorough discussion on all possible load
dynamics is outside the scope of this work, although the considered turbine-governor dyna-
mics can be straightforwardly adapted. In the case there are no restrictions on the design, a
possible load controller is given by

Tθi θ̇i = ωli − qi
∑

j∈N com
i

(qiθi + ri − (qjθj + rj))

uli = θli.

∀i ∈ Vl (5.86)

The analysis of Theorem 5.5.9 can now be repeated with the additional storage term

Z3i =
1

2

∑
i∈Vl

(θi − θ
opt

i )2. (5.87)

5.6 Case study

To illustrate the proposed control scheme we adopt the 6 bus system from (Wood
and Wollenberg 1996). Its topology is shown in Figure 5.1. The relevant generator
and load parameters are provided in Table 5.3 , whereas the transmission line pa-
rameters are provided in Table 5.4. The used numerical values are based on (Wood
and Wollenberg 1996) and (Venkat et al. 2006). The turbine-governor dynamics are
modelled by the second order model (5.45). Every generator is equipped with the
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Bus 1

Bus 2

Bus 3

Bus 4

Bus 5

Bus 6

g1

g2

g3

l4

l5

l6

Figure 5.1: Diagram for a 6-bus power network, consisting of 3 generator and 3 load
buses. The turbine-governor dynamics of generators are represented by a second
order model. The communication links are represented by the dashed lines.

controller presented in (5.64). The communication links between the controllers are
also depicted in Figure 5.1. The system is initially at steady state with loads Pd1, Pd2

and Pd3 being 1.01, 1.20 and 1.18 pu respectively (assuming a base power of 100
MVA). After 10 seconds the loads are respectively increased to 1.15, 1.25 and 1.21
pu. From Figure 5.2 we can see how the controllers regulate the frequency deviation
back to zero. The total generation is shared optimally among the different genera-
tors such that (5.9) is solved.

5.6.1 Instability

We now show that a wrongly chosen value for the frequency gain (1−K−1
i ) in con-

troller (5.64) can lead to instability. To do so, we change the controller at generator 3

into

Tθ3 θ̇3 =− θ3 + Ps3 − 5(1−K−1
3 )ωg3 − q3

∑
j∈N com

3

(q3θ3 + r3 − (qjθj + rj)), (5.88)

for t > 5. Leaving all other values identical to the previous simulation, we notice
from Figure 5.3 that this change at only one generator can cause instability throug-
hout the whole network.
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Bu
s

1

Bu
s

2

Bu
s

3

Bu
s

4

Bu
s

5

Bu
s

6

Mi 4.6 6.2 5.1 – – –
Dgi 3.4 3.0 4.2 – – –
Dli – – – 1.0 1.6 1.2
Vi 1.05 0.98 1.04 1.01 1.03 1.00
Tgi 4.0 4.6 5.0 – – –
Tti 5.0 6.7 10.0 – – –
Ki 0.5 0.5 0.5 – – –
Tθi 0.1 0.1 0.1 – – –
qi 2.4 3.8 3.4 – – –
ri 10.5 5.7 8.9 – – –
si 9.1 14.4 13.2 – – –

Table 5.3: Numerical values of the generator and load parameters. The values for Ki

satisfy Assumption 3.

Bij (pu) 1 2 3 4 5 6 j

1 – -4.0 – -4.7 -3.1 –
2 -4.0 – -3.8 -8.0 -3.0 -4.5
3 – -3.8 – – -3.2 -9.6
4 -4.7 -8.0 – – -2.0 –
5 -3.1 -3.0 -3.2 -2.0 – -3.0
6 – -4.5 -9.6 – -3.0 –
i

Table 5.4: SusceptanceBij of the transmission line connecting bus i and bus j. Values
are per unit on a base of 100 MVA.
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Figure 5.2: Frequency response and generated power at the generator buses using
the controllers (5.64). The load is increased at timestep 5, whereafter the frequency
deviation is regulated back to zero and generation costs are minimized. The cost
minimizing generation P

opt

t for t > 5, characterized in Lemma 5.2.3, is given by the
dashed lines.
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Figure 5.3: Frequency response and generated power at the generator buses using
the controllers (5.64). The load is increased at timestep 5 and the controller at gene-
rator 3 is replaced by (5.88). Both the frequency deviation and the power generation
become unstable.
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Chapter 6

Passivity based design of sliding modes

Abstract

This chapter proposes a distributed sliding mode control strategy for optimal Load Fre-
quency Control (OLFC) in power networks, where besides frequency regulation also mi-
nimization of generation costs is achieved (economic dispatch). We study a nonlinear
power network partitioned into control areas, where each area is modelled by an equiva-
lent generator including voltage and second order turbine-governor dynamics. Desired
passivity properties of the turbine-governor suggest the design of a sliding manifold,
such that the turbine-governor system is passive once the sliding manifold is attained.
This chapter offers a new perspective on OLFC by means of sliding mode control, and
in comparison with the previous chapter, we relax required assumptions on the system
parameters.

6.1 Control areas with second order turbine-governor
dynamics

The considered model in this chapter extends the control area model studied in
Chapter 2, with the second order turbine-governor dynamics discussed in Section
5.5. For convenience we will recall the associated dynamics and state the previously
established incremental passivity property of the control area model in a slightly
different manner. Consequently, we again consider a power network consisting of
n interconnected control areas. The network topology is represented by a connected
and undirected graph G = (V, E), where the nodes V = {1, ..., n}, represent the con-
trol areas and the edges E = {1, ...,m}, represent the transmission lines connecting
the areas. The topology can be described by its corresponding incidence matrix
B ∈ Rn×m. Then, by arbitrarily labeling the ends of edge k with a + and a −, one
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has that

Bik =


+1 if i is the positive end of k

−1 if i is the negative end of k

0 otherwise.

A control area is represented by an equivalent generator and a load, where the
governing dynamics of the i-th area are described by the so called ‘flux-decay’ or
‘single-axis model’ given as (Machowski et al. 2008):

δ̇i = ωi

Tpiω̇i =− ωi +Kpi

( ∑
j∈Ni

ViVjBij sin (δi − δj)− Pdi+Pti
)

TV iV̇i = Efi −
(
1− (Xdi −X ′di)Bii

)
Vi − (Xdi −X ′di)

∑
j∈Ni

VjBij cos (δi − δj),

(6.1)

where Ni is the set of control areas connected to the i-th area by transmission lines.
Moreover, Pti in (6.1) is the power generated by the i-th (equivalent) plant and can
be expressed as the output of the following second order dynamical system that
describes the behaviour of both the governor and the turbine:

TtiṖti =− Pti + Pgi

TgiṖgi =− 1

Ki
ωi − Pgi + ui.

(6.2)

The symbols used in (6.1) and (6.2) are described in Table 6.1. We aim at the design
of a continuous control input ui to achieve both frequency regulation and economic
efficiency (optimal Load Frequency Control).
To study the power network we write system (6.1) compactly for all areas i ∈ V as

η̇ = BTω
Tpω̇ =− ω +Kp(Pt − Pd−BΓ(V ) sin(η))

TV V̇ =− (Xd −X ′d)E(η)V + Ef ,

(6.3)

and the turbine-governor dynamics in (6.2) as

TtṖt =− Pt + Pg

TgṖg =−K−1ω − Pg + u,
(6.4)

where η = BT δ ∈ Rm is vector describing the differences in voltage angles. Furt-
hermore, Γ = diag{Γ1, . . . ,Γm}, where Γ(V )k = ViVjBij , with k ∼ {i, j}, i.e., line k
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State variables

δi Voltage angle
ωi Frequency deviation
Vi Voltage
Pti Turbine output power
Pgi Governor output

Parameters

Tpi Time constant of the control area
Tti Time constant of the turbine
Tgi Time constant of the governor
TV i Direct axis transient open-circuit constant
Kpi Gain of the control area
Ki Speed regulation coefficient
Xdi Direct synchronous reactance
X ′di Direct synchronous transient reactance
Bij Transmission line susceptance

Inputs

ui Control input to the governor
Efi Constant exciter voltage
Pdi Unknown power demand

Table 6.1: Description of the used symbols

connects areas i and j. The components of the matrix E(η) ∈ Rm×m are defined as

Eii(η) =
1

Xdi −X
′
di

−Bii i ∈ V

Eij(η) = Bij cos(ηk) = Eji(η) k ∼ {i, j} ∈ E
Eij(η) = 0 otherwise.

(6.5)

The remaining symbols follow straightforwardly from (6.1) and (6.2), and are vec-
tors and matrices of suitable dimensions. To permit the controller design in the next
sections, the following assumption is made on the unknown demand (unmatched
disturbance) and the available measurements:

Assumption 6.1.1 (Available information). The variables ωi, Pti andPgi are locally avai-
lable at control area i. The unmatched disturbance Pdi is unknown, and can be bounded as

|Pdi| ≤ Di, (6.6)
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where Di is a positive constant available at control area i.

Before recalling the incremental passivity property for the considered power net-
work model, we first need the following assumption on the existence of a steady
state solution.

Assumption 6.1.2 (Steady state solution). The unknown power demand (unmatched dis-
turbance) Pd is constant and for a given Pd, there exist a u and a state (η, ω, V , P t, P g) that
satisfies

0 = BTω
0 =− ω +Kp(P t − Pd − BΓ(V ) sin(η))

0 =− (Xd −X ′d)E(η)V + Ef ,

(6.7)

and

0 =− P t + P g

0 =−K−1ω − P g + u.
(6.8)

To state an incremental passivity property of (6.3), we make use of the following
storage function (Trip et al. 2016), (De Persis and Monshizadeh 2017):

S1(η, ω, V ) =
1

2
ωTTpω +

1

2
V TE(η)V, (6.9)

that can also be interpreted as a Hamiltonian function of the system (Stegink et al.
2017).

Lemma 6.1.3 (Incremental cyclo-passivity of (6.3)). System (6.3) with input Pt and
output ω is a strictly output incrementally cyclo-passive system, with respect to the constant
(η, ω, V ) satisfying (6.7).

Proof. For notational convenience we define x = (η, ω, V ). Following the calculation
in Chapter 2, evaluation of (note the use of a calligraphic S)

S1(x) = S1(x)− S1(x)−∇S1(x)T (x− x), (6.10)

shows that S1(x) satisfies (see Chapter 2)

Ṡ1(x) =− ωTK−1
p ω − V̇ TTV (Xd −X ′d)−1V̇

+ (ω − ω)T (Pt − P t),
(6.11)

along the solutions to (6.3). �
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For the stability analysis in Section 6.4 the following technical assumption is nee-
ded on the steady state that eventually allows us to infer boundedness of solutions.1

Assumption 6.1.4 (Steady state voltages and voltage angles). Let V ∈ Rn>0 and let
differences in steady state voltage angles satisfy

ηk ∈ (−π
2
,
π

2
) ∀k ∈ E . (6.12)

Furthermore, for all i ∈ V it holds that

1

Xdi −X ′di
−Bii −

∑
k∼{i,j}∈E

Bij(V i + V j sin2(ηk))

V i cos(ηk)
> 0 (6.13)

The assumption above holds if the generator reactances are small compared to
the line reactances and the differences in voltage (angles) are small (De Persis and
Monshizadeh 2017). It is important to note that this holds for typical operation
points of the power networks. The main consequence of Assumption 6.1.4 is that
the incremental storage function S1 now obtains a strict local minimum at a steady
state satisfying (6.7).

Lemma 6.1.5 (Local minimum of S1). Let Assumptions 6.1.4 hold. Then, the incremental
storage function S1 has a local minimum at (η, ω, V ) satisfying (6.7).

Proof. Under Assumption 6.1.4, the Hessian of (6.9), evaluated at (η, ω, V ), is posi-
tive definite (Chapter 3). Consequently, S1(η, ω, V ) is strictly convex. The incremen-
tal storage function (6.10) is defined as a Bregman distance (Bregman 1967) associ-
ated with (6.9) for the points (η, ω, V ) and (η, ω, V ). Due to the strict convexity of
S1(η, ω, V ), (6.10) has a local minimum at (η, ω, V ). �

Remark 6.1.6 (Sliding mode control for different power network models). The focus
of this work is to achieve OLFC by distributed sliding mode control for the nonlinear power
network, explicitly taking into account the turbine-governor dynamics. Equations (6.3) well
represent power systems for the purpose of frequency regulation and are often further simpli-
fied by assuming constant voltages, leading to the so called ‘swing equations’. To the analysis
in this chapter the incremental passivity property established above is essential, which has
been derived for various other models, including microgrids. It is therefore expected that the
presented approach can be straightforwardly applied to a wider range of models than the one
we consider here.

1 In case boundedness of solutions can be inferred by other means, Assumption 6.1.4 can be omitted.
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6.2 Frequency regulation and economic dispatch

In this section we recall, for convenience and to make this chapter consistent, the
control objectives of optimal load frequency control, that we have considered before
in Chapter 2 and Chapter 5. Before doing so, we first note that the steady state
frequency deviation ω, is generally different from zero without proper adjustments
of u.

Lemma 6.2.1 (Steady state frequency). Let Assumption 6.1.2 hold, then necessarily ω =

1nω
∗ with

ω∗ =
1Tn (u− P d)

1Tn (K−1
p +K−1)1n

, (6.14)

where 1n ∈ Rn is the vector consisting of all ones.

This leads us to the first objective, concerning the regulation of the frequency
deviation.

Objective 6.2.2 (Frequency regulation).

lim
t→∞

ω(t) = 0. (6.15)

From (6.14) it is clear that it is sufficient that 1Tn (u − P d) = 0, to have zero fre-
quency deviation at the steady state. Therefore, there is flexibility to distribute the
total required generation optimally among the various control areas. To make the
notion of optimality explicit we assign to every control area a strictly convex linear-
quadratic cost function Ci(Pti) related to the generated power Pti:

Ci(Pti) =
1

2
qiP

2
ti + riPti + si ∀i ∈ V. (6.16)

Minimizing the total generation cost, subject to the constraint that allows for a zero
frequency deviation can then be formulated as the following optimization problem:

min
∑
i∈V

Ci(Pti)

s.t. 1Tn (u− P d) = 0.

(6.17)

The lemma below, which is identical to Lemma 5.2.3 makes the solution to (6.17)
explicit:

Lemma 6.2.3 (Optimal generation). The solution P
opt

t to (6.17) satisfies

P
opt

t = Q−1(λ
opt −R), (6.18)
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where

λ
opt

=
1n1

T
n (P d +Q−1R)

1TnQ
−11n

, (6.19)

and Q = diag(q1, . . . , qn), R = (r1, . . . , rn)T .

From (6.18) it follows that the marginal costs QP
opt

t + R are identical. Note that
(6.18) depends explicitly on the unknown power demand Pd. We aim at the design
of a controller solving (6.17) without measurements of the power demand, leading
to the second objective.

Objective 6.2.4 (Economic dispatch).

lim
t→∞

Pt(t) = P
opt

t , (6.20)

with P
opt

t as in (6.18), without measurements of Pd.

In order to achieve Objective 6.2.2 and Objective 6.2.4 we refine Assumption 6.1.2
that ensures the feasibility of the objectives.

Assumption 6.2.5 (Existence of a optimal steady state). Assumption 6.1.2 holds when
ω = 0 and P t = P g = P

opt

t , with P
opt

t as in (6.18).

Remark 6.2.6 (Varying power demand). To allow for a steady state solution, the power
demand (unmatched disturbance) is required to be constant. This is not needed to reach the
desired sliding manifold discussed in the next section, but is required only to establish the
asymptotic convergence properties in Objective 6.2.2 and Objective 6.2.4.

6.3 Distributed sliding mode control

In Section 6.1 we discussed a passivity property of the power network (6.3), with
input Pt and output ω. Unfortunately, the turbine-governor system (6.4) does not
immediately allow for a passive interconnection, since (6.4) is a linear system with
relative degree two, when considering −ω as the input and Pt as the output. To
alleviate this issue we propose a distributed Suboptimal Second Order Sliding Mode
(D–SSOSM) control algorithm that simultaneously achieves Objective 6.2.2 and Ob-
jective 6.2.4, by passifying (6.4) and by exchanging information on the marginal
costs. As a first step (see also Remark 6.3.2 below), we augment the turbine-governor
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dynamics (6.4) with a distributed control scheme, resulting in:

TtṖt =− Pt + Pg

TgṖg =−K−1ω − Pg + u

Tθ θ̇ =− θ + Pt −ALcom(Qθ +R).

(6.21)

Here, Qθ + R reflects the ‘virtual’ marginal costs and Lcom is the Laplacian matrix
corresponding to the topology of an underlying communication network. The dia-
gonal matrix Tθ ∈ Rn×n provides additional design freedom to shape the transient
response and the matrix A is suggested later to obtain a suitable passivity property.
We note that Lcom(Qθ + R) represents the exchange information on the marginal
costs among the control areas. To guarantee an optimal coordination of generation
among all the control areas the following assumption is made:

Assumption 6.3.1 (Communication topology). The graph corresponding to the commu-
nication topology is undirected and connected.

Remark 6.3.2 (First order turbine-governor dynamics). The rational behind this see-
mingly ad-hoc choice of the augmented dynamics is that for the controlled first order turbine-
governor dynamics, where u = θ and Pg = −K−1ω + θ, system

TtṖt =− Pt −K−1ω + θ

Tθ θ̇ =− θ + Pt −K−1QLcom(Qθ +R),
(6.22)

has been shown to be incrementally passive with input −ω and output Pt, and is able to
solve Objective 6.2.2 and Objective 6.2.4 (Chapter 5 and (Trip and De Persis 2017b)). We
aim at the design of u and A in (6.21), such that (6.21) behaves similarly as (6.22). This is
made explicit in Lemma 6.4.2.

To facilitate the discussion, we recall some definitions that are essential to sliding
mode control. To this end, consider system

ẋ = ζ(x, u) (6.23)

with x ∈ Rn, u ∈ Rm.

Definition 6.3.3 (Sliding function). The sliding function σ(x) : Rn → Rm is a suffi-
ciently smooth output function of system (6.23).
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Definition 6.3.4 (r–sliding manifold). The r–sliding manifold2 is given by

{x, u ∈ Rn : σ(x) = Lζσ(x) = · · · = L
(r−1)
ζ σ(x) = 0}, (6.24)

where L(r−1)
ζ σ(x) is the (r−1)-th order Lie derivative of σ(x) along the vector field ζ(x, u).

With a slight abuse of notation we also write Lζσ(x) = σ̇(x).

Definition 6.3.5 (r–sliding mode). A r–order sliding mode is enforced from t = Tr ≥ 0,
when, starting from an initial condition x(0) = x0, the state of (6.23) reaches the r–sliding
manifold (6.24), and there remains for all t ≥ Tr.

Note that the order of a sliding mode controller is identical to the order of the
sliding mode that it is aimed at enforcing.

We now propose a sliding function σ(ω, Pt, Pg, θ) and a matrix A for system (6.21),
which will allow us to prove convergence to the desired state. The choices are moti-
vated by the stability analysis in the next section, but are stated here for the sake of
exposition. First, the sliding function σ : R4n → Rn is given by

σ(ω, Pt, Pg, θ) = M1ω +M2Pt +M3Pg +M4θ, (6.25)

where M1 > 0, M2 ≥ 0, M3 > 0 are diagonal matrices and M4 = −(M2 +M3). The-
refore, σi, i ∈ V , depends only on the locally available variables that are defined on
node i, facilitating the design of a distributed controller (see Remark 6.3.7). Second,
the diagonal matrix A ∈ Rn×n is defined as

A = (M2 +M3)−1M1Q. (6.26)

By regarding the sliding function (6.25) as the output function of system (6.3), (6.21),
it appears that the relative degree3 of the system is equal to 1. This implies that
a first order sliding mode controller can be naturally applied (Utkin 1992) in order
to attain in a finite time, the sliding manifold defined by σ = 0. Note however
that the control input u appears in the first time derivative of the sliding function.
Since the sliding mode controller will generate a discontinuous control signal, this
leads potentially to a discontinuous control input to the governor. Then, in order
to provide a continuous control input u to the governor, we also require σ̇ = 0.
Therefore, the desired sliding manifold is given by:

{(η, ω, V, Pt, Pg, θ) : σ = σ̇ = 0}. (6.27)

We continue by discussing a possible controller attaining the desired sliding mani-
fold (6.27) while providing a continuous control input u.

2For the sake of simplicity, the order r of the sliding manifold is omitted in the following.
3 The relative degree is the minimum order ρ of the time derivative σ(ρ)

i , i ∈ V , of the sliding function
associated to the i-th node in which the control ui, i ∈ V , explicitly appears.
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6.3.1 Suboptimal Second Order Sliding Mode controller

To prevent chattering, it is important to provide a continuous control input u to the
governor. Since sliding mode controllers generate a discontinuous control signal,
we adopt the procedure suggested in (Bartolini et al. 1998a) and first integrate the
discontinuous signal, yielding for system (6.21):

TtṖt =− Pt + Pg

TgṖg =−K−1ω − Pg + u

Tθ θ̇ =− θ + Pt −ALcom(Qθ +R)

u̇ = w,

(6.28)

where w is the new (discontinuous) input generated by a sliding mode controller
discussed below. A consequence is that the system relative degree (with respect to
the new control input w) is now 2, and we need to rely on a second order (r = 2)
sliding mode control strategy to attain the sliding manifold (6.25) in a finite time
(Levant 2003). To make the controller design explicit, we discuss a specific se-
cond order sliding mode controller, the so-called ‘Suboptimal Second Order Sliding
Mode’ (SSOSM) controller proposed in (Bartolini et al. 1998a). We introduce two
auxiliary variables ξ1 = σ ∈ Rn and ξ2 = σ̇ ∈ Rn, and define the so-called auxiliary
system as: {

ξ̇1 = ξ2

ξ̇2 = φ(η, ω, V, Pt, Pg, θ) +Gw.
(6.29)

Bearing in mind hat ξ̇2 = σ̈ = φ+Gw, the expressions for the mapping φ and matrix
G can be straightforwardly obtained from (6.25) by taking the second derivative of
σ with respect to time, yielding for the latter4 G = M3T

−1
g ∈ Rn×n. We assume that

the entries of φ and G have known bounds

|φi| ≤ Φi ∀i ∈ V (6.30)

0 < Gmini
≤ Gii ≤ Gmaxi

∀i ∈ V (6.31)

with Φi, Gmini
and Gmaxi

being positive constants. Second, w is a discontinuous
control input described by the SSOSM control algorithm (Bartolini et al. 1998a), and
consequently for each area i ∈ V , the control law wi is given by

wi = −αiWmaxi sgn

(
ξ1i −

1

2
ξ1,maxi

)
, (6.32)

4The expression for φ is rather long and is omitted.
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with

Wmaxi
> max

(
Φi

α∗iGmini

;
4Φi

3Gmini
− α∗iGmaxi

)
, (6.33)

α∗i ∈ (0, 1] ∩
(

0,
3Gmini

Gmaxi

)
, (6.34)

αi switching between α∗i and 1, according to (Bartolini et al. 1998a, Algorithm 1).
Note that indeed the input signal to the governor, u(t) =

∫ t
0
w(τ)dτ , is continuous,

since the input w is piecewise constant.

The extremal values ξ1,maxi
in (6.32) can be detected by implementing for instance a

peak detection as in (Bartolini et al. 1998b).

Remark 6.3.6 (Uncertainty of φ and G). The mapping φ and matrix G are uncertain
due to the presence of the unmeasurable power demand Pd and voltage angle θ, and possible
uncertainties in the system parameters. In practical cases the bounds in (6.30) and (6.31)
can be determined relying on data analysis and physical insights. However, if these bounds
cannot be a-priori estimated, the adaptive version of the SSOSM algorithm proposed in
(Incremona et al. 2016) can be used to dominate the effect of the uncertainties.

Remark 6.3.7 (Distributed control). Given A in (6.26), the dynamics of θi in (6.21) read
for node i ∈ V as

Tθiθ̇i =− θi + Pti −
QiM1ii

M2ii +M3ii

∑
j∈N com

j

(Qiθi +Ri −Qjθj −Rj), (6.35)

where N com
j is the set of controllers connected to controller i. Furthermore, (6.32) depends

only on σi, i.e. on states defined at node i. Consequently, the overall controller is indeed
distributed and only information on marginal costs needs to be shared among neighbours.

Remark 6.3.8 (Alternative SOSM controllers). In this work we rely on the SOSM control
law proposed in (Bartolini et al. 1998a). However, to constrain system (6.3) augmented with
dynamics (6.28) on the sliding manifold (6.27), where σ = σ̇ = 0, any other SOSM control
law that does not need the measurement of σ̇ can be used. An interesting continuation of the
presented results is to study the performance of various SOSM controllers within the setting
of (optimal) LFC.

Remark 6.3.9 (Relaxed conditions on the system parameters). In comparison to the
previous chapter, we do not require the parameters in (6.3) and (6.4) to satisfy Assumption
5.5.4.
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6.4 Stability analysis and main result

In this section we study the stability of the proposed control scheme, based on an
enforced passivity property of (6.21) on the sliding manifold defined by (6.25). First,
we establish that the second order sliding mode controller (6.29)–(6.34) constrains
the system in finite time to the desired sliding manifold.

Lemma 6.4.1 (Convergence to the sliding manifold). Let Assumption 6.1.1 hold. The
solutions to system (6.3), augmented with (6.28), in closed loop with controller (6.29)–(6.34)
converge in a finite time Tr to the sliding manifold (6.27) such that

Pg =−M−1
3 (M1ω +M2Pt +M4θ) ∀t ≥ Tr. (6.36)

Proof. Following (Bartolini et al. 1998a), the application of (6.29)–(6.34) to each con-
trol area guarantees that σ = σ̇ = 0, ∀ t ≥ Tr. The details are omitted, and are an
immediate consequence of the used SSOSM control algorithm (Bartolini et al. 1998a).
Then, from (6.25) one can easily obtain (6.36), where M3 is indeed invertible. �

Exploiting relation (6.36), on the sliding manifold where σ = σ̇ = 0, the so-called
equivalent system is as follows:

M3TtṖt =− (M2 +M3)Pt −M4θ −M1ω

Tθ θ̇ =− θ + Pt −ALcom(Qθ +R).
(6.37)

As a consequence of the feasibility assumption (Assumption 6.1.2), the system above
admits the following steady state:

0 =− (M2 +M3)P
opt

t −M4θ −M10

0 =− θ + P
opt

t −ALcom(Qθ +R).
(6.38)

Now, we show that system (6.37), with A as in (6.26), indeed possesses a passivity
property with respect to the steady state (6.38). Note that, due to the discontinu-
ous control law (6.32), the solutions to the closed loop system are understood in
the sense of Filippov. Following the equivalent control method (Utkin 1992), the
solutions to the equivalent system are however continuously differentiable.

Lemma 6.4.2 (Incremental passivity of (6.37). System (6.37) with input −ω and out-
put Pt is an incrementally passive system, with respect to the constant (P

opt

t , θ) satisfying
(6.38).
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Proof. Consider the following incremental storage function

S2 =
1

2
(Pt − P

opt

t )TM−1
1 M3Tt(Pt − P

opt

t )

+
1

2
(θ − θ)TM−1

1 (M2 +M3)Tθ(θ − θ),
(6.39)

which is positive definite, since M1 > 0,M2 ≥ 0 and M3 > 0. Then, we have that
S2 satisfies along the solutions to (6.37)

Ṡ2 =
1

2
(Pt − P

opt

t )TM−1
1 M3TtṖt

+
1

2
(θ − θ)TM−1

1 (M2 +M3)Tθ θ̇

=
1

2
(Pt − P

opt

t )T (−M−1
1 (M2 +M3)Pt − ω −M−1

1 M4θ)

+
1

2
(θ − θ)TM−1

1 (M2 +M3)(Pt − θ −ALcom(Qθ +R)).

In view of M4 = −(M2 +M3), A = (M2 +M3)−1M1Q and equality (6.38), it follows
that

Ṡ2 =− (Pt − θ)TM−1
1 (M2 +M3)(Pt − θ)

− (Qθ +R−Qθ −R)Lcom(Qθ +R−Qθ −R)

− (Pt − P
opt

t )T (ω − 0).

�

Remark 6.4.3 ( Reducing the relative degree). An important consequence of the proposed
sliding mode controller (6.29)–(6.34) is that the relative degree of system (6.37) is one with
input −ω and output Pt. This is in contrast to the ‘original’ system (6.4) that has relative
degree two with the same input–output pair.

Now, relying on the interconnection of incrementally passive systems, we can
prove the main result of this chapter concerning the evolution of the augmented
system controlled via the proposed distributed SSOSM control strategy.

Theorem 6.4.4 (Main result: distributed OLFC). Let Assumptions 6.1.1–6.3.1 hold.
Consider system (6.3) and (6.21), controlled via (6.29)–(6.34). Then, the solutions of the
closed-loop system starting in a neighbourhood of the equilibrium (η, ω = 0, V , P

opt

t , Pg, θ)

approach the set where ω = 0 and P t = P
opt

t , with P
opt

t given by (6.18).
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Proof. Following Lemma 6.4.1, we have that the SSOSM control enforces system
(6.21) to evolve ∀ t ≥ Tr on the sliding manifold (6.27), resulting in the reduced
order system (6.37). Consider the overall incremental storage function S = S1 + S2,
with S1 given by (6.10) and S2 given by (6.39). In view of Lemma 6.1.5, we have that
S has a local minimum at (η, ω = 0, V , P

opt

t , θ) and satisfies along the solutions to
(6.3), (6.37)

Ṡ =− ωTK−1
p ω − V̇ TTV (Xd −X ′d)−1V̇

− (Pt − θ)TM−1
1 (M2 +M3)(Pt − θ)

− (Qθ +R−Qθ −R)Lcom(Qθ +R−Qθ −R)

≤ 0.

Consequently, there exists a forward invariant set, Υ around (η, ω = 0, V , P
opt

t , θ)

and by LaSalle’s invariance principle the solutions that start in Υ approach the lar-
gest invariant set contained in

Υ ∩ {(η, ω, V, Pt, θ) : ω = 0, V =
(
(Xd −X ′d)E(η)

)−1
Ef ,

Pt = θ, θ = θ +Q−11α(t)}, (6.40)

where α(t) ∈ R is a scalar. On this invariant set the controlled power network
satisfies

η̇ = BT0
0 = Kp(θ +Q−11α(t)− Pd − BΓ(V ) sin(η))

0 =− (Xd −X ′d)E(η)V + Ef

M3TtṖt = 0

Tθ θ̇ = 0.

(6.41)

Pre-multiplying both sides of the second line of (6.41) with 1TnK−1
p yields 0 = 1Tn (θ+

Q−11α(t)− Pd). Since θ = P
opt

t , 1Tn (P
opt

t − Pd) = 0 and Q is a diagonal matrix with
only positive elements, it follows that necessarily α(t) = 0. We can conclude that the
solutions to the system (6.3) and (6.21), controlled via (6.29)–(6.34), indeed approach
the set where ω = 0 and P t = P

opt

t , with P
opt

t given by (6.18). �

Remark 6.4.5 (Robustness to failed communication). The proposed control scheme is
distributed and as such requires a communication network to share information on the mar-
ginal costs. However, note that the term−ALcom(Qθ+R) in (6.21) is not needed to enforce
the passivity property established in Lemma 6.4.2, but is required to prove convergence to
the economic efficient generation P

opt

t . In fact, settingA = 0 still permits to infer frequency
regulation following the argumentation of Theorem 6.4.4.
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Area 1

Area 2

Area 4

Area 3

P12

P14

P23

P34

Figure 6.1: Scheme of the considered power network partitioned into 4 control areas,
where Pij = BijViVj sin (δi − δj). The arrows indicate the positive direction of the
power flows through the power network, while the dashed lines represent the com-
munication network.

Remark 6.4.6 (Region of attraction). LaSalle’s invariance principle can be applied to all
bounded solutions. As follows from Lemma 6.1.5, we have that the considered incremental
storage function has a local minimum at the desired steady state, whereas the time to con-
verge to the sliding manifold can be made arbitrarily small by properly choosing the gains
of the SSOSM control. This guarantees that solutions starting in the vicinity of the steady
state of interest remain bounded. A preliminary (numerical) assessment indicates that the
region of attraction is large, but a thorough analysis is left as future endeavour.

6.5 Case study

In this section, the proposed control solution is assessed in simulation, by imple-
menting a power network partitioned into four control areas (e.g. the IEEE New
England 39-bus system (Nabavi and Chakrabortty 2013)). The topology of the po-
wer network is represented in Figure 6.1, together with the communication net-
work (dashed lines). The line parameters are B12 = −5.4 p.u., B23 = −5.0 p.u.,
B34 = −4.5 p.u. and B14 = −5.2 p.u., while the network parameters and the power
demand ∆Pdi of each area are provided in Table 6.2, where a base power of 1000MW
is assumed. The matrices in (6.25) are chosen asM1 = 3I4, M2 = I4, M3 = 0.1I4 and
M4 = −(M2 +M3), I4 ∈ R4×4 being the identity matrix, while the control amplitude
Wmaxi

and the parameter α∗i , i = 1, . . . , 4 , in (6.32) are 10 and 1, respectively, for all
i ∈ V . For the sake of simplicity, in the cost function (6.16) we select Ri = si = 0
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Figure 6.2: Time evolution of the frequency deviation, generated power and voltage
dynamics considering a power demand variation at the time instant t = 1s.
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A
re

a
1

A
re

a
2

A
re

a
3

A
re

a
4

Tpi (s) 21.0 25.0 23.0 22.0
Tti (s) 0.30 0.33 0.35 0.28
Tgi (s) 0.080 0.072 0.070 0.081
TV i (s) 5.54 7.41 6.11 6.22
Kpi (Hz p.u.−1) 120.0 112.5 115.0 118.5
Ki (Hz p.u.−1) 2.5 2.7 2.6 2.8
Xdi (p.u.) 1.85 1.84 1.86 1.83
X ′di (p.u.) 0.25 0.24 0.26 0.23
Efi (p.u.) 1.0 1.0 1.0 1.0
Bii (p.u.) -13.6 -12.9 -12.3 -12.3
Tθi (s) 0.33 0.33 0.33 0.33
qi ($ p.u.−1) 2.42 3.78 3.31 2.75
∆Pdi (p.u.) 0.010 0.015 0.012 0.014

Table 6.2: Network Parameters and power demand

for all i ∈ V . The system is initially at the steady state. Then, at the time instant
t = 1s, the power demand in each area is increased according to the values reported
in Table 6.2. From Figure 6.2, one can observe that the frequency deviations con-
verge asymptotically to zero after a transient where the frequency drops because of
the increasing load. Indeed, one can note that the proposed controllers increase the
power generation in order to reach again a zero steady state frequency deviation.
Moreover, the total power demand is shared among the areas, minimizing the total
generation costs. More precisely, by applying the proposed D-SSOSM, the total ge-
neration costs are 10 % less than the generation costs when each area would produce
only for its own demand.





Part III

Power networks as
cyber-physical systems





Introduction

I
ncreased penetration of renewable energy sources has revived the interest in po-
wer network related control issues. The power network is developing towards a

situation where it consists of an ever increasing amount of small and volatile gene-
ration units. As a consequence it becomes more difficult to maintain the frequency
close to its nominal value and traditional control strategies might turn out to be
incapable to deal with the changing network. Technological advances in computer-
based control offer possibilities to maintain the high reliability of the power network
and at the same time to lower operational costs. A critical aspect of many new con-
trol strategies is however the use of an underlying communication network. This
poses the question of how the communication structure impacts the stability of the
physical system and how the required amount of communication can be reduced. In
this work we show how these questions can be addressed within a hybrid systems
framework.

Various solutions to improve the efficiency of power networks have been recently
proposed that generally follow one of the following two approaches. In the first
approach, the economic dispatch problem is distributively solved by a primal-dual
algorithm converging to the solution of the associated Lagrangian dual problem
(Zhang and Papachristodoulou 2015), (Li et al. 2016). In the second approach, a
consensus algorithm is employed to converge to a state of identical marginal costs,
solving the economic dispatch problem in the unconstrained case (Simpson-Porco
et al. 2013), (Trip et al. 2016), (Trip and De Persis 2017b). An important aspect of
the aforementioned approaches is the requirement of continuous communication be-
tween different parts in the network. With an increasing number of generation units
the required bandwidth might however exceed the capacity of the underlying com-
munication network and a more efficient communication infrastructure is desirable
(Fan et al. 2016).
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Contributions

In Part III of this thesis, we focus on reducing the required information exchange
among the controllers. Particularly, we study the possibility to exchange informa-
tion at discrete time instances, while the physical network is still evolving conti-
nuously. The approach chosen in this part, to study the stability of the intercon-
nected cyber-physical system, is closely related to the approach used in (De Persis
and Postoyan 2017) and in (Postoyan et al. 2015), where (event-)triggered coordi-
nation algorithms are proposed for networked control systems, resulting in hybrid
systems. We analyze the obtained hybrid system using the formalism of (Goebel
et al. 2012). Various works on cyber-physical systems have addressed discrete com-
munication times, where the interplay between digital control and the continuous
physical system is explicitly taken into account. Early works have focussed on dis-
crete information exchange for single and double integrator dynamics to obtain con-
sensus (Dimarogonas et al. 2012), (Heemels et al. 2012), (Seyboth et al. 2013). Com-
pared to these results, we propose an alternative approach to design rules that deter-
mine the moments when information is exchanged, where the design and analysis
are based on a non-quadratic storage function and an invariance principle for hy-
brid systems. In the proposed methodology, we start with a given storage function
for a system that is stable under the assumption of continuous exchange of informa-
tion. We then propose an additional storage term that takes into account the cyber
part of the system. The stability study then prescribes the maximum amount of
time between sampling instances such that stability can still be guaranteed and is
in the same spirit as (Carnevale et al. 2007), where a maximum allowable transfer
interval for networked control systems is proposed and analyzed using Lyapunov
arguments. Our approach permits to reuse results from the previous chapters and
allows us to straightforwardly relax the assumption of continuous information ex-
change.

Outline

Chapter 7

The presented work provides a contribution towards relaxing the predominant as-
sumption of continuous communication between various nodes in a power net-
work. To achieve this we adapt our previous results (Bürger et al. 2014), (Trip
et al. 2016), where an incremental passivity property of the power network is esta-
blished and used to design distributed controllers achieving economically efficient
frequency regulation in the presence of unknown and possibly time-varying chan-
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ges in the load. This work focuses on a master-slave control structure, similar to
the one presented in (Dörfler and Grammatico 2016). The proposed solution in this
paper achieves frequency regulation and minimizes required generation costs, i.e. it
achieves an economic dispatch. We furthermore show that the formalism for hybrid
systems (Goebel et al. 2012) is suitable to extend the Lyapunov-based controller de-
sign for power networks to explicitly include the digital nature of the control struc-
ture. Specifically, we are able to design a maximum time that is allowed between
two sampling instances. We therefore provide a further analytical understanding
of the communication requirements in power networks that facilitates the reduction
of current, ‘as high as possible’, sampling rates. As the proposed controller design
exploits the incremental passivity property of the physical network, the proposed
solution can be straightforwardly adapted to other networks possessing such a pro-
perty as well. As we show in the case study a sampling rate that is too slow can
destabilize a system that would be stable under fast sampling, stressing the impor-
tance to study the stability of a cyber-physical system in a coherent way.

Chapter 8

This chapter continues the efforts of Chapter 7, to further relax the assumption of
continuous communication. Where Chapter 7 focussed on a more centralized con-
trol scheme, this chapter investigates the digital nature of the consensus algorithm
(Section 8.1). First, the consensus algorithm is studied as an autonomous system,
where the nodes in the network broadcast the value of their state at discrete time in-
stances to their neighbours (Section 8.2). Stability is proven by exploiting an invari-
ance principle for hybrid systems. Particularly, we design a suitable storage function
that takes into account the digital nature of the communication. The stability ana-
lysis then suggest a minimal broadcasting frequency at every node that guarantees
stability of the overall network. In Section 8.3, the (hybrid) consensus algorithm is
studied in closed loop with a nonlinear system, leading to a new characterization
of the minimal broadcasting frequency. A case study on the autonomous consensus
protocol and a case study on optimal Load Frequency Control confirm the obtained
theoretical results (Section 8.4).
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Chapter 7

Communication requirements in a
master-slave control structure

Abstract

To have economically efficient frequency control in power networks, the communication
between the generators and controllers is essential. In this chapter we adopt a master-
slave control structure where a control center (master) optimally allocates the required
power generation among the units (slaves). We investigate the communication and sam-
pling rate requirements such that frequency regulation and optimality are guaranteed.
The analysis of the continuous physical system and the discrete-time communication
protocol is carried out within the framework of hybrid systems and relies on an invari-
ance principle. Based on Lyapunov arguments a minimum sampling rate is established.
A case study indicates that a low sampling rate can indeed lead to instability.

7.1 The Bergen-Hill model

This chapter considers the same Bergen-Hill model of the power network as we have
discussed in Chapter 5. For convenience we repeat the overall network model, but
refer for the details to Section 5.1. The power network model considered is given by

δ̇ = ω

Mω̇g = −Dgωg − BgΓ sin(BT δ) + ûg
0 = −Dlωl − BlΓ sin(BT δ)− Pd,

(7.1)

where in comparison with equation (5.3), the input Pt is replaced by ûg . Particularly,
we do not consider a continuous adjustment of the generated power, but study how
the set-points for the generated power can be discretely updated. In the next section
we propose a possible controller that adjusts ûg , obtaining frequency regulation and
an economic dispatch.
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7.2 Cyber-layer and control structure

From Lemma 5.2.2 it follows that we require that 1Tng
ug − 1Tnl

Pd = 0 in order to
have a steady state frequency deviation of zero. Similar to Chapter 5, we aim at
an optimal distribution of generation among the generators such that ug solves the
optimization problem

minûg
C(ûg) = minûg

∑
i∈Vg Ci(ûgi)

s.t. 1Tng
ûg − 1Tnl

Pl = 0,
(7.2)

where Ci(ûgi) represents the quadratic cost function of generator i. The solution
uoptg to (7.2) can be made explicit, and we recall Lemma 5.2.3:

Lemma 7.2.1 (Optimal generation). Let

C(ûg) =
1

2
ûTg Qûg +RT ûg + 1Tng

s, (7.3)

with Q > 0 and diagonal. The solution uoptg to (7.2) must satisfy

uoptg = Q−1(λ
opt −R), (7.4)

where λ
opt

=
1ng (1T

nl
Pd+1ngQ

−1R)

1T
ng
Q−11ng

∈ Im(1ng ), with Q = diag(q1, . . . , qng ),

R = (r1, . . . , rng )T and s = (s1, . . . , sng )T .

Various controllers that continuously adjust ûg to achieve frequency regulation
and economic efficiency have been proposed in the literature. These works gene-
rally require a continuous exchange of information over a communication network,
which hampers practical application of the controllers. In this chapter we focus on
relaxing this requirement for a master-slave control structure. Extending the pre-
sented results to a fully distributed controller is done in the next chapter. Before
formalizing the control structure, we provide an informal discussion on the idea. To
this end, consider the following controller:

θ̇gi = −q−1
i ωgi

ûgi = q−1
i (α

∑ng

j=1 θ̂gj − ri),
(7.5)

where θ̂gi refers to a sampled version of θgi, implying the existence of a clock that
determines when θ̂gi and therefore ûgi are updated. The constants qi and ri are
defined by the cost function (7.3) and the constant α ∈ R>0 is an additional tuning
parameter. For all nodes the controller writes as

θ̇g = −Q−1ωg
ûg = Q−1(α1ng1

T
ng
θ̂g −R).

(7.6)
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Notice that at a steady state where ωg = 0, we have that ûg = ug = Q−1(α1ng
1Tng

θg−
R). Comparing this to relation (7.4) where ω = 0, we have that necessarily

α1ng
1Tng

θg = λ
opt
, (7.7)

and therefore that ûg = uoptg . The challenge lies therefore in the design of a clock
that determines the time instances when the values of θ̂ and ûg are updated and that
guarantees limt→∞ ω(t) = 0. To do so, we assume the existence of a clock at the
control center of the following form:

φ̇ = f(φ), (7.8)

where f(φ) : R→ R<0 is a smooth function to be defined later. The update of θ̂g and
ûg occurs when φ = a ∈ R+, whereafter the clock is reset to φ = b > a. The design
of f(φ) that guarantees limt→∞ ω(t) = 0 is the subject of the following sections.

Remark 7.2.2 (A master-slave control structure). The control structure of controller
(7.5) can be understood as follows. Each generator integrates its own frequency deviation.
At a sampling instant, a centralized controller (control center / master) collects the values
of θ̂i and transmits the sum,

∑
j∈Vg θ̂j , to all generators (slaves) in the network. A similar

control structure has been discussed in (Dörfler and Grammatico 2016) where continuous
sampling and communication is assumed.

Remark 7.2.3 (Imperfect communication). We assume that the communication and the
computation of

∑
i∈Vg θ̂gi is synchronous and instantaneous. Interesting extensions include

robustness to delays (Efimov et al. 2016), asynchronous communication ((De Persis and
Postoyan 2017), (Postoyan et al. 2015)) and resiliency to denial of service (De Persis and
Tesi 2014).

7.3 The power network as a hybrid system

Besides continuous differential equations, the overall system (7.1), (7.6), (7.8) con-
sists of discontinuous jumps (resets) of the clock state and associated jump (reset)
conditions. The framework discussed in (Goebel et al. 2012) turns out to be suitable
for analyzing such systems and this section focuses on formalizing the system at
hand as a hybrid system within that framework. We refer for the details of the fra-
mework to (Goebel et al. 2012), but we provide some basic preliminaries in Section
1.4 that helps to understand the used formalism.
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7.3.1 The power network as a hybrid system

We now formalize system (7.1), (7.6), (7.8) as a hybrid system where we additionally
define η = BT δ ∈ Rm and Θ = 1Tng

θg ∈ R (see also Remark 7.4.8 below). The flow
set is C = {(η, ωg,Θ, Θ̂, φ) ∈ Rm ×Rng ×R×R× [a, b]}. The flow map is

η̇ = BTω
Mω̇g =−Dgωg − BgΓ sin(η) + ûg

0 =−Dlωl − BlΓ sin(η)− Pd
Θ̇ =− 1Tng

Q−1ωg

˙̂
Θ = 0

ûg = Q−1(α1ng
Θ̂−R)

φ̇ = f(φ)


F (η, ωg,Θ, Θ̂, φ). (7.9)

The jump set is D = {(η, ωg,Θ, Θ̂, φ) ∈ Rm ×Rng ×R×R× {a}}. The jump map is

η+ = η

ω+
g = ωg

Θ+ = Θ

Θ̂+ = Θ

φ+ = b


G(η, ωg,Θ, Θ̂, φ). (7.10)

The hybrid system with the data above will be represented by the notation H =

(C,F,D,G) or, briefly, by H. The stability analysis in the next section is based on
an invariance principle for hybrid systems that requires the system to be nominally
well posed. This property is established for system at hand in the following lemma:

Lemma 7.3.1 (Nominally well posed). The systemH is nominally well posed.

Proof. Following (Goebel et al. 2012, Theorem 6.8) it is sufficient that the system H
satisfies the following hybrid basic conditions:

1. C and D are closed subsets of X := Rm ×Rng ×R×R×R,

2. F : X ⇒ X is outer semicontinuous and locally bounded relative to C, C ⊂
dom F , and F (x) is convex for every x ∈ C,

3. G : X ⇒ X is outer semicontinuous and locally bounded relative to D, D ⊂
dom G.



7.4. Design of clock dynamics 155

Condition 1. can be readily verified. Condition 2. is satisfied by F : X → X ,
being a continuous function. Condition 3. is satisfied by G : X → X and having
a closed graph. Notice that we replaced ⇒ with→, since F and G are multivariate
functions. �

Furthermore, the solutions to the systemH have a persistent dwell time that will
be discussed in more detail in Section 7.5.

7.4 Design of clock dynamics

In this section we design the clock dynamics φ̇, such that the overall system conver-
ges to the desired set where ω = 0 and Θ = Θ

opt
, with ûg = uoptg = Q−1(α1ng

Θ
opt−

R) the solution to the optimization problem (7.2). The analysis is performed relying
on Lyapunov arguments. For this purpose we take a similar approach as in (De
Persis and Postoyan 2017) and introduce a storage function taking into account the
physical component of the system and a storage function taking into account the
cyber component of the system (sampling and clock dynamics). The convergence of
the overall cyber-physical system is then established using an invariance principle
for hybrid systems.

7.4.1 The physical component

We adapt here a useful result from Section 8.3, where an incremental cyclo-passivity
property is established for the Bergen-Hill power network model, representing the
physical component of the system (states η and ω).

Remark 7.4.1 (Incremental passivity for hybrid systems). The notion of passivity for
hybrid systems has been previously defined in e.g, (Naldi and Sanfelice 2013). Different
other useful passivity notions exist for continuous systems such as, cyclo-passivity (van
der Schaft 1999), equilibrium independent passivity (Hines et al. 2011) and incremental
passivity (Pavlov and Marconi 2008). Although some of the relations we establish below
seem to be related to those passivity properties, we do not formalize this as it requires some
additional work that is beyond the scope of thesis.

Lemma 7.4.2 (Dissipation of the physical component). Let Assumption 5.2.1 hold when
taking P t = ug . There exists a storage function U1(ωg, ωg, η, η)1 that satisfies along the

1The variable ωl can be eliminated by exploiting the identity ωl = D−1
l (−BlΓ sin(η)− Pd).
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flows of the systemH

U̇1(ωg, ωg, η, η) ≤− ‖ωg − ωg‖2Dg
− ‖ωl − ωl‖2Dl

(7.11)

+ (ωg − ωg)TQ−1α1ng (Θ̂−Θ),

and at the jumps

U+
1 (ω+

g , ωg, η
+, η) = U1(ωg, ωg, η, η).

Proof. Consider the incremental storage function

U1(ωg, ωg, η, η) = 1
2 (ωg − ωg)TM(ωg − ωg)
−1TΓ cos(η) + 1TΓ cos(η)− (Γ sin(η))

T
(η − η).

(7.12)

We have that U1 satisfies along the flows of the systemH

U̇1 = (ωg − ωg)T (−Dgωg − BgΓ sin(η) +Q−1(α1ng
Θ̂−R))

+(Γ sin(η)− Γ sin(η))T (BTg ωg + BTl ωl)
= −‖ωg − ωg)‖2Dg

+(ωg − ωg)TQ−1α1ng
(Θ̂−Θ)

+(Γ sin(η)− Γ sin(η))TBTl (ωl − ωl)
= −‖ωg − ωg)‖2Dg

+(ωg − ωg)TQ−1α1ng
(Θ̂−Θ)

+(BlΓ sin(η) + Pd)
TD−1

l Dl(ωl − ωl)
−(BlΓ sin(η) + Pd)

TD−1
l Dl(ωl − ωl)

= −‖ωg − ωg‖2Dg
− ‖ωl − ωl‖2Dl

+(ωg − ωg)TQ−1α1ng
(Θ̂−Θ),

(7.13)

where we have exploited in the first line the identity η̇ = BTω = BTg ωg + BTl ωl. In
the second identity we used the existence of (η, ωg,Θ) satisfying

0 = BTω
M0 = −Dgωg − BgΓ sin(η) +Q−1(α1ng

Θ−R)

0 = −Dlωl − BlΓ sin(η)− Pd.
(7.14)

Since ω+
g = ω and η+ = η, it follows trivially thatU+

1 (ω+
g , ωg, η

+, η) = U1(ωg, ωg, η, η).

�

The result of Lemma 7.4.2 holds in particular when ω = 0 and Θ = Θ
opt

.

Remark 7.4.3 (Applicability on the coordination of different networks). We focus on
the Bergen-Hill model introduced in Chapter 5. The essential property we exploit is that the
system (7.1) is output strictly incrementally passive along the flows. It is therefore expected
that the presented results can be applied to networks that share the same property.
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7.4.2 A cyber-physical system

We now consider the interconnection of the cyber component to the physical com-
ponent, starting with the integrator dynamics (7.6).

Lemma 7.4.4 (Dissipation of the cyber-physical system). There exists a storage function
U2(Θ,Θ

opt
) such that U1(ωg, ωg = 0, η, η) + U2(Θ,Θ

opt
) satisfies along the flows of the

systemH

U̇1(ωg, ωg = 0, η, η) + U̇2(Θ,Θ
opt

)

≤ −‖ωg‖2Dg
− ‖ωl‖2Dl

+ ωTg Q
−1α1ng

(Θ̂−Θ),
(7.15)

and at the jumps

U+
1 (ω+

g , ωg = 0, η+, η) + U+
2 (Θ+,Θ

opt
)

= U1(ωg, ωg = 0, η, η) + U2(Θ,Θ
opt

).
(7.16)

Proof. Consider the storage function

U2(Θ,Θ
opt

) = α
2 (Θ−Θ

opt
)2. (7.17)

We have thatU1(ωg, ωg = 0, η, η)+U2(Θ,Θ
opt

) satisfies along the flows of the system
H

U̇1 + U̇2 =− ‖ωg‖2Dg
− ‖ωl‖2Dl

+ ωTg Q
−1α1ng (Θ̂−Θ

opt
)

− ωTg Q−1α1ng (Θ−Θ
opt

)

=− ‖ωg‖2Dg
− ‖ωl‖2Dl

+ ωTg Q
−1α1ng

(Θ̂−Θ),

(7.18)

where we applied Lemma 7.4.2 with ω = 0 and Θ = Θ
opt

. Since (η+, ω+
g ,Θ

+) =

(η, ωg,Θ), it follows that U+
1 (ω+

g , ωg = 0, η+, η) + U+
2 (Θ+,Θ

opt
) = U1(ωg, ωg =

0, η, η) + U2(Θ,Θ
opt

). �

We now proceed with considering the clock dynamics that determine the sam-
pling instances. More specifically, we aim at finding a storage function that can
compensate for the perturbative term ωTg Q

−1α1ng
(Θ̂−Θ) appearing in U̇1 + U̇2.

Remark 7.4.5 (Continuous communication). In the case of continuous communication
and measurements we have that Θ̂ = Θ, such that U̇1 + U̇2 ≤ 0. This simplifies the analysis
since no additional clock dynamics need to be considered and can be regarded as a special
case within the current setting.
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Before we design the clock dynamics φ̇ = f(φ) that ensure the stability of the
system we make the following assumption on the steady state difference in voltage
angles η, that is required to establish boundedness of solutions as we will see in
Theorem 7.4.7.

Assumption 7.4.6 (Steady state differences in voltage angles). The steady state diffe-
rences in voltage angles η satisfy η = (−π2 , π2 )m.

We are now ready to state the main result of this chapter.

Theorem 7.4.7 (Frequency control with discrete communication). Let Assumptions
5.2.1 and 7.4.6 hold. Let φ̇ = f(φ) = −αε (1 + φ)2, with

ε <
Dgi

q−1
i (
∑
j∈Vg q

−1
j )

(7.19)

for all i ∈ Vg . Then, maximal solutions of the system H that start in a neighborhood
of (η, ω = 0,Θ

opt
,Θ

opt
, φ(0)) converge asymptotically to the largest invariant set where

ω = 0 and Θ̂ = Θ
opt
, so that ûg = uoptg characterized in Lemma 7.2.1.

Proof. Consider the storage function

U3(Θ, Θ̂, φ) = αφ
2 (Θ̂−Θ)2. (7.20)

We have that U = U1(ωg, ωg = 0, η, η) +U2(Θ,Θ
opt

) +U3(Θ, Θ̂, φ) satisfies along the
flows of the systemH

U̇ = U̇1 + U̇2 + U̇3 =

− ‖ωg‖2Dg
− ‖ωl‖2Dl

+ ωTg Q
−1α1ng

(Θ̂−Θ)

+ αφ(Θ̂−Θ)(1Tng
Q−1ωg)

+
αf(φ)

2
(Θ̂−Θ)T (Θ̂−Θ)

=− ‖ωg‖2Dg
− ‖ωl‖2Dl

+ α(1 + φ)
(
ωTg Q

−11ng
(Θ̂−Θ)

)
+
αf(φ)

2
(Θ̂−Θ)2

≤− ‖ωg‖2Dg
− ‖ωl‖2Dl

+
α2(1 + φ)2

2ε
(Θ̂−Θ)2 +

ε

2
(1Tng

Q−1ωg)
2

+
αf(φ)

2
(Θ̂−Θ)2

=− ωTg (Dg −
ε

2
Q−11ng1

T
ng
Q−1)ωg − ‖ωl‖2Dl

+
α2(1 + φ)2

2ε
(Θ̂−Θ)2 +

αf(φ)

2
(Θ̂−Θ)2,

(7.21)
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where we have applied Young’s inequality. By the Gershgorin circle theorem we
have that Dg − ε

2Q
−11ng

1Tng
Q−1 > 0 if ε < Dgi

q−1
i (

∑
j∈Vg Q

−1
j )

for all i ∈ Vg . Choo-

sing f(φ) = −αε (1 + φ)2 it follows then that U̇ ≤ −‖ωg‖2ζ − ‖ωl‖2Dl
with ζ = Dg −

ε
2Q
−11ng1

T
ng
Q−1 > 0. Notice furthermore thatU(G(η, ωg,Θ, Θ̂, φ)) = U(η, ωg,Θ, Θ̂, φ),

such that

U̇(x) ≤ uc(x) ∀x ∈ C (7.22)

U(G(x))− U(x) ≤ ud(x) ∀x ∈ D, (7.23)

where x = (η, ωg,Θ, Θ̂, φ) and

uc(x) =

{
−‖ωg‖2ζ − ‖ωl‖2Dl

x ∈ C
−∞ otherwise

(7.24)

ud(x) =

{
0 x ∈ D
−∞ otherwise.

(7.25)

Since U1 + U2 has a local minimum at (η, ω = 0,Θ
opt

) as a consequence of Assump-
tion 7.4.6, 0 < a ≤ φ ≤ b and U̇ ≤ 0, there exists a compact level set around
(η, ω = 0,Θ

opt
,Θ

opt
, φ(0)) which is forward invariant. It follows that the maximal

solutions to the system H that start sufficient close to (η, ω = 0,Θ
opt
,Θ

opt
, φ(0)) are

bounded. Since solutions to H are also complete, they are precompact. Because U
is continuous, solutions that start in a neighbourhood of (η, ω = 0,Θ

opt
,Θ

opt
, φ(0))

approach the largest weakly invariant subset S of

U−1(r) ∩ X ∩
[
u−1
c (0) ∪

(
u−1
d (0) ∩G(u−1

d (0))
)]
, (7.26)

where r ∈ U(X ) and X := Rm×Rng ×R×R×R (Goebel et al. 2012, Theorem 8.2).
Since u−1

d (0) ∩G(u−1
d (0)) = ∅ and

u−1
c (0) = −‖ωg‖2ζ − ‖ωl‖2Dl

, (7.27)

we can conclude that the maximal solutions to system H approach the largest we-
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akly invariant set where ω = 0. On this set we have

η̇ = BT0
0 =−Dg0− BgΓ sin(η) + ûg

0 =−Dl0− BlΓ sin(η)− Pd
Θ̇ =− 1Tng

Q−10

˙̂
Θ = 0

ûg = Q−1(α1ng
Θ̂−R)

φ̇ = f(φ)


F (η,0,Θ, Θ̂, φ) (7.28)

and

η+ = η

0+ = 0

Θ+ = Θ

Θ̂+ = Θ

φ+ = b


G(η,0,Θ, Θ̂, φ). (7.29)

Premultiplying the concatenated second and third line of F (η,0,Θ, Θ̂, φ) with 1Tn
yields 0 = 1Tng

Q−1(α1ng
Θ̂− R)− 1Tnl

Pd. Bearing in mind that Θ̂ = Θ
opt

is the only
value satisfying this relation, it follows that ûg = Q−1(α1ng Θ̂ − R) converges to
uoptg = Q−1(α1ng

Θ
opt −R) characterized in Lemma 7.2.1. �

Remark 7.4.8 (Change of variables). In order to apply the invariance principle in the
proof of Theorem 7.4.7 we require boundedness of solutions. This can be established for η
and Θ, but becomes more difficult for δi and θi and is the reason to introduce the variables η
and Θ in Section 7.3.

In the next section we further analyse the obtained clock dynamics and establish
a minimum sampling rate.

7.5 Minimum sampling rate

The choice of a and b and the clock dynamics

φ̇ = −α
ε

(1 + φ)2, (7.30)

where α is the tuning variable in (7.5), determine the sampling rate. Now we turn
our attention to the question how much time T elapses between a clock reset φ(t) = b

until the following reset at φ(t+ T ) = a.
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Theorem 7.5.1 (Inter sampling time). The inter sampling time T is given by

T =
ε

α

( 1

a+ 1
− 1

b+ 1

)
(7.31)

Proof. We solve φ̇ = −αε (1 + φ)2, satisfying the boundary condition φ(0) = b. It can
be readily confirmed that the solution is

φ(t) =
1− 1

b+1 −
α
ε t

α
ε t+ 1

b+1

. (7.32)

Solving (7.32) with boundary condition φ(T ) = a then yields T = ε
α

(
1
a+1−

1
b+1

)
. �

From the result above we can furthermore conclude that the solutions to the sy-
stem H have indeed a persistent dwell time. In order to determine the minimum
sampling rate, it is interesting to see what the maximum value of T is. We de-
fine the maximum allowed time between to sampling instances Tmax, as Tmax =

limb→∞,a→0 T . From Theorem 7.5.1 the following result is immediate:

Corollary 7.5.2 (Minimum sampling rate). The maximum allowed time between two
sampling instances is Tmax = ε

α .

The implication of this section is that despite the nonlinear clock dynamics φ̇ =

−αε (1 + φ)2, we can rely on a simple counter to determine the sampling instances.

Remark 7.5.3 (Gain tuning). In this work we present a theoretical bound on the minimum
sampling rate. In a practical setting we can adjust the variables α ∈ R>0 and ε satisfying
(7.19) to obtain a desired transient response.

7.6 Case study

This section we study the effect of the chosen sampling rate on the convergence
properties of power network for an academic example of the power network. To
do so, we adopt the 6 bus system from (Wood and Wollenberg 1996). The topology
of the power network as well as the communication links are shown in Figure 7.1.
The relevant generator and load parameters are provided in Table 7.1, whereas the
transmission line parameters are provided in Table 7.1. The numerical values are
identical to the ones used in (Trip and De Persis 2016a) and are based on the values
provided in (Wood and Wollenberg 1996) and (Ourari et al. 2006). The system is
initially at steady state with loads Pd1, Pd2 and Pd3 being 1.54, 1.62 and 1.50 pu
respectively (assuming a base power of 100 MVA). After 20 seconds the loads are
respectively increased to 1.62, 1.88 and 1.64 pu. We now consider two cases. In the
first case we use a sampling rate that is too slow, whereas in the second case we
choose a sampling rate that is sufficiently fast.
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Figure 7.1: Diagram for the 6 bus power network model, consisting of 3 generator
and 3 load buses. The communication links are represented by the dashed lines.
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Mi (pu) 4.62 4.17 5.10 – – –
Di (pu) 1.41 1.28 1.72 0.42 0.61 0.51
Vi (pu) 1.05 0.98 1.04 1.01 1.03 1.00
qi (102 $/h) 2.42 3.78 3.31 – – –
ri (102 $/h) 11.1 10.7 13.0 – – –
si (102 $/h) 9.1 17.4 13.2 – – –
α 1 1 1 – – –

Table 7.1: Numerical values of the generator and load parameters.

7.6.1 Too slow sampling

From Corollary 7.5.2 it follows that Tmax = 6.60. In this case study we deliberately
sample slower than the estimated minimum rate, namely with an inter sampling
time of T = 20. From Figure 7.2 we see that frequency deviations and generated
power are unstable.
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Bij (pu) 1 2 3 4 5 6 j

1 – -4.0 – -4.7 -3.1 –
2 -4.0 – -3.8 -8.0 -3.0 -4.5
3 – -3.8 – – -3.2 -9.6
4 -4.7 -8.0 – – -2.0 –
5 -3.1 -3.0 -3.2 -2.0 – -3.0
6 – -4.5 -9.6 – -3.0 –
i

Table 7.2: SusceptanceBij of the transmission line connecting bus i and bus j. Values
are per unit on a base of 100 MVA.

7.6.2 Sufficiently fast sampling

We now increase the sampling rate such that T = 3. From Figure 7.3 we see that the
frequency deviation converges to zero. Furthermore, the power generation approa-
ches the cost minimizing power generation uoptg characterized in Lemma 7.2.1.
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Figure 7.2: Frequency response and control input at the generator buses with inter
sampling time T = 20. The constant load is increased at timestep 20, whereafter the
frequency deviation becomes unstable.
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Figure 7.3: Frequency response and control input at the generator buses with inter
sampling time T = 3. The constant load is increased at timestep 20, whereafter the
frequency deviation is regulated back to zero and the generation costs are minimi-
zed. The cost minimizing generation uoptg for t > 10, characterized in Lemma 7.2.1,
is given by the dashed lines.
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Chapter 8

Distributed control with discrete
communication

Abstract

This chapter investigates the digital nature of the consensus algorithm, that has been
employed throughout this thesis, to achieve an optimal allocation of inputs to a network.
We focus on a particular digital implementation of the communication to which we will
refer as a ‘discrete broadcasting protocol’. That is, a node in a network broadcasts a
certain value to its neighbors at discrete time instances. The contribution of this chap-
ter includes the design of a storage function, taking into account the digital nature of
the communication, that allows us to determine a lower bound on the broadcasting fre-
quency guaranteeing stability of an underlying system, that is proven to be stable in the
presence of continuous communication. First, for illustrative purposes we consider a
simple example of a consensus algorithm, whereafter we discuss the consensus algorithm
in closed loop with a nonlinear system.

8.1 From continuous consensus to discrete broadcasting

In this chapter we study a ‘discrete broadcasting’ implementation of the thoroughly
studied consensus algorithm

θ̇ =− BΓBT θ
=− Lθ,

(8.1)

where L is the (weighted) Laplacian matrix associated to a connected and undi-
rected graph G = (V, E) consisting of n nodes and where θ ∈ Rn is the state. With
broadcasting we, informally, mean that a node i sends (broadcasts) its current va-
lue of θi to its neighbouring nodes at discrete time instances. Despite the fact that
many result on this topic are available, there are still some open questions (Nowzari
et al. 2016) and we believe that the provided results in this chapter contribute to
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a further understanding of interconnected physical and digital systems. To facili-
tate a discrete broadcasting implementation, we impose a few assumptions on the
communication network.

Assumption 8.1.1 (Communication network). Throughout this chapter we make the
following assumptions:

• The communication network is connected and undirected, i.e. if node i can communi-
cate with node j, then also the converse is possible.

• Each node knows (an upper bound on) its (weighted) degree.

• Each node broadcasts its current state, with a (possibly varying) frequency, to all its
neighbouring nodes.

• The communication is without delays and errors.

It is worth mentioning that in comparison with (De Persis and Postoyan 2017),
where clocks or events are defined on the edges of the network, we focus on the
design of ‘rules’, determining the broadcasting instances, that are implemented at
the nodes, which is more in line with implementation practises. Within a setting
of wireless transmission, the set of neighbouring nodes of node i is generally the
set of nodes that is within the communication range of node i. The main objective
is to determine a scheduling of information transmission on each node, using only
information that is locally available at a node, such that convergence to a consensus
state is guaranteed. In this chapter we first study the autonomous system (8.1) that
provide preparatory results for the remainder, whereafter we will study system (8.1)
interconnected with output strictly incrementally passive distribution systems that
include e.g. the various power networks that have appeared in this thesis.

Remark 8.1.2 (Relaxing Assumption 8.1.1). Although Assumption 8.1.1 covers a large
class of networks, important extensions include incorporating delays and time-varying com-
munication topologies. These extensions have been studied extensively within continuous
consensus protocols, and an interesting endeavor is to study if the developed methods for the
continuous protocol, can be incorporated within the setting studied here.

8.2 Average preserving consensus

In this section we propose a modification of the continuous consensus algorithm
(8.1). Specifically, we consider the case where every node broadcasts at certain time
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instances, determined by a local clock at each node, its actual value of θi to its adja-
cent nodes, resulting in the system

θ̇ = −Lθ̂, (8.2)

where, θ̂i, is the latest broadcasted value of θi. First, note that (8.2) preserves the
average of initial values, since

1Tn θ̇ = −1TnLθ̂ = 0. (8.3)

Therefore, we aim at characterizing a scheduling of information transmission under
which system (8.2) convergence to consensus, i.e.

lim
t→∞

θ(t) = θ, (8.4)

where

θ = 1n

∑n
i θi(0)

n
∈ Im(1n). (8.5)

8.2.1 Hybrid system

To formalize the idea outlined above we introduce at every node i ∈ V a local ‘clock
variable’ φi whose dynamics are given by

φ̇i = −2deg(i)(
1

4
+ φi + φ2

i )− εi, (8.6)

with εi ∈ R>0 a constant. With deg(i) we denote the (weighted) degree of node
i ∈ V , i.e.

deg(i) =
∑
k∈Ei

Γk, (8.7)

with Ei being the set of edges incident to node i and Γk the weight of edge k. Bro-
adcasting of θi occurs when φi = ai, whereafter the clock is reset to φ+

i = bi, where
0 < ai < bi, for all i ∈ V . Furthermore, as we will show in Subsection 8.2.4, there
exists a minimum time between two broadcasting instances of node i ∈ V .

Remark 8.2.1 (Broadcasting with time-varying frequencies). For a given bi and ai,
equation (8.6) determines the broadcasting frequency. The analysis in this chapter permits
to include a time-varying broadcasting frequency by considering instead of (8.6), the diffe-
rential inclusion

φ̇i ∈
[
−Mi,−2deg(i)(

1

4
+ φi + φ2

i )− εi
]
, (8.8)
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where εi ∈ R>0, and Mi ∈ R>0 are constants. The corresponding analysis is pursued in a
future publication. However, periodic broadcasting has its advantages due to its simplicity
and can be implemented straightforwardly and permits e.g. a ‘round robin’ scheduling of
transmission.

Remark 8.2.2 (Clock dynamics). The choice of (8.6) is a result of the stability analysis
performed later in this section. We provide the clock dynamics here for the sake of exposition,
but its rational will become clear in the proof of Lemma 8.2.5. It is important to note that
every node possesses its own clock, allowing for asynchronous communication and that (8.6)
does not depend on any global information of the network. Furthermore, (8.6) allows us to
determine the minimum broadcasting frequency and we do so in Subsection 8.2.4.

To analyze the convergence properties we formulate the system within the hy-
brid system framework given in (Goebel et al. 2012), for which a few basic concepts
are recalled in Subsection 1.4.3. For the present study, the corresponding flow set is
C := {(θ, θ̂, φ) ∈ Rn×Rn× [a, b]}, with [a, b] = [a1, b1]× . . .× [an, bn]. The flow map
F (θ, θ̂, φ) is

θ̇ = −Lθ̂
˙̂
θ = 0

φ̇ = α(φ)

 := F (θ, θ̂, φ), (8.9)

where αi(φi) = −2deg(i)( 1
4 + φi + φ2

i ) − εi,, given by (8.6) above. The jump set is
D := {(θ, θ̂, φ) ∈ Rn × Rn × [a, b] : ∃i ∈ {1, . . . , n} s.t. φi = ai}. The jump map
G(θ, θ̂, φ) is defined by

G(θ, θ̂, φ) := {Gi(θ, θ̂, φ) : i ∈ {1, . . . , n} and φi = ai}, (8.10)

with

θ+ = θ

θ̂+
i = θi

θ̂+
j = θ̂j j 6= i

φ+
i = bi

φ+
j = φj j 6= i


:= Gi(θ, θ̂, φ). (8.11)

The definition of the jump map (8.10) ensures that at each jump, only one clock
variable is reset. In case multiple clocks have reached their lower bound, multiple,
but a finite number, successive jumps occur without flows in between. We provide
further details on this in the proof of Theorem 8.2.8. The hybrid system with the data
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above will be represented by the notation H1 = (C,F,D,G) or, briefly, by H1. The
stability analysis in the next subsection 8.2.3 is based on an invariance principle for
hybrid systems that requires the system to be nominally well posed. This property
is established for system at hand in the following lemma:

Lemma 8.2.3 (Nominally well posed). The systemH1 is nominally well posed.

Proof. Following (Goebel et al. 2012, Theorem 6.8) it is sufficient that the system H1

satisfies the following hybrid basic conditions:

1. C and D are closed subsets of X := Rn ×Rn ×Rn,

2. F : X ⇒ X is outer semicontinuous and locally bounded relative to C, C ⊂
dom F , and F (z) is convex for every z ∈ C,

3. G : X ⇒ X is outer semicontinuous and locally bounded relative to D, D ⊂
dom G.

Condition 1) can be readily verified. Condition 2) is satisfied by F : X → X being
a continuous mapping. Condition 3) is satisfied since G is locally bounded and is
given by the union of graphs of the continuous mappings Gi, i ∈ {1, . . . , n}, which
is closed. �

8.2.2 Precompactness of solutions

In this subsection we show that the maximal solutions to H1 are precompact, i.e.
they are complete and the closure of their range is compact. Before proving the
precompactness of the solutions we establish an important lemma that is essential
to the remainder of this section. Consider the storage function1

V1(θ, θ̂, φ) =
1

2
(θ − θ)T (θ − θ) + (θ − θ̂)T [φ](θ − θ̂), (8.12)

with θ given by (8.5).

Remark 8.2.4 (An alternative expression of V1). Noting that 1
2 (θ − θ)T (θ − θ) can be

written as ‖Πθ‖2, with Π = I − 1
n1n1

T
n , we can write 8.12 as

V1 =

[
θ

θ̂

]T [
1
2Π + [φ] −[φ]

−[φ] [φ]

] [
θ

θ̂

]
. (8.13)

1We denote diag(φ1, . . . , φn) by [φ].
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Lemma 8.2.5 (Evolution of V1). The storage function V1 given in (8.12) satisfies

V̇1(θ, θ̂, φ) =

[
θ

θ̂

]T
Z1

[
θ

θ̂

]
≤ 0 (θ, θ̂, φ) ∈ C

V1(θ+, θ̂+, φ+) ≤ V1(θ, θ̂, φ) (θ, θ̂, φ) ∈ D,

(8.14)

along the solutions toH1, where Z1 is given by

Z1 =

[
[α] −[α]− 1

2 (I + 2[φ])L
−[α]− 1

2 ((I + 2[φ])L)T [α] + [φ]L+ L[φ]

]
. (8.15)

Proof. First, we consider the evolution of V1(θ, θ̂, φ) during the flows. We have that

V̇1(θ, θ̂, φ) =− θTLθ̂ + φ̇T [θ − θ̂](θ − θ̂) + 2φT [θ − θ̂](−Lθ̂)

=− θTLθ̂ + αT [θ − θ̂](θ − θ̂) + 2φT [θ − θ̂](−Lθ̂)

=

[
θ

θ̂

]T
Z1

[
θ

θ̂

]
,

(8.16)

where the matrix Z1 is given by (8.15). Note that [α] is negative definite, and in
order to have that Z1 ≤ 0 it is sufficient that the Schur complement S1 of block [α]

of matrix Z1 satisfies S1 ≤ 0. This Schur complement is given by2

S1 = [α] + [φ]L+ L[φ]

−
(
− [α]− 1

2
((I + 2[φ])L)T

)
[α]−1

(
− [α]− 1

2
(I + 2[φ])L

)
= [α] + [φ]L+ L[φ]

− [α][α]−1[α]

− 1

4
(L+ 2[φ]L)T [α]−1(L+ 2[φ]L)

− [α][α]−1(
1

2
(I + 2[φ])L)

− (
1

2
((I + 2[φ])L)T )[α]−1[α]

=− L− 1

4
(L+ 2[φ]L)T [α]−1(L+ 2[φ]L)

=− L− L([α]−1(
1

4
I + [φ] + [φ][φ]))L

=− BΓ
1
2 (I + Γ

1
2BT ([α]−1(

1

4
I + [φ] + [φ][φ]))BΓ

1
2 )Γ

1
2BT .

(8.17)

2We write Γ = Γ
1
2 Γ

1
2 , where Γ = diag(Γ1, . . . ,Γk); the diagonal matrix consisting of the weights of

the edges.
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A sufficient condition for S1 ≤ 0 is

I + Γ
1
2BT ([α]−1(

1

4
I + [φ] + [φ][φ]))BΓ

1
2 > 0. (8.18)

This requires that all eigenvalues of Γ
1
2BT ([α]−1( 1

4I + [φ] + [φ][φ]))BΓ
1
2 are greater

than −1. Studying this problem is equivalent to finding the smallest eigenvalue of
the weighted edge-Laplacian Γ

1
2BTXBΓ

1
2 , with X = [α]−1( 1

4I + [φ] + [φ][φ]) This
is equivalent to find λmin(XBΓBT ) = λmin(XL). By Gershgorin circle theorem we
have that every eigenvalue of XL lies within at least one of the Gershgorin discs
with center (XL)ii and radius, Ri =

∑
j∈Ni

(XL)ij , where in this case we have
that (XL)ii = deg(i)Xii = Ri. To ensure that λmin(XL) > −1 we need to enfore
2deg(i)Xii > −1 for all i. Bearing in mind the definition of X it follows that if
αi < −2deg(i)( 1

4 + φi + φ2
i ), then S1 ≤ 0 and consequently Z1 ≤ 0. Since we picked

in (8.6) αi = −2deg(i)( 1
4 +φi+φ

2
i )−εi, with εi ∈ R>0, we have indeed V̇1(θ, θ̂, φ) ≤ 0.

Second, V1(θ+, θ̂+, φ+) ≤ V1(θ, θ̂, φ), since θi = θ̂i whenever the value of φi is incre-
ased during a jump. �

Exploiting the previous lemma we can now establish the following result.

Lemma 8.2.6 (Precompactness of solutions). Every maximal solution to system H1 is
precompact.

Proof. For any (θ, θ̂, φ) ∈ C ∪ D = C, we have that (θ, θ̂, φ) ∈ D or that (θ, θ̂, φ) is
in the interior of C. Furthermore, G(D) ⊂ C ∪ D. Since the domain of a maximal
solution to H1 is unbounded it follows from (Goebel et al. 2012, Proposition 6.10)
that there exists from every initial condition a nontrivial solution and every maxi-
mal solution is complete. Furthermore, we note that by construction φ ∈ ×[a, b] is
bounded and positive. Exploiting Lemma 8.2.5, where we have proven that

V̇1(θ, θ̂, φ) ≤ 0 (θ, θ̂, φ) ∈ C

V1(θ+, θ̂+, φ+) ≤ V1(θ, θ̂, φ) (θ, θ̂, φ) ∈ D

(8.19)

it follows from (8.12) that both θ − θ and θ − θ̂ are bounded over time. Since θ is
a constant, θ is bounded, and consequently θ̂ is bounded as well. We can conclude
that the solutions to systemH1 remain bounded and that the closure of their range is
compact. We can therefore conclude that every maximal solution is precompact. �
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8.2.3 Stability analysis

According to the previous subsections the system H1 is nominally well posed and
its maximal solutions are precompact. To infer that the solutions approach the desi-
red (consensus) state, we rely on an invariance principle for hybrid systems (Lemma
1.4.17). Before we do so, we establish the following lemma that we will use to cha-
racterize the set that the solutions toH1 approach.

Lemma 8.2.7 (Nullspace of Z1). The nullspace of Z1 given in (8.15) satisfies

Ker(Z1) = Im(12n). (8.20)

Proof. (i) Im(1n) ⊆ Ker(Z1).

Take v = β1n ∈ Im(1n), with some scalar β ∈ R. The claim follows from

Z1v =β

[
[α]1n − [α]1n − 1

2 (I + 2[φ])L1n
−[α]1n − 1

2 ((I + 2[φ])L)T1n + [α]1n + [φ]L1n + L[φ]1n

]
=β

[
0

− 1
2L1n − L[φ]1n + L[φ]1n

]
= 0.

(8.21)

(ii) Im(1n) ⊇ Ker(Z1).
Note first the following factorization of the matrix Z1, where indeed det(A) 6= 0:

Z1 =

[
A B

BT C

]
=

[
I 0

CA−1 I

] [
A 0

0 S

] [
I A−1B

0 I

]
Let v ∈ Ker(Z1). Then Z1v = 0. The latter is equivalent to[

A 0

0 S

] [
I A−1B

0 I

]
z = 0,

or
Az1 +Bz2 = 0

Sz2 = 0.

Recall from (8.17), that S = −BY BT , with

Y = I + Γ
1
2BT ([α]−1(

1

4
I + [φ] + [φ][φ]))BΓ

1
2 , (8.22)
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If Y > 0, then Ker(S) = Im(1n).3 The latter and Sz2 = 0 imply z2 = 1nβ for
some β. Replacing it inAz1 +Bz2 = 0 and bearing in mind the expressions forA,B,
we have

0 = [α]z1 − ([α] + 1
2 (I + 2[φ])L)z2

= [α]z1 − ([α] + 1
2 (I + 2[φ])L)1β

= [α]z1 − [α]1nβ,

from which it follows that z1 = 1nβ, that is

z =

[
z1

z2

]
= 12nβ,

and therefore z ∈ Im(12n). This proves claim (ii) and the thesis is complete.
�

Using the lemma above, we are now ready to state the main result of this section.

Theorem 8.2.8 (Approaching consensus). The maximal solutions of systemH1 approach
the set where θ = θ̂ = θ, with

θ = 1n

∑
i θi(0)

n
∈ Im(1n). (8.23)

Proof. We first note that the average value of x(0) is preserved since during flows

1Tn θ̇ =− 1TnLθ̂ = 0, (8.24)

and at a the jumps θ+ = θ. According to Lemma 8.2.5,

V̇1(θ, θ̂, φ) ≤ uc(θ, θ̂, φ) ∀(θ, θ̂, φ) ∈ C (8.25)

V1(θ+, θ̂+, φ+)− V1(θ, θ̂, φ) ≤ ud(θ, θ̂, φ) ∀(θ, θ̂, φ) ∈ D, (8.26)

where

uc(θ, θ̂, φ) =


[
θ

θ̂

]T
Z1

[
θ

θ̂

]
(θ, θ̂, φ) ∈ C

−∞ otherwise

(8.27)

ud(θ, θ̂, φ) =

{
0 (θ, θ̂, φ) ∈ D
−∞ otherwise.

(8.28)

3Trivially Im(1n) ⊆ Ker(S). Let now v ∈ Ker(S). Then BY BT v = 0, which implies vTBY BT v =

0. Since Y > 0, then necessarily BT v = 0 and hence v ∈ Im(1n), which proves Ker(S) ⊆ Im(1n).
Hence Ker(S) = Im(1n).
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Here, we have introduced uc and ud to define the evolution of V1 outside the flow
and jump set, respectively, as is required to invoke the invariance principle (Goebel
et al. 2012, Theorem 8.2). Now, in view of Lemmas 8.2.3, 8.2.5, 8.2.6, and (Goebel
et al. 2012, Theorem 8.2), any maximal solutions to system H1 approach the largest
weakly invariant subset of

Υ = V −1
1 (r) ∩ X ∩

[
u−1
c (0) ∪

(
u−1
d (0) ∩G(u−1

d (0))
)]
,

where r ∈ V1(X ) and X := Rn × Rn × [a, b]. Note that u−1
d (0) = D, but that not

necessarily D ∩G(D) = ∅, as potentially multiple clocks reach at the same (hybrid)
time their lower bound. We continue by showing that any maximal solution to H1

in a weakly forward invariant subset of Υ is in the subset V −1
1 (r) ∩ X ∩ u−1

c (0).
Assume, ad absurdum, that there exists a maximal solution q in Υ with initialization
q(t0, k0) /∈ u−1

c (0), for which V −1
1 (r)∩X ∩

[
u−1
d (0)∩G(u−1

d (0))
]

is a weakly forward
invariant subset. In this case, q(t0, k0) ∈ D ∩ G(D). The solution q experiences a
finite number of m jumps until all clocks which are equal to their lower bound are
reset. After the jumps q(t0, k0 +m) ∈ C\D. This implies that q(t0, k0 +m) ∈ u−1

c (0),
since it would be otherwise no longer in the set Υ. This contradicts the original
claim, and we can conclude that any maximal solution in approaches the largest
weakly invariant subset of u−1

c (0). Then, in view of (8.27), any maximal solution to
H1 approaches the set

{θ, θ̂, φ :

[
θ

θ̂

]T
Z1

[
θ

θ̂

]
= 0}. (8.29)

Since, according to Lemma 8.2.7, Ker(Z1) = Im(12n) and since[
θ

θ

]
∈ Im(12n), (8.30)

we conclude that

[
θ

θ̂

]
approaches the set where

{θ, θ̂, φ :

[
θ

θ

]
+ c12n}, (8.31)

where c ∈ R is some scalar. Since we also have that

1Tnθ(t), (8.32)

is a conserved quantity, we necessarily have that c = 0. �
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8.2.4 Minimum broadcasting frequency

The choice of ai, bi and the clock dynamics

φ̇i = −2deg(i)(
1

4
+ φi + φ2

i )− εi, (8.33)

determine the broadcasting frequency of node i ∈ V . To determine the required
broadcasting frequency, we study the clock dynamics given by

φ̇i = −2deg(i)(
1

4
+ φi + φ2

i ), (8.34)

that provides the upper bound on the maximum inter sampling time for a given
ai and bi. Now we turn our attention to the question how much time Ti elapses
between a clock reset φi(t) = bi until the following reset at φi(t+ Ti) = a.

Theorem 8.2.9 (Inter broadcasting time). The inter broadcasting time Ti, induced by
dynamics (8.34), is given by

Ti =
bi − ai

deg(i)(2aibi + ai + bi + 1
2 )
. (8.35)

Proof. We solve φ̇i = −2deg(i)( 1
4 + φi + φ2

i ), satisfying the boundary condition
φi(0) = bi. It can be readily confirmed that the solution is

φi(t) =
bi(1− deg(i)t)− 1

2deg(i)t

deg(i)(2b+ 1)t+ 1
. (8.36)

Solving (8.74) with boundary condition φi(Ti) = ai then yields

Ti =
bi − ai

deg(i)(2aibi + ai + bi + 1
2 )
. (8.37)

�

We define the upper bound on the allowed time between to broadcasting in-
stances Tmaxi , as Tmaxi = limbi→∞,ai→0 Ti(ai, bi). From Theorem 8.2.9 the following
result is immediate:

Corollary 8.2.10 (Minimum broadcasting frequency). The maximum allowed time bet-
ween two sampling instances satisfies Tmaxi < 1

deg(i) , such that the broadcasting frequency
of node i ∈ V needs to be faster than the (weighted) degree of node i.

The implication of this section is that despite the nonlinear clock dynamics φ̇i =

−2deg(i)( 1
4 + φi + φ2

i )− εi, we can rely on a simple counter to determine the broad-
casting instances.
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8.3 Coordination of distributed dynamical systems

In this section we investigate the broadcasting implementation of the consensus al-
gorithm for (optimal) coordination of distributed dynamical systems. Consider a
network of dynamical systems defined on a connected, undirected graph G = (V, E).
Each node represents a nonlinear system

ẋi = fi(xi, ui, θi, di)

yi = hi(xi),
(8.38)

where xi ∈ Rri is the state, ui ∈ R is the input from other nodes in the system and
yi ∈ R is the output. The unknown constant disturbance at node i is di ∈ R, whereas
θi is a controllable external input to node i. Compactly, the dynamics at the nodes
are represented by

ẋ = f(x, u, θ, d)

y = h(x).
(8.39)

The nodes in the network are interconnected by edges, where edge k is described by

ξ̇k = Fk(ξk, vk)

λk = Hk(ξk, vk),
(8.40)

leading to a compact notation for all edges as

ξ̇ = F (ξ, v)

λ = H(ξ, v).
(8.41)

The interconnection structure is described by the incidence matrix B, and

u = Bλ
v = −BT y,

(8.42)

such that the overall system is given by

ẋ = f(x,BH(ξ,BTh(x)), θ, d)

ξ̇ = F (ξ,BTh(x)).
(8.43)

In the same spirit as the previous chapters, we aim at output regulation, by an
optimal allocation of the inputs θi, i ∈ V to the network. To do so, we make the
following assumption, ensuring the existence of a steady state of (8.43):
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Assumption 8.3.1 (Existence of steady state with input sharing). For a given d, there
exists a constant (x, ξ) and a constant θ ∈ Im(1n) satisfying,

0 = f(x,BH(ξ,BTh(x)), θ, d)

0 = F (ξ,BTh(x)).
(8.44)

Note that we have taken θ ∈ Im(1n) in the assumption above. This is instead of
explicitly posing an optimization problem that prescribes the optimal input θ, that
generally depends on the particular network dynamics. We consider the following
control objective:

Objective 8.3.2 (Output regulation and input sharing). The output of system (8.43)
satisfies

lim
t→∞

y(t) = y = h(x), (8.45)

while the input to the system satisfies

lim
t→∞

θ(t) ∈ Im(1n). (8.46)

Furthermore, we assume that the physical network enjoys some useful passivity
property that we have established e.g. for several power network models in the
previous chapters.

Assumption 8.3.3 (Output strictly incremental passivity). There exists a radially un-
bounded incremental storage function V2(x, x, ξ, ξ) that satisfies

V̇2 = −(h(x)− h(x))TY (h(x)− h(x)) + (h(x)− h(x))TK(θ − θ), (8.47)

along the solutions to (8.43), with constant θ ∈ Im(1n), Y ∈ Rn×n>0 positive definite and
diagonal matrix and K ∈ Rn×n is a diagonal matrix. I.e, system (8.43) is output strictly
incrementally passive with respect to the steady state (8.44).

Consider now the controller

θ̇ = −Lθ −KT (h(x)− h(x)). (8.48)

The following lemma shows that controller (8.48) achieves Objective 8.3.2.

Lemma 8.3.4 (Achieving Objective 8.3.2 by a continuous consensus protocol). Let
Assumption 8.3.1 and Assumption 8.3.3 hold. Controller (8.48) achieves Objective 8.3.2 for
system (8.43).
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Proof. The incremental storage function

1

2
(θ − θ)T (θ − θ)︸ ︷︷ ︸

Θ(θ,θ)

+V2(x, x, ξ, ξ), (8.49)

is radially unbounded and satisfies

Θ̇ + V̇2 = −(h(x)− h(x))TY (h(x)− h(x))− θTLθ, (8.50)

along the solutions to (8.43), (8.48). By LaSalle’s invariance principle, the solutions to
the closed loop system (8.43), (8.48) approach the largest invariant set where h(x) =

h(x) and θ ∈ Im(1). �

Similar as in Sections 8.1 and 8.2, we consider the following broadcasting imple-
mentation of (8.48)

θ̇ = −Lθ̂ −KT (h(x)− h(x)), (8.51)

and define a clock variable φ having the following dynamics

φ̇ = α+ β, (8.52)

where

αi = −2deg(i)(
1

4
+ φi + φ2

i )− εi ∀i ∈ V, (8.53)

and

βi = −4(Kiφi)
2

Yi
− ε2i ∀i ∈ V. (8.54)

Here, εi and ε2i are again two arbitrarily small scalars. Accordingly, we study, si-
milarly to the previous section, the following hybrid system with flow set C :=

{(x, ξ, θ, θ̂, φ) ∈ Rn ×Rm ×Rn ×Rn × [a, b]}. The flow map F (x, ξ, θ, θ̂, φ) is

ẋ = f(x,BH(ξ,BTh(x)), θ, d)

ξ̇ = F (ξ,BTh(x))

θ̇ = −Lθ̂ −KT (h(x)− h(x))

˙̂
θ = 0

φ̇ = α+ β


:= F (x, ξ, θ, θ̂, φ) (8.55)
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where αi and βi are given by (8.34) and (8.54), respectively. The jump set is D :=

{(x, ξ, θ, θ̂, φ) ∈ Rn ×Rm ×Rn ×Rn × [a, b] : ∃i ∈ {1, . . . , n} s.t. φi = ai}. The jump
map G(x, ξ, θ, θ̂, φ) is defined by

G(x, ξ, θ, θ̂, φ) := {Gi(x, ξ, θ, θ̂, φ) : i ∈ {1, . . . , n} and φi = ai}, (8.56)

with

x+ = x

ξ+ = ξ

θ+ = θ

θ̂+
i = θi

θ̂+
j = θ̂j j 6= i

φ+
i = bi

φ+
j = φj j 6= i


:= Gi(x, ξ, θ, θ̂, φ). (8.57)

The hybrid system with the data above will be represented by the notation H =

(C,F,D,G) or, briefly, by H. Before analyzing the asymptotical behaviour of H, we
establish the following useful lemma:

Lemma 8.3.5 (Evolution of V = V1 +V2). The storage function V = V1 +V2, with V1 as
(8.12) satisfies

V̇ =

[
θ

θ̂

]T
Z1

[
θ

θ̂

]
+

[
θ − θ̂

h(x)− h(x)

]T
Z2

[
θ − θ̂

h(x)− h(x)

]
≤ 0 (x, ξ, θ, θ̂, φ) ∈ C

V (x+, ξ+, θ+, θ̂+, φ+) ≤ V (x, ξ, θ, θ̂, φ) (x, ξ, θ, θ̂, φ) ∈ D,
(8.58)

along the solutions toH, where Z1 and Z2 are given by

Z1 =

[
[α] −[α]− 1

2 (I + 2[φ])L
−[α]− 1

2 ((I + 2[φ])L)T [α] + [φ]L+ L[φ]

]
, (8.59)

Z2 =

[
[β] [φ]K +KT [φ]

[φ]K +KT [φ] −Y

]
. (8.60)

Proof. First, evaluating 8.12 along the flows of systemH yields
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V̇1 =− θTLθ̂ − (θ − θ)TK(h(x)− h(x))

+ φ̇T [θ − θ̂](θ − θ̂) + 2φT [θ − θ̂](−Lθ̂ −K(h(x)− h(x)))

=− θTLθ̂ + (α+ β)T [θ − θ̂](θ − θ̂) + 2φT [θ − θ̂](−Lθ̂ −K(h(x)− h(x)))

=

[
θ

θ̂

]T
Z1

[
θ

θ̂

]
− (θ − θ)TK(h(x)− h(x))

− 2φT [θ − θ̂](−K(h(x)− h(x))) + βT [θ − θ̂](θ − θ̂),

(8.61)

where the matrix Z1 is identical to (8.15). Bearing in mind that

V̇2 = −(h(x)− h(x))TY (h(x)− h(x)) + (h(x)− h(x))TK(θ − θ), (8.62)

the incremental storage function V satisfies along the flows to systemH

V̇ =

[
θ

θ̂

]T
Z1

[
θ

θ̂

]
+

[
θ − θ̂

h(x)− h(x)

]T
Z2

[
θ − θ̂

h(x)− h(x)

]
. (8.63)

Furthermore, Z2 < 0 if for all i ∈ V

βi < −
4(Kiφi)

2

Yi
. (8.64)

Second, V (x+, ξ+, θ+, θ̂+, φ+) ≤ V (x, ξ, θ, θ̂, φ), since θi = θ̂i whenever the value of
φi is increased during a jump.

�

The following two lemmas can be established in the same way as Lemma 8.2.3
and Lemma 8.2.6 in the previous section and we omit the details.

Lemma 8.3.6 (Nominally well posed). The systemH is nominally well posed.

Lemma 8.3.7 (Precompactness of solutions). Every maximal solution to system H is
precompact.

We are now ready to prove the main result of this section.

Theorem 8.3.8 (Achieving output regulation and input sharing). The maximal solu-
tions of systemH approach the set where h(x) = y = y and θ = θ̂ = θ ∈ Im(1n).

Proof. According to Lemma 8.3.5

V̇ (x, ξ, θ, θ̂, φ) ≤ uc(x, ξ, θ, θ̂, φ) ∀(x, ξ, θ, θ̂, φ) ∈ C (8.65)

V (x+, ξ+, θ+, θ̂+, φ+)− V (x, ξ, θ, θ̂, φ) ≤ ud(x, ξ, θ, θ̂, φ) ∀(x, ξ, θ, θ̂, φ) ∈ D, (8.66)
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where

uc(x, ξ, θ, θ̂, φ) =


[
θ

θ̂

]T
Z1

[
θ

θ̂

]
+

[
θ − θ̂

h(x)− h(x)

]T
Z2

[
θ − θ̂

h(x)− h(x)

]
(x, ξ, θ, θ̂, φ) ∈ C

−∞ otherwise
(8.67)

ud(x, ξ, θ, θ̂, φ) =

{
0 (x, ξ, θ, θ̂, φ) ∈ D
−∞ otherwise.

(8.68)

In view of Lemmas 8.3.5, 8.3.6, 8.3.7, and (Goebel et al. 2012, Theorem 8.2), the max-
imal solutions to systemH approach the largest weakly invariant subset of

Υ = V −1(r) ∩ X ∩
[
u−1
c (0) ∪

(
u−1
d (0) ∩G(u−1

d (0))
)]
, (8.69)

where r ∈ V (X ) and X := Rn ×Rn ×Rn ×Rn × [a, b]. Similarly as in the proof of
Theorem 8.2.8, we can argue that any maximal solution approaches the set u−1

c (0).
In view of (8.67), this subset is given by

{x, ξ, θ, θ̂, φ :

[
θ

θ̂

]T
Z1

[
θ

θ̂

]
+

[
θ − θ̂

h(x)− h(x)

]T
Z2

[
θ − θ̂

h(x)− h(x)

]
= 0}. (8.70)

Since Z1 ≤ 0 with Ker(Z1) = Im(1n) and since Z2 < 0, we conclude that the
maximal solutions to system H approach the set where h(x) = h(x) = y and
θ = θ̂ = θ ∈ Im(1n). �

8.3.1 Inter broadcasting time

This section follows Section 8.2.4, where we consider here the clock dynamics

φ̇i = −2deg(i)(
1

4
+ φi + φ2

i )−
4K2

i φ
2
i

Yi
− εi − ε2i. (8.71)

Again, ai, bi and (8.34) determine the broadcasting frequency of node i. To deter-
mine the required broadcasting frequency, we study the clock dynamics given by

φ̇i = −2deg(i)(
1

4
+ φi + φ2

i )−
4K2

i φ
2
i

Yi
, (8.72)

that provides the upper bound on maximum inter sampling time for a given ai and
bi. Now we turn our attention to the question how much time Ti elapses between a
clock reset φi(t) = bi until the following reset at φi(t+ Ti) = ai.
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Theorem 8.3.9 (Inter broadcasting time). The inter broadcasting time Ti, induced by
dynamics (8.34), is given by

Ti =
2

√
c1ic2i

(
arctan

(2bi(c1i + c2i) + c1i√
c1ic2i

)
− arctan

(2ai(c1i + c2i) + c1i√
c1ic2i

))
(8.73)

Proof. We solve φ̇i = −2deg(i)( 1
4+φi+φ

2
i )−

4K2
i φ

2
i

Yi
, satisfying the boundary condition

φi(0) = bi. It can be readily confirmed that the solution is

φi(t) = −
0.5
√
c1ic2i tan

(
1
2

√
c1ic2i t− arctan

( 2bi(c1i+c2i)+c1i√
c1ic2i

))
− 0.5c1i

c1i + c2i
, (8.74)

with

c1i = 2deg(i)

c2i =
4K2

i

Yi

(8.75)

Solving (8.74) with boundary condition φi(Ti) = ai then yields

Ti =
2

√
c1ic2i

(
arctan

(2bi(c1i + c2i) + c1i√
c1ic2i

)
− arctan

(2ai(c1i + c2i) + c1i√
c1ic2i

))
.

(8.76)

�

We define the upper bound on the allowed time between to broadcasting in-
stances Tmaxi , as Tmaxi = limbi→∞,ai→0 Ti(ai, bi). From Theorem 8.2.9 the following
result is immediate:

Corollary 8.3.10 (Inter broadcasting time). The maximum allowed time between two
sampling instances satisfies

Tmaxi <
2

√
c1ic2i

(
π

2
− arctan

(√c1i√
c2i

))
(8.77)

A further analysis shows also that Tmaxi given above reduces to the expression
in Corollary 8.2.10, if one takes c2i → 0, as one would expect.
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8.4 Case study

We perform two case studies to illustrate the results obtained in this chapter. First
we study the consensus algorithm in Section 8.2, whereafter we apply the results of
Section 8.3 to the power network.

8.4.1 Average preserving consensus

In this case study we perform a simulation of the hybrid system (8.9)–(8.11). Consi-
der a cycle graph of 4 nodes, where the flow dynamics are given by θ̇ = −Lθ̂, with
L the (unweighed) Laplacian matrix. The broadcasting instances are determined by
the clock dynamics

φ̇i = −2deg(i)(
1

4
+ φi + φ2

i ), (8.78)

where for all nodes i ∈ {1, 2, 3, 4} the lower and upper bound are ai = 0 and bi =

50, respectively. Note that in comparison with (8.6), we have omitted εi, as this is
implicitly incorporated by taking bi <∞. Initially, the state variables satisfy

θ(0) =


10

20

30

40

 θ̂(0) =


5

1

−10

4

 φ(0) =


1

10

20

40

 . (8.79)

The evolution of the system is given in Figure 8.1, from where we notice that all
states θi, i ∈ {1, 2, 3, 4} approach the average of the elements of θ(0).

8.4.2 Optimal Load Frequency Control

This subsection we perform a numerical study on the same power network as in
Chapter 2, where we assume for the sake of exposition that the voltages are constant.
We incorporate the results from this chapter to obtain discrete time communication
among the controllers and we formulate the resulting hybrid system as follows:
Consider the flow set C := {(η, ω, θ, θ̂, φ) ∈ Rm×,Rn×Rn×Rn× [1−10, 2]n}. Here,
we have chosen ai = 1−10, bi = 2 for all i ∈ {1, . . . 4}. The flow map F (η, ω, θ, θ̂, φ) is

η̇ = BTω
Mω̇ = Q−1θ − BΓ sin(η)−Dω − Pd
θ̇ = −Lθ̂ −Q−1ω

˙̂
θ = 0

φ̇ = − 2Deg · ( 1
414 + φ+ [φ]φ)− 4D−1Q−2[φ]φ


:= F (η, ω, θ, θ̂, φ), (8.80)
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Figure 8.1: Simulation of a 4 node cycle graph. All states θi converge to the average
of initial conditions, i.e. to 25. Also the value of V1 given by (8.12) is plotted and is
decreasing.

where Deg = diag(deg(1), . . . ,deg(4)), B is the incidence matrix reflecting the to-
pology of the power network and Γ = diag(Γ1, . . . ,Γk) describes the line charac-
teristics, with Γk = BijViVj for line k connecting areas i and j. The jump set is
D := {(η, ω, θ, θ̂, φ) ∈ Rm×Rn×Rn×Rn×[1−10, 2]n : ∃i ∈ {1, . . . , n} s.t. φi = 1−10}.
The jump map G(η, ω, θ, θ̂, φ) is defined by

G(η, ω, θ, θ̂, φ) := {Gi(η, ω, θ, θ̂, φ) : i ∈ {1, . . . , n} and φi = 1−10}, (8.81)
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with

η+ = η

ω+ = ω

θ+ = θ

θ̂+
i = θi

θ̂+
j = θ̂j j 6= i

φ+
i = 2

φ+
j = φj j 6= i


:= Gi(η, ω, θ, θ̂, φ). (8.82)

The stability analysis is omitted here, but follows essentially the proof of Theorem
8.3.8, under the assumption that steady state differences in voltage angles satisfy
ηk ∈ (−π2 ,

π
2 ), for all k ∈ E , and taking

V2 =
1

2
ωTMω − 1TmΓ cos(η) + 1TmΓ cos(η)− (Γ sin(η)T (η − η)). (8.83)

We illustrate the performance of the controllers on a connected four area network
introduced in Section 2.6. The network topology is shown in Figure 8.2. For simpli-

Area 4

Area 1

Area 3

Area 2

B14 = −21.0 B12 = −25.6

B23 = −33.1B34 = −16.6

Figure 8.2: A four area equivalent network of the power grid, where Bij denotes
the susceptance of the transmission line connecting two areas. The dashed lines
represent the communication links.

city, we assume here that the voltages are constant. An overview of the numerical
values of the relevant parameters is provided in Table 8.1 below. The communi-
cation among the controllers is depicted in Figure 8.2 as well and differs from the
topology of the power grid. The system is initially at steady state with a constant
load Pd(t) = (2.00, 1.00, 1.50, 1.00)T , t ∈ [0, 30) and according to their cost functions
generators take a different share in the power generation such that the total costs are
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A
re

a
1

A
re

a
2

A
re

a
3

A
re

a
4

Mi 5.22 3.98 4.49 4.22
Di 1.60 1.22 1.38 1.42
Vi 1 1 1 1
Qi 1 1 1 1

Table 8.1: An overview of the numerical values used in the simulations.

minimized. Pd(t) = (2.20, 1.05, 1.55, 1.10)T , t ≥ 30 . The frequency response to the
control input is given in Figure 8.3. From Figure 8.3 we can see how the frequency
drops due to the increased load. Furthermore we note that the controller regulates
the power generation such that a new steady state condition is obtained where the
frequency deviation is again zero and costs are minimized. Since we have chosen
Qi = 1 for all i ∈ {1, . . . 4}, we have indeed an identical generation at all nodes at
steady state.
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Figure 8.3: Time evolution of the frequency deviation ω, clock φ, control input θ, and
information exchange θ̂.





Chapter 9

Conclusions and research suggestions

9.1 Conclusions

This thesis provides a framework to design distributed controllers that maintain
the frequency of power networks at nominal operating conditions, while retaining
economic efficiency. A key insight is that many power network models are incre-
mentally passive systems with respect to their desired steady state solutions. To
show this property we study incremental storage functions that interestingly can be
interpreted as a Bregman divergence of energy functions, establishing a connection
with classical work in the field of power systems. We propose incrementally pas-
sive and distributed controllers and study the closed loop behavior of the overall
system. We particularly focus on nonlinear models describing high voltage net-
works and AC microgrids. The passivity property is essential to include the second
order turbine-governor dynamics in the stability analysis and we consider two ap-
proaches to the controller design. In the first approach, we develop an overall dis-
sipation inequality for the combined power network and turbine-governor system.
In the second approach, we apply a distributed sliding mode controller to recover a
suitable passivity property of the turbine-governor system once the system reaches
the sliding manifold. An important aspect of the proposed distributed controllers
is the exchange of information on a communication network. We show that the
used incremental storage functions can be adapted to incorporate the discrete time
exchange of information. The resulting cyber-physical system is modelled within
the framework of hybrid systems and we determine the maximum amount of time
that is allowed between two communication instances. Also here, the passivity pro-
perty of the power network plays a major role in the allowed inter-communication
time. An important conclusion of this work is that it is important to incorporate the
generation side and the communication network explicitly in the design phase of
controllers and that neglecting these aspects can result in an unjustified belief that
stability of the network is guaranteed by suggested solutions.
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9.2 Research suggestions

This thesis contributed to the (analytical) understanding of the optimal coordination
of power networks. Despite the progress made, there are numerous possibilities to
extend the presented results, and we discuss below a few that are closely related to
this work.

Region of attraction

The incremental storage functions appearing in this thesis, have been mostly used
to prove local stability results. An important continuation of these efforts is to study
the related level sets of the storage functions in further detail to characterize the
regions of attraction of the steady state solutions.

Relaxing assumptions

There are three assumptions appearing throughout this work, that are mainly re-
quired to develop suitable incremental storage functions and to prove stability. Re-
laxing these assumptions would provide new and interesting perspectives on the
presented results. First, we mainly assume that the cost function at a node is linear-
quadratic, e.g. Ci(θi) = qiθ

2
i , where θi is the power generation. A naturally exten-

sion is to consider general strictly convex functions Ci. This leads e.g. to the study
of the following system:

η̇ = BTω
Mω̇ =−Dω − BΓ sin(η) + θ − Pd
θ̇ =−∇2C(θ)L∇C(θ)− ω.

(9.1)

Second, it is assumed that the state state voltage angle differences across a line sa-
tisfy δi − δj = ηk ∈ (−π2 , π2 ), which is required to show that the considered storage
functions have a local minimum at the steady state. It is worthwhile to study the sta-
bility of the system when this assumption, and other similar ‘Hessian conditions’,
are violated. Third, the transmission lines are assumed to be lossless. Energy functi-
ons have been established for power networks where all lines have an identical ratio
of susceptance and conductance (Padiyar 2013), and the results in this work are ap-
plicable to that case. However, incorporating general lossy networks appears to be
very challenging and is a long-standing open problem in analytical power network
stability studies.
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Generation, transmission and load dynamics

The proposed methodology to study the stability of the power network and to de-
sign (distributed) controllers relies on system-theoretical properties, such as incre-
mental passivity. This enabled us to study a power network with nonlinear dyn-
amics, where various components are represented in more detail than is generally
done in analytical studies. Incorporating dynamics of the generation and demand
side that are on par with the models considered in numerical studies is however still
required. This includes e.g. the incorporation of saturation, limiting the generator
output power.

New control objectives

The focus of this work is the regulation of the frequency in the power network, while
minimizing the generation costs. Future research should additionally include the
control of the voltages, which we only have briefly discussed. Also, exact regulation
is often not needed in a power network and it is desirable to formulate and analyze
objectives where small deviations from the desirable values are allowed. The emp-
hasize of this thesis is on asymptotic stability properties. An important extension is
to study the transient behaviour of the system.

Cyber-physical systems

In this work we have made an important step to incorporate the cyber layer of the
control structure explicitly, by assuming that the communication occurs at discrete
time instances. Other aspects have been neglected, such as delays, quantization
effects and (measurement) noise. An interesting endeavour is include those pheno-
mena and to study their effect on the stability of the overall system.
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Summary

S
ocial and technological developments resulted in an increase of electricity de-
mand, generated by an ever increasing amount of renewable energy sources.

Despite its potential benefits, a continuation of these developments poses signifi-
cant challenges to the planning and operation of the existing power networks. An
important operational aspect in power networks is the regulation of its frequency,
which is the focus of this work.

In the presence of more and smaller generation units, careful coordination among
the individual parts in the power network is needed, ensuring proper overall functi-
oning. We design and analyse distributed controllers, that ensure that actions taken
by local controllers are consistent with global optimality objectives, such as the mi-
nimization of generation costs. The total energy of the power network plays a major
role in this process, enabling the derivation of useful system theoretic properties
without detailed knowledge of all components. Particularly, this work shows that
energy functions are suitable to derive passivity properties of various nonlinear po-
wer system models, that form an excellent staring point for the controller design.
Proposed controllers are shown to regulate the frequency and to obtain an econo-
mic dispatch.

The presented results explicitly incorporate two aspects that received less atten-
tion despite their practical importance. First, since generated control signals conti-
nuously adjust set points at the generation side, it is important to take into account
the behavior of the generation side in a satisfactory level of detail. To this end, this
work incorporates the turbine-governor dynamics in a more realistic manner than
generally done in stability studies on optimal frequency regulation.

Second, an important aspect of proposed distributed solutions is the exchange
of information among controllers over an underlying communication infrastructure.
The combination of the continuous physical system and the digital communication,



210 Summary

leads to an overall (hybrid) cyber-physical system. As a result of the stability analy-
sis, we derive explicit bounds on the required communication intervals.

We show that it is, although challenging, of importance to incorporate the gene-
ration side and the communication network explicitly in the design phase of control-
lers and that neglecting these aspects can result in an unjustified belief that stability
of the network is guaranteed by suggested solutions.



Samenvatting

S
ociale en technologische ontwikkelingen hebben geleid tot een toename van de
vraag naar elektriciteit, gegenereerd door een steeds grotere hoeveelheid her-

nieuwbare energiebronnen. Ondanks de potentiële voordelen hiervan, vormen deze
ontwikkelingen belangrijke uitdagingen voor de planning en de werking van de be-
staande elektriciteitsnetwerken. Een belangrijk operationeel aspect in elektriciteits-
netwerken, waarop dit werk zich focust, is de regulering van de frequentie.

In aanwezigheid van meer en kleinere generatie eenheden is een zorgvuldige
coördinatie tussen de afzonderlijke onderdelen in het elektriciteitsnet nodig om er-
voor te zorgen dat het gehele netwerk juist functioneert. Wij ontwerpen en ana-
lyseren gedistribueerde regelaars, die ervoor zorgen dat de acties van lokale rege-
laars in overeenstemming zijn met de globale optimaliteitsdoelstellingen, zoals de
minimalisering van de generatiekosten. De totale energie van het netwerk speelt
een belangrijke rol in dit proces, waardoor het mogelijk is om nuttige systeemthe-
oretische eigenschappen te formuleren zonder gedetailleerde kennis van alle com-
ponenten. In het bijzonder blijkt uit dit werk dat energiefuncties geschikt zijn om
passiviteitseigenschappen van verschillende niet-lineaire modellen van het systeem
te omschrijven. Deze vormen een uitstekend startpunt voor het ontwerp van de re-
gelaar. Verschillende oplossingen worden getoond om de frequentie te regelen en
om een economische optimaliteit te verkrijgen.

De gepresenteerde resultaten bevatten expliciet twee aspecten die vaak minder
aandacht krijgen, ondanks dat hun praktische relevantie. Ten eerste, aangezien de
gegenereerde besturingssignalen de gewenste regelwaarde continu aanpassen aan
de generatiezijde, is het belangrijk rekening te houden met het gedrag van de ge-
neratiezijde op een bevredigend detailniveau. Daartoe bevat dit werk de dynamiek
van de turbine-regulateur op een realistischer manier dan gangbaar is in stabiliteits-
studies van optimale frequentieregeling.
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Ten tweede, een belangrijk aspect van de voorgestelde gedistribueerde oplossin-
gen is de uitwisseling van informatie tussen regelaars over een onderliggende com-
municatienetwerk. De combinatie van het continue fysieke systeem en de digitale
communicatie leidt tot een algemeen (hybride) cyber-fysisch systeem. Als gevolg
van de stabiliteitsanalyse bepalen we expliciete grenzen op de vereiste communica-
tie intervallen.

We tonen aan dat het belangrijk is om de generatiezijde en het communicatienet-
werk expliciet in de ontwerpfase van regelaars te integreren en dat het achterwege
laten kan leiden tot een ongerechtvaardigd geloof dat de stabiliteit van het netwerk
is gewaarborgd.




