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Chapter 1
Introduction

E
nergy demand is rising and a considerable fraction of the energy is consumed in the
form of heat. While high quality resources such as natural gas are used for heating,

waste heat is left unutilized in many cases. Since this increase in energy consumption
has a negative impact on the environment, there is a need for more energy efficient sys-
tems. One of the proposed solutions is the integration of heat networks into the existent
infrastructure. Such heat networks are commonly referred to as district heating systems
(DHS) when found in an urban area or heat exchanger networks (HEN) in industrial
environments.

1.1 District heating and geothermal energy

A district heating system consists of pipes filled with heated water that is pumped from
a producer to a consumer. The heat is injected or extracted via a heat exchanger in order
to separate the water in the network from any possible contamination outside of it. Al-
though DHS’s have been around since the 14th century (Lemale and Jaudin 1999), recent
years have witnessed a renewed interest in heating systems for two reasons. The first re-
ason is the change in governmental policies with the intention to reduce carbon dioxide
emissions. Since adding a DHS to existing infrastructure often increases the energy effi-
ciency of the overall system, the total carbon dioxide emissions drop. Two examples of
higher energy efficiencies due to a DHS are utilizing waste heat and incorporating envi-
ronmentally friendly sources such as biomass incinerators. Furthermore, combined heat
power plants (CHP) can be integrated into a DHS which have a better energy efficiency
compared to conventional power plants that produce only electricity. The second reason
is the recent advances in geothermal energy production methods. In the past the use of
waste heat and geothermal energy was challenged by the wide use of cheap fossil fuels,
but with the revived focus on renewable energy sources, district heating and heat energy
networks are gaining importance in the provision of renewable energy (Lund et al. 2014),
(Rezaie and Rosen 2012) (Sayegh et al. 2016). The complexity and challenges related
to geothermal heat distribution have been outlined (Gelegenis 2009) and the efficient
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production and use of geothermal resources is identified as an important aspect of their
sustainable development (Shortall et al. 2015).

Despite this renewed interest, the number of networks in which multiple heat produ-
cers and/or waste heat sources are connected is limited, especially if the producers are
owned by different companies. The main reason for this, is that it is hard to coordinate
supply and demand such that they are matched. Heat may be produced when it is not
needed, and conversely, may not be available when needed. There are three solutions
in order to balance a supply and demand, first a storage device can be included, second
the production can be adjusted, and third, and incentive can be send to the consumers in
order to adjust their demand. The latter is also referred to a demand side management
and the incentive is often a dynamic price (Li et al. 2015). A combination of storage, dy-
namic production and demand side management provides the most flexibility to balance
demand and supply.

The synthesis and control of DHS’s and HENs has a long history. Until the 1980s
the synthesis and control of DHS’s and HENs were mostly focused on the steady state
optimal design of heat exchangers, which resulted in simple engineering techniques such
as the pinch method (Linnhoff and Hindmarsh 1983). With the introduction of linear
optimization techniques such as model predictive control, the focus later shifted to the
design of optimal controllers where optimal steady states were considered (Glemmestad
et al. 1999). The same approach applied to cooling systems can be found in (Ma et al.
2009) and (Borghesan et al. 2013). Although cooling systems serve a different purpose,
the principles and dynamics that describe heating systems also apply. Thus the control
methodologies used in this thesis can easily be applied to cooling systems. In order to
validate the controllers several models of district heating systems have been proposed.
Two examples are flow networks and hydraulic networks. These models neglect the
temperature dynamics which is a valid assumption as long as the operating temperature is
approximately constant. We will introduce both these networks in the following sections.

1.2 Flow networks

Flow networks consist of nodes on which material can be stored and links that exchange
this material (flow). Moreover, these networks can include inflows and outflows at the
nodes. In the case of a district heating system the stored material is heated water, inflows
are producers and outflows consumers. There flow networks are also referred to as dis-
tribution networks, transportation networks or compartmental systems. The design and
regulation of these networks received significant attention due to its many applications,
including supply chains (Alessandri et al. 2011), heating, ventilation and air conditioning
(HVAC) systems (Gupta et al. 2015), data networks (Moss and Segall 1982), traffic net-
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works (Iftar 1999) and compartmental systems (Blanchini et al. 2016). Depending on the
specific application the associated control objective can vary. If the considered objective
is static, the study of flow networks has a long history within the field of network opti-
mization (Bertsekas 1998), (Rockafellar 1984). Many networks must on the other hand
react dynamically on changes in the external conditions such as a change in the demand.
In these cases continuous feedback controllers are required that dynamically adjust in-
puts at the nodes and the flows along the edges. Since flow networks are ubiquitous in
engineering systems, many solutions have been proposed to coordinate them, exploiting
methodologies from e.g. model predictive control (Danielson et al. 2013) and passivity
(Arcak 2007).

In the context of district heating systems flow networks are used to model multiple
storage tanks (located on the nodes) that can store heated water. A common objective in
flow networks is to regulate the outputs of the nodes (e.g. storage or inventory levels)
to their desired value or to achieve consensus in the presence of unknown and poten-
tially time-varying demand (Bürger and De Persis 2015). The dynamics of the edges
follow either from underlying physical principles (Blanchini et al. 2016) or from desig-
ned controllers adjusting the flow rates. Moreover, it is common that the capacity of the
edges is constrained (Wei and van der Schaft 2013) and that flows have an associated
cost depending on the rate (Bürger et al. 2015).

1.3 Hydraulic networks

In contrast to flow network models, which relate flows and volumes, a model of an
hydraulic network relates flows and pressures using algebraic and dynamic expressi-
ons. These networks are a well studied class of systems where a fluid flows through
a network containing many interconnected branches. Hydraulic networks have many
applications and are generally categorized into one of two classes. The first class are
open networks which contain inlets and outlets for fluids, while in the second class
the hydraulic network is closed and the fluid is circulating. Examples of open large
scale hydraulic networks are irrigation networks (Cantoni et al. 2007), water distribu-
tion networks (Wang et al. 2006), (Cantoni et al. 2007) and sewer networks (Wan and
Lemmon 2007), (Marinaki 1999). Examples of closed networks are mine ventilation net-
works (Hu et al. 2003), cardiovascular systems and district heating networks (Scholten
et al. 2016b), (Gambino et al. 2016). Moreover, the models used for electrical cir-
cuits share similarities with those of hydraulic networks (Jayawardhana et al. 2007).
A common control objective is to regulate flow rates and pressure drops in the indivi-
dual sections of the network. Various controllers have been proposed to guarantee that
that control objective is satisfied, such as PI controllers (Sloth and Wisniewski 2015),
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(De Persis et al. 2014) and nonlinear adaptive controllers (Hu et al. 2003), (Koroleva and
Krstic 2005), (Koroleva et al. 2006).

1.4 Motivation

Around the world government regulations are changing in order to cut down CO2 emissi-
ons due to global warming. As a consequence both government and industry are looking
for new and more efficient ways to provide the energy demanded by consumers. A dras-
tic reduction can be made by using a new generation of district heating systems. That
is, space heating constitutes for 40% of the total energy demand and is currently mostly
generated by fossil fuel while waste heat is left unutilized. Moreover, in these networks
other heat sources can be included such as biomass and geothermal energy.

Although district heating systems have been around for a long time there are still
several problems that need to be solved in order to increase the efficiency and versatility
of these networks. The first problem is to coordinate the storage and production when
multiple producers owned by different entities are connected. Second, in order to reduce
heat dispersion in the pipes, smaller pipes have been suggested. However, the increased
friction due to the smaller pipes require a new topology that includes multiple pumps.
Lastly, in order to avoid wasting heat, the production and demand need to be better
matched.

In this thesis we provide an answer to these problems by designing smart control
systems for district heating systems. However, we also note that the results can be applied
to many other applications that have similar dynamics. All the studies are carried out
within the Flexiheat project for which the aim was to design an intelligent heat grid with
a multidisciplinary approach.

1.5 Outline of the thesis and origin of the chapters

In this thesis we consider the control of large scale networked systems. Many of the
results are motivated by control problems encountered in district heating systems. More
specific, we aim to design controllers that regulate temperatures, storage levels and pres-
sures in these networks in combination with the following conditions:

• capacity and directional flow constraints

• production capacity constraints

• multiple controllable and/or dynamic producers
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• multiple consumers

• time varying demand

• multiple storage devices

• distributed control

• economic optimality

However, as it is difficult to include all these conditions at once, the approach used in
this thesis is best described as divide and conquer. That is, each chapter addresses the
regulation of a different state variable and a subset of the above conditions. Furthermore,
each chapter considers a different model that captures the dynamics of interest for a
particular control problem. Ultimately, the various models and control problems can be
integrated in a single model and control design as discussed in the last part of Chapter 8.

In the remainder of this section we provide an outline of the thesis and the references
to the original content of the chapters.

In Chapter 2 three different models are introduced that are used in the controller
design in the remainder of the thesis. First the flow and temperature dynamics of a district
heating system with a single producer, single storage device and multiple consumers are
derived. Second a flow network is considered with multiple producers and consumers
and lastly an hydraulic network is introduced. Additionally an optimization problem is
introduced that is used in the control design of several controllers.

In Chapter 3 a district heating system with a single producer and storage tank is
considered such as presented in the first model of Chapter 2. As the demand in these net-
works has often a highly repetitive pattern an internal model based controller is designed.
The proposed controller is able to regulate the storage level and temperatures despite a
possible time varying demand. The results are based on the following papers:

Scholten, T.W., De Persis, C. and Tesi, P.: 2016, Modeling and control of heat
networks with storage: The single-producer multiple-consumer case, Transactions
on Control Systems Technology, pp. 414–428.

Scholten, T.W., De Persis, C. and Tesi, P.: 2015, Modeling and control of heat
networks with storage: The single-producer multiple-consumer case, Proc. of the
2015 European Control Conference (ECC), pp. 2242–2247.

Chapter 4 shifts the focuss to a network in which multiple producers storages are con-
nected. Motivated by slow temperature dynamics which are approximately constant we
consider only the flow dynamics. In order to guarantee scalability we design distributed
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controllers that regulate the flows and inputs in a flow network with multiple storages.
The output of the controllers is saturated in order to satisfy transient constraints at all
time. Moreover, a communication graph is introduced in order to guarantee an economic
optimal production at steady state. Convergence is proven towards a point that, depen-
ding on the controller gains, lies arbitrary close to the desired optimal steady state. The
results in this chapter were published in the following paper:

Scholten, T.W., De Persis, C. and Tesi, P.: 2016, Optimal steady state regulation of
distribution networks with input and flow constraints, Proc. of the 2016 American
Control Conference (ACC), pp. 6953–6958.

In Chapter 5 the results of Chapter 4 are extended. In this extension the controllers
are adapted to include an additional state which gives more flexibility in the design.
Moreover, the saturation functions are changed to nonlinear strictly increasing functions
with a possible bound on the range. These changes allow us to prove asymptotic stability
of the optimal steady state. This chapter originates from the following papers:

Trip, S., Scholten, T.W. and De Persis, C.: 2017, Optimal regulation of flow net-
works with input and flow constraints, Proc. of the 2017 IFAC World Congress,
pp. 9854–9859.

Trip, S., Scholten, T.W. and De Persis, C.: 2017, Optimal regulation of flow net-
works with transient constraints, Automatica, Submitted.

In Chapter 6 we return to a single producer without any storage capabilities. In order to
decrease the size of the pipes we consider a topology with a multiple pump architecture.
The goal is to regulate the centrifugal pumps in order to regulate the pressure at each
consumer. As these pumps can often only provide positive pressures we constrain the
control input to take on only non-negative values. We show local asymptotic stability of
the desired pressure setpoints. This chapter stems from the following papers:

Scholten, T.W., Trip, S. and De Persis, C.: 2017, Pressure Regulation in Large
Scale Hydraulic Networks with Input Constraints, Proc. of the 2017 IFAC World
Congress, pp. 5534–5539.

Scholten, T.W., Trip, S. and De Persis, C., Pressure Regulation in Large Scale
Hydraulic Networks with Positivity Constraints, In preparation.

In Chapter 7 we return to the setup as in Chapter 3 where the producer is taken to be
a geothermal well. These wells are currently only used to provide a constant baseload
while demand fluctuates throughout the year. For this reason we investigate if such a
well of producing fluctuating patterns. In order to do this we design a model predictive



1.5. Outline of the thesis and origin of the chapters 7

controller and perform a simulation to generate a realistic demand pattern. This demand
pattern is used in a second simulation that simulates the two dimensional geochemistry
of a reservoir located in Groningen, The Netherlands. The chapter originates from the
following paper:

Daniilidis, A., Scholten, T.W., Hoogheim, J. De Persis, C., and Herber, R.: 2017,
Geochemical implications of production and storage control by coupling a direct
use geothermal system with heat networks, Applied Energy, pp. 254–270.

Finally, in the appendices model derivations, supporting lemmas and a case study can be
found.



8 1. Introduction

1.6 Preliminaries and notation

We denote byRn andRn
>0 the set of n-dimensional vectors with real and strictly positive

real entries respectively. Given a vector x ∈ Rn, xT is considered its transpose and we
define ‖x‖ to be its norm. The i-th element of vector x is denoted by [x]i, where the
brackets are omitted if it causes no ambiguity. For a, b ∈ Rn we define the inequalities
(e.g. a ≤ b) element-wise. Let the vector of all zeros be given by 0n and the vector of
all ones by 1n where n is the length of the vector. The subscript is omitted in case the
length of the vector is clear from the context. If the entries of x are functions of time
then the time derivative of x is denoted as ẋ := dx

dt unless stated otherwise. A steady state
solution to system ẋ = f (x), satisfying 0 = f (x), is denoted by x, i.e. 0 = f (x). In many
cases we drop the explicit dependency on t for time-dependent variables to simplify
the notation. We define the operator [x] := diag

(
x1 x2 . . . xn

)
as the diagonal

matrix of elements xi, and block.diag
(

A1 A2 . . . An

)
as the block-diagonal matrix

for which the block diagonal matrices are Ai for i = 1, ..., n. The identity matrix of
dimension n is given by In and a n × m matrix containing only zeros is denoted by 0n×m.
For any matrix A we define Im(A) to be the image, ker(A) to be the kernel and A† to be
the Moore-Penrose pseudo-inverse of A. In case A is positive definite we denote it as
A � 0. Moreover, the matrix norm is defined as

‖A‖ = max{‖Ax‖ : x ∈ Rn with ‖x‖ = 1}.

For a vector space S we define S⊥ to be the orthogonal complement of S, and for a set
W of vectors let its span be defined as

span(W) =

 k∑
i=1

λixi

∣∣∣∣k ∈ N, xi ∈ W, λi ∈ R

 .
We denote the cardinality of a set V as |V|. Let C1(R;R) be the class of continuously
differentiable functions with domainR and codomainR. Occasionally write f (x) as f (·)
in case the argument x is clear from the context. We denote the range of f (·) as R( f (·)).
Lastly we define the multidimensional saturation function sat(x; x−, x+) : Rn → Rn as

sat(x; x−, x+)i :=


x−i : if xi ≤ x−i
xi : if x−i < xi < x+

i

x+
i : if x+

i ≤ xi,

where x−i , x
+
i ∈ R.
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1.6.1 Graphs

Similar to (Bapat 2010) we define a graph as G = (V,E), whereV = {1, ..., n} is the set
of nodes and E = {1, ...,m} is the set of edges connecting the nodes. We arbitrarily assign
a − and + to the ends of each link, where it connects to a vertex. Using this we introduce
the incidence matrix B ∈ Rn×m, whose elements are defined as

bik =


1 : if the ith node connects to the positive (+) end of edge k
−1 : if the ith node connects to the negative (−) end of edge k
0 : otherwise,

(1.1)

and the Laplacian matrix is defined as L = BBT . Let T be a spanning tree of G, i.e., a
connected subgraph which does not contain any cycle and contains all the nodes of the
graph. As a consequence any edge in G which is not in T is necessarily a chord. This
implies that by including a chord i in T , a cycle Li is obtained. We will also assign a
reference direction to each of the cycles and refer to them as fundamental loops. Let |L|
be the number of cycles in G, we finally define the entries of the fundamental loop matrix
D ∈ R|L|×|E| as

di j =


1 edge j is in Li and directions agree

−1 edge j is in Li and directions don’t agree

0 edge j is not in Li.

(1.2)





Chapter 2

Models and load sharing

Adistrict heating system consists of many components of which the main ones are
pipes, valves, pumps, storage tanks, heat exchanges, producers, consumers. Mo-

dels of these components in district heating systems are widely available. Most of these
models are based on general modeling principals of thermodynamic systems such as
in (Skogestad 2009). The modeling of heat exchangers is discussed in e.g. (Hangos
et al. 2004), where also the controllability and observability is investigated. Moreover,
there is a wide variety of possibilities for thermal storage. A survey of different techni-
ques can be found in (Dincer and Rosen 2002). The most common way is to use water
tanks with a fixed volume that can be heated and cooled. In such tanks there are three lay-
ers, one with hot water, one with cold water and a separation layer called a thermocline,
which has a steep thermal gradient. This type of storage is referred to as stratification
and is studied in detail in both (Yoo and Pak 1993) and (Verda and Colella 2011). An
alternative is to have an empty tank which can be filled/drained with hot water but has
the disadvantages of lower efficiency and higher dissipation rates. Recent interest has
shifted towards heat storage in phase-changing materials, which have some interesting
properties such as low dissipation rates but are not considered in this thesis. Models
of the pressure and flow dynamics in pipes, valves, pumps are discussed in (De Persis
and Kallesoe 2011). Moreover, the open loop model of a network consisting of these
components is also derived.

In this chapter we introduce three models that describe a district heating system by
considering the relations between volumes, temperatures, flow rates and pressures. Since
the modeling itself is not novel, this chapter is mainly intended to set the ground for the
remaining chapters. In these remaining chapters controllers are designed and analysed
that (optimally) regulate the distribution of energy in a district heating network. Since
the considered dynamics in most of these models represent a broader class of systems
the results of the modeling (and subsequent controller design) have many other appli-
cations. Examples of these applications are therefore discussed when these models are
introduced. We conclude this chapter with an optimization problem which we refer to as
the optimal economic dispatch problem of which the solution will be considered in the
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Figure 2.1: Stratified storage tank.

design of some of the controllers.

2.1 Flow networks

The first model that we consider relates volumes to flow rates and is in the literature re-
ferred to as a flow network or compartmental system. The design and regulation of these
networks received significant attention due to its many applications, including supply
chains (Alessandri et al. 2011), heating, ventilation and air conditioning (HVAC) systems
(Gupta et al. 2015), data networks (Moss and Segall 1982), traffic networks (Iftar 1999)
and compartmental systems (Blanchini et al. 2016). To motivate the relation to district
heating system we first introduce a storage tank and its dynamics. By interconnecting
multiple storage devices in a network and connecting each to a producer and consumer
we obtain a model which is referred to as a flow network.

2.1.1 Storage model

The storage tank that we consider uses a stratification principle where hot water on the
top is separated from cold water at the bottom by a thermocline. This device has four
valves, two at the top and two at the bottom. These valves are used as in- and out-lets of
the hot and cold part of the storage device such as depicted in Figure 2.1. The tempera-
tures of the top and bottom layer are approximately constant with respect to the height
of the tank. On the contrary, the thermocline is a thin layer with a steep temperature
gradient (Verda and Colella 2011), (Ma et al. 2009). We neglect the thermocline which
allows us to model the storage device as two separate storage tanks that are placed on top
of each other1. This is motivated by a low heat exchange rate between the hot and the

1Under this assumption the model the exact same model can be used for a topology with separate hot and
cold water storage tanks. The results presented in this work can therefore also be applied to such a network.
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cold layer of the storage tank. Additionally it is possible to add an insulation layer that
decreases the heat exchange even further. Such a layer can also prevent mixing during
long discharging or charging periods which causes a more severe and undesirable heat
exchange rate. Furthermore we assume that each layer is perfectly stirred. In Section
2.2 the temperature dynamics are introduced which are neglect in the remainder of this
section.

First let us consider the volume dynamics for storage tank i, which are given by

V̇i = qin
i − qout

i (2.1a)
˙̃Vi = q̃in

i − q̃out
i , (2.1b)

where (2.1a) models the hot layer and (2.1b) the cold one. Moreover, qin
i , qout

i and Vi

are the inflow, outflow and volume of the hot layer, respectively and the variables with a
tilde are their counterparts that correspond to the cold layer.

Remark 2.1 (Other applications). The single integrator dynamics in (2.1a) (and (2.1b))
model many other systems such as inventory systems (De Persis 2013) and multi-agent
systems (Olfati-Saber et al. 2007).

We denote the total capacity of the storage tank i by Vmax
i and consider the storage

device to be always completely filled with water. In order to guarantee that both the hot
and the cold layer are strictly positive we require a proper initialization and restrictions
on qin

i , qout
i , q̃in

i and q̃out
i . The restrictions will be taken care of in the controller design in

Chapter 3, but we make the following assumption with respect to the initialization of the
storage tanks:

Assumption 2.2 (Volume constraints). Let Vi(0), Ṽi(0) ∈ Vi where

Vi :=
[
Vmin

i ,Vmax
i − Vmin

i

]
, (2.2)

with 0 < 2Vmin
i ≤ Vmax

i < ∞. Moreover Vi(0) and Ṽi(0) satisfy

Vi(0) + Ṽi(0) = Vmax
i . (2.3)

Note that Assumption 2.2 implies that both Vi(0) and Ṽi(0) are bounded away from
zero by Vmin

i and it has the following implication:

Lemma 2.3 (Persistence of a completely filled storage). If Assumption 2.2 is satisfied
and q̃in

i and q̃out
i are such that qin

i − qout
i = q̃in

i − q̃out
i then

Vi(t) + Ṽi(t) = Vmax
i for all t > 0. (2.4)
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Proof. From (2.1) it follows that V̇i + ˙̃Vi = 0 and together with (2.3) it follows that (2.4)
is satisfied. �

We interconnect multiple storage devices through a network as presented in the next
section.

2.1.2 Model flow networks

We consider a network of physically interconnected undamped dynamical systems. Each
dynamical system is described by (2.1a) and the topology of the system is described by
an undirected graphG = (V,E), whereV = {1, ..., n} is the set of nodes and E = {1, ...,m}
is the set of edges connecting the nodes. We represent the topology by its corresponding
incidence matrix B ∈ Rn×m as defined in Section 1.6.1. Each node (storage) can have a
disturbance (demand) and input (production). Let Ve ⊂ V be the set of nodes that are
controlled by an external input, with |Ve| = p and we define

ei =

1 i ∈ Ve

0 otherwise.
(2.5)

The dynamics of node i are given by

Txi ẋi(t) = −
∑
k∈Ei

Bikλk(t) + eiui(t) − di (2.6a)

yi(t) = hi(xi(t)), (2.6b)

where xi(t) is the storage (inventory) level, ui(t) the control input, Txi ∈ R>0 a constant2,
di is a constant unknown disturbance and yi = hi(xi) the measured output with hi(·) a
continuously differentiable and strictly increasing function. Moreover, Ei is the set of
edges connected to node i and λk(t) is the flow on edge k. We can represent the complete
network compactly as3

Tx ẋ = −Bλ + Eu − d (2.7a)

y = h(x), (2.7b)

where Tx ∈ R
n×n
>0 , B ∈ Rn×m, λ ∈ Rm, u ∈ Rp and d ∈ Rn. Without loss of generality

we assume that only the first p nodes have a controllable input, i.e. {1, . . . , p} = Ve, and

2Usually we have Txi = 1 in the classical flow networks, where a material is transported.
3For the sake of simplicity, the dependence of the variables on time t is omitted in most of the remainder

this thesis.
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Figure 2.2: A node in the district heating network.

consequently E ∈ Rn×p is of the form

E =

 Ip×p

0(n−p)×p

 . (2.8)

Furthermore, y ∈ Rn and h(x) ∈ Rn of which the i-th component is given by hi(xi).

Remark 2.4 (Example of model (2.7)). Consider a district heating network where each
node has a producer, a consumer and a stratified storage tank interconnected as in Figure
2.2. Motivated by Lemma 2.3 we set the flows in the return pipes such that q̃in

i = qin
i and

q̃out
i = qout

i . For this reason we can neglect (2.1b) and consider that the storage device
is only modeled by (2.1a). This implies that (2.7) can model a network of interconnected
storage devices connected to heat exchangers that inject and extract their heat production
and demand.

We make two basic Assumptions on the network. First, in order to guarantee that
each node can be reached from anywhere in the graph we make the following Assumpti-
ons on the topology:

Assumption 2.5 (Connectedness). The graph G is connected.

We recall (see e.g. (Bapat 2010, Lemma 2.2)) the following useful lemma:

Lemma 2.6 (Rank of B). LetG be a graph with n nodes and let B be the incidence matrix
of G. Then the rank of B is n − 1 if and only if G is connected.

Proof. For a general graph we have that BT x = 0 implies that xi − x j = 0 for all no-
des i and j which are connected. Therefore we have that Assumption 2.5 implies that
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ker(BT ) = Im(1). Since the kernel is one dimensional the row-rank of BT is at least n− 1
and since the rows of BT are linearly dependent, the row-rank of BT is at most rank n−1.
This implies that the row-rank of BT is n − 1 and therefore L = BBT has rank n − 1. �

Second, to compensate for the disturbances to the network, the following assumption
is required:

Assumption 2.7 (Controllable inputs). There is at least one node that has a controllable
input, i.e. p ≥ 1.

An immediate consequence of Assumption 2.5 and its related Lemma 2.6 is the fol-
lowing result:

Lemma 2.8 (Rank of
(
B E

)
). If Assumption 2.5 is satisfied, then Assumption 2.7 is

equivalent to
(
B E

)
being full row rank, i.e. rank

((
B E

))
= n.

Particularly, in Chapter 5 we will use the fact that the pseudoinverse of
(
B E

)
consti-

tutes a right inverse, which has been exploited within a similar context in e.g. (Blanchini
et al. 2016).

2.2 Temperature dynamics

Additionally to (2.7) we consider the temperature dynamics. Motivated by the predomi-
nant topology we restrict the topology to a single node (i.e. one storage device) to which
a single producer and multiple consumers are connected. First we introduce the tem-
perature dynamics of the storage tank after which we do the same for the producer and
consumers which are modeled as a heat exchanger. Finally we interconnect the different
components in order to derive a model that describes the volume, flow and temperature
dynamics.

2.2.1 Storage tank

We consider a stratified storage tank as in Figure 2.1 and define the temperatures in the
hot and cold layer of the storage tank as T and T̃ , respectively. With the help of (A.4) in
Appendix A we derive a model of a heat exchanger and storage device.

Since there is no heat generation and, since we assume that the heat losses are negli-
gible, no heat absorption we have that P = 0. This implies that the temperature dynamics
of the storage device are given by

VṪ = qin(T in − T ) (2.9)

Ṽ ˙̃T = q̃in(T̃ in − T̃ ), (2.10)
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Figure 2.3: Model of a heat exchanger adopted from (Hangos et al. 2004) with m cells
with power transfer in cell k given by P[k]. Since the inflow equals the outflow, flow
rates qe and q are defined only once. T in

e and T in are the inflow and Te and T the outflow
temperatures.

where qin and q̃in are the flowrates with temperatures T in and T̃ in entering the hot and
cold layer respectively.

2.2.2 Heat exchanger

A heat exchanger exchanges energy between two streams of liquid (or gas) while they
are physically separated. Each producer and consumer is modeled by a heat exchanger
with a corresponding heat production and demand. A heat exchanger can be modeled as
m cells connected in series such as depicted in Figure 2.3. In this figure each cell contains
two volumes separated by a heat conducting element. We restrict ourselves to a model
where m = 1, and assume that both volumes in the cell are perfectly stirred4. Moreover,
we assume the following quantities to be constant in each cell: volume, mass, specific
heat cP, density ρ, heat transfer coefficient U and contact area of the heat conducting
element Ah. Assuming that the used fluid is incompressible and since there is no storage
nor loss of mass in a heat exchanger, the inflow rate equals the outflow rate. Hence, it
is enough to associate to each heat exchanger a single flow variable. Using (A.4), we
obtain that the dynamics for the temperatures of the two volumes are then given by

Vh
e Ṫe = qh

e

(
T h,in

e − T h
e

)
− Ph (2.11)

VhṪ h = qh
(
T h,in − T h

)
+ Ph, (2.12)

where Vh
e > 0 and Vh > 0 are the volumes in the upper and lower cell, respectively. The

superscripts h are used to denote the heat exchanger and the subscripts e denote the upper
part of the cell, i.e. the compartments that connect to the producer or consumer. In case
the heat exchanger is located at a producer and is considered to be the controllable input.

4Alternatively a logarithmic mean temperature difference (Thulukkanam 2013) can be used to approxi-
mate the heat exchange between the m cells which we leave for further research.
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When it is located at a consumer Ph is the heat extraction considered to be an unknown
disturbance.

Remark 2.9 (Controllability of the heat exchanger). Since Vh
e is relatively small com-

pared to the storage volumes considered in (2.9), the dynamics (2.11) are relatively fast
compared to (2.9). For this reason we are can neglect (2.11) and consider Pp as a control
input. Moreover, the heat transfer rate Ph is given by

Ph =
UAh

cpρ

(
T h

e − T h
)
, (2.13)

which implies that the temperature T h can be regulated by qh and qe as long as T h
e ,

T h,in
e , T h , T h,in. Therefore a heat exchanger is controllable with the exception of this

singular point (Hangos et al. 2004). In order to avoid this operation point a sufficiently
high (or, in case of cooling, low) supply temperature T h,in

e should be applied.

Motivated by Remark 2.9 we neglect the dynamics (2.11) and model a heat exchanger
solely by (2.12). Therefore the dynamics of the heat exchanger located at the producer
and each consumer i is given by

V pṪ p = qp
(
T p,in − T p

)
+ Pp (2.14)

Vc
i Ṫ c

i = qc
i

(
T c,in

i − T c
i

)
+ Pc

i , (2.15)

respectively.

Remark 2.10 (Bypass of a heat exchanger). Note that the heat exchangers separate the
fluid in the network from both the fluids of the consumers and producer. This separation
ensures that no contamination can enter the network and storage device. In certain cases
it can however be beneficial to bypass the heat exchangers (and storage) by adding a
direct connections between a producer and consumer. For example, when the producers
generates steam, such a connection can be used to further heat up the hot water delivered
to the consumer.

2.2.3 Topology and compact form

Motivated by the predominant topology used for district heating system we consider a
setup with a single producer of heat (e.g. a waste-to-energy plant (Bardi and Astolfi
2010) or a combined heat power plant) and n consumers (e.g. industrial or residential
buildings). A storage tank is included in the topology to guarantee a heat supply while
the heat demand is time dependent. The considered topology is depicted in Figure 2.4.
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Figure 2.4: Topology of a district heating network.

The open loop temperature dynamics are obtained by interconnecting the storage
and heat exchangers modeled by (2.12) and (2.14)–(2.15) as in the considered topology.
Since in this topology multiple pipes with different flowrates and temperatures merge we
require an expression of the resulting temperature after merging in order to obtain the
model. Using the conservation of energy we obtain

T in =

∑n
i=1 qc

i T c
i∑n

i=1 qc
i
, (2.16)

where qc
i is the flow rate and T c

i the temperature of the fluid passing through pipe that
originates from consumer i. By combining (2.14)-(2.16) and considering the topology of
Figure 2.4 we obtain

V pṪ p =
(
T̃ − T p

)
qp + Pp

VṪ =
(
T p − T

)
qp

Ṽ ˙̃T =

n∑
i=1

(
T c

i − T̃
)

qc
i

Vc
j Ṫ

c
j =

(
T − T c

j

)
qc

j − Pc
j, j = 1, 2, . . . , n.

(2.17)

Moreover, the volume dynamics of the storage device are obtained from (2.6a) by letting
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Tx1 = 1, x1 = V , e1 = 1, u1 = qp and d1 =
∑n

i=1 qc
i . Moreover b1k = 0 since we only

consider one node, and the resulting dynamics are given by

V̇ = qp −

n∑
i=1

qc
i (2.18a)

˙̃V =

n∑
i=1

qc
i − qp, (2.18b)

where (2.18b) follows from the conservation of mass and (2.18a), i.e. there is no dissi-
pation of mass in the pipes and heat exchangers. We therefore note that (2.4) is satisfied
independent of qp and qc as a result of Lemma 2.3.

Remark 2.11 (Delay). Since the length of the pipes in district heating systems are often
very large the temperature dynamics can be subject to a possibly large delay. The addi-
tion of such a delay can cause oscillation or even instability for otherwise asymptotical
stable systems. However, as it is hard to include this delay in the stability analysis we do
not include the pipe dynamics. Consequently, all the results based on this model do not
take this delay into account and the inclusion is left for future research.

We now write system (2.17)-(2.18) in a more compact form and define the inputs,
states, outputs and disturbances of the system. Because we can control both the heat
injection and the flow rates in the pipes, these are taken as inputs and are respectively
given as u = Pp and

ν =

 νp

νc

 =

 qp

qc

 ,
where qc :=

(
qc

1 qc
2 . . . qc

n

)T
. The disturbances are given as d =

(
Pc

1 . . . Pn

)T
,

and we collect temperatures and volumes in the state vectors

z :=


zp

zs

zs̃

zc

 =


T p

T sh

T sc

T c


x :=

 xs

xs̃

 =

 V sh

V sc

 ,
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where T c :=
(

T c
1 T c

2 . . . T c
n

)T
. It follows that (2.17)-(2.18) is equivalent to

M(x)ż = A(ν)z + Uu − d (2.19a)

ẋ = Nν (2.19b)

y = Cz, (2.19c)

where

M(x) = block.diag
(

V p [x] [Vc]
)

(2.20a)

A(ν) =


−νp 0 νp 01×n

νp −νp 0 01×n

0 0 −1T
n νd νT

d
0n×1 νd 0n×1 −[νd]

 (2.20b)

U =

 1
0(n+2)×1

 (2.20c)

N =

 1
−1

 ( 1 −1T
n

)
(2.20d)

C =
(

0 1 0 01×n

)
, (2.20e)

with Vc :=
(

Vc
1 Vc

2 . . . Vc
n

)T
. Observe that A(ν) is a time varying matrix due to the

dynamics of ν(t).

2.3 Hydraulic networks

So far we have considered the flowrate as an input that we can control. However, pumps
that regulate the flows generate a pressure and as a consequence produce a flow. Mo-
tivated by this observation we introduce a model of a hydraulic network that models
the pressure and flow dynamics of a district heating system. We adopt this model from
(De Persis and Kallesoe 2011) with a topology similar as in Figure 2.4 with the diffe-
rence that no storage device is included. Moreover, in this model the heat dynamics are
not considered, the heat exchangers are modeled as a valve and additionally models of
pumps and pipes are introduced. We briefly state the models of these components along
with assumptions after which we derive the model of the overall network by connecting
the components.
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2.3.1 Components

The hydraulic network consists of multiple components (pumps, pipes and valves) that
are characterized by their dynamic and algebraic relationships between the flow q̃k

through the component k and the pressure drop hi − h j across that component, where
subscripts i and j denote the two ends of component k. We summarize the relations for
the considered components below.

1. Pump: A pump is a device that is able to deliver a desired pressure difference

hi − h j = −∆hpk, (2.21)

where ∆hpk is the pressure difference created by the pump and can be regarded
as a control input. We consider pumps that can only apply positive pressures i.e.
∆hpk ≥ 0.

2. Pipe: We assume that the fluid is incompressible and that the diameter of the pipe
is constant. From this it follows that the model for the k-th pipe is given by

hi − h j = Jk
dq̃k

dt
+ λk(Kpk, q̃k), (2.22)

where Jk is a constant that depends on the mass density of the fluid and pipe
dimensions, q̃k is the flow through pipe k and λk(Kpk, q̃k) ∈ C1(R;R) is strictly
increasing in q̃k and Kpk ∈ R is a constant that models the pipe characteristics5.

3. Valve: The vales are modeled by a relationship between the pressure drop across
the valve and the flow through it, i.e.

hi − h j = µk(Kvk, q̃k), (2.23)

where µk(Kvk, q̃k) ∈ C1(R;R) is increasing in q̃k and and Kvk ∈ R is a constant
that models the valve opening.

Note that each of these components can be written as

∆hk = Jk
dq̃k

dt
+ λk(Kpk, q̃k) + µk(Kvk, q̃k) − ∆hpk, (2.24)

when we take for the different components

5λ is introduced with some abuse of notation since there is no relation with the nonlinear mapping in
(2.7a).
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1. Pump: Jk = 0, λk = 0 and µk = 0.

2. Pipe: µk = 0 and ∆hpk = 0.

3. Valve: Jk = 0, λk = 0 and ∆hpk = 0.

2.3.2 Topology and compact form

Motivated by the predominant topology for district heating networks, we consider a to-
pology with a single producer and multiple end-users. In order to guarantee that each
end-user is connected to the producer we make the following assumption:

Assumption 2.12 (Connected graph). The graph G is connected.

We associate each end-user to a valve and make the following assumption on topo-
logy of the network:

Assumption 2.13 (End-user valves located on a chord). All end-user valves are located
on a chord of G and are connected in series with a pump and a pipe.

We also associate the producer to a valve and to guarantee that each end-user can be
reached from the producer we make the assumption:

Assumption 2.14 (Location producer valve). The edge corresponding to the producer
valve belongs to each fundamental loop as defined in (1.2).

An example of a topology that satisfies Assumptions 2.12-2.14 is given in Figure 2.5.

We now collect all q̃k in a vector q̃ ∈ Rm, where m is the total number of components
in the network and we let the first n entries correspond to the valves of the n end-users. It
has been proven in (De Persis and Kallesoe 2011) that these assumptions imply that the
fundamental loop matrix takes the form of

D =
(

In F
)
, (2.25)

where F has entries fi j ∈ {0, 1}. The measured output is the pressure drop across the
end-user valves, that is

yi = µi(Kvi, q̃i), (2.26)

for i ∈ {1, . . . , n}.
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Figure 2.5: Example topology of a hydraulic network (De Persis and Kallesoe 2011).

In order to write the system in compact form we define

f (q̃) = λ(q̃) + µ(q̃), (2.27)

where

λ(q̃) =


λ1(Kp1, q̃1)

...

λm(Kpm, q̃m)

 (2.28)

µ(q̃) =


µ1(Kv1, q̃1)

...

µm(Kvm, q̃m)

 . (2.29)

Moreover, let µc(q̃) be the first n components of µ(q̃), i.e.

µc(q̃) =


µ1(Kv1, q̃1)

...

µn(Kvn, q̃n)

 . (2.30)

We also introduce a new state vector q ∈ R|L| with |L| be the number of cycles in G
which is more convenient for the analysis

q̃ = DT q. (2.31)

The components of the vector q̃ denote the flow through their corresponding cycle while



2.4. Optimal load sharing 25

the components of q denote the flow through a component. We are now ready to com-
pactly write the overall network model.

Lemma 2.15 (Compact form hydraulic network). Under Assumptions 2.12–2.14 we can
write the dynamics and output of a hydraulic network as

Jq̇ = − D f (DT q) + u

y =µc(q),
(2.32)

where J = DJDT , u = D∆hp, f (·) as in (2.27) and µc(·) as in (2.30).

Proof. A detailed proof can be found in (De Persis and Kallesoe 2011). �

Remark 2.16 (Inputs in a fundamental loop). Note that the input to system (2.32) is given
by u = D∆hp and therefore ui consists of the sum of all the pump pressures delivered in
the i-th fundamental loop. Since D has full row rank and consists of non-negative entries
it is possible to find a (not necessarily unique) ∆hp ≥ 0 for any given u = D∆hp ≥ 0.

2.4 Optimal load sharing

In case multiple producers are connected to a district heating system it is desirable to
coordinate the production optimally among the producers. To this end, we assign a
strictly convex linear-quadratic cost function Ci(upi) to each producer of the form

Ci(ui) =
1
2

qiu2
i + riui + si, (2.33)

with qi ∈ R>0 and si, ri ∈ R. The total cost can be expressed as

C(u) =
∑
i∈V

Ci(ui) =
1
2

uT Qu + rT u + s, (2.34)

where Q = diag(q1, . . . , qn), r = (r1, . . . , rn)T and s = Σn
i=1si. Minimizing (2.34) while

satisfying the equilibrium condition

0 = − Bλ + Eu − d, (2.35)

of system (2.7a) gives rise to the following optimization problem:

minimize
u,λ

C(u)

subject to 0 = −Bλ + Eu − d.
(2.36)
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A solution to (2.36) is derived in (Trip et al. 2016, Lemma 4) and for completeness
we provide a similar lemma.

Lemma 2.17 (Solution to optimization problem (2.36)). The solution to (2.36) is given
by

u = Q−1(κ − r), (2.37)

where

κ = ET 1n1
T
n

1T
p Q−11p

(d + EQ−1r). (2.38)

Proof. The proof follows standard arguments from convex optimization as discussed in
(Boyd and Vandenberghe 2004). First we introduce the Lagrangian

L(u, ζ) = C(u) + ζ(−Bλ + Eu − d), (2.39)

where ζ ∈ R is the Lagrange multiplier. Observe that L(u, ζ) as in (2.39) is strictly
convex in u since C(u) is strictly convex and concave in ζ. It follows that there exists a
saddle point (u, ζ) corresponding to maxζ minu L(u, ζ), and it satisfies

0 = ∇C(u) + 1pζ

0 = −Bλ + Eu − d.
(2.40)

From (2.34) we obtain that ∇C(u) = Qu + r and together with (2.40) this implies that

u = −Q−1(1pζ + r) (2.41)

1T
p u = 1T

n d, (2.42)

and solving for ζ yields

ζ = −
d + 1T

n (EQ−1r)
1T

p Q−11p
. (2.43)

By defining
κ = ET1nζ, (2.44)

it follows that κ is as in (2.38) and we obtain from (2.41) that

u = −Q−1(κ + r). (2.45)

For this reason the solution to (2.36) is given by (2.37), which proves the thesis. �
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Remark 2.18 (Identical marginal costs). Note that we can rewrite (2.37) as

κ = Qu + r, (2.46)

and that κ ∈ Im(1p). It follows that, when evaluated at the solution to (2.36), the so-
called marginal costs ∂Ci(ui)

∂ui
= qiui + ri are identical for all i ∈ Ve (Hoy et al. 2011).





Chapter 3
Temperature and volume regulation with a single

producer

Abstract

In heat networks, energy storage in the form of hot water in a tank is a viable appro-
ach to balancing supply and demand. In order to store a desired amount of energy,
we require that both the volume and temperature of the water in the tank converge
to desired setpoints. Therefore we consider a volume and temperature regulation
problem of a storage in a district heating system. The storage tank is fed by a single
producer and provides multiple consumers in a district heating system. We design
a proportional controller for the flows and an internal model based controller for
the heat injection that guarantees the achievement of the desired goals despite a
possibly time varying demand. In order to analyse the stability of the closed loop
system we consider a nonlinear model that describes the temperature and volume
dynamics. The controllers are designed such that only measurements of the vo-
lume and temperature in the storage device are required and we prove asymptotic
stability towards the desired setpoints despite the time varying demand.

The proposed methods to (optimally) regulate a district heating system can be cate-
gorized into three approaches. The first approach is to control control the pumps

and heat injection in a district heating network is by means of a PID controllers (Liu and
Daley 2001). The second approach is to solve an optimization problem and implement
the optimal control inputs such as in (Aringhieri and Malucelli 2003), where a linear pro-
gramming model for optimal resource management of a combined heat power plant, in
combination with a distribution network is presented. Another example of this approach
is a model predictive control strategy such as in (Sandou et al. 2005). The last approach
is to optimize the topology such as has been proposed in (Jäschke and Skogestad 2014)
where an optimization problem is solved to maximize the heat transfer in heat exchan-
ger networks with stream splits. Note that these approaches are not mutually exclusive
and can therefore be combined. The stability analysis is of these systems is often sim-
plified. In (Hangos et al. 2004) the stability of the individual components is analyzed
instead of the whole closed loop system. Moreover, in many cases the dynamics of the
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network are linearized such as in (Hao et al. 2014) and for model predictive controllers
it is well known that it is difficult to prove any stability results. Another possibility to
simplify the model is to neglect the temperature dynamics and consider only the dyna-
mics of the mass flow rates. Examples of this approach can be found in (De Persis and
Kallesoe 2011) and (De Persis et al. 2014) were a pressure regulation problem was sol-
ved for nonlinear hydraulic networks. In Chapters 4-6 we follow a similar approach by
neglecting the temperature dynamics.

In this chapter we consider a district heating system with a topology that consists
of a single producer, a storage device and multiple consumers. The non-linear model
corresponding to this topology was derived in Section 2.2.3. Since the heat supply and
demand has a fluctuating behaviour, storage tanks can guarantee a balance between de-
mand and supply. For example an optimization problem can provide optimal storage
levels in order to secure supply in the future. An example of this is discussed in Chapter
7. Within an interval that is defined between two times in which a setpoint is provided,
the (optimal) storage levels are required to be reached and maintained. For this reason
we consider a setpoint tracking problem. However, the demand is not necessarily con-
stant during these intervals, but fortunately we can model the periodicity that occurs in
these demand signals and we can use this in the design of the controllers that regulate the
flowrates and heat injection in these networks.

We design two controllers, a proportional controller that regulates the flowrates and
an internal model based controller that regulates the heat production. For the design of
the latter controller the model of the heat demand is used such that we can guarantee
that the stored volume and temperature converges asymptotically towards their desired
reference values. The controllers are robust to parametric uncertainties in the model
and only measurements in the storage tank are required. Finally we provide a stability
analysis of the considered nonlinear model in closed loop with both controllers along
with a case study to illustrate the performance of the controllers.

The chapter is organized as follows: In Section 3.1 we introduce the model and
problem formulation, followed by the controller design in Section 3.2. The main result
is stated in Section 3.3 and a case study with corresponding simulations is presented in
Section 3.4.
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3.1 Temperature and volume regulation

In this chapter we consider the model (2.19) that was derived in Section 2.2. For conve-
nience we restate the model here

M(x)ż = A(ν)z + Uu − d (3.1a)

ẋ = Nν (3.1b)

y = Cz, (3.1c)

with M(x), A(ν), U, N and C as in (2.20a).
Optimization techniques aiming at maximizing profit, e.g. by shifting loads in time,

can be commonly found in the power systems literature (Li et al. 2011). Motivated by
these techniques, which provide optimal storage levels, we define a setpoint tracking
problem with the objective to store a desired amount of energy. These setpoints are con-
sidered for both the temperature and volume of the hot layer in the storage device. The
motivation for this approach is that a combination of a temperature and a volume defines
the amount of energy that is stored, as shown in Appendix A.1. Hence the regulation
problem is defined as follows:

Problem 3.1 (Output regulation problem). Design controllers that regulate the heat in-
jection u and the flow rates ν such that the controllers in closed loop with system (3.1)
satisfy

lim
t→∞

(xs − xs) = 0 (3.2)

lim
t→∞

(zs − zs) = 0, (3.3)

for an unknown demand d, where xs and zs are desired setpoints for the storage volume
and temperature, respectively. �

Since xs cannot exceed the capacity of the storage tank we introduce the following
standing assumption in this chapter:

Assumption 3.2 (Feasible setpoint). We assume that the setpoint xs ∈ V with V as in
(2.2).

Moreover, we restrict ourself to a setup which allows only for measurements that are
located at storage device. We therefore introduce the following assumption:

Assumption 3.3 (Measurements). Only the storage volume xs and temperature zs are
measured and available for the controllers.
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We will show that Assumption 3.3 together with the controller design implies that no
communication between the controllers is required.

3.1.1 Modeling of the power demand

In order to solve Problem 3.1 the disturbance d (energy demand) needs to be rejected.
Since we assume that d is unavailable to the controller we make the following assumption
in order to guarantee that the problem is solvable:

Assumption 3.4 (Disturbance model). The disturbance di for all i ∈ {1, ..., n} is genera-
ted by the exosystem

ẇi = S iwi

di = Γiwi,
(3.4)

where ωi ∈ R
ωi , Γi ∈ R

1×ωi and S i ∈ R
ωi×ωi for some integer ωi > 0. Moreover, S i

and Γi are available to the controller for all i ∈ {1, ..., n}. Finally, all eigenvalues of
S̃ := block.diag

(
S 1 . . . S n

)
have zero real part and multiplicity one in the minimal

polynomial.

Remark 3.5 (Implication of Assumption 3.4). Assumption 3.4 implies that all trajecto-
ries of (3.4) are bounded and none of them decay to zero as t → ∞. For this reason
di consists of a linear combination of constants and sinusoidal signals of which the fre-
quencies are known and the amplitudes and phase shifts are unknown to the controller.
A large class of disturbance signals can be modelled by resorting to a sufficiently large
number of frequencies (Isidori et al. 2003). Moreover, these frequencies can be obtained
from historical data or heat demand predictions such as in (Dotzauer 2002). If these
historical data are not available, adaptive and robust methods to deal with the case of
unknown frequencies are available (Isidori et al. 2003). The investigation of these met-
hods in the present context, however, goes beyond the scope of this thesis.

In line with Problem 3.1 we define the tracking error of the system as

e = zs − zs,

which is due to Assumption 3.3 available to the controller. We incorporate the reference
signal zs in the exosystem by defining

S := block.diag
(

S̃ 0
)

(3.5)

Γ := block.diag
(

Γ1 . . . Γn 1
)

(3.6)

w :=
(

wT
1 . . . wT

n wT
n+1

)T
, (3.7)
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with wT
n+1 ∈ R. Moreover, we assume that wn+1 is initialized such that wn+1(0) = zs

which implies that
ẇ = S w

d = Γw,
(3.8)

satisfies dn+1(t) = zs for all t ≥ 0. Using (3.1) and (3.4)-(3.8) we can write the dynamics
as

M(x)ż = A(ν)z + Uu + Pw (3.9a)

ẋ = Nν (3.9b)

ẇ = S w (3.9c)

e = Cz + Qw, (3.9d)

where

P =

 03×(s−1) 03×1

−Γ 0n×1


Q =

(
01×n 1

)
.

(3.10)

We are now ready for the controller design.

3.2 Controller design

The design of the controller consists of two parts. In the first part we design a controller
that regulates the flowrates in the pipes such that (3.2) is satisfied. The controller that
regulates the flowrate at the consumers is implicitly set to a constant depending on their
heat demand. We assume that this flowrate is not communicated to any other controller
but instead the aggregated flow that returns to the cold layer in the storage device is
measured. This measurement along with a measurement of the volume in the hot storage
layer is communicated to the producer. In the second part we design a internal model
based controller that regulates u such that (3.3) is satisfied. The motivation for the choice
of these controllers follows from the stability analysis as presented in Section 3.3. In
that section we show that the two controllers in closed loop with (3.9) asymptotically
converges towards the desired setpoints and therefore solves Problem 3.1.
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3.2.1 Proportional control of the flow rates

We first design a controller that regulates the flow ν such that (3.2) is satisfied. The
proposed controller for the flowrates is given as

νp = 1T
n νc − υ(xs − xs)

νc = νc,
(3.11)

where υ ∈ R>0 is the gain of the controller and νc ∈ R
n
>0 is the vector of flowrates set by

(a controller located at) the consumers.

Lemma 3.6 (Solution of the volume dynamics). System (3.9b) in closed loop with con-
troller (3.11) has solution

xs(t) = e−υt(xs(0) − xs) + xs, (3.12)

and
xs(t) ∈ V ×V, (3.13)

for all t ≥ 0 whereV is as in (2.2).

Proof. Evaluating (3.9b) with input (3.11) provides

ẋs = −υ(xs − xs), (3.14)

which yields (3.12). Together with Assumption 3.2, it follows that (3.13) is satisfied. �

From Lemma 3.6 we can conclude that (3.2) is satisfied. Moreover, observe that
system (3.9b) in closed loop with controller (3.11) is independent from the temperature
dynamics. This observation will be used in the design of the controller that regulates the
heat injection and is presented in the next section.

3.2.2 Internal model based control of the heat injection

We design a controller that regulates the heat injection u, such that (3.3) is satisfied. The
control design is motivated by the observation that (3.9b) in closed loop with controller
(3.11) satisfy limt→∞ x(t) = x and limt→∞ ν(t) = ν where

x =

 xs

Vmax − xs


ν =

 1Tνc

νc

 , (3.15)
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with Vmax as in Section 2.1.1. Similar as in (Isidori et al. 2003) we consider a controller
of the form

ξ̇ = Fξ + Ge

u = Hξ + Ke,
(3.16)

with ξ ∈ Rl, l = 1 +
∑n

i=1 ωi + r and where r the relative degree between the input u and
the output e of system (3.9a) with (3.9d) with x = x and ν = ν. Furthermore let F, G, H
and K be matrices such that there exist matrices Π, Σ and R that solve

ΣS = FΣ

R = HΣ,
(3.17)

and
ΠS = AΠ + UR + P

0 = CΠ + Q,
(3.18)

where
A = M(x)−1A(v)

U = M(x)−1U

P = M(x)−1P.

(3.19)

Note that M(x) is an invertible matrix due to its diagonal form with strictly positive
entries. Equations (3.17) and (3.18) are commonly referred to as the regulator equations.

As a preliminary step we assume that x(t) = x and ν(t) = ν for which we prove that
a controller of the form (3.16) exist and solves Problem 3.1. After that we extend these
results by showing that assuming x(t) = x and ν(t) = ν is not required to draw the same
conclusions.

Theorem 3.7 (Output regulation with constant volumes and flows). Let x = x and ν = ν

with x and ν as in (3.15), then there exist F, G, H and K such that the solutions of the
closed-loop system (3.20)-(3.16) with exosystem (3.8) are bounded and satisfy (3.3), i.e.

lim
t→∞

e(t) = 0.

Proof. Since x = x and ν = ν, (3.9a), (3.9c) and (3.9d) take the form of the linear time
invariant system

ż = Az + Uu + Pw

ẇ = S w

e = Cz + Qw.

(3.20)

For this system it is well known (see e.g. (Isidori et al. 2003)) that a controller of the
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form (3.16) solves the robust output regulation problem if there exists Π, Σ and R such
that (3.17) and (3.18) are satiesfied. Lemma 1.4.2 in (Isidori et al. 2003) states that the
regulator equations have a solution for all A, U, P, C and Q if and only if

det
 A − λI U

C 0

 , 0, (3.21)

for all λ which are eigenvalues of S . Equivalently this is satisfied if and only if

det



−νp − λ 0 νp 0T
n 1

νp −νp − λ 0 0T
n 0

0 0 −1T
n νc − λ νc

T 0
0n νc 0n −[νc] − λIn 0n

0 1 0 0T
n 0


, 0. (3.22)

Observe that both the last row and column have only one non-zero entry. For this reason
condition (3.21) holds, if and only if

det


νp 0 0T

n

0 −1T
n νc − λ νc

T

0n 0n −[νc] − λIn

 , 0. (3.23)

Due to the upper triangular form, (3.23) reduces to

νp
(
1T

n νc + λ
) n∏

j=1

(
νc, j + λ

)
, 0, (3.24)

where νc, j is the j-th element of vector νc. By Assumption 3.4 we have that all eigenvalues
of S have zero real part which implies that λ is purely imaginary. Since νp > 0 and
νc, j > 0, it follows that (3.24) is satisfied, which implies there exists Π, Σ and R such that
(3.17) and (3.18) are satisfied and therefore proves the thesis. �

Remark 3.8 (Parametric uncertainties of A). Note that A in (3.19) is assumed to be
available to the controller. However, A depends on ν, which might not be known. Fortu-
nately, as shown in (Isidori et al. 2003), the controller in (3.16) is robust against model
parametric uncertainties, and, hence, against uncertainty in the estimate of ν.

3.3 Stability analysis of the closed loop system

In this section we will show that (3.11) and (3.16) in closed loop with (3.9) solve Problem
3.1. The block diagram of the closed loop system is depicted in Figure 3.1. The main
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ẋ = Nv
M(x)ż = A(v)z + B1u + Pw

e = Cz + Qw

νp = 1T
n νc − α(xs − xs)

νc = νc,

ξ̇ = Fξ + Ge

u = Hξ + Ke

ẇ = S w

w
x, ν

e

u

xs

ν

Figure 3.1: Block diagram of the closed loop system.

idea behind the controller design and stability analysis is that there is no feedback from
the blocks on the right of Figure 3.1 to the blocks on the left. This implies that x and
ν converge towards constant values independent of w, u, z and e. In turn it follows that
(3.9a) asymptotically converges to a linear system. Consequently, we are required to
analyse the internal based controller in closed loop with linear system that contains a
time varying perturbation that converges asymptotically towards a constant.

The first step is to write (3.9a) in closed loop with controller (3.16) to obtain the
nonlinear system

M(x)ż = (A(v)+UKC)z+UHξ+ (UKQ+ P)w

ξ̇ = GCz + Fξ + GQw.
(3.25)

Note that applying controller (3.11) ensures that M(x(t)) is invertible for all t ≥ 0 due to
Lemma 3.6. Therefore we can define

Ae(t) = M(x)−1A(v) − A

Be(t) = M(x)−1U − U

Pe(t) = M(x)−1P − P,

(3.26)

with A, U and P being as in (3.19). Now we perform the coordinate change

ζ :=
 z − Πw
ξ − Σw

 . (3.27)
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Bearing in mind (3.17) and (3.18), (3.27) allows us to write closed loop system (3.25) as

ζ̇ = (A′ + F′(t))ζ + B′(t)w, (3.28)

with

A′ =

 A + UKC UH
GC F

 (3.29)

F′(t) =

 Ae(t) + Be(t)KC Be(t)H
0 0

 (3.30)

B′(t) =

 Pe(t) + Be(t)R + Ae(t)Π
0

 . (3.31)

Note that in contrast to what happens in linear time invariant systems, (3.31) only vanis-
hes in case x = x and ν = ν. Consider now (3.27) with system (3.28) and observe that
ζ = 0 implies that z = Πw. Due to (3.18) we know that CΠ + Q = 0 and therefore also
that

e = Cz + Qw = 0.

For this reason a sufficient condition such for (3.3) being satisfied is that ζ is bounded
and limt→∞ ζ = 0. Since in Section 3.2.1 it was already proven that (3.2) holds, this
would also imply that Problem 3.1 is solved.

Theorem 3.9 (Convergence of (3.28)). Consider system (3.28) where w is as in (3.8).
Then, for any initial condition, ζ is bounded and satisfies

lim
t→∞

ζ(t) = 0.

Proof. First we define
u′ := B′w, (3.32)

such that system (3.28) becomes

ζ̇ = (A′ + F′(t))ζ + u′. (3.33)

We know by Lemma B.3 that the origin of (3.33) is uniformly exponentially stable when
u′ = 0. For this reason (see for instance (Rugh 1996)), there exists a state transition
matrix Φ(t, s) and parameters µ ∈ R>0 and λ ∈ R>0 such that

||Φ(t, t0)|| ≤ µe−λ(t−t0), (3.34)
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and that the solution ζ(t) is given by

ζ(t) = Φ(t, t0)ζ(t0) +

∫ t

t0
Φ(t, τ)u′(τ)dτ.

Since we can bound ||B′(t)w(t)|| < γ < ∞ for any t > 0 we can also bound ||ζ || by (see
e.g. (Khalil 2002))

||ζ || ≤ ||Φ(t, t0)ζ(t0) +

∫ t

t0
Φ(t, τ)u′(τ)dτ||

≤ µe−λ(t−t0)||ζ(t0)|| +
∫ t

t0
µe−λ(t−τ)||u′(τ)||dτ

≤ µe−λ(t−t0)||ζ(t0)|| +
µγ

λ
sup
τ∈[t0,t)

||u′(τ)||,

implying that ||ζ || is bounded. Now consider the defined input (3.32). Since limt→∞ x = x
and limt→∞ ν = ν we know that limt→∞ Ae(t) = 0, limt→∞ Be(t) = 0 and limt→∞ Pe(t) =

0. This implies limt→∞ B′(t) = 0 from which we conclude

lim
t→∞
||u′|| = lim

t→∞
||B′w|| = 0. (3.35)

By the boundedness of ||ζ || and (3.35), we conclude that limt→∞ ||ζ || = 0, which proves
the thesis. �

3.4 Case study

In order to illustrate the model and the proposed controller we consider a case study. A
second case study is presented in Appendix C.

We consider a case study with three different consumers, each having a time varying
heat demand. Energy can be stored in a stratified thermal storage which is designed to
operate at a constant temperature of 85◦C. The stored amount of energy is regulated by
setting a desired setpoint for the volume. Two time intervals are considered in which
we store energy in the first interval after which the same amount of energy is drained
in the second interval. Motivated by the operating temperature we take the setpoint and
inital condition of the storage temperature equal to zs = zs(0) = 85◦C. The density
and specific heat are given by ρ = 975kg/m3 and Cp = 4190J/Kg◦C, respectively. The
total volume of the storage tank is Vmax = 1000m3 and the volume of the hot layer is
initialized at xs(0) = 100m3. Each heat exchanger has a volume of Vc

i = V p = 2
100 m3 and

the temperatures of the heat exchangers of the producer and consumers are initialized at
zp(0) = 70◦C and zc(0) = 1 · 30◦C, respectively.
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Figure 3.2: Time varying demand pattern.
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Figure 3.3: Three consumers with time varying demand.
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Figure 3.4: Magnification of Figure 3.3. Storage temperature and the power injection
from t = 0 and t = 8000.
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Figure 3.5: Temperatures of the heat exchangers under time varying demand.
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Figure 3.6: Magnification of Figure 3.5. Temperatures of the heat exchangers from t = 0
and t = 8000.
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The numerical values of controller (3.16) are obtained by following the design pro-
cedure detailed in (Isidori et al. 2003, Section 1.5). These values are given by

F =



4 −10 10 −5 1 −90 −900
1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 −600 1
0 0 0 0 0 −90000 0


G =

(
0 0 0 0 0 600 90000

)T

H =
(

5 −10 10 −5 1 −90 −900
)
,

and K = 0. The gain υ in (3.11) regulating the flow is set to υ = 0.005. To avoid non-
positive and too high flow rates, we impose a saturation on the corresponding control
input and is given by 0.05m3/s ≤ νp ≤ 0.25m3/s. Note that this saturation is not con-
sidered analysis of this chapter, but in chapters 4 and 5 an analysis that includes input
saturations in a related problem is addressed.

The domain of the two time intervals that we consider is given by 0s ≤ t < 8000s
and 8000s ≤ t < 16000s. The volume setpoints are xs = 900m3 and xs = 100m3 for
the first and second time interval, respectively. The demand of the three consumers is
given in Figure 3.2. The flowrates of the consumers in the first time interval are given
by νc =

(
0.024 0.033 0.041

)T
m3/s and in the second time interval they are set

to νc =
(

0.049 0.057 0.065
)T

m3/s. Figure 3.4 shows that the temperature in the
storage is approximately zs = 85◦C within ten seconds despite the time varying demand.
Furthermore Figure 3.3 shows that also the volume converges asymptotically towards the
desired setpoints during each time interval. We observe some transient behaviour of the
heat injection at t = 8000s due to a change in setpoints, flowrates and extraction rates.
In Figure 3.5 the temperatures of the heat exchangers of the consumers show the impact
of the time-varying demand. Finally in Figure 3.6 we again see a transient behaviour at
t = 0s and t = 8000s due to a change in setpoints, flowrates and demand.

Remark 3.10 (Performance with respect to frequency uncertainties.). Additional simula-
tions have shown that the performance of the controller is not significantly deteriorated
in the presence of small-range frequency uncertainties (around 20%) in the consumer
demand pattern. The reason is that the controller that regulates the heat injection has
a large integral gain and the system has slow dynamics due to the large volume in the
storage tank. Moreover, in case the performance is deteriorated due to uncertainties in
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the frequency, adaptive and robust methods can be used to compensate for the frequency
uncertainties (Isidori et al. 2003).





Chapter 4
Volume regulation and quasi-optimal production of

multiple producers

Abstract

In this chapter we consider a flow network for which the goal is to solve a practical
optimal regulation problem in the presence of input saturation. Based on Lyapunov
arguments we propose distributed controllers which guarantee global convergence
to an arbitrarily small neighborhood of the desired optimal steady state while ful-
filling the constraints for all the time. As a case study we apply our distributed
controller to a district heating network.

R
egulation of flow networks recently received much attention due to its many diffe-
rent applications, see e.g. (Lovisari et al. 2014, Burbano and Di Bernardo 2014,

Bauso et al. 2013). Moreover, there are several dynamical networks that share simi-
lar models and control problems. Some of these examples are DC networks (Zhao
and Dörfler 2015), heating, ventilation and air conditioning (HVAC) systems (Gupta
et al. 2015), compartmental flow systems (Blanchini et al. 2016), multi-agent systems
(Zheng et al. 2011), hydraulic networks (De Persis and Kallesoe 2011), (De Persis
et al. 2014), and power grids (Trip et al. 2016).

In flow networks it is often desirable to have optimal flows, according to some
cost function. Static optimization problems associated with networks have been dis-
cussed in great detail (see e.g. (Bertsekas 1998), (Boyd and Vandenberghe 2004) and
(Rockafellar 1984), and are commonly referred to as the mathematical theory of network
optimization. Moreover, it is useful to solve these optimization problems in a distributed
fashion, such as in (Gharesifard and Cortés 2014), in order to avoid excessive communi-
cation and computation times. However, most real networks have to react dynamically to
changes in the network, which requires feedback controllers. This is for example done in
(Bauso et al. 2013) where controllers are designed for linear systems to achieve asymp-
totic optimality. In (Bürger et al. 2014) and (Kim and De Persis 2015) this is extended
to nonlinear systems by using passivity arguments. Rather than including an optimality
condition on the flow, (Trip et al. 2016) assigns a cost function to the inputs and guaran-
tees optimal state regulation for power networks. This approach is also combined with
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optimal flows in (Bürger et al. 2015), which additionally considers capacity constraints
on the transportation lines. However, these constraints depend on the initial conditions,
which is not desirable in networks that have, e.g. physical constraints. Accordingly, the
motivation arises to consider input and state constraints in regulation problems for flow
networks for which the constraints are never violated, independent of the initial conditi-
ons. Model predictive control (MPC) handles input and state constraints in a natural way,
as has been shown in (Danielson et al. 2013), where a capacity maximization and balan-
cing problem is solved. However, the stability of MPC systems is often hard to analyze
and running MPC algorithms is computationally intensive. A solution that avoids the
use of MPC but does not consider any optimality is provided in (Bürger et al. 2013). In
this paper the authors show that there exists a strong relation between clustering, optimal
network flow problems and output agreement. The stability of flow networks under time-
varying disturbances can be guaranteed by means of internal model based controllers on
the edges, as has been shown in (Bürger and De Persis 2015) and (De Persis 2013). It is
well know that these controllers can also be implemented in a distributed fashion, such
as in (Como et al. 2013).

Port-Hamiltonian (PH) systems have also proven to be a powerful tool for the mo-
deling and control of nonlinear networked systems (van der Schaft and Jeltsema 2014).
These PH systems have been used extensively to model physically interconnected dyna-
mical systems as well as to synthesize controllers that ensure output regulation (van der
Schaft and Wei 2012, Romero et al. 2013, Ortega et al. 2008, Jayawardhana et al. 2007).
In (Wei and van der Schaft 2013) a flow network is modeled as a PH system and neces-
sary and sufficient conditions are provided to guarantee load balancing in the presence of
input constraints but with no optimality. It is shown that if the graph has uni-directional
flow due to the saturation, a sufficient condition for output agreement is that the associa-
ted directed graph is strongly connected. The same authors recently provided a result in
which proportional-integral (PI) controllers are able to handle state constraints (Wei and
van der Schaft 2014).

The model we consider is related to the one in Chapter 3. However, motivated by
the slow temperature dynamics which can be made approximately constant by adequate
control of the heat injection, we neglect the temperature dynamics in this Chapter. This
allows us to design controllers for a more complex network and provide a stability cer-
tificate for the resulting closed loop system. To this end, we consider a control problem
in which the goal is to achieve output regulation in flow networks. Motivated by capa-
city constraints and directional constraints we consider transient constraints on both the
inputs at the nodes and flows on the links.

The main contributions of this chapter are twofold. First, we provide two distribu-
ted controllers, one that regulates the input on each node and one that controls the flows
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on the edges. Similar as in (Wei and van der Schaft 2013) we equip the controllers
with integral action. Building upon (Trip et al. 2016), (Bürger and De Persis 2015) and
(Bürger et al. 2015), we show that these distributed controllers guarantee convergence
to a quasi-optimal steady state, that is, to a steady state that is arbitrarily close to the
optimal one. Second, we extend this result in the presence of heterogenous saturation on
both inputs. In particular, we can enforce positivity constraints on the link flows, obtai-
ning a network with unidirectional flows. In both cases we provide sufficient conditions
for global asymptotic stability based on Lyapunov arguments. Finally, we apply these
results to a district heating system with storage devices. This chapter can be considered
as a preliminary work for Chapter 5 in which a similar control problem is solved. The si-
milarities and differences between the control problem and corresponding control design
are highlighted in that chapter.

The structure of the chapter is as follows. In Section 4.1 we introduce the model and
two problem formulations. The first problem considers state regulation with optimality
conditions on the steady state inputs, whereas the second one is an extension, in which
we additionally consider saturation on the inputs and the flows. The solution to the first
problem is given in Section 4.2 and the one to the second problem is given in Section
4.3. Finally, we present a case study in Section 4.4.

4.1 Output regulation and quasi-optimal steady state inputs

In this chapter we consider model (2.7) with E = I (i.e. all nodes are actuated) and
h(x) = x such that we obtain

Tx ẋ = −Bλ + u − d (4.1a)

y = x, (4.1b)

where Tx ∈ R
n×n
>0 is a diagonal matrix, B ∈ Rn×m is the incidence matrix of the graph G,

λ ∈ Rm are the flows, u ∈ Rp are the inputs and d ∈ Rn the unmeasured disturbance.
Moreover, for convenience we repeat Assumption 2.5:

Assumption 4.1 (Connectedness). The graph G is connected.

We discuss two control objectives. The first objective is concerned with the output
(4.1b), at steady state.

Objective 4.2 (Output regulation). Let y be a desired constant setpoint, then the output
y of (4.1) asymptotically converges to y, i.e.

lim
t→∞
‖x(t) − y‖ = 0. (4.2)
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Remark 4.3 (Tracking of a ramp). The assumption that y = x in (4.2) is a constant
setpoint can be relaxed to a the possibility of tracking a linear transition between the
current setpoint x(t1) to a new setpoint x(t2) with t2 > t1. To do so, the desired reference
signal is modelled as a ramp, i.e.

x(t) = x(t1) +
t − t1
t2 − t1

(x(t2) − x(t1)). (4.3)

After a coordinate transformation x̃(t) = x(t)− x(t), we obtain a system of the same form
as (2.7a), where the evolution of x̃ is described by

Tx ˙̃x = −Bλ + Eu − d̃. (4.4)

The corresponding constant disturbance is now given by

d̃ = d +
1

t2 − t1
(x(t2) − x(t1)). (4.5)

Note that boundedness of x̃i does not imply boundedness of xi as xi(t) increases or decre-
ases constantly over time. Therefore, the used invariance principle in the later sections
is not immediately applicable if we consider the original variables of the system. Ne-
vertheless, the subsequent analysis can be applied to the incremental system (4.4) if we
consider x̃ as the state.

At a state where y = x is constant, system (4.1a) necessarily satisfies

0 = − Bλ + u − d. (4.6)

Premultiplying (4.6) with 1T
n results in

0 = 1T
n Eu − 1T

n d, (4.7)

such that at a steady state the total input to the network needs to be equal to the total dis-
turbance. It is therefore natural to wonder if the total input can be coordinated optimally
among the nodes. Optimal coordination is discussed in Section 2.4 and from Lemma
2.17 we obtain that the optimal input u is given by (2.37) which we repeat here

u = Q−1
ET 1n1

T
n

1T
p Q−11p

(d + EQ−1r) − r
 , (4.8)

where Q = diag(q1, . . . , qn) and r = (r1, . . . , rn)T with qi and ri the quadratic and linear
costs respectively corresponding to input ui (see also (2.33)). This leads to the second
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control objective we consider.

Objective 4.4 (Optimal feedforward input). The input at the nodes asymptotically con-
verge to the solution to (2.36), i.e.

lim
t→∞
‖u(t) − u‖ = 0, (4.9)

with u as in (4.8).

In order to guarantee (4.9) without relying on a centralized controller we introduce
a communication network. This network is introduced in more detail in Section 4.2.
For convenience, we summarize the objectives and constraints yielding the following
controller design problem.

Problem 4.5 (Controller design problem). Design distributed controllers that regulate
inputs u at the nodes and the flows λ on the edges for system (4.1), such that

lim
t→∞
‖x(t) − y‖ = 0

lim
t→∞
‖u(t) − u‖ = 0,

(4.10)

where y is the desired setpoint and u is as in (4.8). �

We now turn our attention to possible constraints on the control inputs u and λ under
which the objectives should be reached. First, in physical systems the input u is gene-
rally constrained by a minimum value (often zero, preventing a negative input) and a
maximum value, representing e.g. a production capacity.

Constraint 4.6 (Input limitations). The inputs at the nodes satisfy

u−i < ui(t) < u+
i , (4.11)

for all i ∈ V and all t ≥ 0, with u−i , u
+
i ∈ R being suitable constants.

Second, the flows on the edges are often constrained to be unidirectional and to be
within the capacity of the edges. For this reason we consider the following constraint on
the flows on the edges:

Constraint 4.7 (Flow capacity). The flows on the edges satisfy

0 < λk(t) < λ+
k , (4.12)

for all k ∈ E and all t ≥ 0, with λ+
k ∈ R>0 being a suitable constant.
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Note that physical limitations and safety requirements demand that the constraints
should be satisfied for all time and not only at steady state. Summarizing, the second
control problem is formulated as follows:

Problem 4.8 (Constrained output regulation). For any given positive (arbitrarily small)
numbers εx and εu, design distributed controllers that regulate the flows on the edges λ
and input u at the nodes of system (4.1) such that

lim
t→∞
‖x(t) − y‖ < εx (4.13)

lim
t→∞
‖u(t) − u‖ < εu, (4.14)

where u is as in (4.8) and y ∈ Rn is a constant setpoint. Furthermore,

u− ≤ u(t) ≤ u+ (4.15)

0 ≤ λ(t) ≤ λ+, (4.16)

should hold for all t ≥ 0. �

Remark 4.9 (Practical convergence). In contrast to asymptotical convergence as is con-
sidered in Problem 4.5, we resort to practical convergence in order to guarantee (4.15)
and (4.16). For a study of asymptotic stability we refer the reader to Chapter 5 in which
a similar control problem is considered.

Remark 4.10 (Positive systems). A common requirement is that, additionally to Problem
4.5 and Problem 4.8, the state x has to be nonnegative, i.e. x(t) ≥ 0 for all t (see
e.g. (Rami and Tadeo 2007) (Rantzer 2011)). Although, achieving output regulation
(Objective 4.2), with x > 0, is in practical cases sufficient to ensure that x(t) ≥ 0 for all t,
when the system suitably initialized, a theoretical guarantee is difficult to obtain, due to
the presence of an unknown and constant disturbance d. An interesting future endeavor
is to study the design of controllers solving Problem 4.5 and Problem 4.8 within the
setting of so-called positive systems (Benvenuti and Farina 2002).

We will now provide a solution to Problem 4.5 in Section 4.2 followed by a solution
to Problem 4.8 in Section 4.3.

4.2 Unconstrained case

In this section we provide a solution to Problem 4.5, which also sets the ground for the
controller design and analysis that solves Problem 4.8.
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To solve Problem 4.5 we propose two controllers, one generating λ and one providing
u. The former controller takes the outputs of the incident nodes as its input and takes the
form of a standard PI controller. This controller is given by

µ̇ = γµBT y

λ = −γcBT y − γµµ,
(4.17)

where γµ, γc ∈ R>0 are suitable gains1. The latter controller, takes its local error mea-
surement y as an input. To guarantee an optimal input at steady state we assign a state
variable θi to each node. This state is communicated via a connected communication
network that is represented by2 Lc. In order to guarantee that Problem 4.5 can be solved
we make the following assumption:

Assumption 4.11 (Communication network). The graph reflecting the communication
topology is undirected and connected.

We propose the following controller:

θ̇ = −γlLcomθ − γθQ−1y (4.18a)

u = Q−1(γθθ − r), (4.18b)

where γl, γθ ∈ R>0 are suitable gains. The controller is distributed due to the diagonal
form of Q−1 and diffusive coupling between the states θ. This coupling is required in
order to achieve consensus of θ and we will prove that this implies that u converges to
the optimal steady state (4.8) despite the presence of disturbances.

Before we state the main theorem of this section we introduce the following lemma,
in which an incremental form of (4.1), in closed loop with controllers (4.17) and (4.18)
is obtained.

Lemma 4.12 (Incremental form of the closed loop system). Let Assumptions 4.1 and
4.11 be satisfied and let

θ = −
1
γθ

11T

1T Q−11
(d − Q−1r), (4.19)

and µ be any solution to

γµBµ =

(
I −

Q−111T

1T Q−11

) (
d − Q−1r

)
, (4.20)

1µ is introduced with some abuse of notation since there is no relation with the control input in (2.23).
2Note that the graph represented by Lcom does not necessarily have to coincide with the graph represented

by L.
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then the incremental states
x̃ = x − x

θ̃ = θ − θ

µ̃ = µ − µ,

(4.21)

with x, θ and µ as a solution to system (4.1), in closed loop with controllers (4.17) and
(4.18), satisfy

˙̃x = −γcBBT x̃ − γµBµ̃ + γθQ−1θ̃

˙̃θ = −γlLcomθ̃ − γθQ−1 x̃
˙̃µ = γµBT x̃.

(4.22)

Furthermore, a solution to (4.20) always exists.

Proof. We combine (4.1) with (4.17) and (4.18), to obtain the closed loop system

ẋ = − γcBBT (x − x) − γµBµ

+ Q−1(γθθ − r) + d

θ̇ = − γlLcomθ − γθQ−1(x − x)

µ̇ = γµBT (x − x).

(4.23)

In light of (4.21) it follows directly from (4.23) that (4.22) is satisfied. Lastly we prove
that there exists a µ that satisfies (4.20). Since Im(B) = ker(BT )⊥ = span(1)⊥ and

1T
(
I − Q−111T

1T Q−11

)
= 0, we know that there always exists a µ that satisfies (4.20), which

concludes the proof. �

Remark 4.13 (No damping in (4.22)). The closed loop dynamics (4.22) are similar to the
linear version of the closed loop dynamics of power grids, as studied in (Trip et al. 2016).
The main difference in the model considered here, which requires a modification of the
analysis, is the lack of damping terms.

We will now state the following theorem which gives sufficient conditions to solve
Problem 4.5.

Theorem 4.14 (Sufficient conditions for solving Problem 4.5 ). Let Assumptions 4.1
and 4.11 be satisfied and let there exists a pair of entries qi, q j such that qi , q j, then
controllers (4.17) and (4.18), in closed loop with (4.1), solve Problem 4.5.

Proof. In order to analyse the stability of the system, we use a standard quadratic Lya-
punov function

V(x̃, µ̃, θ̃) =
1
2
‖x̃‖2 +

1
2
‖θ̃‖2 +

1
2
‖µ̃‖2. (4.24)
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From Assumption 4.11 we know that the communication graph is undirected implying
that Lcom = BcBT

c with Bc is the corresponding incidence matrix. It follows, using (4.22),
that the derivative of V(x̃, µ̃, θ̃) is given by

V̇(x̃, µ̃, θ̃) = −γc‖BT x̃‖2 − γl‖BT
c θ̃‖

2, (4.25)

Due to the quadratic form of V , it is clear that V is positive definite and radially unboun-
ded. Using LaSalle’s invariance principle we can conclude that (x̃, µ̃, θ̃) converges to the
largest invariant set where V̇(x̃, µ̃, θ̃) = 0, which is given by

S :=
{
(x̃, µ̃, θ̃)|BT x̃ = 0, BT

c θ̃ = 0
}
. (4.26)

Next we characterize the dynamics on this invariant set S. These, in light of (4.22), are
given by

˙̃x = −γµBµ̃ + γθQ−1θ̃ (4.27a)
˙̃θ = −γθQ−1 x̃ (4.27b)
˙̃µ = 0. (4.27c)

From Assumptions 4.1 and 4.11 it follows that ker(BT ) = Im(1) and ker(BT
c ) = Im(1)

such that on S both x̃(t) = 1x̃∗(t) and θ̃(t) = 1θ̃∗(t) are satisfied with x̃∗(t) and θ̃∗(t) are
undetermined scalar functions. Together with (4.27b) we therefore conclude that

γθ(q−1
j − q−1

i )x̃∗ = 0 for all i, j. (4.28)

By assumption there exist an i and j such that q−1
j , q−1

i , which implies, together with

(4.28), that x̃∗ = 0 and therefore also that ˙̃θ∗ = 0. By evaluating the dynamics of (4.27)
we obtain

x̃ = 0 (4.29)

θ̃ =
γµ

γθ
QBµ̃, (4.30)

from which it follows that 1T Q−1θ̃ = 0. Since we also know from (4.26) that θ̃ = 1θ̃i for
any i, this implies that θ̃ = 0. From this and (4.18b) we can now conclude that

u = −Q−1
(
11T

1T Q−11
(d − Q−1r) + r

)
, (4.31)

which coincides with the optimal steady state input in view of (4.8). By (4.29) and (4.31)
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we conclude that Problem 4.5 is solved. �

4.3 Constrained case

In this section we provide a solution to Problem 4.8 where, compared to Problem 4.5,
we additionally consider constraints (4.15) and (4.16) on the inputs u and λ. We propose
controllers that are similar to those presented in Section 4.2, while taking these additional
constraints into account. To this end we modify (4.17) in order to satisfy (4.16) and
propose the following controller to generate λ:

µ̇ = γµBT y (4.32a)

λ = sat(−γcBT y − γµµ; 0, λ+), (4.32b)

where γµ, γc ∈ R are appropriate gains. Note that the flows in the network are constrained
to be uni-directional since the lower bound of the saturation is identically zero. The
controller that regulates the input on the nodes u uses the same principles as (4.18), with
some additions in order to satisfy (4.15). To this end, we saturate the output of this
controller. However, this is not sufficient to guarantee convergence. For this reason we
adjust the dynamics of the controller to

θ̇ = −γlLcomsat
(
θ;

1
γθ

Q(u− + r),
1
γθ

Q(u+ + r)
)
− γθQ−1 (y − γcBλ) (4.33a)

u = sat(Q−1 (
γθθ − r); u−, u+) , (4.33b)

where Lcom is the Laplacian of a connected communication graph, γc is as in (4.32) and
γl, γθ ∈ R are appropriate gains.

Remark 4.15 (Additional term compared to (4.18)). Note that (4.33a) has γθγcQ−1Bλ
as an additional term compared to (4.18). We will show that this term play a key role
to prove convergence but it also causes a steady state error. Interestingly, this error can
be made arbitrarily small by adjusting the gains γc, γθ and γl. The consequence of this
term is that the controller additionally needs to measure the difference between all the
incoming and outgoing flows. Apart from the uniform gains, controller (4.33) is still
distributed since only local measurements are required.

Remark 4.16 (Existence of a solution to the closed loop system). We observe that (4.1)
in closed loop with controllers (4.32) and (4.33) is globally Lipschitz. For this reason we
can conclude that a solution exists for all time t ≥ 0.

Before we state our main theorem we define a change of coordinates in which we
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distinguish the desired steady state and the steady state deviation from the desired one,
which we denote with a bar and hat, respectively. To this end, we let

x̃ = x − x − x̂

µ̃ = µ − µ − µ̂

θ̃ = θ − θ − θ̂,

(4.34)

where θ is as in (4.19), µ is any solution to (4.20) and we define x̂, µ̂ and θ̂ as the solution
to

0 = BT x̂ (4.35a)

0 = −γµBµ̂ + γθQ−1θ̂ (4.35b)

0 = −γθQ−1 x̂ − γlLcomθ̂ − γθγcγµQ−1B(µ̂ + µ). (4.35c)

that has minimal Euclidean norm. Before we state the next lemmas let us define

γ :=γθ2γc

γl
(4.36a)

d̃ :=d − Q−1r (4.36b)

Q :=
Q−111T Q−1

1T Q−11
− Q−1 (4.36c)

Φ := − LcomQ +
1
n
11T . (4.36d)

We will show that the solutions to (4.35) always exist and derive an incremental form for
system (4.1) in closed loop with (4.32) and (4.33) in suitable new coordinates.

Lemma 4.17 (Characterization of the steady state errors). Let Assumptions 4.1 and 4.11
be satisfied, then solutions x̂, µ̂ and θ̂ to (4.35) always exist and are given by:

θ̂ =
γ

γθ
Q

(
γQ + Φ

)−1
Q

2
Qd̃ (4.37)

µ̂ =
γ

γµ
B†

(
γQ + Φ

)−1
Q

2
Qd̃ (4.38)

x̂ =γc
11T Q−1

1T Q−11

(
I − γ

(
γQ + Φ

)−1
Q
)

QQd̃, (4.39)

where γ, d̃, Q and Φ are as in (4.36).
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Proof. From (4.35a) and (4.35b) we obtain that

x̂ = 1x̂∗ (4.40)

0 = 1T Q−1θ̂, (4.41)

for some function x̂∗(t) ∈ R. From (4.20) we can see that µ is any solution to

γµBµ = − QQd̃, (4.42)

which combined this with (4.40), (4.35b) and (4.35c) results in(
Lcom + γθ

2γc

γl
Q−2

)
θ̂ = −

γθ
γl

Q−11x̂∗ + γθ
γc

γl
Q−1QQd̃. (4.43)

By solving for x̂∗ we obtain

x̂∗ = −γc
1T Q−1

1T Q−11

(
γθQ−1θ̂ − QQd̃

)
. (4.44)

Substituting (4.44) in (4.43) and combining this with (4.41) yields

Q̃Q−1θ̂ =

 γθ γc
γl

Q
0

 QQd̃. (4.45)

where Q is as in (4.36c) and Q̃ is defined as

Q̃ :=
 γQ − LcomQ

1T

 . (4.46)

Due to Lemma B.4 in Appendix B we know that (Q̃T Q̃)−1, (γQ − LcomQ + 11T )−T and
(γQ− LcomQ + 1

n11
T )−1 exist. This implies that the solution of (4.45) is given by (4.37),

since

θ̂ =
1
γθ

Q(Q̃T Q̃)−1Q̃T
 γQ

0

 QQd̃

=
γ

γθ
Q

(
(γQ − LcomQ + 11T )T (γQ − LcomQ +

11T

n
)
)−1

·
(
γQ − LcomQ + 11T

)T
Q

2
Qd̃

=
γ

γθ
Q

(
γQ − LcomQ +

1
n
11T

)−1

Q
2
Qd̃, (4.47)
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where we used the identities 1T Q = 0 and (B.36) in Appendix B. By combining
(4.40), (4.44) and (4.47) we immediately observe that (4.39) is satisfied.

To find µ̂ we use (4.35b) and obtain

Bµ̂ =
γθ
γµ

Q−1θ̂. (4.48)

To prove that (4.48) has a solution we use the identity 1T (γQ+Φ) = 1T and from Lemma
B.4 in Appendix B we know that (γQ + Φ) is invertible. This implies that 1T (γQ +

Φ)−1 = 1T and therefore we have that 1T
(
γQ + Φ

)−1
Q = 0. Since Im(B) = ker(BT )⊥ =

span(1)⊥ we conclude that (4.48) has a solution. Moreover, a solution with the minimal
Euclidean norm is given by

µ̂ = B†
γθ
γµ

Q−1θ̂, (4.49)

and due to (4.47) it is easy to see that (4.49) coincides with (4.38). Lastly it can be
checked that (4.37)-(4.39) satisfies (4.35) identically, which proves the thesis. �

Suppose that the steady states are unsaturated and y = 0, then (4.32b) and (4.33b) at
steady state read as

u = γθQ−1θ − r (4.50)

λ = −γµµ. (4.51)

This implies, in view of (4.19) and (4.20) that

u = −
Q−111T

1T Q−11

(
d − Q−1r

)
− r (4.52)

Bλ = QQ
(
d − Q−1r

)
, (4.53)

where Q is as defined in (4.36c). We note that (4.50) is, in light of (4.8), the desired
steady state input. Furthermore it is important to note that u and λ are independent of
any gain parameters.

A sufficient condition to guarantee that the desired steady state exists is that the
steady state inputs u and λ are unsaturated. Furthermore, we will show that a sufficient
condition to guarantee that this steady state is attractive is that the steady state inputs are
strictly unsaturated. For these reasons we introduce the following definition.

Assumption 4.18 (Feasibility condition). For a given disturbance d, linear cost vector
r and diagonal quadratic cost matrix Q, its corresponding u as in (4.50) satisfies

u−i < ui < u+
i (4.54)
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for all i ∈ V. Furthermore, there exists at least one solution λ to

0 = −Bλ + u − d, (4.55)

that satisfies
0 < λk < λ

+
k , (4.56)

for all k ∈ E.

Before we state the main result of this chapter let us define

û := γθQ−1θ̂ (4.57)

λ̂ := −γµµ̂, (4.58)

with θ̂ and µ̂ as in (4.37) and (4.38), respectively. We refer to û and λ̂ as the steady state
input errors. Moreover, we introduce the following Lemma:

Lemma 4.19 (Lyapunov function for (B.37)). Let Assumptions 4.1 and 4.11 be satisfied
and let λ+, u− and u+ satisfy the feasibility condition for a given d, r and Q. Given the
Lyapunov function

V(x̃, µ̃, θ̃) =
1
2
‖x̃‖2 +

n∑
i=1

S p
i +

m∑
i=1

S e
i , (4.59)

where

S p
i :=

θ̃i∫
0

sat
(
y,

(
1
γθ

Q(u− + r) − (θ + θ̂)
)

i
,

(
1
γθ

Q(u+ + r) − (θ + θ̂)
)

i

)
dy, (4.60)

and

S e
i :=

1
γ2
µ

−χi∫
0

sat(y, (−γµ(µ + µ̂)))i, (λ+ − γµ(µ + µ̂)))i)dy, (4.61)

with χ = γµµ̃ + γcBT x̃, then
V̇(x̃, µ̃, θ̃) ≤ 0, (4.62)

and the set
Q =

{
(x̃, µ̃, θ̃)

∣∣∣V(x̃, µ̃, θ̃) ≤ D
}
, (4.63)

with D ≥ 0, is nonempty, compact and forward invariant for system (B.37).
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Proof 3: We first prove (4.62), then we will show that Q is forward invariant and
finally we prove that Q is compact and non-empty. By evaluating the partial derivatives
of (4.59), we see that

∂V
∂x̃

= x̃T − γcsatµ(x̃, µ̃)T BT

∂V
∂θ̃

= satθ(θ̃)T

∂V
∂µ̃

= −
1
γµ

satµ(x̃, µ̃)T ,

(4.64)

where

satµ(x̃, µ̃) := sat(−γcBT x̃ − γµµ̃; µ−, µ+) (4.65)

satθ(θ̃) := sat(θ̃; θ−, θ+), (4.66)

with

µ− = γµ(µ + µ̂) (4.67a)

µ+ = γµ(µ + µ̂) + λ+ (4.67b)

θ− =
1
γθ

Q(u− + r) − (θ + θ̂) (4.67c)

θ+ =
1
γθ

Q(u+ + r) − (θ + θ̂). (4.67d)

Hence, with the help of the closed loop dynamics as presented in Lemma B.5, we obtain

V̇ = −γc‖Bsatµ(x̃, µ̃)‖2 − γl‖BT
c satθ(θ̃)‖2, (4.68)

where Bc is the incidence matrix associated to the communication graph. From (4.68) it
is easy to see that (4.62) is satisfied, which directly implies that Q is forward invariant.

Finally we will prove that (4.63) is compact. Note that this is equivalent to S being
closed and bounded. From the definition of S it follows trivially that it closed, which
leaves us with the proof that (4.63) is bounded.

By Lemma B.9 we know that there exists an open ball that contains the origin that
lies within the bounds of the saturation functions in (4.60) and (4.61). Notice that this
implies that S p

i ≥ 0 and S e
j ≥ 0 for all i and j. Now suppose that |x̃i| → ∞, then

necessarily V(x̃, µ̃, θ̃) → ∞, however this is in contradiction with (4.68) implying that x̃
is bounded. Now suppose that |θ̃i| → ∞, then necessarily S p

i → ∞ due to (B.62). This

3This proof is an extension of a proof presented in (Wei and van der Schaft 2013). The proof in that
paper does not consider the dynamics of θ as in this chapter, nor an input at the node with associated cost
function, i.e. θ = 0, Q = 0 and r = 0.
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implies again that V(x̃, µ̃, θ̃)→ ∞ from which we can conclude that θ̃ is bounded. Lastly
we prove that µ̃ is bounded. Suppose that |µ̃i| → ∞ then also | − (γµ(µ̃) + γcBx̃)i| → ∞

since x̃ is bounded. This, together with (B.62) implies that S e
j → ∞. Therefore also µ̃

is bounded and we can therefore conclude that Q is compact. Lastly we prove that Q is
non-empty. Note that V(0, 0, 0) = 0, this implies that the origin is contained in Q, which
concludes the proof. �

We are now ready to state the main result of this chapter.

Theorem 4.20 (Sufficient conditions for solving Problem 4.8). Let Assumption 4.1 and
4.18 be satisfied and let there exist at least one pair qi, q j such that qi , q j, then Problem
4.8 is solved by controllers (4.32)-(4.33) with a suitable choice of γc, γθ and γl.

Proof. In order to prove Theorem 4.20 we will show that limt→∞ x̃ = 0 and limt→∞ θ̃ = 0
and argue that this implies that Problem 4.8 is solved. Let V be as in Lemma 4.19 in
Appendix B. Using this same Lemma we know that we can invoke LaSalle’s invariance
principle to show that (x̃, µ̃, θ̃) converges to the largest invariant set where V̇ = 0, which
is given by

S :=
{
(x̃, µ̃, θ̃)

∣∣∣Bsatµ(x̃, µ̃) = 0, BT
c satθ(θ̃) = 0

}
, (4.69)

with satµ(x̃, µ̃) as in (4.65) and satθ(θ̃) as in (4.66). In light of Lemma B.5 we can see that
the dynamics on this invariant set S are given by

˙̃x = γθQ−1satθ(θ̃) (4.70a)
˙̃θ = −γθQ−1 x̃ (4.70b)
˙̃µ = BT x̃. (4.70c)

First we will prove that on this invariant set S, necessarily θ̃ = 0.
Let θ− and θ+ be as in (4.67c) and (4.67d), respectively, then by Lemma B.9 in

Appendix B we know that θ− < 0 and θ+ > 0. Now assume by contradiction that there
exists a θ̃i, which is not identically equal to zero. Now consider two cases, either θ̃ j = 0
for all j , i or there exists at least one other θ̃ j, with i , j, which is not identically equal
to zero. In the first case we have that

sat(θ̃ j; θ−j , θ
+
j ) = 0, (4.71)

for each j , i, since θ−j < 0, θ+
j > 0 for all j , i. Furthermore, due to Assumption

4.11 Bc is the incidence matrix of a connected graph, it holds that BT
c satθ(θ̃) = 0, which

implies that
sat(θ̃i; θ−i , (θ

+)i) = sat(θ̃ j; θ−j , θ
+
j ), (4.72)
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for each i and j. From (4.71) and (4.72) we can now conclude that θ̃i = 0 since also
θ−i < 0, θ+

i > 0. Therefore we have a contradiction and necessarily θ̃i = 0.

Now consider the second case, where we assume that there exists at least another θ̃ j,
with i , j, which is not identically equal to zero. By (4.70a) and (4.70b) we obtain that
¨̃θ = −γθ

2Q−2satθ(θ̃), which implies that for each element i we have that

¨̃θi =


−γθ

2q−2
i θ−i if θ̃i ≤ θ

−
i

−γθ
2q−2

i θ+
i if θ+

i ≤ θ̃i

−γθ
2q−2

i θ̃i otherwise.

(4.73)

Let p− := maxi{θ
−
i } and p+ := mini{θ

+
i }. The solution θ̃i to (4.73) consists of a trajectory

that consists of sinusoidal or parabolic parts depending on the state θ̃i. The intervals in
which the solution θ̃i follows a pure parabolic trajectory have a finite length, since ¨̃θi < 0
if θ̃i > 0 and ¨̃θi > 0 if θ̃i < 0, guarantee that θi enters the unsaturated range in finite time.
Furthermore, in all other intervals the solution θ̃i follows a pure sinusoidal trajectory,
which forces θ̃i to cross the origin in finite time. For this reason there exists an interval
(T1,T2) such that

p− ≤ θ̃i ≤ p+, (4.74)

which implies that
sat(θ̃i; θ−i , θ

+
i ) = θ̃i, (4.75)

due to the definition of p− and p+. Moreover, from BT
c satθ(θ̃) = 0 and (4.75), we obtain

that
θ̃i = sat(θ̃ j; θ−j , θ

+
j ), (4.76)

for all j. Since θ−j ≤ p− ≤ θ̃i ≤ p+ ≤ θ+
j ) it follows that θ̃i = θ̃ j for all j, or equivalently

θ̃ = 1α(t), where α(t) ∈ R. Due to (4.70a) and (4.70b), we have that

1α̈(t) = −Q−21α(t), (4.77)

which implies that
− q−2

i α(t) = −q−2
j α(t), (4.78)

for some i, j. Now, by assumption we know that there exists an i and a j such that qi , q j,
which implies that necessarily α(t) = 0. It follows that θ̃(t) = 0 for t ∈ (T1,T2). Also
note that θ̃i enters the interval (T1,T2) in finite time and by (4.73) we see that θ̃i is locally
Lipschitz continuous, hence cannot undergo jumps. This implies that θ̃(t) = 0 for all
t ≥ 0 on the invariant set S which is a contradiction, implying that at most one θ̃i is not
identically equal to zero. As this case has already been ruled out, we obtain that θ̃(t) = 0
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for all t ≥ 0 on the invariant set S.
It is now trivial to prove that x̃ = 0 on S. Due to (4.70b) we can see that 0 = −Q−1 x̃,

which implies that x̃ = 0. Finally, due to a suitable choice of γc, γθ and γl, Lemma B.7
in Appendix B and (4.34), we have that

lim
t→∞
‖x − x‖ = lim

t→∞
‖x̃ + x̂‖ = ‖x̂‖ < εx

lim
t→∞
‖u − u‖ = lim

t→∞
‖ũ + û‖ = ‖û‖ < εu,

(4.79)

and therefore the thesis follows. �

From Theorem 4.8 we obtain that as long as the quadratic costs of at leat two pro-
ducers are distinct, controllers (4.32)-(4.33) guarantee that both the volumes converge
approximately to their setpoints and the inputs are approximately optimal at steady state.
Moreover, by tuning the gains of the controller, the errors that correspond to these ap-
proximations can be made arbitrarily small. The controllers require only local measu-
rement but in order to calculate the bounds on the gains, global information is required.
In Chapter 5 a different control design is presented that does not require heterogeneous
quadratic costs, guarantees zero steady state errors and does not require any tuning of the
gains implying that the design and operation can be performed completely distributed.

Remark 4.21 (Characterization of the gains). The choice of γc, γθ and γl for which
Problem 4.8 is solved are explicitly constructed in Lemma B.7 in Appendix B and a
discussion on this choice can be found in Remark B.8.

4.4 Case study

We provide a case study in which we consider a district heating system. The network is
modeled by graph G and where each node has a producer, a consumer and a stratified
storage tank as in Figure 2.2. Motivated by Remark 2.4 and Lemma 2.3 the correspon-
ding model is given by (4.1). We perform a simulation over a 24 hour time interval and
use a circle graph consisting of four nodes as in Figure 4.4. The entries of the quadratic
cost functions are given by Q = diag

(
1 0.7 0.3 0.1

)
, and s and r are zero vectors.

We initialize the system at steady state, with the demand and the volume setpoint given
by d = −

(
0.03 0.03 0.03 0.03

)
and x =

(
200 300 400 500

)
, respectively.

Motivated by Remark 4.3 we investigate the response of the system to a ramp reference
signal as well as to an increase in demand. First, at t = 1h we switch from a constant
reference signal to a ramp such that at t = 6h, x becomes x =

(
800 800 800 800

)
.

Soon after this interval we increase the demand by 50% and keep the setpoints con-
stant. The saturation bounds on the production and flows are given by u− = 0m3/s,
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Figure 4.1: Volumes, flows and production in the presence of saturation.
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Figure 4.2: Deviations from the volume setpoints and optimal production. The highligh-
ted area is depicted in Figure 4.3.
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Figure 4.3: Enlargement of the highlighted areas of Figure 4.2.
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Figure 4.4: Topology of the considered heat network. The arrows indicate the required
flow directions in the heat network, while the dashed lines represent the communication
network used by the controllers.
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u+ = 0.14m3/s and λ+ = 0.1m3/s, respectively. Moreover, the error bounds, as defined
in (4.13) and (4.14), are set to εx = 10−2 and εu = 10−4.

Based on Lemma B.7 in Appendix B we can explicitly calculate the bounds on γc,
γθ and γl (see (B.52a) and (B.52b)). To illustrate how these gains are found, we inves-
tigate them for the first interval (i.e. between 0h and 1h). In that case the numerical
value of the right hand side of (B.52a) is 0.1324 and ‖Φ−1Q

2
Qd̃‖ = 0.7773. Further-

more, we have that ‖Φ
−1Q

2
Qd̃‖

‖Φ−1Q‖
= 0.0676 and by taking θ = 0.9985 this implies that

δθ = 10−4. Additionally we have that δθ = 0.0058 and δµ = 0.0087 which means
that min

{
δθ, δµ, δθ, εu

}
= εu. The conditions in (B.52) are satisfied if γc < 0.1109 and

γθ
2/γl < 1.90·10−4, and therefore we take γθ = 0.01, γl = 0.53, γµ = 0.01 and γc = 0.11.

Plots of the resulting simulations can be found in Figure 4.1, in which we see that in
all intervals limt→∞ x ≈ x and limt→∞ u ≈ u. The optimal production u in the middle plot
is given by the dotted black line from which one can see that the jumps in the reference
signal (corresponding to a transition to a charging phase) affects the optimal production
levels. In the top plot of Figure 4.1 we can see that x is able to track the piecewise
constant reference signal x. The flow injected by the producers, depicted in the middle
plot, show some transient behaviour after the switch to the charging phase and increase
of demand. In the interval 1 ≤ t ≤ 4, we can also see that the production on node 4 and
the flows on edge 3 are subject to saturation which cause some wind-up phenomena.

In Figure 4.2 we see in the upper plot the deviation of x from x and in the bottom
plot the deviation of u from u. Again the transient behaviour after t = 1 and t = 6 is
clearly visible as well as the wind-up phenomena for 1 ≤ t ≤ 4. Finally, an enlargement
of the highlighted areas in Figure 4.2 can be found in Figure 4.3. From this Figure we
can clearly see that at the end of the last interval we have that ‖x(t) − x(t)‖ < εx and
‖u(t) − u‖ < εu, respectively.





Chapter 5
Volume regulation and optimal production of

multiple producers

Abstract

This chapter investigates the control of flow networks, where the control objective
is to regulate the measured output (e.g storage levels) towards a desired value. We
present a distributed controller that dynamically adjusts the inputs and flows, to
achieve output regulation in the presence of unknown disturbances (e.g. demand),
while satisfying given input and flow constraints. Optimal coordination among the
inputs, minimizing a suitable cost function, is achieved by exchanging information
over a communication network. Exploiting an incremental passivity property, the
desired steady state is proven to be globally asymptotically stable under the closed
loop dynamics. Two case studies (a district heating system and a multi-terminal
HVDC network) show the the effectiveness of the proposed solution.

I
n this chapter we extend the results of Chapter 4. The control problem and control
design are similar to the ones proposed in that chapter, so we highlight the differences

here. First we consider a control problem in which only a subset of nodes has a controlla-
ble input located at the nodes. Second, the controllers are adapted such that they include
an additional state. Third, the saturation functions are changed to nonlinear strictly in-
creasing functions with a possible upper and lower bounded range. These changes allow
us to prove asymptotic stability with respect to the optimal steady state in a more general
setting. Consequently we propose a distributed controller, dynamically adjusting inputs
and flows, to achieve optimal output regulation under capacity constraints on the input
and the flows and in the presence of unknown demand (disturbances).

The results presented in this chapter show some advantages over existing ones. Spe-
cifically, the proposed control scheme coordinates the inputs optimally to satisfy the total
demand. Although these objectives have been separately addressed before, the way how
we incorporate all of them within a coherent approach is new. Building upon (Bürger
et al. 2015), (Scholten et al. 2016b) and (Trip et al. 2016), the controllers on the edges
render the flow network incrementally passive with respect to the desired steady state.
This passivity property is then exploited in the design of a distributed controller acting on
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the nodes. Optimal coordination among the inputs, minimizing a suitable cost function,
is achieved by exchanging relevant information over a communication network, whereas
the constraints are enforced by using suitably selected nonlinear functions. Global con-
vergence to the desired steady state is proven relying on Lyapunov arguments and an
invariance principle. Furthermore, we provide two case studies (a district heating system
and a multi-terminal HVDC network) to illustrate how physical systems are described as
a flow network and to demonstrate the performance of the proposed solution.

The chapter is structured as follows. In Section 5.1 we introduce the model and state
our control objective. The controller design is presented in Section 5.2, followed by the
stability analysis of the closed loop system in Section 5.3. An extension of the considered
plant and controller dynamics is stated and analyzed in Section 5.4 and finally two case
studies are presented in Section 5.5.

5.1 Output regulation and optimal steady state inputs

In this section we consider the dynamics as in (2.7) which we repeat for convenience

Tx ẋ = −Bλ + Eu − d (5.1a)

y = h(x). (5.1b)

where Tx ∈ R
n×n
>0 is a diagonal matrix, B ∈ Rn×m is the incidence matrix of the graph G,

λ ∈ Rm are the flows, u ∈ Rp are the inputs and d ∈ Rn the unmeasured disturbance.
Moreover, E ∈ Rn×p is of the form

E =

 Ip×p

0(n−p)×p

 , (5.2)

and for convenience we repeat Assumptions 2.5 and 2.7:

Assumption 5.1 (Connectedness). The graph G is connected.

Assumption 5.2 (Controllable inputs). There is at least one node that has a controllable
input, i.e. p ≥ 1.

We discuss two control objectives and various input and flow constraints under which
the objectives should be reached. We start with discussing the two objectives, which are
similar to those in Chapter 4.1. The first objective is concerned with the output y = h(x)
in (5.1), at steady state.
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Objective 5.3 (Output regulation). Let y ∈ R(h(x)) be a desired constant setpoint, then
the output y = h(x) of (5.1) asymptotically converges to y, i.e.

lim
t→∞
‖h(x(t)) − y‖ = 0. (5.3)

Remark 5.4 (Tracking of a ramp). In case that h(x) = x we can extend Objective 5.3,
similar as in Remark 4.3, to the possibility of tracking a linear transition between the
current setpoint y(t1) to a new setpoint y(t2) with t2 > t1. To do so, the desired reference
signal is modelled as a ramp, i.e.

y(t) = y(t1) +
t − t1
t2 − t1

(y(t2) − y(t1)). (5.4)

After a coordinate transformation x̃(t) = x(t)− y(t), we obtain a system of the same form
as (5.1a), where the evolution of x̃ is described by

Tx ˙̃x = −Bλ + Eu − d̃. (5.5)

The corresponding constant disturbance is now given by

d̃ = d +
1

t2 − t1
(y(t2) − y(t1)). (5.6)

Note that boundedness of x̃i does not imply boundedness of xi as yi(t) increases or decre-
ases constantly over time. Therefore, the used invariance principle in the later sections
is not immediately applicable if we consider the original variables of the system. Ne-
vertheless, the subsequent analysis can be applied to the incremental system (5.5) if we
consider x̃ as the state.

In order to guarantee that Objective 5.3 can be achieved we make the following
assumption

Assumption 5.5 (Range of function h). Function hi is such that yi ∈ R(hi) for all i ∈ Ve.

Similar as in Objective 4.4 of Chapter 4, it is natural to wonder if the total input can
be coordinated optimally among the nodes. Note however that optimal coordination is
only possible if there are two or more controllable inputs at the nodes (i.e. p ≥ 2). The
related optimization problem is discussed in Section 2.4 and from Lemma 2.17 we obtain
that the optimal steady state input u is given by (2.37) which we repeat here

u = Q−1
ET 1n1

T
n

1T
p Q−11p

(d + EQ−1r) − r
 . (5.7)
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We are now ready to state the second control objective.

Objective 5.6 (Optimal feedforward input). The input at the nodes asymptotically con-
verge to the solution to (2.36), i.e.

lim
t→∞
‖u(t) − u‖ = 0, (5.8)

with u as in (5.7).

We consider a similar constraint on the control inputs u as in Constraint 4.6 with the
difference that only the nodes contained inVe include a controllable input.

Constraint 5.7 (Input limitations). The inputs at the nodes satisfy

u−i < ui(t) < u+
i , (5.9)

for all i ∈ Ve and all t ≥ 0, with u−i , u
+
i ∈ R being suitable constants.

Moreover, similar to Constraint 4.7 in Chapter 4 we let the flows on the edges be
constrained within the capacity of the edges.

Constraint 5.8 (Flow capacity). The flows on the edges satisfy

λ−k < λk(t) < λ+
k , (5.10)

for all k ∈ E and all t ≥ 0, with λ−k , λ
+
k ∈ R being suitable constants.

Note that in Chapter 4 λ−k was taken as λ−k = 0 which we relax in this chapter.
The physical limitations and safety requirements demand that the constraints should be
satisfied for all time and not only at steady state.

Remark 5.9 (Special cases). The unconstrained case can be regarded as a particular
example of the considered setting. This is obtained by taking −∞ as a lower and ∞ as
an upper bound for both ui and λk. Moreover, if we take λ−k ≥ 0 or λ+

k ≤ 0, the flow on
edge k is constrained to be unidirectional.

In many applications it is desirable to have a distributed control architecture where
controllers rely only on local information to decrease communications, to increase ro-
bustness and to improve the scalability of the control scheme. We therefore require that
the controllers to be designed only depend on information available from adjacent nodes
in the physical flow network or adjacent nodes in a digital communication network that
is deployed to ensure optimality (see the next section, Objective 2).

For convenience, we summarize the objectives and constraints yielding the following
controller design problem.
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Problem 5.10 (Controller design problem). Design distributed controllers that regulate
inputs u at the nodes and the flows λ on the edges, such that

lim
t→∞
‖h(x(t)) − y‖ = 0

lim
t→∞
‖u(t) − u‖ = 0,

(5.11)

where y is the desired setpoint and u is as in (5.7). Furthermore,

λ−k < λk(t) < λ+
k

u−i < ui(t) < u+
i ,

(5.12)

for all k ∈ E, i ∈ Ve and t ≥ 0. �

Remark 5.11 (Positive systems). A common requirement is that, additionally to Ob-
jective 5.3 and Objective 5.6, the state x has to be nonnegative, i.e. x(t) ≥ 0 for all t.
Although, achieving output regulation (Objective 5.3), with x > 0, is in practical cases
sufficient to ensure that x(t) ≥ 0 for all t, when the system suitably initialized (see also
the case studies in Section 5.5), a theoretical guarantee is difficult to obtain, due to the
presence of an unknown and constant disturbance d. An interesting future endeavor is to
study the design of controllers achieving Objective 5.3 and Objective 5.6 within the set-
ting of so-called positive systems (Benvenuti and Farina 2002) (Rami and Tadeo 2007).

5.2 Design of distributed and optimal controllers

In this section we propose distributed input and flow controllers that achieve the various
objectives under the constraints discussed in the previous section. The controllers will be
designed to enjoy a passivity property and asymptotic stability of the closed loop system
will derive from a suitable power preserving interconnection of the flow network and the
controllers. Both the passivity property as well as the stability of the closed loop system
will be discussed in the next section.

Before we introduce the controllers we observe two things. First we notice that left-
multiplying (5.1a) by 1T

n gives

1T
n Tx ẋ = 1T

n (Eu − d), (5.13)

which shows that the aggregated storage level cannot be affected by the flows λ. Howe-
ver, from (5.1a) we can see that individual storage levels xi are changed by the flows λ.
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Figure 5.1: The controller that is located at the edge has access to the outputs of its
adjacent nodes. Using these measurements as inputs, the controller generates the flow
rate λ on the edge.

Second, at steady state, the state variable x is constant and (5.13) becomes

0 = 1T
n (Eu − d), (5.14)

which implies that a balance between the total input and disturbance is required at steady
state in order to satisfy Objective 5.3. Motivated by the first observation we design the
controller that regulates the flows λ such that the error y − y is balanced. After that we
will design a controller that regulates u such that Problem 5.10 is satisfied, i.e. the error
y − y will go to zero and will satisfy (5.14) at steady state.

5.2.1 Flows between the nodes

We design a controller that regulates the flows on the edges such that we achieve consen-
sus in the error y− y. We guarantee that the controller has the passivity property and that
the controller is distributed by considering it of the following form1

Tµµ̇ = BT (h(x) − y) − ( f (µ) − ξ)

Tξ ξ̇ = f (µ) − ξ

λ = f (µ),

(5.15)

where Tµ,Tξ ∈ Rm×m
>0 are diagonal matrices with strictly positive entries, µ, ξ ∈ Rm and

the mapping f (·) : Rm → Rm, with f (µ) = ( f1(µ1), . . . , fm(µm))T , has suitable properties
discussed in Assumptions 5.15 and 5.16 below. Moreover, B is the incidence matrix
reflecting the topology of the physical network, which implies that the flow controller
on edge k only requires information from its adjacent nodes (see also Figure 5.1). It
therefore follows that the controller is distributed.

1µ is introduced with some abuse of notation since there is no relation with the control input in (2.23).
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Figure 5.2: Example of a flow network including a communication graph.

5.2.2 Inputs at the nodes

Next, we design an input controller ui at each node i that adjusts the external input to
the network. Inspired by the result in (Trip and De Persis 2017), where a similar control
problem is considered in the setting of power networks, we propose the controller

Tθθ̇ = − ET (h(x) − y) − (g(θ) − φ)

Tφφ̇ = g(θ) − φ − QLcom(Qφ + r)

u = g(θ),

(5.16)

where Tθ,Tφ ∈ R
p×p
>0 are diagonal matrices with strictly positive entries, θ, φ ∈ Rp with

p = |Ve| and the mapping g(·) : Rp → Rp with g(θ) = (g1(θ1) . . . gp(θp))T , has suitable
properties that will be discussed in Assumptions 5.15 and 5.16 below. Moreover, Lcom is
the Laplacian matrix reflecting the communication topology (see also Figure 5.2). This
communication ensures that at steady state a consensus is obtained in the marginal costs,
i.e. Qg(θ) + r ∈ Im(1). In order to guarantee that all marginal costs converge to the same
value we make the following assumption on the communication network.

Assumption 5.12 (Communication network). The graph reflecting the communication
topology is balanced2 and strongly connected.

Lemma 5.13 (Consequences of Assumption 5.12). If Assumption 5.12 is satisfied, then
Lcom is a positive semi-definite matrix and

xT Lcomx = 0, (5.17)

if and only if x ∈ Im(1).

Proof. The proof follows immediately from (Olfati-Saber and Murray 2004, Theorem 7).
Specifically, since the communication graph is balanced, Lcom is positive semi-definite

2A directed graph is balanced if the (weighted) in-degree is equal to the (weighted) out-degree of every
node.
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and (5.17) satisfies

xT Lcomx =
1
2

xT (Lcom + (Lcom)T )x = xT L̂comx, (5.18)

where L̂com is a Laplacian matrix corresponding to the communication network with
undirected edges. Furthermore, Ker(L̂com) = Im(1), due to the connectedness of the
communication network. �

Remark 5.14 (Local and exchanged information). According to (5.16), every controller
at node i ∈ Vp, measures yi = hi(xi) and compares it with the desired set point yi.
Information on the marginal costs (qiφi + ri) is exchanged among neighbours over a
communication network with a topology described by Lcom. Controller (5.16) is therefore
fully distributed. The output gi(θi) is chosen to satisfy Constraint 1, and is discussed in
more detail in the next subsection.

5.2.3 Feasibility of the control problem

In order to guarantee that controllers (5.16) and (5.15) in closed loop with (5.1) solve
Objectives 5.6 and 5.3 we require that f and g satisfy certain properties. There properties
are related to a steady state of the closed loop system and is given in the following
assumption:

Assumption 5.15 (Properties of f and g). Functions fk and gi, in respectively (5.15) and
(5.16), are continuously differentiable and strictly increasing. Moreover, let u be as in
(5.7), then fk is such that there exists a ω ∈ Rm where [B†(Eu−d)+ (I−B†B)ω]k ∈ R( fk)
for all k ∈ E, and gi satisfies ui ∈ R(gi) for all i ∈ Ve.

Moreover, controllers (5.16) and (5.15) are designed to guarantee the fulfilment of
Constraints (5.9) and (5.10) by properly selecting f (µ) and g(θ). Since λ = f (µ) and
u = g(θ), the following assumption is sufficient to ensure that the inputs and flows do not
exceed their limitations.

Assumption 5.16 (Bounded controller outputs). Functions fk(·) and gi(·), in respectively
(5.15) and (5.16) satisfy

R( fk) ⊆ (λ−k , λ
+
k )

R(gi) ⊆ (u−i , u
+
i )

(5.19)

for all k ∈ E and i ∈ Ve.
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Possible choices for fk(µk) and gi(θi) that satisfy Assumptions 5.15 and 5.16 include
e.g. the function γ(z) = z in absence of any constraints, and also the constraint enforcing
functions γ(z) = tanh(z), γ(z) = arctan(z) (see also the case studies in Section 5.5).

Before we analyse the stability of the system we investigate the properties of the
steady state. To do so, we write system (5.1) in closed loop with controllers (5.15) and
(5.16), obtaining

Tx ẋ = − B f (µ) + Eg(θ) − d

Tµµ̇ = BT (h(x) − y) − ( f (µ) − ξ)

Tξ ξ̇ = f (µ) − ξ

(5.20a)

Tθθ̇ = − ET (h(x) − y) − (g(θ) − φ)

Tφφ̇ = g(θ) − φ − QLcom(Qφ + r).
(5.20b)

Any equilibrium of system (5.20) satisfies

0 = −B f (µ) + Eg(θ) − d (5.21a)

0 = BT (h(x) − y) − ( f (µ) − ξ) (5.21b)

0 = f (µ) − ξ (5.21c)

0 = −ET (h(x) − y) − (g(θ) − φ) (5.21d)

0 = (g(θ) − φ) − QLcom(Qφ + r). (5.21e)

We will now show that under Assumptions 5.1–5.15 there exists at least one solution to
(5.21) and all solutions (5.21) satisfy the control objectives.

Lemma 5.17 (Fulfilment of Objectives 1 and 2). Let Assumptions 5.1–5.15 hold. Then,
there exists an equilibrium (x, µ, ξ, θ, φ) of system (5.20). Moreover, any equilibrium is
such that h(x) = y and g(θ) = u, where u is the optimal control input given by (5.7).

Proof. To prove the statement, we first show that at least one equilibrium of system
(5.20) exists. Since the graph is connected, due to Assumption 5.1, it follows that
Im(B) = ker(BT )⊥ = span(1)⊥. Moreover, by definition of u as in (5.7) and Assumption
5.2, we have that

1T
n (Eu − d) = 0, (5.22)

and it therefore follows that (Eu − d) ∈ Im(B). For this reason

λ = B†(Eu − d) + (I − B†B)ω, (5.23)

is a solution to
− Bλ + Eu − d = 0, (5.24)
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for any ω ∈ Rm. By Assumption 5.15 there exists at least one ω such that λ ∈ R( fk)
ensuring that µ = f −1(λ). Moreover, again by Assumption 5.15 there exists a θ = g−1(u)
and by Assumption 5.5 it follows that there exists a x = h−1(y). Defining ξ = λ and
φ = u, shows that there exists a state (x, µ, ξ, θ, φ) that satisfies the equation (5.21) and is
therefore an equilibrium of (5.20).

Next we show that any equilibrium (x, µ, ξ, θ, φ) necessarily satisfies h(x) = y and
g(θ) = u, where u is the optimal control input given by (5.7). From (5.21c), ξ = f (µ)
holds and we will show that this implies that necessarily h(x) = y. By (5.21e), bearing
in mind that Lcom is the Laplacian of a balanced and strongly connected graph, due to
Assumption 5.12 it follows from Lemma 5.13 that 1T

p Q−1(g(θ) − φ) = 0. This, together
with (5.21d), implies that 1T

p Q−1ET (h(x) − y) = 0. By (5.21b) and ξ = f (µ), we also
have BT (h(x) − y) = 0. Hence,1T

p Q−1ET

BT

 (h(x) − y) = 0. (5.25)

We now prove that the matrix above has full-column rank. Suppose, ad absurdum, that
there exists v , 0 such that 1T

p Q−1ET

BT

 v = 0. (5.26)

By Assumption 5.1 it follows that v = 1nv∗ with v∗ a scalar. Then 1T
p Q−1ET1nv∗ = 0,

which is, by definition of E in (5.2) and Assumption 5.2, equivalent to 1T
p Q−11pv∗ = 0

and implies that v∗ = 0, contradicting that v = 1nv∗ , 0. Hence, necessarily h(x) − y = 0
and by strict monotonicity of h(·), we must have that x = h−1(y).

Since h(x) = y, it follows from (5.21d) that g(θ) = φ, and by strict monotonicity of
g(θ), that θ = g−1(φ). Moreover, from (5.21e) we obtain that Lcom(Qφ + r) = 0 and since
the communication graph is strongly connected due to Assumption 5.12, we have that
Qφ+r ∈ Im(1p). Since 1T

n B = 0, we obtain from (5.21a) that 1T
n (Eg(θ)−d) = 0. Bearing

in mind that u satisfies Qu + r ∈ Im(1p) and 1T
n (Eu − d) = 0, we have consequently that

g(θ) = φ = u, with u as in (5.7).

�

As a consequence of Lemma 5.17 we have that if Assumptions 5.1–5.15 hold, system
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(5.20) is equivalent to

Tx ẋ = − B( f (µ) − f (µ)) + E(g(θ) − g(θ))

Tµµ̇ = BT (h(x) − h(x)) − (( f (µ) − f (µ)) − (ξ − ξ))

Tξ ξ̇ = ( f (µ) − f (µ)) − (ξ − ξ)

(5.27a)

Tθθ̇ = − ET (h(x) − h(x)) − (g(θ) − g(θ)) + (φ − φ)

Tφφ̇ = (g(θ) − g(θ)) − (φ − φ) − QLcomQ(φ − φ),
(5.27b)

a form that will be exploited in the stability analysis.

5.3 Stability analysis of the closed loop system

In this section we analyze the stability of the closed-loop system (5.20). The analysis is
foremost based on LaSalle’s invariance principle and exploits useful properties of inter-
connected incrementally passive systems. To facilitate the discussion, we first recall the
following definition:

Definition 5.18 (Incremental passivity). System

ẋ = f (x, u)

y = h(x),
(5.28)

with x ∈ X, X the state space and u, y ∈ Rn, is incrementally passive3 with respect to a
constant triplet (x, u, y) satisfying

0 = f (x, u)

y = h(x),
(5.29)

if there exists a continuously differentiable and radially unbounded function V(x, x) :
X → R, such that for all x ∈ X, u ∈ Rm and y = h(x), y = h(x)

V̇(x, u, x, u) =
∂V
∂x

f (x, u) +
∂V
∂x

f (x, u) ≤ (y − y)T (u − u). (5.30)

We now proceed with establishing the incremental passivity property of (5.20a), that
is the proposed flow controller (5.15) renders the network dynamics (5.1) incrementally
passive with respect to the input Eg(θ) and output h(x).

3The definition of incremental passivity property holds with respect to any solution (Pavlov and Marconi
2008). However, with some abuse of terminology, we state the incremental passivity property with respect
to a steady state solution. This is also referred to as shifted passivity (van der Schaft 2012).
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Lemma 5.19 (Incremental passivity of (5.20a)). Let Assumptions 5.1–5.15 hold. System
(5.20a) with input Eg(θ) and output h(x) is incrementally passive with respect to the
constant (x, µ, ξ) satisfying (5.21a)-(5.21c). Namely, the radially unbounded storage
function V1(x, x, µ, µ, ξ, ξ) satisfies

V̇1(x, x, µ, µ, ξ, ξ) = (h(x) − h(x))T E(g(θ) − g(θ)) − ( f (µ) − ξ)T ( f (µ) − ξ), (5.31)

along the solutions to (5.20a).

Proof. Consider the storage function

V1(x, x, µ, µ, ξ, ξ) =
∑
i∈V

Txi

∫ xi

xi

hi(y) − hi(xi)dy +
∑
k∈E

Tµk

∫ µk

µk

fk(y) − fk(µk)dy

+
1
2

(ξ − ξ)T Tξ(ξ − ξ).

(5.32)

Since hi(xi) and fk(µk) are strictly increasing functions, the incremental storage function
V1(x, x, µ, µ, ξ, ξ) is radially unbounded. Furthermore, V1(x, x, µ, µ, ξ, ξ) satisfies along
the solutions to (5.20a), or equivalently along the solutions to (5.27a),

V̇1(x, x, µ, µ, ξ, ξ) = (h(x) − h(x))T Tx ẋ + (ξ − ξ)T Tξ ξ̇ + ( f (µ) − f (µ))T Tµµ̇

= (h(x) − h(x))T E(g(θ) − g(θ))

− (( f (µ) − f (µ)) − (ξ − ξ))T (( f (µ) − f (µ)) − (ξ − ξ)),

(5.33)

and since f (µ) = ξ, V1(x, x, µ, µ, ξ, ξ) indeed satisfies (5.31) along the solutions to
(5.20a). �

We now prove a similar result for (5.20b), that is the controller (5.16) is incrementally
passive with respect to the input −h(x) and output Eg(θ).

Lemma 5.20 (Incremental passivity of (5.20b)). Let Assumptions 5.1–5.15 hold. System
(5.20b) with input −h(x) and output Eg(θ) is incrementally passive with respect to (θ, φ)
satisfying (5.21d)-(5.21e). Namely, the radially unbounded storage function V2(θ, θ, φ, φ)
satisfies

V̇2(θ, θ, φ, φ) = − (g(θ) − φ)T (g(θ) − φ) − (φ − φ)T QLcomQ(φ − φ)

− (g(θ) − g(θ))T ET (h(x) − h(x)),
(5.34)

along the solutions to (5.20b).
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Proof. Consider the storage function

V2(θ, θ, φ, φ) =
∑
i∈V

Tθi

∫ θi

θi

gi(y) − gi(θi)dy +
1
2

(φ − φ)T Tφ(φ − φ). (5.35)

Note that since gi(θi) is a strictly increasing function, the incremental storage function
V2(θ, θ, φ, φ) is radially unbounded. Furthermore, V2(θ, θ, φ, φ) satisfies along the soluti-
ons to (5.20b), or equivalently along the solutions to (5.27b),

V̇2(θ, θ, φ, φ) = (g(θ) − g(θ))T Tθθ̇ + (φ − φ)T Tφφ̇

= (g(θ) − g(θ))T ·
(
−(g(θ) − g(θ)) + (φ − φ) − ET (h(x) − y)

)
+ (φ − φ)T (−(φ − φ) + (g(θ) − g(θ)) − QLcomQ(φ − φ))

= − (g(θ) − g(θ))T (g(θ) − g(θ)) + 2(g(θ) − g(θ))T (φ − φ)

− (φ − φ)T (φ − φ) − (φ − φ)T QLcomQ(φ − φ)

− (g(θ) − g(θ))T ET (h(x) − y),

(5.36)

Since g(θ) = φ, V2(θ, θ, φ, φ) indeed satisfies (5.34) along the solutions to (5.20b). �

Exploiting the previous lemmas, we are now ready to prove the main result of this
chapter.

Theorem 5.21 (Solving Problem 5.10 for dynamics (5.1)). Let Assumptions 5.1–5.16
hold. The solutions of system (5.1), in closed loop with (5.15) and (5.16), globally ap-
proaches the set

Υ1 =

x, µ, ξ, θ, φ

∣∣∣∣∣∣ B( f (µ) − f (µ)) = 0, B(ξ − ξ) = 0,
x = x, θ = θ, φ = φ

 , (5.37)

where λ = f (µ) is a constant, h(x) = y and where u = g(θ) = u, with u the optimal input
given by (5.7). Moreover, u = g(θ) and λ = f (µ) satisfy constraints (5.9) and (5.10)
for all t ≥ 0. Therefore, controllers (5.15) and (5.16) solve Problem 5.10 for the flow
network (5.1).

Proof. Satisfying constraints (5.9) and (5.10) for all t ≥ 0 follows from the design of
g(θ) and f (µ) and Assumption 5.16. Let

V(x, x, µ, µ, ξ, ξ, θ, θ, φ, φ) = V1(x, x, µ, µ, ξ, ξ) + V2(θ, θ, φ, φ), (5.38)

with V1(x, x, µ, µ, ξ, ξ) and V2(θ, θ, φ, φ) given in Lemma 5.19 and Lemma 5.20, respecti-
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vely. Consequently, V(·) satisfies

V̇(x, x, µ, µ, ξ, ξ, θ, θ, φ, φ) = − (φ − φ)T QLcomQ(φ − φ) − (g(θ) − φ)T (g(θ) − φ)

− ( f (µ) − ξ)T ( f (µ) − ξ),
(5.39)

along the solutions to (5.20). From (5.39) and Lemma 5.13 we have that V̇(·) ≤ 0 and
since V(·) is radially unbounded, the solutions to (5.20) approach the largest invariant set
contained entirely in the set S1, where V̇(·) = 0. This set is characterized by

S1 =
{
x, µ, ξ, θ, φ

∣∣∣ φ = g(θ), ξ = f (µ), Q(φ − φ) ∈ Im(1)
}
, (5.40)

where Q(φ + φ) ∈ Im(1p) follows from Lemma 5.13. It follows that the dynamics of
system (5.20) on the set S1 satisfy

Tx ẋ = − B( f (µ) − f (µ)) + E(φ − φ) (5.41a)

Tµµ̇ = BT (h(x) − h(x)) (5.41b)

Tξ ξ̇ = 0 (5.41c)

Tθθ̇ = − ET (h(x) − h(x)) (5.41d)

Tφφ̇ = 0. (5.41e)

Due to (5.40), (5.41c) and (5.41e) we have that

µ̇ =

(
∂ f (µ)
∂µ

)−1

ξ̇ = 0 (5.42)

θ̇ =

(
∂g(θ)
∂θ

)−1

φ̇ = 0, (5.43)

where we note that ∂ f (µ)
∂µ , 0 and ∂g(θ)

∂θ , 0. It follows now from (5.41b), (5.41d), (5.42)
and (5.43) that  BT

−ET

 (h(x) − h(x)) = 0. (5.44)

From Lemma 2.8 we know that
(
B −E

)T
has full column rank and therefore has a

left inverse. As a result, we have that necessarily h(x) − h(x) = 0, i.e. h(x) = y. By
strict monotonicity of h(x), it follows that on the invariant set x = x and that ẋ = 0.
Premultiplying both sides of (5.41a) by 1T

p , yields 0 = 1T
p (φ − φ) and since Q(φ − φ) ∈

Im(1p), where Q is a diagonal matrix with only strictly positive entries, it follows that
on the set where V̇ = 0 necessarily φ = φ. From (5.40) and (5.41a) it therefore follows
that B( f (µ) − f (µ)) = 0 and B(ξ − ξ) = 0. Moreover, since on the set S1, φ = g(θ)
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and φ = g(θ), we also have that g(θ) = g(θ) = u (see also Lemma 5.17). Consequently,
system (5.20) indeed approaches the set where h(x) = y and where u = g(θ) = g(θ) = u,
with u the optimal input given by (5.7).

Note that the incremental storage function V(·) can be defined with respect to any
equilibrium in Υ1, and since V̇(·) ≤ 0, every point in Q1 is a Lyapunov stable equilibrium
of system (5.20). Consequently, every positive limit set associated with any solution
to system (5.20) contains a Lyapunov stable equilibrium. It then follows by (Haddad
and Chellaboina 2008, Proposition 4.7)4 that this positive limit set is a singleton, which
proves convergence to a point. Therefore, the system (5.20) approaches the set where µ,
ξ, and consequently λ, are constant. �

Remark 5.22 (Uniqueness of µ). In the case that the graph G contains no cycles, i.e.
the graph is a tree, then there exists a unique solution of µ to B( f (µ) − f (µ)) = 0.

Remark 5.23 (Locally increasing mappings). Note that the global convergence result
is a consequence of the strictly increasing behavior of the nonlinear functions fk(µk),
gi(θi) and hi(xi). In case the functions are increasing on a finite interval, a local result
of Theorem 5.21 can be derived. An important class of functions for which this holds
are functions that are not necessary increasing on the whole domain, such as sinusoidal
functions.

Remark 5.24 (Avoiding oscillations). In the proof of Theorem 5.21, we exploited the
dynamics of the additional control variables ξ and φ to conclude that on the invariant
set µ̇ = θ̇ = 0. It is natural to wonder if these additional controller states are essential to
obtain the convergence result of Theorem 5.21. Therefore, we compare (5.15) and (5.16)
with controllers of the form

Tµµ̇ = BT (h(x) − y)

λ = f (µ)
(5.45)

Tθθ̇ = − QLcom(Qg(θ) + r) − (h(x) − y)

u = g(θ),
(5.46)

as both (5.15)-(5.16) and (5.45)-(5.46) admit a steady state where h(x) = y and g(θ) = u.
However, in contrast to (5.20), for which we have proven global convergence to the

4See also the errata and addenda for the corrected version.
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desired state, system

Tx ẋ = − B f (µ) + Eg(θ) − d

Tµµ̇ = BT (h(x) − y)

Tθθ̇ = − QLcom(Qg(θ) + r) − (h(x) − y),

(5.47)

can converge (depending on Q) to a limit cycle exhibiting oscillatory behavior as has
been shown in (Scholten et al. 2016b).

To illustrate this claim, consider the linear case, where f (µ) = µ, g(θ) = θ and
h(x) = x with E = I. Introducing x̃ = x − x, µ̃ = µ − µ, θ̃ = θ − θ, and assuming Q = qI
with q ∈ R, system (5.47) results in

˙̃x
˙̃µ
˙̃θ

 =


0 −B I

BT 0 0
−I 0 −q2Lcom




x̃
µ̃

θ̃

 . (5.48)

It can be readily confirmed that the solution to (5.48), with initial conditions x̃(0) = 0,
µ̃(0) = 0 and θ̃(0) = 1p, is given by

x̃(t) = 1p sin(t) (5.49)

θ̃(t) = 1p cos(t) (5.50)

µ̃(t) = 0, (5.51)

which indeed clearly exhibits oscillatory behavior.

5.4 Extensions and adjustments to the control problem

In the previous discussion we focussed on the design of dynamical flow controllers. On
the other hand, flows in networks might follow from underlying physical principles that
are not accurately described by (5.15). An important example is the case where the
flow λk directly depends on the states xi of its adjacent nodes. This is common in e.g.
compartmental systems (see e.g. (Blanchini et al. 2016), (Bauso et al. 2013) and (Lee
et al. 2017)). Another example is when a change of λ is induced by the dynamics of the
system, instead of a controller that is up to design. We discuss in Subsection 5.4.2 an
important example where the flow dynamics are induced by ‘potential differences’. First
we discuss how certain compartmental systems fit within the presented setting.
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5.4.1 Additional links without a control input

Model (5.1) shows big similarities with those in compartmental systems (see (Blanchini
et al. 2016)). Therefore, it is natural to wonder how these models are related. Compared
to (5.1), compartmental systems have additional dynamics that model state dependent
inflows, outflows and flows between nodes. In this section we incorporate such dynamics
in our framework by augmenting (5.1), resulting in

Tx ẋ = Ψ(x) − Bλ + Eu − d (5.52a)

y = h(x), (5.52b)

where
Ψ(x) = −Bcγ(BT

c h(x)) − Ecη(ET
c h(x)). (5.53)

Here, Bc
5 is the incidence matrix of a (not necessarily connected) graph Gc = (V,Ec).

Moreover, the set of nodes that have a state dependent inflow/outflow is given by Vc ⊆

V, with cardinality pc := |Vc|. Matrix Ec ∈ R
n×pc models the pc state dependent

inflows/outflows and its entries are defined as

(ec)ik =

1 if the k-th flow is located at node i

0 otherwise.

Let l := |Ec|. The mapping γ(BT
c h(x)) : Rl → Rl is given by γ(BT

c h(x)) =

(γ1(a1) . . . γl(al))T , with ak = [BT
c h(x)]k and γk(ak) is increasing and continuously

differentiable for all k ∈ ES . The mapping η(ET
c h(x)) : Rec → Rec is given by

η(ET
c h(x)) = (η1(b1) . . . ηec(bec))

T , with bi = [ET
c h(x)]i and ηi(bi) is increasing and conti-

nuously differentiable for all i ∈ Vc.

Remark 5.25 (Interpretation of Ψ(x)). In compartmental systems the flow between two
nodes can be proportional to a potential difference between two nodes. Moreover, in-
flows and outflows from the system are often considered proportional to the potential at
the corresponding node. The additional term Ψ(x) in (5.52) models these dynamical ef-
fects. More specifically, Bcγ(BT

c h(x)) models the former dynamics and Ecη(ET
c h(x)) the

latter. Note that (5.52) models a compartmental system with additional actuated edges
(flows controlled by a pump) and actuated inputs (production or injection). The actuation
allows us to achieve output regulation and an optimal coordination among the inputs at
the nodes while previously only asymptotic stability with respect to an arbitrary steady

5Bc is introduced with some abuse of notation. In Chapter 4 it was used to denote the incidence matrix
of the communication network, while in this section it refers to the incidence matrix of the network that
models the unactuated flows.
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state was considered (see e.g. (Blanchini et al. 2016) and (Como 2017)). In (Blanchini
et al. 2016) flows between two nodes are considered that are proportional to a poten-
tial at a single node (for example the outflow of a reservoir due to gravity). We do not
consider these dynamics in this chapter and leave the stability analysis in that setting as
future work.

The optimal control allocation problem (2.36) for the considered dynamics (5.52)
becomes

minimize
u,λ

C(u)

subject to 0 = Ψ(x) − Bλ + Eu − d.
(5.54)

Similar to Lemma 2.17, the following can be immediately shown:

Lemma 5.26 (Solution to optimization problem (5.54)). The solution to (5.54) is given
by

û = Q−1(κ̂ − r), (5.55)

where

κ̂ = ET 1n1
T
n

1T
p Q−11p

(d̂ + EQ−1r), (5.56)

and d̂ = d + Ecη(ET
c h(x)).

Proof. The proof follows similar arguments as the proof of Lemma 2.17. We introduce
the Lagrangian

L(u, ζ) = C(u) + ζ(Ψ(x) − Bλ + Eu − d), (5.57)

where ζ ∈ R is the Lagrange multiplier. The saddle point (u, ζ), which corresponds to
the solution of maxζ minu L(u, ζ), satisfies

0 = ∇C(u) + 1pζ

0 = Ψ(x) − Bλ + Eu − d.
(5.58)

For this reason and by definition of Ψ(x) as in (5.53) it follows that

1T
p u = 1T

n (d − Ecη(ET
c h(x))) = 1T

n d̂, (5.59)

as 1T
p Bcγ(BT

c h(x)) = 0. It follows by the same argumentation as in the proof of Lemma
2.17 that (5.55) is satisfied. �

Assumption 5.27 (Properties of f and g revisited). Functions fk and gi, in respectively
(5.15) and (5.16), are continuously differentiable and strictly increasing. Moreover, let û
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be as in (5.55), then fk is such that there exists a ω ∈ Rm where [B†(Ψ(h(x)) + Eû − d) +

(I − B†B)ω]k ∈ R( fk) for all k ∈ E, and gi satisfies ûi ∈ R(gi) for all i ∈ Ve.

Theorem 5.28 (Solving Problem 5.10 for dynamics (5.52)). Let Assumptions 5.1–5.12
and 5.16–5.27 hold. The solutions of system (5.52), in closed loop with (5.15) and (5.16),
converge globally to a point in the set

Υ2 =

x, µ, ξ, θ, φ

∣∣∣∣∣∣ B( f (µ) − f (µ)) = 0, B(ξ − ξ) = 0,
x = x, θ = θ, φ = φ

 , (5.60)

where λ = f (µ) is a constant, h(x) = y and u = g(θ) = û, with û given by (5.55).
Moreover, u = g(θ) and λ = f (µ) satisfy constraints (5.9) and (5.10) for all t ≥ 0.
Therefore, controllers (5.15) and (5.16) solve Problem 5.10 for the flow network (5.52).

Proof. First, the fulfilment of the the constraints (5.9) and (5.10) for all t ≥ 0 is gua-
ranteed by the design of the controllers. Second, similar to Lemma 5.17 Assumptions
5.1–5.12 and 5.27 guarantee that a steady state exists and all steady states satisfy h(x) = y
and u = g(θ) = û, with û given by (5.55). Third, a straightforward adjustment of the ar-
guments of Theorem 5.21 shows that the same incremental storage function (5.38), used
in Theorem 5.21, now satisfies

V̇(·) = (h(x) − h(x))T (Ψ(x) − Ψ(x)) − (φ − φ)T QLcomQ(φ − φ)

− (g(θ) − φ)T (g(θ) − φ) − ( f (µ) − ξ)T ( f (µ) − ξ),
(5.61)

along the solutions to (5.52) in closed loop with (5.15) and (5.16). We continue by
showing that the additional term in V̇(·) (comparing with the expression of V̇(·) in (5.39))
satisfies

(h(x) − h(x))T (Ψ(x) − Ψ(x)) ≤ 0. (5.62)

Next we use Hadamard’s lemma which states that for any smooth, real-valued function
f : Rn → Rn it holds that

f (x) = f (a) +

n∑
i=1

(xi − ai)
∫ 1

0

∂ f
∂xi

(a + t(x − a)) dt, (5.63)
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with a = (a1, ..., an), and x = (x1, ..., xn). It follows that

(h(x) − h(x))T (Ψ(x) − Ψ(x)) = − (h(x) − h(x))T Bc(γ(BT
c h(x)) − γ(BT

c h(x))

− (h(x) − h(x))T Ec(η(ET
c h(x)) − η(ET

c h(x)))

= − (h(x) − h(x))T BcΓ
b(x)BT

c (h(x) − h(x))

− (h(x) − h(x))T EcΓ
e(x)ET

c (h(x) − h(x)) ≤ 0,

where Γb(x) and Γe(x) are diagonal matrices with entries

Γb
kk(x) =

∫ 1

0

∂γk(yk)
∂yk

∣∣∣∣∣
yk=τ(χb

k (x)−χb
k (x))+χb

k (x)
dτ (5.64)

Γe
ii(x) =

∫ 1

0

∂ηi(yi)
∂yi

∣∣∣∣∣
yi=τ(χe

i (x)−χe
i (x))+χe

i (x)
dτ, (5.65)

with χb
k(x) = [BT

c h(x)]k and χe
i (x) = [ET

c h(x)]i. In fact, since γk(·) and ηi(·) are increasing
functions for all k ∈ Ec and all i ∈ Vc it follows that that Γb

kk(x),Γe
ii(x) ≥ 0 for any x.

Therefore, V(·) satisfies

V̇(·) ≤ − (φ − φ)T QLcomQ(φ − φ) − (g(θ) − φ)T (g(θ) − φ)

− ( f (µ) − ξ)T ( f (µ) − ξ),
(5.66)

along the solutions to (5.52) in closed loop with (5.15) and (5.16). Note that expression
(5.66) is identical to (5.39), that is used to prove Theorem 5.21. Similar to that proof
we can argue that x = x, by exploiting the relations (5.41b) – (5.41e). Therefore, on the
invariant set where V̇(·) = 0,

Tx ẋ = Ψ(x) − Ψ(x) − B( f (µ) − f (µ)) + E(φ − φ), (5.67)

reduces to (5.41a), such that system (5.52) in closed loop with (5.15) and (5.16), is on
the invariant set identical to (5.41). From here, the proof follows the same steps as the
proof of Theorem 5.21. �

5.4.2 Potential induced flows on the links

While in Section 5.2.1 the dynamics for the flows on the edges were up to design we
consider in this subsection that they are given by the following expression:

Tµµ̇ = BT (h(x) − y)

λ = f (µ).
(5.68)
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This is motivated by networks in which the flow dynamics are induced by physics such
as the behaviour of inductive lines in an electric network (see the case study on a multi-
terminal high voltage direct current network in Subsection 5.5.2). In such networks
h(x) − y denotes the potential at the nodes, µ the state variable at the link and λ the
flow on the link as a result of a possible difference in potential. Similar dynamics as
(5.68) have been studied in the context of networked systems in e.g. (van der Schaft and
Wei 2012), (Bürger et al. 2014) and (Bürger et al. 2015). Note however that none of
these studies included the controllers at the nodes as in (5.16) which is included in the
analysis here.

The dynamics (5.68) coincide with (5.15), if one neglects the terms depending on
the now missing state ξ. In fact, (5.68) can generate the same steady state output as
(5.15) and also shares an incremental passivity property. However, as we pointed out
in Remark 5.24, the state ξ is essential to derive the convergence result in Theorem
5.21. On the other hand, by carefully selecting nodes that have a controllable external
input, the controllers (5.16) and (5.68) still solve Problem 5.10 for the flow network
(5.1). This choice is based on the notion of a zero forcing set (see e.g., (Hogben 2010),
(Monshizadeh et al. 2014)), which we review next. Consider the graph G and let us
initially color each of its nodes either black or white. The color of the nodes then changes
according to the following coloring rule:

Graph coloring rule If node i is colored black and has exactly one neighbor j which is
white, then the color of node j is changed to black.

LetV0 ⊆ V be the set of nodes which are initially colored black, while the remaining
ones are white, and let C(V0) be the set of black node obtained by applying the color
changing rule until no more changes are possible. A zero forcing set is then defined as:

Definition 5.29 (Zero forcing set). If Vz ⊆ V satisfies C(V0) = V then Vz is a zero
forcing set for G.

We now make a connection between a zero forcing set and the set Ve of nodes that
have actuation (i.e., all nodes that correspond to the rows of E that contain a non-zero
entry).

Assumption 5.30 (Ve is a zero forcing set). The setVe is a zero forcing set for G.

An example of a zero forcing set is provided in Figure 5.2, where the black nodes
form a zero forcing set for the physical network. We are now ready to state the second
result of this section.

Theorem 5.31 (Solving Problem 5.10 with dynamics (5.68)). Let Assumptions 5.1–5.16
and 5.30 hold. The solutions of system (5.1), in closed loop with the controllers (5.16)
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and (5.68), globally approaches the set

Υ3 =
{
x, µ, θ, φ

∣∣∣ B( f (µ) − f (µ)) = 0, x = x, θ = θ, φ = φ
}
, (5.69)

where λ = f (µ) is a constant, h(x) = y and where u = g(θ) = u, with u given by
(5.7). Moreover, u = g(θ) and λ = f (µ) satisfy constraints (5.9) and (5.10) for all t ≥ 0.
Therefore, controllers (5.16) and (5.68) solve Problem 5.10 for system (5.1).

Proof. Following the argumentation of the proof of Theorem 5.21, using the same in-
cremental storage function (5.38), allows us to conclude that the solutions to the system
(5.1), (5.16), (5.68) approach the largest invariant set contained in the set where V̇(·) = 0.
This set where V̇(·) = 0 is characterized by

S3 =
{
x, µ, θ, φ

∣∣∣φ = g(θ),Q(φ − φ) ∈ Im(1)
}
. (5.70)

System (5.1), (5.16), (5.68) satisfies on this set

Tx ẋ = − B( f (µ) − f (µ)) + E(φ − φ) (5.71a)

Tµµ̇ = BT (h(x) − h(x)) (5.71b)

0 = − ET (h(x) − h(x)) (5.71c)

Tφφ̇ = 0. (5.71d)

We now prove by induction that hi(xi) = hi(xi) for all i ∈ V. To this end, let us define
the sequence of sets of nodesVk ⊆ V, with k ∈ N≥0, having the properties:

(i)Vk is a zero forcing set;

(ii) on the largest invariant set for (5.1), (5.16), (5.68) contained in S3, it holds that
hi(xi) = hi(xi) for all i ∈ Vk.

Let the cardinality of Vk be denoted by nk. In order to show that hi(xi) = hi(xi) for all
i ∈ V we will prove that there exists an index k such that nk = n, where Vk satisfies
properties (i) and (ii). Recall that |V| = n.

First, we note that Assumption 5.30 and (5.71c) imply thatVe satisfies properties (i)
and (ii). For this reason, we can setV0 = Ve and n0 = p > 0 that satisfies properties (i)
and (ii). If n0 = n, then k = 0, otherwise n0 < n and we proceed as follows.

For a k ∈ N≥0, we consider a set of nodesVk of cardinality nk such that 0 < nk < n
and properties (i) and (ii) above are satisfied. We will show that this implies that there
exists a set of nodesVk+1 that satisfies properties (i) and (ii) with nk < nk+1.

Let us define

B(k) =

 BB(k)

BW(k)

 ,
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where the matrices BB(k) ∈ Rnk×m and BW(k) ∈ R(n−nk)×m are obtained by collecting from
B the rows indexed byVk andV\Vk respectively. Note that B(k) is obtained from B by
reordering of the rows and that BB(k) are the rows of B corresponding to the black nodes
and BW(k) the ones corresponding to the white nodes. Similarly, for any vector χ ∈ Rn

let χB(k) ∈ Rnk and χW(k) ∈ Rn−nk be obtained by collecting from χ the elements indexed
by Vk and V\Vk respectively. We note that by property (ii), on the largest invariant
set, the set Vk fulfils (h(x) − h(x))B(k) = 0, or more explicitly, hi(xi) − hi(xi) = 0 for all
i ∈ Vk. By the strict monotonicity of hi(xi), it follows that on the invariant set xi = xi for
all i ∈ Vk. Since d

dt (φ − φ) = 0 due to (5.71d), by (5.71a) and (5.71b), on the invariant
set we have that

Tx

 0
ẍW(k)

 = −B(k) ∂ f (µ)
∂µ

B(k)T
 0

(h(x) − h(x))W(k)

 ,
from which it follows that

0 = −BB(k) ∂ f (µ)
∂µ

BW(k)T
(h(x) − h(x))W(k). (5.72)

Note that BB(k) ∂ f (µ)
∂µ BW(k)T is the right-upper block of the Laplacian matrix B(k) ∂ f (µ)

∂µ B(k)T

with strictly positive weight matrix, since fi(µi) is strictly increasing, such that ∂ fk(µk)
∂µk

> 0

for all k ∈ E. The non-zero entries in BB(k) ∂ f (µ)
∂µ BW(k)T correspond to pairs of exactly

one black and one white node that are connected via an edge. Therefore we have that
each row i of BB(k) ∂ f (µ)

∂µ BW(k)T (which corresponds to a black node) contains a strictly
negative number at entry j if node nk + j is a neighbor of the node i. By Assumption
5.30 we have that Vk is a zero forcing set and that Vk ( V, which implies that there
exists at least one row of BB(k) ∂ f (µ)

∂µ BW(k)T which contains exactly one non-zero entry.
LetUk be the set in which we collect the nodes that correspond to these rows and define
Vk+1 := Vk ∪ Uk. From (5.72), we have that 0 = hi(xi) − hi(xi), for all i ∈ Uk and
therefore for all i ∈ Vk+1. Moreover, sinceVk ⊂ Vk+1, and since we assume thatVk is
a zero forcing set for G, also Vk+1 is a zero forcing set for G. This concludes the proof
that there exists a set of nodesVk+1 that satisfies properties (i) and (ii) with nk < nk+1.

Since the number of nodes is finite, in a finite number of iterations k we arrive at
a set Vk where nk = n, i.e. Vk coincides with V and has the property that on the
largest invariant set for (5.1), (5.16), (5.68) contained in Υ3, 0 = hi(xi) − hi(xi) for all
i ∈ Vk = V. From here, omitting the variable ξ, the proof follows, mutatis mutandis, the
proof of Theorem 5.21 starting below (5.44). �

Remark 5.32 (Relaxing Assumption 5.30). In the case f (µ) = µ and h(x) = x, succes-
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sive differentiations of (5.71c) yields

0 =



−ET

ET Y
−ET Y2

...

(−1)n−1ET Yn−1

︸                ︷︷                ︸
O

(h(x) − h(x)), (5.73)

where Y = T−1
x BT−1

µ BT . To conclude that h(x) = h(x), it is sufficient that the matrix
O has full column rank, that is the pair (ET ,Y) is observable. However, in the case of
the nonlinear mappings f (µ) and h(x), it not immediate to find a similar criterion that
permits us to conclude h(x) = h(x) .

After separately discussing the particular modifications to the flow network and con-
trollers in Subsections 5.4.1 and 5.4.2, we briefly discuss the combination of both in the
corollary below:

Corollary 5.33. Let Assumptions 5.1–5.12 and 5.16–5.27 hold. Consider the flow net-
work (5.52) and letVs ⊆ Vc, be defined as6

Vs = {i ∈ Vc
∣∣∣ ηi(yi) is strictly increasing in yi }. (5.74)

If Ve ∪ Vs is a zero forcing set for G, then system (5.52), in closed loop with the con-
trollers (5.16) and (5.68), globally approaches the set

Υ4 =

x, µ, θ, φ

∣∣∣∣∣∣ B( f (µ) − f (µ)) = 0,
x = x, θ = θ, φ = φ

 , (5.75)

where λ = f (µ) is a constant, h(x) = y and u = g(θ) = u, with u given by (5.7). Therefore,
controllers (5.16) and (5.68) solve Problem 5.10 for the flow network (5.52).

Proof. Following a similar argumentation as in the the proof of Theorem 5.31, xi = xi

for all i ∈ Ve. Moreover, the dynamics (5.52) give rise to an additional term in V̇(·) in
the same manner as in the proof of Theorem 5.28 (see (5.64)), namely:

−(h(x) − h(x))T EcΓ
e(x)ET

c (h(x) − h(x)) < 0. (5.76)

Consequently, on the largest invariant set where V̇(·) = 0, also xi = xi for all i ∈ Vs,

6In Theorem 5.28, we only required ηi(yi) to be increasing for i ∈ Vc.
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Figure 5.3: Topology of the considered heat network. The arrows indicate the required
flow directions in the heat network, while the dashed lines represent the communication
network used by the controllers.

since ηi(yi) is strictly increasing for all i ∈ Vs. From here the proof continues along the
lines of the proof of Theorem 5.31. �

5.5 Case studies

To illustrate how various physical systems can be regarded as a flow network and to
show the performance of the proposed controllers we consider two case studies. The first
case study considers a district heating system, whereas the second case study considers
a multi-terminal HVDC network.

5.5.1 District heating system

We consider a district heating system with a topology as depicted in Fig 5.3. Each node
represents a producer, a consumer and a stratified storage tank as in Figure 2.2 and let
the output of the system be hi(xi) = xi. The various nodes are interconnected via a pipe
network G resulting in the model (5.1) with Tx = I and E = I.
We perform a simulation over a 40 hour time interval in which we evaluate the response
to a change in demand at t = 12 and change in setpoint at t = 24. The cost functions of
the four producers are purely quadratic, i.e. s = r = 0 and Q = diag

(
10 9 7 6

)
.

Initially the volume is set to x(0) =
(
200 200 200 200

)T
and the first setpoint x(t) =

x(0), for all t < 24. The initial demand is given by d =
(
30 30 30 30

)T
, for all

t < 12, which is increased to d =
(
35 35 35 35

)T
, for all t ≥ 12. At t = 24 the

setpoint for the volume x(t) is increased, such that x(t) =
(
210 210 210 210

)T
for

all t ≥ 24. To guarantee uni-directional flows and positive production we require λ > 0,
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Figure 5.4: Volumes, flows and productions of the district heating system during a 40
hour period. The optimal production up as in (5.7) is indicated by dotted lines in the
lower plot.

u > 0 and due to capacity constraints we additional require them to be upper bounded by
14 m3/h and 52 m3/h, respectively. To enforce these constraints the input is designed as

λi(µi) = 7(tanh(µi) + 1)

ui(θi) = 26(tanh(θi) + 1),

where tanh(·) is the hyperbolic tangent function. Finally we let Tµ = I, Tθ = I, Tφ =

0.005 · I and we set all the weights of Lcom to 10 and we let it be undirected which implies
that Lcom is balanced.
The resulting response of the system can be found in Figure 5.4, where we can clearly
see the effects of the increased demand at t = 12 and change in setpoint at t = 24. More
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V1 V2

V4 V3

d1

u4 − d4

u2 − d2

u3 − d3

Figure 5.5: Topology of a four bus multi-terminal HVDC network. We take Ci = 57µF
and Lk = 0.0135H for i, k ∈ {1, . . . , 4}.

specifically, in the upper plot we can see that the controllers indeed let the volumes in
the four storage tanks to converge towards the desired setpoints of 200m3 (t < 24) and
210m3 (t ≥ 24). In the middle plot we see that the flows in the pipes remain within the
constraint 0 < λk < 14 for all k throughout the entire simulation. Finally, in the bottom
plot we see the production at the four nodes and the optimal productions denoted by the
dotted lines. We observe that the production converges towards the optimal value u and
satisfies 0 < ui < 52 for all i and for the entire simulation interval.

5.5.2 Multi-terminal high voltage direct current networks

As a second case study we consider multi-terminal high voltage direct current (HVDC)
networks that have been recently studied in e.g. (Andreasson et al. 2016). We assume that
the lines connecting the terminals are lossless, such that the overall network dynamics
are given by

CV̇ = − Bµ + u − d

Lµ̇ = BT V,
(5.77)

where V are the voltages at the terminals, µ are the currents through the lines, d are un-
controllable current loads and u are the controllable current injections. We consider a
circuit of four nodes of which only nodes 2, 3 and 4 have a controllable current injection.
The corresponding circuit is provided in Figure 5.5, where Ci is the capacitance at termi-
nal i, and Lk is the inductance of line k. The first objective is to stabilize the voltage at
terminal i around its desired setpoint V i, which is identical for each terminal. Therefore,
BT V = BT (V − V). The second objective is to share the controllable current injections
equally among the terminals. Note that (5.77), is an example of the model studied in
Subsection 5.4.2, and that the set of nodes with a controllable current injection is a zero
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Figure 5.6: Voltages, current flows and current injections for a high voltage direct current
network. The optimal production up as in (5.7) is indicated by dotted lines in the lower
plot.

forcing set for the considered network. Therefore, Assumption 5.30 is satisfied and it
follows from Theorem 5.31 that asymptotic stability of the desired state is guaranteed, if
the controllers (5.16) are applied to control the current injections. In this case study, the
controllers (5.16) are applied, with qi = 1, si = 0, ri = 0, Tθi = 100, Tφi = 0.02, for all
i ∈ {1, . . . , 4}. The underlying communication network connects nodes 2 − 3 and 3 − 4,
where each link has a weight of 104. The desired voltage is V i = 165kV at all terminals
throughout the simulation. Initially, all di have a value of 100A. At t = 0.02s, the value
of d2 increased to 140A, whereas d3 is decreased to 80A. To prevent low and high current
injections during the transient we require at all terminals that 130A ≤ ui(t) ≤ 145A is
satisfied. To ensure this we let

ui = gi(θi) = 130 + 7.5 (tanh(θi) + 1) . (5.78)

The response to the change in demand is given in Figure 5.6, from where we conclude
that the voltages converge towards their set point of 165kV , while u satisfies its con-
straints at all time.



Chapter 6
Pressure regulation with a single producer and

positivity constraints

Abstract

In this chapter we investigate pressure regulation in large scale hydraulic networks
with a multi-pump architecture. We propose distributed controllers that regulate the
pressure drop at each end-user asymptotically towards desired set-points. We prove
that the obtained closed-loop nonlinear system is locally asymptotically stable. In
contrast to previous results, the proposed solution guarantees, besides pressure
regulation, that the pumps generate only positive pressures (inputs), required by
many (centrifugal) pumps that are commonly used in hydraulic networks.

P
ressure regulation problems of a closed large scale hydraulic network with multiple
pumps are common in district heating networks. In these heat networks a single

heat source (producer) has to deliver heat to multiple end-users that have an uncertain
and possibly changing demand. The heat is exchanged through heat exchangers while
the pumps guarantee that the heat is transported through the fluid in the pipes. In order to
reduce heat dispersion, the diameter of the pipes are kept as small as possible. However,
smaller pipes can lead to a higher resistance, resulting in pressure losses throughout
the network. In order to maintain a desirable pressure at all the end-users, a multi-
pump architecture can be used (De Persis and Kallesoe 2011). In such an architecture
each pump is equipped with a controller that maintains locally the desired pressure drop.
Depending on the topology of the hydraulic network, additional coordination among the
pumps may be needed.

Various solutions have been proposed to regulate the pressure in these multi-
pump hydraulic networks with an unknown demand, such as PI controllers (Sloth
and Wisniewski 2015), (De Persis et al. 2014) and nonlinear adaptive controllers (Hu
et al. 2003), (Koroleva and Krstic 2005), (Koroleva et al. 2006). Additional objectives
such as reducing the water leakage (Kallesøe et al. 2015), (Tahavori et al. 2014), or re-
ducing the energy consumptions of the pumps (Sloth and Wisniewski 2015) have been
considered as well. An important practical constraint is that (centrifugal) pumps that
are used in most hydraulic networks can only generate a positive pressure, lowering the
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practical applicability of solutions that do not take this constraint explicitly into account.
This constrained control problem, where the input is quantized as well, has been previ-
ously addressed in (De Persis and Kallesoe 2011), but results in a steady state error in
the desired pressure drops at the end-user valves.

In contrast to the flow networks considered in Chapters 4 and 5, hydraulic networks
include the algebraic and dynamic relations between the pressures and flowrates. In this
chapter we focus on the pressure regulation of a closed large scale hydraulic network with
multiple pumps. The focus of this chapter is to extend previous results by guaranteeing
the positivity constraint on the input (pump pressures), while regulating the pressures at
the end-users to their desired values.

We propose a distributed control structure, where every local controller resembles the
structure of a nonlinear PI controller. Related nonlinear PI controllers have been conside-
red before in for example (Astolfi et al. 2007). In order to guarantee positivity constraint
on the input, saturation functions and a state dependent integral gain are included in the
controller. Furthermore, we prove that the state of desired pressure drops at the end-users
is locally asymptotically stable. Since the considered model of the hydraulic network can
be formulated as a port-Hamiltonian system (van der Schaft and Maschke 2013) or as a
Euler-Lagrange system (Ortega et al. 2008), we believe that the obtained results on the
regulation of hydraulic networks can offer an inspiration for solving control problems
in other networked (energy) systems admitting a port-Hamiltonian or Euler-Lagrange
model. Specifically, the way how the input constraints are enforced might offer new per-
spectives on general classes of controlled flow networks that have similar requirements
(Wei and van der Schaft 2014), (Trip et al. 2017).

The chapter is structured as follows, in Section 6.1 we introduce the model and intro-
duce the controller design. The corresponding stability analysis can be found in Section
6.3 and we end this chapter with a case study of a district heating system in Section 6.4.

6.1 Pressure drop regulation with positivity constraints

In this chapter we consider a hydraulic network modeled by (2.32) which we repeat for
convenience

Jq̇ = − D f (DT q) + u

y =µc(q),
(6.1)

where D is the fundamental loop matrix, J is a diagonal matrix with non-negative en-
tries, J = DJDT , ∆hp is the pressure drop at the end-users u = D∆hp is the input and
f (·) and µc(·) are a nonlinear mappings as in (2.27) and (2.30) respectively. The main
objective is to maintain the pressure drop at the end-user valves y = µc(q), at a desired
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value r ∈ Rn
>0. In the case that there are no pressure constraints on the considered pumps

this control problem has been satisfactory solved in (De Persis et al. 2014). However,
the considered pumps in this chapter can only provide positive pressures. Therefore, the
control input u is required to be positive, which complicates the controller design. The
corresponding control problem is as follows:

Problem 6.1 (Pressure drop regulation with a positive input). Let r ∈ Rn
>0, design con-

trollers adjusting u(t) given in (6.1), such that

lim
t→∞
‖y(t) − r‖ = 0, (6.2)

while satisfying u(t) ≥ 0 for all t ≥ 0. Moreover, a controller that generates ui(t) can
only access the measurement yi(t) and the reference signal ri. �

Next, we propose a controller that solves Control problem 6.1 and analyse the stabi-
lity of the obtained closed-loop system in Section 5.

6.2 Controller design

In order to design the controllers that satisfy the positivity constraint on u(t) as in Problem
6.1, we define mappings s(θ) and σ(x) as

s(θ) =


s1(θ1)
...

sn(θn)


σ(x) =


σ1(x1)
...

σn(xn)

 ,
(6.3)

where function si(θi) ∈ C1(R;R) is strictly increasing and satisfies

lim
θi→−∞

si(θi) = 0, (6.4)

for each i ∈ {1, . . . , n}. The function σi(·) ∈ C1(R;R) is decreasing and

σi(xi) = 0, (6.5)
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if xi ≥ 0 for each i ∈ {1, . . . , n}. Notice that with the definitions above we have that

R(s(·)) ∈ Rn
≥0

R(σ(·)) ∈ Rn
≥0.

(6.6)

where R denotes the range. Consider a controller of the form

θ̇ = −

[
∂s(θ)
∂θ

]−1

(µc(q) − r) (6.7a)

u =s(θ) + σ(µc(q) − r), (6.7b)

where s(·) and σ(·) are defined as in (6.3).

Remark 6.2 (Interpretation of controller (6.7)). Note that (6.7) has the form of a PI
controller where u(t) ≥ 0 for all t ≥ 0 due to the (6.6). Moreover, following the stability
analysis in the next section, integrator (6.7a) includes the state dependent gain

[∂s(θ)
∂θ

]−1,
which is nonsingular since si(θi) is strictly increasing for each i.

6.3 Stability analysis of the closed loop system

In this section we provide a stability analysis of system (6.1) interconnected with con-
troller (6.7), resulting in

Jq̇ = − D f (DT q) + s(θ) + σ(µc(q) − r) (6.8a)

θ̇ = −

[
∂s(θ)
∂θ

]−1

(µc(q) − r). (6.8b)

Before we study the stability of (6.8), we first determine its steady state.

6.3.1 Existence of a steady state

To guarantee the existence of a steady state of (6.8) we make the following assumption:

Assumption 6.3 (Feasibility condition). Setpoint r and mappings µc(·) and s(·) satisfy

r ∈ R(µc(q))

D f (DTµ−1
c (r)) ∈ R(s(θ)).

(6.9)

Note that Assumption 6.3 is not restrictive since s(·) can be designed to satisfy (6.9)
and D f (DTµ−1

c (r)) ∈ Rn
>0 for all r ∈ Rn

>0. In the lemma below we prove that under
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Assumption 6.3 there exists a unique steady state (q, θ) satisfying

0 = − D f (DT q) + s(θ) + σ(µc(q) − r) (6.10a)

0 = −

[
∂s(θ)
∂θ

∣∣∣∣∣
θ=θ

]−1

(µc(q) − r). (6.10b)

Lemma 6.4 (Existence of a steady state). Let Assumption 6.3 hold. There exists a unique
(q, θ) that satisfies (6.10) and is given by

q = µ−1
c (r) (6.11a)

θ = s−1
(
D f (DTµ−1

c (r))
)
. (6.11b)

Proof. First note that (6.11) satisfies (6.10) and exists due to Assumption 6.3. Conver-
sely, we prove that (6.11) is the only steady state that satisfies (6.10). Since µc(q) and s(θ)
are strictly increasing they have a unique inverse and [∂s(θ)

∂θ ]−1 , 0. Therefore, (6.10b)
implies (6.11a). By design we have that σ(0) = 0 such that σ(µc(q) − r) = 0 and it
follows that necessarily (6.11b) is satisfied. �

Lemma 6.4 is essential to the stability analysis in the next subsection, since q as
in (6.11) implies that ‖µc(q) − r‖ = 0 as is desired in Control problem 6.1. In order
to solve Control problem 6.1 it is therefore sufficient to prove that (6.11) is a (locally)
asymptotically stable equilibrium of (6.8).

6.3.2 Stability analysis of the desired steady state

This section investigates the stability of the desired steady state (6.10) under the closed
loop dynamics (6.8). We consider the storage function (De Persis et al. 2014)

V =

n∑
i=1

∫ qi

q̄i

(µc(ξ) − r)dξ +
1
2

q̇T Jq̇. (6.12)

Next, we derive two useful properties of the storage function V that allow us to derive
the main result of this chapter.

Lemma 6.5 (Decreasing storage function). The storage function V satisfies

V̇ ≤ −
n∑

i=1

q̇2
i
∂λi(q̃i)
∂q̃i

∣∣∣∣∣
q̃i=(DT q)i

≤ 0, (6.13)

along the solutions to (6.8).
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Proof. Along the solutions to system (6.8) we have that V satisfies

V̇ = (µc(q) − r)T q̇ + q̇T Jq̈

= (µc(q) − r)T q̇ − q̇T
[
DΓ(q)DT −

∂σ(µ(q) − r)
∂µ(q)

∂µ(q)
∂q

]
q̇ + q̇T ∂s(θ)

∂θ
θ̇,

(6.14)

where

Γ(q) =

Γc(q) 0
0 Γr(q)

 , (6.15)

with

Γc
ii(q) =

∂λi(q̃i)
∂q̃i

∣∣∣∣∣
q̃i=(DT q)i

, (6.16)

for i ∈ {1, ..., n} (representing all the end-user valves),

Γr
ii(q) =

∂(λi(q̃i) + µi(q̃i))
∂q̃i

∣∣∣∣∣
q̃i=(DT q)i

, (6.17)

for i ∈ {n + 1, ...,m} (representing all other components in the network) and Γc
i j(q) =

Γr
i j(q) = 0 for all i , j. Since σ(µ(q) − r) and µ(q) are decreasing and increasing

mappings respectively, we have that

∂σ(µ(q) − r)
∂µ(q)

∂µ(q)
∂q

� 0. (6.18)

Furthermore, (6.7a) implies
∂s(θ)
∂θ

θ̇ = −(µc(q) − r), (6.19)

such that we obtain from (6.14), (6.18) and (6.19) that

V̇ ≤ −q̇T DΓ(q)DT q̇ = −q̇T Γc(q)q̇ − q̇T FΓr(q)FT q̇, (6.20a)

where we have exploited the structure of D given by (2.25). Since λi(·) and µi(·) are
strictly increasing functions, it follows that Γc

ii(q) > 0 and Γr
ii(q) ≥ 0 for all i. Combining

the latter with the observation that the last term in (6.20a) is a positive semidefinite
quadratic form, we obtain (6.13). �

Lemma 6.6 (Positive definite Hessian matrix). The Hessian matrix H(V(q, θ)) of the
storage function V in (6.12) evaluated at (q, θ) as in (6.11) is positive definite, i.e.

H(V(q, θ))|q=q̄,θ=θ̄ � 0. (6.21)
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Proof. From (6.12) we obtain

V =
1
2

z(q)T J−1z(q) +
1
2

s(θ)T J−1s(θ) + z(q)T J−1s(θ) +

n∑
i=1

Ji

∫ qi

q̄i

µc(y) − rdy,

(6.22)
where z(q) := σ(µc(q) − r) − D f (DT q). A straightforward calculation shows that

H(V(q, θ)) =

A(q, θ) B(q, θ)
BT (q, θ) C(q, θ)

 , (6.23)

where

Ai j(q, θ) =
∂2

∂qi∂q j
z(q)T J−1

(
1
2

z(q) + s(θ)
)

+
∂2

∂qi∂q j

n∑
i=1

Ji

∫ qi

q̄i

µc(y) − rdy

=

n∑
k=1

(
∂2zk(q)
∂qi∂q j

(zk(q) + sk(θk)) +
∂zk(q)
∂qi

∂zk(q)
∂q j

)
J−1

k +
∂µci(qi)
∂q j

Ji

Bi j(q, θ) =
∂2

∂qi∂θ j
z(q)T J−1s(θ) =

∂z j(q)
∂qi

J−1
j
∂s j(θ j)
∂θ j

Ci j(q, θ) = J−1
i
∂2si(θi)
∂θi∂θ j

(si(θi) + zi(q)) + J−1
i
∂si(θi)
∂θi

∂si(θi)
∂θ j

.

Note that Ci j(q, θ) = 0 if i , j since ∂si(θi)
∂θ j

= 0. We now evaluate H(V(q, θ))|q=q̄,θ=θ̄,
which we denote with a slight abuse of notation as

H(V(q, θ))|q=q̄,θ=θ̄ =

A(q, θ) B(q, θ)
BT (q, θ) C(q, θ)

 . (6.24)

From (6.10) we have s(θ) + z(q) = 0 such that

Ai j(q, θ) =

n∑
k=1

J−1
k

∂zk(q)
∂qi

∣∣∣∣∣
q=q

∂zk(q)
∂q j

∣∣∣∣∣∣
q=q

+ Ji
∂µci(qi)
∂q j

∣∣∣∣∣∣
q=q

Bi j(q, θ) = J−1
j
∂z j(q)
∂qi

∣∣∣∣∣∣
q=q

∂s j(θ j)
∂θ j

∣∣∣∣∣∣
θ j=θ j

Ci j(q, θ) = J−1
i

∂si(θi)
∂θi

∣∣∣∣∣
θi=θi

∂si(θi)
∂θ j

∣∣∣∣∣∣
θ=θ

.

(6.25)
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Since C(q, θ) � 0, it is sufficient that the Schur complement of block C(q, θ) of matrix
H(V(q, θ))|q=q̄,θ=θ̄ is positive definite in order to conclude that H(V(q, θ))|q=q̄,θ=θ̄ � 0.
This Schur complement S (q, θ) is given by

S (q, θ) := A(q, θ) − B(q, θ)C(q, θ)−1BT (q, θ), (6.26)

where

S i j(q, θ) =Ai j(q, θ) −
n∑

l=1

(
Bil(q, θ)Cll(q, θ)−1B jl(q, θ)

)
= Ji

∂µci(qi)
∂q j

∣∣∣∣∣∣
q=q

.

Since ∂µci(qi)
∂q j

> 0 if i = j and ∂µci(qi)
∂q j

= 0 otherwise, we have that S (q, θ) � 0 and we
conclude that indeedH(V(q, θ))|q=q̄,θ=θ̄ � 0. �

Figure 6.1: Topology of a four end-user network with a single producer (De Persis and
Kallesoe 2011).

We are now ready to state the main result of this chapter.

Theorem 6.7 (Local asymptotic stability of (6.8)). Let Assumption 6.3 hold, then equi-
librium (6.11) of system (6.8) is locally asymptotically stable.

Proof. It follows from Lemma 6.6 that the storage function V given by (6.12) has a strict
local minimum at the desired steady state (q, θ). Since V̇ ≤ 0 as a result of Lemma 6.5,
there exists a forward invariant set Υ around (q, θ) and by LaSalle’s invariance principle
the solutions that start in Υ converge towards the largest invariant set contained in Υ∩Q,
where

Q =

q ∈ Rn, θ ∈ Rn

∣∣∣∣∣∣∣ 0 =

n∑
i=1

q̇2
i
∂λi(q̃i)
∂q̃i

∣∣∣∣∣
q̃i=(DT q)i

 .
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Figure 6.2: Evolution of the pressure drops (top) and flow rates (middle) at the end-users,
as well as the total generated pump pressures (bottom) in the fundamental loops. The
setpoint is increased at time t = 10s and decreased at time t = 50s.

Since λi(·) is strictly increasing, it follows that on the invariant set q̇ = 0. In view of
(6.8a), this implies that on this set

0 = − f (DT q) + s(θ) − σ(µ(q) − r). (6.27)

Differentiating (6.27) yields

∂
(

f (DT q) + σ(µ(q) − r)
)

∂q
q̇ =

∂s(θ)
∂θ

θ̇, (6.28)

and since q̇ = 0, we conclude from (6.8b) that µc(q) − r = 0 implying that q = q on
the invariant set. Finally, from (6.27) we obtain that D f (DT q) = s(θ) which implies that
necessarily θ = θ on the invariant set. �

Note that Theorem 6.7 shows that controllers (6.7) indeed solve Control problem 6.1,
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provided that the initial conditions q(0) and θ(0) are sufficiently close to the steady state
(6.11). Moreover, controller (6.7) is designed in such a way that it can be implemented
in a distributed fashion, meaning that it only requires measurements of yi and setpoint ri

in order to generate ui.

6.4 Case study

To illustrate the the proposed controller (6.7), we perform a case study where we simulate
a network with four end-users as depicted in Figure 6.1. The functions σi and si are
designed as

σi(x) =


−x − 1

40000 if x < −0.005

x2 if − 0.005 ≤ x < 0

0 if 0 ≤ x,

(6.29)

and

si(x) =

0.0023e124.992x if x < 0.01

0.8 tanh(x) if x ≥ 0.01.
(6.30)

Note that σi and si are chosen such that they are continuous, have a continuous derivative
and are non-negative. The functions λi and µi are given by

λi(x) = pi(x3 + x), µi(x) = vi(x3 + x), (6.31)

where vi = 0.1 for all i and pi = 0.0141 if i corresponds to an end-user and pi = 0.4503
otherwise. The matrix J is such that Jii = 0.1 for all i, resulting in

DTJD =
1
10


7 4 4 4
4 9 6 6
4 6 12 9
4 6 9 14

 . (6.32)

We investigate the response of the system during a change of the setpoint r. The initial
setpoint for each end-user valve i is ri = 0.2, which is increased to ri = 0.3 at time
t = 10s and decreased to its initial value at time t = 50s. The results of the simulation
can be found in Figure 6.2. In the upper plot we see that the pressures indeed converge
to the desired setpoints after a transient response of approximately 20s. From the bottom
plot it can be seen that the inputs remain positive throughout the simulation.

Remark 6.8 (Required communication between the pumps). As discussed in Remark
2.16, the controller assigns the total required pressure to the sum of all the pumps in a
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cycle. For this reason communication between the pumps in each cycle is required to
assign an input to an individual pump. The communication that is required is depicted
in Figure 6.1 by the dashed lines and is explained in more detail in (De Persis and
Kallesoe 2011).





Chapter 7
Geothermal reservoir implications of a time varying
control

Abstract

This chapter provides a proof of concept in which the heat production of a geother-
mal system is controlled depending on the demand in a district heating network.
A model predictive control strategy is designed, which uses volume measurements
in the storage tank and predictions of the demand to regulate the production of the
geothermal system in real time. The implications of such a time varying production
for the reservoir are investigated using a 2D reactive transport reservoir model. As
a case study, the Groningen geothermal project is considered for which the control-
ler is tuned. The numerical data generated by the controller in closed loop with a
modelled district heating network are used as input for the reservoir simulations.
These make use of discrete parameter analysis to evaluate the effect of pressure
depletion, reservoir permeability, flow rate, re-injection temperature and injection
pH on the geothermal reservoir. The production using a model predictive control
does not create adverse geochemical effects in the reservoir, instead the controller
improves the efficiency of the geothermal heat extraction. The findings pave the
way towards a stronger integration between heat networks and a more sustainable
development of geothermal resources.

I
n a classical setup of a geothermal district heating system, geothermal systems always
provide a baseload while backup systems provide excess demand (Sayegh et al. 2016).

Recently it has been shown that periods of high and low production levels can be uti-
lized as a means towards a more sustainable utilization of the geothermal resource
(Axelsson 2010). Global historical data on direct use geothermal systems suggest that
there is a capacity factor drop over time (Lund and Boyd 2016). This drop could be partly
attributed to a better utilization of the produced geothermal heat by means of coupling
supply and demand.

To match supply with demand in such systems, a storage component can be included
to cope with daily fluctuation (Sayegh et al. 2016) (Kyriakis and Younger 2016), while
the geothermal production can be adjusted to match the seasonal changes. However, a
dynamic production rate can have several consequences, among which are changes in
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chemical compositions, pressures and temperatures of the geothermal reservoir. Moreo-
ver, a dynamic production rate also has an effect in the cold front breakthrough time of
the reservoir.

To avoid clogging of the reservoir due to salt precipitation, the rate of change of the
production needs to be enforced. However, it is poorly investigated how these constraints
can be obtained and moreover they are most likely dependent on the characteristics of
the geothermal system and are therefore case specific. Finally, a geothermal system has
upper and lower production constraints due to the capacity of the pipes, pumps and the
reservoir permeability.

In order to satisfy all previously mentioned constraints while supplying a time va-
rying heat demand, a storage device can be used to shift loads in time (Kyriakis and
Younger 2016). To provide the geothermal system with time-varying production rates a
controller should be designed that takes the production and storage capacity constraints
into account. In case the demand has a periodic structure an internal model controller
can be used such as in Chapter 3. In (Rosander 2012) several other controller designs are
presented that do not require a periodic demand among which well-tuned proportional-
integral-differential (PID) controllers and model predictive controllers (MPC) are the
most promising. The PID controllers are very easy to implement and guarantee stability
but cannot guarantee that the constraints are satisfied at all time. On the other hand, an
MPC does have the capacity to guarantee that the constraints are satisfied at all time but
the stability of these controllers is hard to prove. Moreover, these MPC mostly rely on
ad-hoc tuning and experimental analysis (Siroky et al. 2011). Despite these drawbacks,
MPC received a lot of attention (Siroky et al. 2011) (Campo and Morari 1989) (Mayne
et al. 2000) and (Allgower et al. 1999), and have been also applied to the pressure con-
trol of geothermal systems (Darup and Renner 2016) and thermal energy storage for
buildings (Ma et al. 2012).

An MPC solves an optimal control problem over a finite discrete time horizon, re-
turning a sequence of control inputs of which only the first one is implemented. After
this implementation the process is reiterated using a new finite horizon that is shifted one
step forward. Since the future demand is often unknown, a prediction must be made to
solve the optimization problem. These predictions can be based e.g., on historical data
and weather predictions. Also a dynamic model of the system to control is required to
implement an MPC. Therefore a model flow network as considered in Chapters 3, 4 and
5 can be used.

Motivated by the research objectives of the Flexiheat project, in this chapter we de-
sign a Model Predictive Controller (MPC) which is able to generate a real time pro-
duction level of a geothermal system. The controller uses a storage level measurement
and demand prediction as input and takes constraints into account for the production le-
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vel, change in production level and storage level. The model uses a realistic, yearlong
demand pattern for an equivalent of 10,000 households. The controller is simulated in
closed loop with the geothermal reservoir, the storage devices and the network intercon-
necting them.

The resulting simulation is used together with a 2D reservoir model to obtain two
insights. Firstly, it is investigated whether the geothermal doublet is able to provide the
demanded energy (i.e. feasibility of delivery). Secondly, the long term effects of a varia-
ble, demand driven, seasonal production pattern on reservoir behavior (e.g. breakthrough
time, reactive transport etc.) is compared to constant production rate data. The analysis
makes use of the Groningen geothermal project (NE Netherlands) data and features, and
considers uncertainty classes discussed in previous research (Daniilidis et al. 2016).

The chapter is structured as follows: in Section 7.1 the problem that is considered
is explained along the corresponding controller design. In Chapter 7.2 a description
of the model and corresponding characteristics of a reservoir located in Groningen is
presented. An analysis of the performance of the controller in closed loop with the
district heating network is carried out in Section 7.3 and in Section 7.4 the corresponding
reservoir simulations are presented. Finally a discussion is presented in Section 7.5.

7.1 Problem setting and controller design

First we design a model predictive controller that is able to regulate the production of
the geothermal system in real time. This controller is interconnected with a modelled
storage device in order to analyze its performance. The demand pattern is predicted
based on historical demand data and the MPC uses this prediction in combination with
measurements from the storage device as inputs. Additionally, it takes the predetermined
limitations of the reservoir into account in the form of constraints on the change of the
production rate. This control structure is depicted in the upper part of Figure 7.1. It is
designed such that it can be applied to any setup that includes a district heating network,
storage device and geothermal system. The controller can be tuned in order to meet case
specific requirements.

After the design of the controller we investigate in Section 7.2 the implications to the
geothermal reservoir of this time varying production. To do this, a 2D reservoir model
of the Groningen geothermal project is used. The production levels that are generated
using the heat network were converted from an hourly to a monthly demand and used as
input for a 50 year reservoir simulation. The bottom part of Figure 7.1 shows the model
of the reservoir for which 243 scenarios were considered, each one corresponding to a
different choice of parameters. The results with regards to the reservoir behavior in terms
of pressure, permeability and power changes are investigated.
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Model Predictive Controller

Storage model

Production Storage volume

Reservoir 
constraints

Resample

Reservoir Model

Offline coupling

DemandStorage 
constraints

External input

Demand 
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Figure 7.1: Overall flow chart of the simulation. The storage model and the MPC are
connected in closed loop and where the static constraints from the reservoir model and
storage are used. The aggregated demand in the heat network is predicted using historical
data and used as input for the MPC and the actual demand is used as input for the storage
model. The resulting production levels are used (offline) as an input for the reservoir
simulations.
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7.1.1 Heat demand

We consider a geothermal system that is connected to a storage tank via a heat exchanger.
In turn, this storage tank is connected to a network with several consumers. These con-
sumers have an aggregated demand da(k) given in watt (W) where k denotes the discrete
time step. However, the geothermal system has a maximum production rate umax and in
order to guarantee that the demand can be met with an admissible production rate, the
demand is split in the demand covered by the geothermal well

dg(k) =

 umax if da(k) ≥ umax

da otherwise,
(7.1)

and the excess demand that is covered by a backup system

db(k) = da(k) − dg(k), (7.2)

such as a gas fired boiler or biomass incinerator. For simplicity we consider the case in
which the excess demand db(k) can be ignored, which is the case when the backup sys-
tems automatically satisfies the excess demand. For optimal coordination of production
in the multiple producer case the reader is referred to chapters 4 and 5.

In order to obtain a discrete time model for the storage device the demand is conver-
ted from W to m3/h. This is done using:

d(k) =
602

cPρ∆T
dg(k), (7.3)

where d is the demand covered by the geothermal well in m3/h, cp is the specific heat
in J/kg · K, ρ is the density of the water in Kg/m3 and ∆T is the temperature difference
between the production and return pipes in the reservoir in Kelvin (K). It is assumed that
temperature difference ∆T is independent of the time step k, which implies that dg(k)
depends linearly on d(k). Moreover, the temperature difference between the inflow and
outflow of the heat exchanger is considered equal for both the compartments connected
to the reservoir and district heating network. That is, we assume an ideal heat exchanger
with no heat loss and equal flow rates through both compartments. Having defined our
demand, the model of the storage is introduced.

7.1.2 Model of the storage tank

A storage model is considered, which is connected to a district heating grid with demand
d(k) and a geothermal well with production u(k) (in m3/h) at time k. The heated water
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contained in the pipes of the district heating network can act as a buffer, but since it is
assumed that ∆T is constant, the temperature dynamics of the fluids in the pipes can
be neglected. The resulting model for the storage device takes the form of a difference
equation and is given as

V(k + 1) = V(k) + u(k) − d(k), (7.4)

where V is the volume of the storage tank. The controllable input will be the production
u while d is considered to be a disturbance. Same as in (7.3), the input u(k) can be
converted back to Watts using

ug(k) =
cPρ∆T

602 u(k). (7.5)

where ug(k) is the production of the geothermal well given in W.

In order to keep the volume of the storage tank between the minimal and maximal
volume capacity, it is required that

Vmin ≤ V(k) ≤ Vmax, (7.6)

for all k ≥ 0. Furthermore, the pumps in the geothermal system have a minimal and
maximal capacity. Therefore we also have that

umin ≤ u(k) ≤ umax, (7.7)

for all k ≥ 0, and where umax is defined as in Section 7.1.1. Lastly, the porosity, and
therefore also the pressure drop, in the geothermal reservoir (see (Daniilidis et al. 2017)
for more details) can be affected by rapid changes in the flow rate. For this reason it
is desirable to let the change in production rate of the geothermal system be upper and
lower bounded, therefore let

∆umin ≤ u(k − 1) − u(k) ≤ ∆umax, (7.8)

for all k ≥ 1, with ∆umin and ∆umax reservoir specific constants. Let k0 denote the current
time step with corresponding input u(k0), k1 = k0 +1 be the next time step and let Nc ∈ N
be a control horizon. It is required that model dynamics (7.4) and constraints (7.6)-(7.8)
are satisfied for all time k ∈ {k1, . . . , k0 + Nc}. In order to write the model and constraints
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in a more compact form the following state, input and auxiliary variables are defined

u= (u (k1) , . . . , u(k0 + Nc))T

V= (V (k1) , ...,V(k0 + Nc))T .

Using this notation, (7.6) and (7.7) can now be written for k ∈ {k1, . . . , k0 + Nc} as

Vmin ≤ V ≤ Vmax (7.9a)

umin ≤ u ≤ umax, (7.9b)

where the inequality relations are to be intended component-wise. Moreover, again to
facilitate a more compact form, the matrix S ∈ RNc×(Nc+1) is defined as

S =



1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 . . . . . . 1 −1


, (7.10)

from which it follows that
u(k0) − u(k1)

u(k1) − u(k1 + 1)
...

u(k0 + Nc − 1) − u(k0 + Nc)

 = S
 u(ko)

u

 , (7.11)

which implies that (7.8) for k ∈ {k1, ..., k0 + Nc} reads as

∆umin ≤ S
 u(k0)

u

 ≤ ∆umax. (7.12)

Again using (7.10) it is possible to write (7.4) for k ∈ {k1, ..., k0 + Nc}as

0 = S
 V(k0)

V

 + u + d, (7.13)

where
d = (d (k1) , . . . , d(k0 + Nc))T . (7.14)

Note that at time k0, d is not known since it consists of future demands. To overcome
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this, a prediction d̂ is used for the implementation. These predictions can be based on
weather forecasts, historical demand and/or known changes in the network such as plan-
ned maintenance or newly connected consumers. The controller that will be designed
will in general perform better under more accurate predictions.

7.1.3 Model predictive controller design

In order to keep the storage from draining or flooding, a performance measure is intro-
duced that penalizes a storage deviation from a predetermined reference value, which is
taken as half the storage total volume. Furthermore, besides the hard constraint (7.12),
the rate of change of the control input is also penalized in order to obtain a sufficiently
smooth input. The overall performance measure is defined as a weighted sum of these
two performance measures and is given by

JNc

(
V, u, u(k0)

)
=

Nc∑
k=1

(
V(k) − V̄

)2
+ α‖S

 u(k0)
u

 ‖22, (7.15)

where α is a positive dimensionless parameter. Minimizing (7.15) implies that storage
deviations and the rate of change of the input are penalized. Which one of the two
is penalized more aggressively can be decided by attributing a value to α. Having the
predictions, constraints and objectives defined, the controller can be designed.

As before, let k0 denote the current time step. First the controller makes a prediction
d̂ of the disturbance over a finite control horizon Nc. This prediction is used to solve
an optimization problem that results in a vector of inputs u of which only u (k1) is im-
plemented. After the implementation the system evolves under the actual disturbance
after which the time window is shifted such that current time step k0 is set to k1. These
steps are then reiterated for all upcoming time steps. At each iteration step the following
optimization problem is solved

minimize
u

JNc

(
V, u, u(k0)

)
subject to Vmin ≤ V(k) ≤ Vmax

umin ≤ u ≤ umax

∆umin ≤ S
 u(k0)

u

 ≤ ∆umax

0 = S
 V(k0)

V

 + u + d̂.

(7.16)

In the case one wants to control not only the geothermal system but also the backup
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system, the backup production costs and the possible constraints associated with such a
backup system can be included in the objective function and constraints of (7.16), re-
spectively. In this way the MPC controls both the geothermal system, as well as the
backup facility by minimizing the production costs. However, as mentioned before, con-
trol of any backup system is considered out of the scope of this chapter and therefore
neglected.

7.2 Modeling of the Groningen reservoir

In order to evaluate the impact on the reservoir using a varying production, a reservoir
model was used. Since project level studies are needed to understand geothermal systems
and gain insights, the model is based on data from the Groningen geothermal project
(Daniilidis et al. 2016).

The model was built in the PetraSim pre-post processor (Rockware 2014), using
the TOUGHREACT (Xu et al. 2006) code for chemically reactive, non-isothermal flow
and utilizing the EOS1 (Equation of State) (Pruess et al. 2012). The TOUGHREACT
code uses space discretization through Internal Finite Difference (IFD) (Narasimhan and
Witherspoon 1976). The solver uses a sequential iteration approach for coupling between
fluid and reactive flow (Yeh and Tripathi 1991).

The simulation includes a chemically reactive flow model which we briefly intro-
duce. Overall characteristics and architecture are presented in Table 7.1 and Figure 7.2
respectively. The model is largely based on the model geometry and characteristics of
the Groningen 3D reservoir model (Daniilidis et al. 2016). Simplifications were made to
adapt the model from 3D to 2D. The contacts of the stratigraphic layers in the model are
now horizontal, using the average depth of the respective 3D model layers; furthermore,
the layers thickness is also averaged for each respective interval. The wells are vertical,
maintaining at a distance of 1275m from each other at reservoir depth. The horizontal
discretization of the mesh is symmetrical; it uses a finer mesh (5m) close to the wells that
gradually coarsens (40m) towards the middle part of the reservoir (Figure 7.2). The Rot-
liegend Slochteren layers (upper and lower members) were used as the reservoir body for
injection of cold and production of hot water. Vertical discretization ensures a constant
thickness of the layers inside the producing interval. The results of this part of the simu-
lation is considered outside of the scope of this thesis and are therefore not discussed but
can be found in (Daniilidis et al. 2017).

Petrophysical data for porosity and permeability were obtained from Panterra (van
Leeuwen et al. 2014) and were weighted to the most proximal well to the project area as
presented in previous research (Daniilidis et al. 2016). Probability levels 90%, 50% and
10% are derived per reservoir layer and are denoted by P90, P50 and P10 (summarized
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Overview
Dimensions (X, Y, Z) 1275m x10m x 900m
Lithostratigraphic units 10
Vertical discretization according to layer
Vertical layers 35
Horizontal discretization 5m, successively increasing
Horizontal cell increment factor 1.138
Reservoir layer height ≥10m and ≤12.5m
Total cell count 1,785
Average reservoir depth 3595m
Reservoir thickness 248m
Temperature gradient 31.3◦C/km
Pressure gradient hydrostatic1

Table 7.1: Characteristics of the reservoir model. A visual representation of the mesh can
be found in Figure 7.2.

Figure 7.2: Reservoir model mesh. The productive layers consist of the SLU and SLL
members, which are outlined by the white dashed lines.
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Perm
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Perm
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Porosity

D
ensity

W
etheatconductivity

Specific
heat

T
hickness

Unit m2 m2 m2 % kg
m3

W
Wm·K

J
kg·m m

10−14· 10−14· 10−14·

Zechstein 0.987 0.987 0.987 1.0 2170 3.5 1050 300
ROCLT 0.010 0.010 0.010 12.0 2625 3.0 840 56

Ro-7-SLU 0.098 0.222 0.913 17.4 2700 2.9 840 59
RO-6-SLU 1.474 4.700 14.946 18.5 2515 2.9 827 30
RO-5-SLL 1.357 4.336 13.829 17.7 2625 2.9 827 34
RO-4-SLL 1.413 4.565 15.100 19.5 2590 2.9 827 44
RO-3-SLL 1.049 3.411 11.239 17.5 2728 2.9 827 24
RO-2-SLL 0.265 1.073 4.133 18.3 2596 2.9 827 32
RO-1-SLL 0.426 1.437 4.743 14.9 2853 2.9 827 25

Carbo-
niferous 9.87e-3 9.87e-3 9.87e-3 1.0 2900 2.7 840 400

Table 7.2: Model layer characteristics. Grouping the permeability values in P90-P50-P10
scenarios, the permeability range is taken into account as a worst-middle-best estimation,
based on the petrophysical data presented. Vertical permeability is an order of magnitude
lower than horizontal for all layers (Carlson 2003).

in Table 7.2).

The top and bottom cells were used as boundary conditions for the numerical simu-
lation. The values for the temperature and pressure in the boundary cells were computed
based on the respective pressure and temperature gradients (Table 7.1). Their distance
to the productive reservoir ensures that they do not interfere with the reactive flow in the
reservoir cells. Furthermore the boundaries remain valid in this geothermal setting that
is dominated by conductive heat transfer (Moeck 2014).

The TOUGHREACT code includes mineral compositions and their reaction mecha-
nisms. However, we consider the discussion of these mechanisms out of the scope of this
thesis and we refer the reader to (Daniilidis et al. 2017) for more details.
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Pressure
depletion

[bar]
Permeability

[-]

Flow rate
control strategy[

m3

h

] Re-injection
temperature

[◦C]

Injection
pH
[-]

0 P90 MPC output 40 4
100 P50 constant max 55 5.5
200 P10 constant min 70 7

Table 7.3: Uncertainty classes and respective discrete parameters considered. In total 243
unique reservoir simulation realizations are computed. The flow rate levels are unique
for each re-injection temperature level as the heat content of the injected water changes.
Therefore MPC, constant min and constant max flow rate levels are adjusted accordingly
to reflect this (see also Figure 7.5).

7.3 Simulations of the controller in closed loop with the
storage and demand

As mentioned in Section 7.1 a Groningen case study is considered. In this case study a
simulation of the MPC is performed and presented under a suitable choice of parameters.
In order to simulate the district heating network in closed loop with the MPC, the demand
pattern for the Groningen case study is firstly introduced. This heat demand pattern
is depicted in Figure 7.3a and is obtained from a statistical model representing 10,000
households.

Since the re-injection temperature of the geothermal system has a big influence on the
energetic performance of the overall system, three different simulations are performed,
each with a different return temperature. Along with the different temperatures, several
other parameters are introduced in these simulations and are summarised in Table 7.4.

The parameters in Table 7.4 are physical constants or control parameters tuned for
case specific conditions. In order to guarantee that the change in input stays small, ∆umax

and ∆umin are chosen close to zero while α is large. It must be noted that the storage size
is chosen larger than is desired in practice. However, depending on the demand pattern
and requirements of the controller, the storage size can be taken smaller as is discussed
in Section 7.3.1. Also the accuracy of the expected demand d̂ plays a big role in the
admissible storage sizing. The expected demand in the simulation is solely based on
historical data and therefore does not rely on any predictions. As a consequence the
performance of the controller can be improved if for example weather predictions are
used.

Let k0 be the current time step at which the demand is predicted. A heuristic demand
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Figure 7.3: Model heating energy demand data per hour from the geothermal project of
Groningen city (a). An upper limit of 15MW is used in the MPC for the geothermal
system that is sufficient for 77% of the demand points; the demand in excess of this
limit is expected to be delivered by other means, namely bio-gas burners. The markers
represent the monthly averages of full and geothermal supplied demand. Production
levels of the geothermal system resulting from the MPC (b). The markers represent
resampled monthly averages of the data series and are used as flow rate levels in the
reactive flow simulations. Storage levels for the respective scenarios (c).

prediction is made in which the average demand of the past three days is used, i.e.

d̂(k) =
1
3

(d(k − 24) + d(k − 2 · 24) + d(k − 3 · 24)), (7.17)

for all k ∈ {t1, . . . , min (k0 + Nc, k0 + 24)} with k given in hours. For k > k0 +24 (since
Nc > 24) let the prediction be equal to d̂(kc) as in (7.16), where kc is the corresponding
hour on the first predicted day. Since on the first two days no historical data is available,
it is for simplicity assumed that the average demand of these days are known and used.

The optimization problem that is solved in each iteration step is solved using CVX
(Grant et al. 2008). The results of the simulations can be found in Figure 7.3b&c. It can
be seen that the production is very low frequent in spite of the high frequent consumption.
Furthermore, the volume capacity and production rate constraints are satisfied throughout
the simulation.
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Parameter unit sim 1 sim 2 sim 3
Re-Injection T (∆T ) ◦C 40 (80) 55 (65) 70 (50)
cp

J
g·K 4077.2 4181.3 4190.0

ρ
kg
m3 971.6 971.6 971.6

∆umin m3

h -8·10−2 -8·10−2 −10·10−2

∆umax m3

h 8·10−2 8·10−2 10·10−2

Vmin m3 0 0 0
Vmax m3 4·104 5·104 6·104

V̄ m3 2·104 2.5·104 3·104

umin m3

h 21.59 22.67 22.67
umax m3

h 233.68 245.39 245.39
dmax MW 15 15 15
α 104 104 104

Simulation time h 24·364 24·364 24·364
Nc 2·24 2·24 2·24

Table 7.4: Parameters for the physical contacts obtained by controller tuning.

7.3.1 Tuning of the control parameters

In this section the influence of the parameters on the performance of the controller is
discussed. As can be seen from (7.3) the demand d depends on the reciprocal of ∆T . For
this reason the demand d increases for a decreasing ∆T given that dg remains the same.
A decrease in α results into a higher fluctuating production and lower deviation from the
storage reference value. This has the consequence that a smaller storage device can be
used without encountering a non-feasible solution in one of the iterations. An adjustment
of the rate constraints ∆umin and ∆umax towards zero has a similar effect as the decrease
of α. However, ∆umin and ∆umax only constrain the extreme rate changes and therefore
do not affect small variations of the input. An increase on the control horizon Nc can,
but does not necessarily, result in a better performance. To illustrate the influence of α,
∆umin, ∆umax and Nc the same simulation as in Figure 7.3 is performed but with values
α = 10, ∆umin = − 0.3, ∆umax = 0.3 and Nc = 20 · 24. The result can be found in
Figure 7.4 in which a significantly smaller storage size suffices to meet the total demand.
The drawback of taking ∆umax larger and ∆umin smaller is that resulting input has a
higher fluctuation which could lead to undesired behaviour in the geothermal reservoir.
Furthermore, increasing Nc leads to an increased simulation time caused by the increase
in number of states in the optimization. If such a controller is implemented in practice,
a necessary condition for the controller to work is that the time to solve optimization
problem (7.16) is strictly smaller than the time step. Since the time step is taken as one
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Figure 7.4: Geothermal system flow rate (a) and corresponding storage level (b) for a
re-injection temperature of 40◦C.

hour, only large values of Nc (e.g. > 103 hours) can result into non-feasible computation
times. The minimal and maximal production levels umin and umax are determined by the
physical constraints of the pipes, pumps and the characteristics of the well. If the demand
pattern exceeds this upper or lower limit for large periods of time, the demand needs to
rely on the storage device for the excess demand. Depending on the storage size and
state at that time a non-feasible solution might appear and should therefore be treated
with caution. Lastly, more accurate predictions result in smaller storage reference value
deviations and therefore smaller storages can be used.

7.4 Simulations of the the reservoir

To account for the inherent uncertainty regarding geological data, but also to evaluate
operational possibilities, a discrete parameter analysis is used. Uncertainty is taken into
account regarding the initial reservoir pressure, the reservoir permeability, flow rate con-
trol strategy, re-injection temperature and injection pH (Table 7.3). The uncertainty
classes cover the initial reservoir state (pressure depletion) and geological uncertainty
(mainly permeability related), which are determined by the field conditions. Additio-
nally the operational parameters of the flow rate control strategy, the re-injection tempe-
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Figure 7.5: Flow rate levels for the different re-injection temperatures. Since the demand
curve is expressed in MW (and it is unique for each re-injection temperature, see Figure
7.4b), the flow rates have to be adjusted accordingly when using different re-injection
temperatures. Consequently, min and max flow rate control strategy levels for different
re-injection temperatures are different for each scenario.

rature and the injection pH provide some degree of freedom in designing the geothermal
system (Daniilidis et al. 2016). All these uncertainties result in 243 scenarios in which
the effects on reservoir pressure, permeability change, power output at the injector and
2D property changes are analyzed.

Changes in pressure, temperature, permeability and chemical composition could af-
fect the output of the geothermal system. It is therefore important to investigate what
the consequences of time varying production are for the reservoir. For these reasons 2D
reservoir simulations are carried out comparing constant and time varying production. In
order to take the uncertainty of the reservoir parameters into account the simulations are
performed for several scenarios, as discussed in the methods section. The results shown
hereafter include data from all the performed simulations with the exception of the two
dimensional plots.

The production rates that result from the MPC simulation are used as input for the
reservoir simulation. However, due to the large timespan of the simulation (50 years)
and total number of simulations (243) a lower resolution is used by taking the monthly
averages (Figure 7.5). One needs to keep in mind that the resampling might affect the
simulation results. That is, due to low frequent resampling, the high frequent behaviour
of the production flow rate is neglected in the analysis of the reservoir. However, due to
the conservative choices of α ∆umax and ∆umin, the production flow rate is already low
frequent which implies that the resampling is a good approximation of the original one.
The obtained yearly pattern is then used as input for each of the 50 years of the reservoir
simulations.
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In these simulations the changes in the pressure difference between the producer and
injector, the permeability around the injector ad the power production in the reservoir
are investigated. After this investigation a comparison between the different flow rate
control strategies (MPC, constant max and constant min) is made for the temperatures in
the reservoir.

First the influence of the re-injection temperature, permeability and flow rate cont-
rol strategy on the pressure is investigated. The pressure difference between the wells
is mainly determined by reservoir permeability as seen by the distinct grouping of the
results (Figure 7.6). A high permeability value (P10) results in a small ∆p while for
a low permeability (P90) we observe higher levels of pressure difference between the
wells. The MPC controlled flow rate levels appear to fall between their respective max
and min flow rate intervals. Moreover the range of ∆p is broader for the P90 permeability
scenarios; this range is attributed to the other parameters (injection pH and depletion).

A low re-injection temperature (40◦C) results in a lower pressure difference compa-
red to a high re-injection temperature. This effect is not very pronounced as the diffe-
rences are in the order of a few bars. Causally the re-injection temperature effect on the
pressure could be explained by the permeability changes in the reservoir.

All flow rate levels exhibit a slight increase of pressure over time, but this increase is
more prominent for the P90 scenarios. When present, the pressure increase is gradual and
never exceeds 50% of the initial pressure. The highest pressure increase is observed in
the case of a constant max flow rate and less so for the MPC flow rate levels. The pressure
increase for the min flow rate levels is only marginal. These results are consistent with
the permeability results presented hereafter.

7.4.1 Power production, energy reserve and permeability of the reservoir

As discussed in Section 7.1.2, the power production P (in Watt) of the geothermal is
derived from equation (7.5). However, the temperature and pressure are not necessarily
constant which can result in a deviation from the desired power output; this deviation
can be attributed to enthalpy changes, according to:

∆H = cpw∆T + V(1 − βT )∆p, (7.18)

where ∆H is the enthalpy change, ∆T the temperature change, V the volume, β the
coefficient of thermal expansion, T the temperature and ∆p the pressure change in the
system. The simulations show that the deviations from the desired power output can be
attributed to changing pressure levels inside the reservoir (Figure 7.7b). This is because
these changes ultimately affect the producer Tp causing small temperature variations
resulting in these minor changes in produced power.
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Figure 7.6: Pressure difference between the wells for all simulations. The data series are
colored based on their permeability specifications. The subplot horizontal axis differen-
tiates the flow rate levels, while the subplot vertical axis differentiates the re-injection
temperature. All subplots use the same scale and are therefore cross-comparable.

The simulation results illustrate the dependency between the flow rate, temperature
and power output (Figure 7.7). A first observation is that the power output in all simula-
tions that use the MPC flow rate control strategy, is contained within power production
levels corresponding to minimal and maximal flow rate (see also Figure 7.5). Secondly,
we observe a small decrease in the power output, when moving from no depletion to 200
bar of depletion in the initial reservoir conditions (Figure 7.7b). Although small (bet-
ween 1 MW and 1.7 MW), this decrease needs to be considered in designing and sizing
the installation in case of pressure depletion. Lastly, the re-injection temperature levels
cause minor changes (∼0.5MW) in the power output (Figure 7.7c).

The permeability in the reservoir is not necessarily constant; changes in permea-
bility are related to changes in mineral volume fraction, which are in turn affected by
the simulation input parameters like the initial mineral compositions and their reaction
mechanisms. These mineral compositions and their reaction mechanisms are studied in
detailed in (Daniilidis et al. 2017) but are considered outside of the scope of this thesis
and therefore not discussed here.

In order to compare the differences between the flow rate levels of the MPC and
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Figure 7.7: Doublet power production. The data series are coloured based on their flow
rate levels. The time series data reveal no drop of power over time (a). Depletion le-
vel at year 50 reveal some difference between the power outputs (b), while re-injection
temperature shows only marginal differentiation (c) for all simulations.

the max scenarios in terms of life expectancy of the geothermal system, the 2D heat
distribution in the reservoir is analyzed. Under the MPC control strategy and after 50
years of production the cold front propagates to about a quarter of the distance between
the injector and producer wells (Figure 7.8a). Using the max flow rate levels for the
same re-injection temperature the cold front propagates further to about a third of the
well distance (Figure 7.8b). The difference between the two scenarios (Figure 7.8c)
highlights the benefits in terms of a more sustainable use of the geothermal resource
when utilizing the MPC flow rate levels.

7.5 Discussion

The coupling of the controller with the reservoir model provides new insights regarding
the energy network that they are both part of. These insights can facilitate a stronger
integration between the system parts if they are analyzed and developed in tandem, while
possible incompatibilities can be mapped out. As a result, the production of heat is
constrained by the geothermal system specifications, while the geothermal system itself
is more efficiently utilized by responding to demand changes.

The designed controller is able to generate a real time production level using demand
predictions and storage level measurements as input. It is guaranteed that these producti-
ons levels satisfy several hard constraints. These include storage capacity constraints,
minimal and maximal production levels and production rate constraints. There is insuf-
ficient research available to determine the values of the latter constraint. Moreover, if
such bounds would be available, it is most likely that they depend on the characteristics
of the geothermal system and are therefore case specific. Fortunately, the controller is
designed such that updated values can be included once they are available. It implies
that the methods and design presented in this chapter should be considered as a proof of
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Figure 7.8: Reservoir temperature for (a) MPC flow rate, (b) Max flow rate and (c) the
difference between the two scenarios. Other simulations parameters are the same for
both flow rates.

concept.

It is well known that the stability of a MPC is hard to guarantee (Mayne et al. 2000).
The stability depends on the constraints, demand pattern, objective function, control ho-
rizon and demand prediction. A sufficiently large storage device results in a set of con-
straints that is easier to satisfy and therefore in a stable system. However, due to the
high costs this is undesirable in practice. For this reason, additional tuning (see for ex-
ample (Lee and Yu 1994)), better predictions (see for example (Dotzauer 2002)) and the
integrated control of additional heat sources should be addressed in future work.

With regard to the geothermal system, the relative changes in pressure levels can be
explained by the geochemical changes in the reservoir. The changes in pressure over
time appear to be minor (Daniilidis et al. 2017); this is in line with the mostly increa-
sing permeability around the injector well. Notably the variable production rates of the
geothermal system (as presented with the MPC control strategy) alter only the rate and
not the nature of the changes in the chemical reservoir properties (Daniilidis et al. 2017).
Initial pressure depletion in the Groningen case history does not appear to have a signi-
ficant effect in any of the results. Especially the geochemical behavior and the precipi-
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tation or dissolution of minerals is unaffected by possible pressure depletion (Daniilidis
et al. 2017).





Chapter 8
Conclusions

W
e discus the results of this thesis and provide an outlook for open problems left
as future work. In Chapter 3 we presented a model of a district heating system

with a storage device, single producer and multiple consumers. The proposed controller
is able to regulate the energy level in the storage device to a desired setpoint in spite
of unmeasured, possibly time varying, heat demand. The inputs for the controllers that
regulate the flows are set by a constant. An interesting extension is to let this constant
depend on temperature measurements in the heat exchanger. In that way a feedback
loop is created between the controllers and system dynamics of the temperatures and the
flows, which require a modification of the analysis. Another extension is to consider a
topology with multiple producers and storage tanks as in Chapters 4 and 5 that include
the temperature dynamics. In such a setup an interesting generalization is to consider
heterogenous setpoints for the temperatures. For example one could consider an optimi-
zation problem which provides these setpoints such that temperature cascading, in which
the leftover heat coming from a consumer is re-used by other consumers, is optimally
controlled with respect to the total costs. Lastly, an interesting extension is to study the
controller under the presence of heat dissipation and time delays.

In Chapter 4 we proposed feedback controllers that dynamically adjusts the inputs
and flows in a flow network to regulate the measured output at the nodes towards a
desired setpoint. This is done using distributed controllers and in the presence of an
unknown disturbance. The controllers are composed of two parts: the first part regulates
the flows on the edges, which results in load balancing, while the second part provides
an optimal input on the nodes at steady state. To achieve the economic optimal input a
communication network was introduced. When the inputs are required to be bounded
for all time, a similar result is obtained with the difference that the closed loop system
converges to a point that can be made arbitrary close to the optimal steady state by tuning
the gains. The cost functions are assumed to be quadratic and using Lyapunov methods
stability is proven in case not all quadratic cost coefficients are identical.

In Chapter 5 these results were extended by considering second-order controllers.
Based on Lyapunov arguments and an invariance principle, we have proven that the de-
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sired optimal steady state is globally asymptotically stable. A case study on district
heating systems and a case study on multi-terminal HVDC networks showed the effecti-
veness of the proposed solution. Although not included in this thesis, we aim to extend
the presented results to include nodes that are modelled as

0 = −
∑
k∈Ni

Biku f k(t) + upi(t) − di

yi(t) = hi(xi(t)),

resulting in a differential-algebraic system. Due to the coupling between the dynamics
on the different nodes more communication is required, but we are able to prove similar
results as in Chapter 5. There are various other extensions that could be made, of which
we list a few. An open problem is to consider general convex cost functions instead
of the linear-quadratic cost functions we use. Another interesting problem is to extend
this setup to time-varying disturbances as considered in (Bürger et al. 2015), or extend
it to a tracking problem of more general time varying signals. Furthermore, the required
communication in the distributed control structure is continuous in the current setting.
An interesting extension is to consider the case where communication happens at discrete
times, leading to a hybrid system. Since the results are obtained without the common
requirement of strict output passivity of the nodes, it is worth exploring whether the
proposed control structure can be applied to a wider class of systems than the considered
flow networks, such as for example power networks with capacity constraints (Li et al.
2011).

In Chapter 6 the design of a distributed nonlinear controller for hydraulic networks
with a multi-pump architecture is investigated. To guarantee that the desired heat demand
at each end-user can be fulfilled, the pressure drop at each end-user valve is regulated
towards a desired reference value. Since most pumps are not able to generate negative
pressures we impose an additional positivity constraint on the output of the controller,
which is enforced by the use of nonlinear functions and a state dependent integral gain.
We provide sufficient conditions under which local asymptotic stability of the desired
steady state can be proven. Finally, we investigated the performance of the controllers
on a case study by simulation. An underlying assumption in this work is that there
is only one producer. An interesting extension is to consider a network topology with
multiple producers and end-users. This additionally opens the research direction towards
the optimal allocation of the required generation among the producers such as in Chapters
4 and 5. Furthermore, the proposed control structure could be generalized such that it
can be applied to classes of port-Hamiltonian or Euler-Lagrange systems.

In Chapter 7 we combined the use of an MPC controller and a geothermal model to
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investigate a more efficient integration of a geothermal sources in a heating or energy
network. An MPC is well suited to control the production of a geothermal system due to
its ability to take several hard constraints into account. The performance of the controller
depends highly on the demand pattern, the tuning of the controller and the quality of the
prediction. Furthermore, the performance is also affected by the lower and upper bound
of the rate of change of a geothermal reservoir. Since these bounds are usually unknown,
obtaining a method to find these bounds is an interesting open problem. The controller is
designed such that it can be easily adapted to include different or additional constraints.
Since a better performance leads to a smaller storage size it is desirable to investigate how
this performance can be optimized. The findings suggest that for the case study of the
Groningen geothermal project in Rotliegend sandstone the use of a variable production
rate has no adverse geochemical effects on the reservoir. Moreover, it enables a more
efficient use of the geothermal resource by limiting the heat extraction to levels dictated
by existing demand. To improve the performance of the controller, additional tuning (see
for example (Lee and Yu 1994)), better predictions (see for example (Dotzauer 2002))
and the integrated control of additional heat sources should be addressed in future work.

Concluding, we have investigated control strategies for the next generation of dis-
trict heating networks. That is, a network that has smaller pipes and includes multiple
producers, consumers and storages. Also, the possibilities and consequences of a time
varying production for a specific kind of producer, namely a geothermal well, have been
investigated.

Each chapters contributes a control design that solves a specific problem for a specific
model. Ideally these various models and control problems should be integrated in one
single system with corresponding model, controller design and stability analysis. More
specific, the topology with multiple produces, storages and consumers along with the
communication network that guarantees economic optimality as in Chapters 4 and 5, the
models of the components as in Chapter 6 and the optimal storage setpoints generated by
a model predictive controller should be combined. Moreover, the temperature dynamics
as in Chapter 3 along with a model (or prediction) of the heat demand could be included
to capture these additional dynamics and avoid undesirable temperature fluctuations. It
is most likely that the controllers require some adjustments to guarantee stability and
optimality, as the resulting nonlinear model would be different to the ones considered in
this thesis.





Appendix A
Model derivation

In this appendix we derive a preliminary result that is used to model a heat exchanger
and storage device. Furthermore we derive a relation between temperature, volume and
energy in order to motivate Problem 3.1.

A.1 Temperature dynamics

In order to provide a relation between temperature, volume and energy we first introduce
the notion of enthalpy. Consider therefore a control volume of an open system where the
change in energy ∆E is given by

∆E = Ein − Eout + W + Φ, (A.1)

with Ein and Eout the total in and outflow of energy by mass streams. The total work
supplied by the surroundings is given by W and Φ is the heat exchanged with the envi-
ronment. The total amount of energy in a control volume can be expressed in terms of
enthalpy and is defined as

H = E + pV, (A.2)

with E the energy, p the pressure and V the volume. Since we deal with temperatu-
res between 0◦C and 100◦C at atmospheric pressure, water only exists in liquid form
and no phase changes or chemical reactions occur. Under the additional assumption
of a constant heat capacity cp, enthalpy is only a function of the temperature (see e.g.
(Skogestad 2009)). This implies that

H − H|T=T ref = mcp(T − T ref), (A.3)

where m is the mass of the control volume, T its temperature, T ref an arbitrary fixed refe-
rence temperature and H|T=T ref is the enthalpy associated with this reference temperature.
The mass satisfies m = ρV with ρ being the density.

We assume perfect mixing within the control volume from which it follows that
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the inside temperature T is equal to the outflow temperature. After straightforward but
lengthy derivation (see also (Skogestad 2009)), the temperature dynamics of this control
volume are

VṪ = qin(T in − T ) + P, (A.4)

where qin and T in are the inflow rate and temperature, respectively. Moreover P := 1
ρcp

Φ̇

is the heat injection or extraction rate with ρ the density, cp the specific heat and Φ̇ the
heat exchange rate.

A.2 Motivation for Problem 3.1

Next we provide a relation between a volume with a certain temperature and the corre-
sponding stored energy. This relations provides the main motivation for the formulation
of Problem 3.1. In order to provide such a relation we consider a volume of heated wa-
ter. Since such a body of water can only be used for heating if its temperature is higher
that the outside temperature we compare the heat of the water to a reference temperature
T re f . Let us define a relative energy as

Ê := E − E|T=T re f , (A.5)

where E|T=T re f is the energy of a control volume V at temperature T re f , then from (A.2)
and (A.3) we obtain

Ê =H − pV − (H − pV)|T=T ex

=mcp(T − T re f ) + H|T=T re f − pV − (H|T=T re f − pV)

=cpρV(T − T re f ).

(A.6)

Observe now that solving Problem 3.1 guarantees

lim
t→∞
|Ê − Ê| = 0, (A.7)

where Ê = cpρV(T − T re f ). For this reason we are able to split an energy setpoint
tracking problem into a volume and temperature setpoint tracking problem. For example
T can be chosen such that a minimal operating temperatures will be guaranteed and V
can be changed over time to store energy for later use.



Appendix B
Useful lemma’s

In this Appendix we provide several lemmas and their proofs which are presented in two
sections. The lemmas that support the proof of Theorem 3.9 are presented in the first
section and second section is dedicated to lemmas that support the proof of Theorem
4.20.

B.1 Supporting lemma’s of Theorem 3.9

In order to prove Theorem 3.9 we introduce the following lemmas.

Lemma B.1 (Exponential stability of a linear time varying system). Suppose ẋ(t) =

A(t)x(t) with x(t0) = x0 is uniformly exponentially stable10. Also suppose there exists a
finite constant β such that for all τ we have that∫ ∞

τ
||F(σ)||dσ ≤ β, (B.1)

holds for all τ > t0. This implies that

ż(t) = [A(t) + F(t)] z(t), (B.2)

is also uniformly exponentially stable.

Proof. The proof can be found in (Rugh 1996, Theorem 8.5). �

10A linear time varying system is uniformly exponentially stable if there exist finite positive constants γ
and λ such that its solution satisfies

‖x(t)‖ ≤ γe−λ(t−t0)‖x0‖ t ≥ t0, (B.3)

for any initial condition x0 and any t0 > 0.
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Lemma B.2 (Bounds for xs and νp). Consider system (3.9b) with νp as in (3.11), then
there exist β1, β2, β3 ∈ R>0 such that∫ ∞

τ

∣∣∣∣∣ 1
xs(σ)

−
1
xs

∣∣∣∣∣ dσ ≤ β1, (B.4)

∫ ∞

τ

∣∣∣∣∣ 1
xs(σ)

(
νp(σ) − νp

)∣∣∣∣∣ dσ ≤ β2, (B.5)

and ∫ ∞

τ
|xs(σ) − xs| dσ ≤ β3, (B.6)

for any τ ≥ 0.

Proof. Observe that (B.6) is equivalent to finding β3 such that

|(xs(0) − xs)|
∫ ∞

τ
e−ασdσ ≤ β3. (B.7)

Due to Assumption 2.2 we have that

|(xs(0) − xs)| ≤ Vmax − 2Vmin, (B.8)

and moreover ∫ ∞

τ
e−αtdσ ≤

1
α
, (B.9)

for all τ ≥ 0. Using (B.8) and (B.9) it follows that (B.6) is satisfied if we take

β3 =
Vmax − 2Vmin

α
. (B.10)

In order to prove (B.4) we use the following inequality:∫ ∞

τ

∣∣∣∣∣ 1
xs(σ)

−
1
xs

∣∣∣∣∣ dσ ≤ ∫ ∞

0

∣∣∣∣∣ xs − xs(σ)
xsxs(σ)

∣∣∣∣∣ dσ. (B.11)

From Lemma 3.6 we obtain the bound

1
xsxs(σ)

≤
1

(Vmin)2 for all σ ≥ 0, (B.12)

which, in light of (B.8), (B.11) and (3.12), gives∫ ∞

τ

∣∣∣∣∣ 1
xs(σ)

−
1
xs

∣∣∣∣∣ dσ ≤ 1
(Vmin)2

∫ ∞

0
e−ασ |xs − xs(0)| dσ.
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Therefore (B.4) is satisfied if we take

β1 =
Vmax − 2Vmin

α(Vmin)2 . (B.13)

Lastly, we prove that (B.5) is satisfied. By definition of (3.11) we have that

1
αxs

∫ ∞

τ

∣∣∣∣∣ 1
xs(σ)

(
νp(σ) − νp

)∣∣∣∣∣ dσ =

∫ ∞

τ

∣∣∣∣∣ 1
xs(σ)

−
1
xs

∣∣∣∣∣ dσ.
From this and (B.13) it follows therefore that (B.4) is satisfied if we take

β2 :=
Vmax − 2Vmin

α2(Vmin)3 , (B.14)

which concludes the proof. �

Lemma B.3 (Exponential stability of (3.28) with B′w = 0). The origin of

ζ̇ = (A′ + F′(t))ζ, (B.15)

is uniformly exponentially stable with A′ and F′ given in (3.29) and (3.30).

Proof. We use Lemma B.1 in order to prove that the origin of (B.15) is uniformly expo-
nentially stable. By design A′ is a Hurwitz matrix and therefore

ẋ(t) = A′x(t), (B.16)

is uniformly exponentially stable. Next we show that there exists a β such that∫ ∞

τ
||F′(σ)||dσ ≤ β, (B.17)

for any τ ≥ 0. Using ‖AB‖ ≤ ‖A‖‖B‖ we observe that∫ ∞

τ
‖F′(σ)‖dσ ≤

∫ ∞

τ
‖Ae(σ)‖dσ + ‖G‖

∫ ∞

τ
‖Be(σ)‖dσ. (B.18)

where Ae(t) and Be(t) are as in (3.26) and

G =

 KC H
0 0

 .
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Moreover

‖Ae‖ ≤ ‖M(x)−1[νe] − M(x)−1‖ · ‖A(ν)‖ (B.19)

‖Be‖ ≤ ‖M(x)−1 − M(x)−1‖ · ‖U‖, (B.20)

with A(ν) and U as in (2.20a) and

νe =
( νp

νp

νp
νp

1 1T
n

)T
. (B.21)

Since all time varying entries on the right hand side of both (B.19) and (B.20) enter in
diagonal form, (B.17) is satisfied if there exists β1,i and β2,i such that∫ ∞

τ

∣∣∣∣∣∣ νe
i (σ)

[M(x(σ))]ii
−

1
[M(x)]ii

∣∣∣∣∣∣ dσ ≤ β1,i∫ ∞

τ

∣∣∣∣∣ 1
[M(x(σ))]ii

−
1

[M(x)]ii

∣∣∣∣∣ dσ ≤ β2,i,

(B.22)

are satisfied for all i, where [M(x(σ))]ii is the i-th diagonal component of M(x(σ)). No-
tice that

νe
i (σ)

[M(x(σ))]ii
−

1
[M(x)]ii

=



1
νpVP

(
νp − νp

)
for i = 1

1
νp

(
νp
xs
−

νp
xs

)
for i = 2

1
xs̃
− 1

xs̃
for i = 3

0 for i ≥ 4,

(B.23)

and

1
[M(x(σ))]ii

−
1

[M(x)]ii
=


0 for i = 1
1
xs
− 1

xs
for i = 2

1
xs̃
− 1

xs̃
for i = 3

0 for i ≥ 4.

(B.24)

By definition of (3.11) we have νp − νp = νp (xs − xs) implying that

1
νpVP

(
νp − νp

)
=

υ

νpVP (xs − xs) (B.25)

1
νp

(
νp

xs
−
νp

xs

)
=
υ

νp

xs − xs

xs
+ νp

(
1
xs
−

1
xs

)
. (B.26)
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From Lemma B.2 it follows that there exists a β̃1, β̃2, β̃3 and β̃4 such that∫ ∞

τ

∣∣∣∣∣ xs − xs

xs

∣∣∣∣∣ dσ ≤ β̃1 (B.27)∫ ∞

τ
|xs − xs| dσ ≤ β̃2 (B.28)∫ ∞

τ

∣∣∣∣∣ 1
xs
−

1
xs

∣∣∣∣∣ dσ ≤ β̃3 (B.29)∫ ∞

τ

∣∣∣∣∣ 1
xs̃
−

1
xs̃

∣∣∣∣∣ dσ ≤ β̃4, (B.30)

an therefore there exists β1,i and β2,i such that (B.22) is satisfied for all i. Consequently,
there exists a β such that (B.17) is satisfied and due to Lemma B.1 it follows that origin
of (B.15) is uniformly exponentially stable. �
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B.2 Supporting lemma’s of Theorem 4.20

In order to prove Theorem 4.20 we introduce the following lemmas.

Lemma B.4 (Multiple full rank conditions). Let Q be a diagonal matrix with positive
entries, let Q and Q̃ be as in (4.36c) and (4.46), respectively and let Assumption 5.12 be
satisfied, then (γQ− LcomQ +11T ), (γQ− LcomQ + 1

n11
T ) and Q̃T Q̃ are full rank for all

γ ∈ R≥0.

Proof. We will first proof that all the columns of Q̃ are linearly independent for all γ ∈
R≥0. From this we will then conclude that Q̃T Q̃, (γQ−LcomQ+11T ) and (γQ−LcomQ+
1
n11

T ) are full rank. Let
An := LcomQ − γQ, (B.31)

now, since Qi j ≥ 0 and [LcomQ]i j ≤ 0 for all i , j we know that the off-diagonal elements
of An are non-positive. Furthermore, since the graph associated to Lcom is connected due
to Assumption 5.12, we have that Lcom

ii > 0 and since 1T (LcomQ − γQ) = 0, all the
diagonal elements of An are strictly positive. Therefore we can write

An =


a11 −a12 . . . −a1n

−a21 a22 . . . −a2n
...

...
. . .

...

−an1 −an2 . . . ann

 , (B.32)

with aii > 0 for all i and ai j ≥ 0 for all i , j. Moreover, since

1T (γQ − LcomQ) = 0, (B.33)

we can conclude that the diagonal elements are equal to the negative column sum of the
off diagonal elements, i.e. aii =

∑n
k=1,k,i aki. We will now prove that Q̃ is full column

rank. To this end we consider a square sub-matrix of Q̃ which we define as

Q̃sub =

 An−1 −a[n]

1T
n−1 1

 , (B.34)

where a[n] :=
(

a1n a2n . . . a(n−1)n
)T

. By the Schur complement we know that

det(Qsub) = det(An−1 + a[n]1
T
n−1) = (1 + 1T

n−1A−1
n−1a[n]) det(An−1). (B.35)

Since An−1 is a diagonal column-dominant matrix we obtain from the Gershgorin ci-
rcle theorem that all the eigenvalues of AT

n−1 are strictly positive. This implies that
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det(AT
n−1) , 0 and since An−1 is square we obtain det(An−1) , 0. Furthermore, again

due to the diagonal dominance property of An−1, we have that every principal minor (see
e.g. (Fiedler and Ptak 1962) for a definition) of An−1 is positive. This implies that An−1

is inverse-positive, as is proven in (Fiedler and Ptak 1962). From this it follows that
1T

n−1A−1
n−1a[n] > 0 which results in det(Q̃sub) , 0, implying that all the columns of Q̃sub

are linearly independent. Since the number of columns of Q̃ and Q̃sub are equal, we can
conclude that all the columns of Q̃ are linearly independent for all γ ∈ R≥0. This, and
since Q̃T Q̃ is a square matrix, immediately implies that Q̃T Q̃ is full rank. Since Q̃T Q̃ is
full rank, it follows directly that also (γQ − LcomQ + 1

n11
T ) is full rank. In fact, suppose

it is not full rank, then there exists a x , 0 such that (γQ − LcomQ + 1
n11

T )x = 0. Now
observe that

Q̃T Q̃ =AT
n An + 11T =

(
11T − An

)T
(
1
n
11T − An

)
, (B.36)

where An is as in (B.31). It therefore follows that Q̃T Q̃x = 0, which is a contradiction
with Q̃T Q̃ being full rank. Using the same argumentation it follows directly from (B.36)
that also (γQ − LcomQ + 11T ) is full rank. �

Lemma B.5 (Dynamics in incremental form). Let µ be any solution to (4.20), θ be as in
(4.19) and θ̂, µ̂, x̂ as defined as in (4.35), then the solution to (4.1) in closed loop with
(4.32) and (4.33), satisfies

˙̃x =Bsatµ(x̃, µ̃) + γθQ−1satθ(θ̃)
˙̃µ = − γlLcomsatθ(θ̃) + γθγcQ−1Bsatµ(x̃, µ̃) − γθQ−1 x̃
˙̃θ =γµBT x̃,

(B.37)

with x̃, µ̃ and θ̃ as in (4.34), satµ(x̃, µ̃) defined in (4.65) and satθ(θ̃) as in (4.66).

Proof. We first write system (4.1) in closed loop with (4.32) and (4.33) and obtain

ẋ =γθQ−1sat
(
µ;

1
γθ

Q(u− + r),
1
γθ

Q(u+ + r)
)

+ Bsat
(
−γcBT (x − x) − γµµ; 0, λ+

)
+ d − Q−1r

µ̇ = − γlLcomsat
(
µ;

1
γθ

Q(u− + r),
1
γθ

Q(u+ + r)
)

− γθQ−1(x − x) + γθγcQ−1Bsat
(
−γcBT (x − x) − γµµ; 0, λ+

)
θ̇ = γµBT (x − x),

(B.38)

where we used the identities sat(x + a; x−, x+) = sat(x; x− − a, x+ − a) + a and
sat(A−1x; x−, x+) = A−1sat(x; Ax−, Ax+) for any vector a and diagonal matrix A. Using



142 B. Useful lemma’s

(4.19), (4.20), (4.34) and (4.35) we can see that (B.38) gives the desired result. �

Lemma B.6 (Error bounds). Let Q and Φ as in (4.36c) and (4.36d), then Φ−1 exists.
Furthermore, let

0 < γ ≤
ζ

‖Φ−1Q‖
, (B.39)

for some 0 < ζ < 1, and let û, λ̂ and x̂ be as in (4.57), (4.58) and (4.44), then

‖û‖ ≤γ
1

1 − ζ
‖Φ−1Q

2
Qd̃‖ (B.40)

‖λ̂‖ ≤γ
1

1 − ζ
‖B†‖ · ‖Φ−1Q

2
Qd̃‖ (B.41)

‖x̂‖ ≤
γc

1T Q−11

(
‖11T Q−1QQd̃‖ +

γ

1 − ζ
‖11T Q−1‖ · ‖Φ−1Q

2
Qd̃‖

)
. (B.42)

Proof. First we prove that Φ−1 exists. From Lemma B.4 it follows directly that (γQ + Φ)
is invertible for any γ ≥ 0. By taking γ = 0 it follows that Φ−1 exists. Next we prove that
(B.40)-(B.42) holds. To do this we make use of the following identity

N∑
k=0

(−γΦ−1Q)k(I + γΦ−1Q) = I + (−1)N(γΦ−1Q)N+1. (B.43)

Due to (B.39) we have
‖γΦ−1Q‖ < 1, (B.44)

which implies that I + γΦ−1Q is invertible. That is, suppose that I + γΦ−1Q is not
invertible, then there exists a non-zero x such that (I + γΦ−1Q)x = 0. In such a case 0 ≤
‖x‖(1−‖γΦ−1Q‖), which contradicts (B.44). Then, after lengthy but standard arguments,
(B.43) and (B.44) imply that

∞∑
k=0

(−γΦ−1Q)k = (I + γΦ−1Q)−1, (B.45)

from which we obtain, together with (B.39), that

‖(I + γΦ−1Q)−1‖ ≤

∞∑
k=0

‖(−γΦ−1Q)‖k ≤
∞∑

k=0

ζk. (B.46)

Notice that the right hand side of (B.46) is a standard geometric series and this implies
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that
‖
(
γΦ−1Q + I

)−1
‖ ≤

1
1 − ζ

. (B.47)

Combining (B.47) with (4.57) and (4.37) gives us that

‖û‖ =‖ − γ
(
γQ + Φ

)−1
Q

2
Qd̃‖ (B.48)

≤γ‖
(
γΦ−1Q + I

)−1
‖ · ‖Φ−1Q

2
Qd̃‖ (B.49)

≤γ
1

1 − ζ
‖Φ−1Q

2
Qd̃‖, (B.50)

which proves (B.40). Similarly, combining (B.47) with (4.58) and (4.38) give us (B.41).
Finally, again using (B.47) and combining this with (4.39), we obtain

‖x̂‖ =‖ − γc
11T Q−1

1T Q−11
·

(
I − γ

(
γQ + Φ

)−1
Q
)

QQd̃‖

≤
γγc

1T Q−11
‖11T Q−1

(
γQ + Φ

)−1
Q

2
Qd̃‖ +

γc

1T Q−11
‖11T Q−1QQd̃‖

≤
γγc

1T Q−11

1
1 − ζ

‖11T Q−1‖ · ‖Φ−1Q
2
Qd̃‖ +

γc

1T Q−11
‖11T Q−1QQd̃‖,

(B.51)

which implies (B.42) and concludes the proof. �

Lemma B.7 (Conditions on the gains). Let û, λ̂ be as in (4.57), (4.58) and let x̂ be as in
(4.40) and (4.44). If γc, γθ and γl are such that for 0 < ζ < 1,

γc <
1T Q−11εx

‖11T Q−1QQd̃‖ + ‖11T Q−1‖εu
(B.52a)

‖Φ−1Q
2
Qd̃‖

γθ
2

γl
<

1 − ζ
γc

min
{
δθ, δµ, δζ , εu

}
, (B.52b)

with d̃, Q and Φ as in (4.36b)-(4.36d) and

δθ = min{min
i
{u+

i − ui},min
j
{u j − u−j }} (B.53)

δµ =
1∣∣∣∣∣∣B†∣∣∣∣∣∣ min{min

i
{λ+

i − λi},min
j
{λ j}} (B.54)

δζ =


‖Φ−1Q

2
Qd̃‖

‖Φ−1Q‖
ζ

(1−ζ) if ‖Φ−1Q‖ , 0

+∞ if ‖Φ−1Q‖ = 0
. (B.55)
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then

‖û‖ <min{min
i
{u+

i − ui},min
j
{u j − u−j }, εu} (B.56)

‖x̂‖ < εx (B.57)

‖λ̂‖ <min{min
i
{λ+

i − λi},min
j
{λ j}}. (B.58)

Proof. In order to prove this, we make use of Lemma B.6, where we note that (B.39) is
satisfied due to (B.52b). To prove (B.56) we combine (B.40) and (B.52b) such that

‖û‖ ≤γ
1

1 − ζ

∣∣∣∣∣∣∣∣Φ−1Q
2
Qd̃

∣∣∣∣∣∣∣∣ < min{min
i
{u+

i − ui},min
j
{(u j − u−j }, εu}. (B.59)

From this, together with (B.52a) and (B.42) we obtain

‖x̂‖ ≤
γc

1T Q−11

(
‖11T Q−1QQd̃‖ + ‖11T Q−1‖εu

)
< εx, (B.60)

which implies (B.57). Lastly, from (B.52b) and (B.41) we have that

‖λ̂‖ <
∣∣∣∣∣∣B†∣∣∣∣∣∣ δµ ≤ min{min

i
{λ+

i − λi},min
j
{λ j}}, (B.61)

with δµ as in (B.54). This implies (B.58) and concludes the proof. �

Remark B.8 (Feasibility of (B.52)). To guarantee that Theorem 4.20 solves Problem
4.8, a sufficient condition for γc > 0, γθ > 0 and γl > 0 is that they satisfy (B.52). Note
that these gains can always be found since δµ, δθ and δζ are all strictly positive due to
the feasibility condition. Moreover, in the special case that all nodes supply their own
demand (i.e., if QQd̃ = 0), (B.52b) is satisfied for any γθ and γl. Since γc acts as the
proportional feedback in (4.32) and has to be chosen sufficiently small due to (B.52a), a
smaller steady state error comes at the cost of a lower convergence rate. Although the
controller is fully distributed, global information of the topology, cost functions, distur-
bance bounds and saturation bounds are required to guarantee bounds on the deviation
from the optimal steady state. It is easy to show that a γc > 0, γθ > 0 and γl > 0 can be
found such that (B.52) is satisfied for all the disturbances whose magnitude belongs to a
compact interval of values.

Lemma B.9 (Incremental saturation bounds bounded away from the origin). Let θ be as
in (4.19) and let µ, θ̂ and µ̂ be the solutions to (4.20) and (4.35). If all the conditions of
Lemma B.7 are satisfied, then

µ− < 0, µ+ > 0, θ− < 0, θ+ > 0, (B.62)
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with µ−, µ+, θ− and θ+ as defined in (4.67a)-(4.67d).

Proof. From Lemma B.7 we get that

‖û‖ < min{min
i
{(u+ − u)i},min

j
{(u − u−) j} (B.63)

‖λ̂‖ < min{min
i
{(λ+ − λ)i},min

j
{(λ) j}}. (B.64)

This, together with (4.54) and (4.56), implies that

u− < û + u < u+ (B.65)

0 < λ̂ + λ < λ+, (B.66)

and due to (4.50) and (4.51) we get

u− < γθQ−1(θ + θ̂) − r < u+ (B.67)

0 < −γµ(µ + µ̂) < λ+. (B.68)

In light of (4.67a)-(4.67d) we can conclude that (B.62) is satisfied, which concludes the
proof. �





Appendix C
Additional case study

Additionally to the case study presented in Section 3.4, we present a second case study
where we consider a real demand pattern.

We investigate the performance of the controller in the presence of a real demand
pattern. We simulate a complete day with a storage device of Vmax = 2000m3 where
heat is stored during low demand and drained during high demand. To this end we let
0s ≤ t ≤ 86400s and use a demand pattern that is provided in (Verda and Colella 2011),
to which we applied a discretization with a resolution of one hour. This demand pattern
can be found in Figure C.1. The flowrate of the consumers is set such that 1Tνc is
proportional to the demand at all time.

Again we let ρ = 975kg/m3 and Cp = 4190J/Kg◦C and the volumes of the heat
exchangers are given by xp = xc = 0.02m3. The initialization of the temperature of the
heat exchangers is given by zp(0) = zc(0) = 50◦C. The initial temperature of the storage
and setpoint throughout the day is given by zs = zs(0) = 85◦C. The initial temperature
for the cold layer is zs̃(0) = 30◦C and the volume of the hot layer is initialized at xs(0) =

600m3. The gain for the controller of the flowrate is set to υ = 0.005. Similar as in
Section 3.4 we saturate the flows such that 0.05m3/s ≤ νp ≤ 0.5m3/s in order to avoid
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Figure C.1: Heat demand pattern of a whole day.
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Figure C.2: Simulation results under a real demand pattern.
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Figure C.3: Temperatures in the heat exchangers under real demand.
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Figure C.4: Comparison of the power injection between two setups, one with and one
without storage.

Time 1 2 3 4 5 6 7
Setpoint 7.25 7.5 7.75 8.5 10 15.5 30
8 9 10 11 12 13 14 15 16
40 43.5 36.5 30 35 34 33.5 27.5 27
17 18 19 20 21 22 23 24 25
30 34.5 32 31 30.75 25.5 15 6.5 6

Table C.1: Volume setpoints with the time in hours.

negative and too large flowrates that are too large. The controller (3.16) that is used
remains identical throughout the whole simulations and given by

F =



2 −3 1 −80 −800
1 −1 0 0 0
0 1 −1 0 0
0 0 0 −1800 1
0 0 0 −810000 0


G =

(
0 0 0 1800 810000

)T

H =
(

3 −3 1 −80 −800
)
,

(C.1)

and K = 0.
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The setpoints for the volume of the hot layer are given in Table C.1. In contrast to the
case study in Section 3.4, we chose these setpoints such that most time intervals are too
short to achieve steady state. As a consequence the storage will continuously fill or drain
over multiple time-intervals. Moreover, the setpoints are also chosen such that peaks
are shaved (i.e. the maximal power input is lowered) while the storage is filled during
low demand. The result of the simulation is given in Figure C.2 and the heat exchanger
temperatures are given in Figure C.3. In Figure C.2 it can be seen that the temperature
in the hot storage layer converges to the desired zs = 85◦C. The controller is able to
maintain this temperature throughout the whole day despite the changing demand. Also
in the time-intervals where the volume is not able to achieve steady state the temperature
of the hot storage layer is kept close to the desired zs = 85◦C. It can be seen that the
storage is almost continuously filled until 20000s after which it is continuously drained
until 53000s. After 53000s the level of the storage is kept constant since it is almost
fully drained and after 79200s the storage is filled again to the same level as the initial
condition to prepare for the next day. As a consequence loads are shifted resulting in
lower peaks compared to a setup without a storage tank which can be seen in Figure C.4.

Note that the demand is a piecewise constant signal due to the discretization. Since
the flowrate of the consumers is set proportional to this demand the flowrate has the same
behaviour. A transient behaviour (which look like spikes with the used resolution) can
be seen in Figure C.3 at the time that the demand and flowrate is discontinuous.
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Summary

Recently, district heating networks gained a lot of renewed interest since they can contribute to
lowering CO2 emissions. However, to achieve this changes are required in the way we operate
and design these systems. For example, smaller pipes could be used and multiple producers,
consumers and storages should be integrated in these systems. As a consequence new control
strategies are required and their design and stability analysis are the focus of this thesis. Before
designing various controllers, three models are introduced that describe the dynamics of a district
heating network by considering the relations between volume, temperature, flowrate and pressure.
Since the considered dynamics in some of these models represent a broader class of systems the
results of the modeling (and subsequent controller design) have many other applications such
as supply chains, power grids, data networks, traffic networks and compartmental systems. The
presented models are used in the design and analysis of several controllers, each having its own
control goal.

The first goal is to solve a volume and temperature regulation problem for a conventional
setup with a single heat source and thermal storage. As the aggregated demand of such a network
is highly periodic, we propose an internal model based controller that regulates the heat injection.
Together with a proportional controller for the flowrates, asymptotic stability is proven towards
desired setpoints of the storage volume and temperature despite the time varying demand.

The second goal is to design controllers that coordinate production, regulate the storage and
control transportation of the water in large scale (heat) networks such that the demand (which
acts as a disturbance) is met. This coordination allows multiple producers owned by different
entities to produce in a single network, which is called third party access. A graph is used to
model the network in which nodes represent producers, consumers and/or storage and a link the
pipes interconnecting them. Controllers at the nodes use a communication network to guarantee
optimal economic inputs at steady state. Moreover, controllers at the links control the flows bet-
ween the nodes. With these choices the controllers are completely distributed, meaning that only
local measurements are required. In order to guarantee that production capacities, flow directions
and flow capacities are never violated, we also require that inputs and flows set to remain within
pre-set bounds at all times. The first controller we design uses saturation functions to guarantee
the input and flow constraints. Using Lyapunov arguments we show global convergence to an
arbitrarily small neighborhood of the desired optimal steady state. The second controller uses
nonlinear functions instead of the standard saturation functions and an additional state is intro-
duced that increases the performance. Exploiting an incremental passivity property, the desired
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steady state is proven to be globally asymptotically stable under the closed loop dynamics. Be-
sides a district heating system we present a case study of a multi-terminal high voltage direct
current network that shows the effectiveness of the proposed solution.

The third goal is to design controllers that regulate the pressures in hydraulic networks. More
specifically, we assure that the inputs are non-negative, as many (centrifugal) pumps commonly
used in these networks can only generate positive pressures. The networks we consider are equip-
ped with a multi-pump architecture such that higher frictions in the pipes can be tolerated. As a
result smaller pipes can be used such that the heat dispersion is decreased. We propose a control-
ler that has similarities with a PI controller but the output is mapped through a nonlinear function
and an additional state-dependent gain is introduced, guaranteeing the positivity constraint of the
input. These controllers regulate the pressure drop at each end-user asymptotically towards desi-
red setpoints and the obtained closed-loop nonlinear system is proven to be locally asymptotically
stable.

Lastly, the final goal is to investigate the implications of a time varying production to a geot-
hermal reservoir in a similar setup as considered for the first goal. We propose and design a model
predictive controller as it can easily include constraints such as flow rate, storage and production
capacities, but also uses predictions of the heat demand to generate the most optimal input sig-
nal. The controller uses volume measurements in the storage tank and predictions of the demand
in order to regulate the production of the geothermal system. The numerical data generated by
the controller in closed loop with a modelled district heating network are used as input for the
reservoir simulations that uses a 2D reactive transport reservoir model. These make use of dis-
crete parameter analysis to evaluate the effect of pressure depletion, reservoir permeability, flow
rate, re-injection temperature and injection pH on the geothermal reservoir. We show that such a
time varying production does not create adverse geochemical effects in the reservoir, but instead
improves the efficiency of the geothermal heat extraction. The findings pave the way towards a
stronger integration between heat networks and a more sustainable development of geothermal
resources.



Samenvatting

Recent hebben warmtenetten veel herniewde interesse ontvangen omdat ze kunnen bijdragen aan
het verlagen van de CO2 uitstoot. Echter, om dit te berijken zijn wijzigingen nodig in de ma-
nier hoe we deze systemen aansturen en ontwerpen. Voorbeelden van deze wijzigingen zijn het
gebruik van kleinere pijpen en het integreren van meerdere producenten, consumenten en op-
slagtanks in deze systemen. Als consequentie zijn er nieuwe regeltechnische strategieën nodig
en het ontwerp samen met de stabiliteitsanalyse hiervan is de focus van deze these. Voordat we
de verschillende regelaars gaan ontwerpen, introduceren we drie modellen die de dynamica van
een dergelijk systeem beschrijven waarbij relaties tussen volume, temperatuur, stroomsnelheid
en druk gerelateerd worden. Omdat de beschouwde dynamica in sommige van de modellen een
bredere klasse van systemen beschrijft hebben de resultaten van de modellering (en het daarop
volgende ontwerp van de regelaars) veel verschillende andere applicaties zoals ’supply chains’,
elektriciteitsnetwerken, data netwerken, verkeersnetwerken, en systemen van compartimenten.
Deze modellen worden vervolgens gebruikt in het ontwerp en de stabiliteitsanalyse van verschil-
lende regelaars die elk hun eigen doel hebben.

Het eerst doel is om een regelprobleem op te lossen waarbij het volume en de temperatuur
in een conventioneel warmtenetwerk met één enkele warmte bron en een warmteopslag worden
gereguleerd naar referentiepunten. Omdat de totale vraag in een dergelijk netwerk vaak een sterk
periodiek karakter heeft stellen we een regelaar voor met inwendig model dat de warmte injectie
regelt. Samen met een proportionele regelaar voor de stroomsnelheid bewijzen we asymptotische
stabiliteit naar een gewenst referentiepunt voor zowel het volume als de temperatuur ondanks een
tijdvarierend vraagpatroon.

Het tweede doel is om een regelaar te ontwerpen dat productie coordineerd, opslag niveaus
reguleert en het transport van water regelt in grootschalige warmtenetten zodanig dat de vraag
(die zich manifesteert als een verstoring) wordt voorzien. Deze coordinatie geeft meerdere pro-
ducenten van verschillende eigenaars de mogelijkheid om zich gezamelijk aan te sluiten op n
netwerk, ook wel ’third party access’ genoemd.

A graph is used to model the network in which nodes represent producers, consumers and/or
storage and a link the pipes interconnecting them. Een graaf wordt gebruikt om het netwerk te
modelleren waarbij de knooppunten producenten, consumenten en/of opslag voorstellen terwijl
de linkjes de pijpen modelleren die de knooppunten verbindt.

Regelaars op de knooppunten van een netwerk gebruiken een communicatienetwerk om eco-
nomische optimaliteit te garanderen in evenwichtstoestand. Daarnaast zorgen de regelaars op
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de linkjes voor de gewenste stroomsnelheden tussen de knooppunten. Met deze keuzes zijn de
regelaars compleet gedecentraliceert wat betekend dat alleen lokale metingen nodig zijn. Om te
garanderen dat produciecapaciteiten, stroomrichtingen en stroomcapaciteiten altijd binnen voor-
gegeven grenzen blijven, eisen we dat de inputs en stromingen aan corresponderende voorwaar-
den voldoen voor alle tijd. De eerste controller die we ontwerpen gebruikt saturatiefuncties om
de voorwaarden voor de input en de stroomsnelheden te garanderen. Doormiddel van Lyapunov
argumenten tonen we aan dat globale convergentie gegarandeerd is naar een omgeving die wil-
lekeurig dicht bij de gewenste optimale evenwichtstoestand ligt. De tweede controller gebruikt
niet-lineare funties inplaats van de standaard saturatiefunties en de dynamica is aangepast met een
extra toestandsvariabele waardoor de prestaties verbeteren. Door een incrementele passiviteits-
eigenschap te gebruiken zijn we in staat te bewijzen dat de gewenste evenwichtstoestand globaal
asymptotisch stabiel is onder de dynamica in gesloten kring. Naast een warmtenetwerk presen-
teren we ook een casestudy van een multi-terminal hoog voltage netwerk met gelijkspanning die
de effectiviteit van de voorgestelde oplossing illustreerd.

Het derde doel is om een regelaar te ontwerpen dat de druk reguleert in hydraulische net-
werken. Specifieker, we garanderen dat de inputs niet negatief worden omdat veel centrifugale
pompen die normaalgesproken worden gebruikt in deze netwerken alleen positieve inputs kun-
nen leveren. Het netwerk dat we beschouwen is uitgerust met een architectuur waarin meerdere
pompen gebruikt worden, zodat hogere weerstand in de pijpen getollereerd kan worden. Dit heeft
tot gevolg dat er dunnere pijpen gebruikt kunnen worden wat lagere warmteverliezen tot gevolg
heeft. We stellen een regelaar voor die overeenkomsten heeft met een PI-regelaar, maar de out-
put wordt door niet-lineare functies gemapt en een extra toestandsvariable afhankelijke gain is
geı̈ntroduceerd die garandeerd dat de input altijd positief blijft. De regelaar stuurd de drukval
bij elke eindgebruiker asymptotisch naar de gewenste referentiepunten en we bewijzen dat de
gesloten feedbackloop lokaal asymptotisch stabiel is.

Tot slot onderzoeken we de implicaties van een tijdsvariërende productie op een geother-
mie reservoir in een vergelijkbare setup als in het eerstbeschreven doel. We kiezen voor een
model-voorspellende regelaar omdat deze eenvoudig randvoorwaarden mee kan nemen zoals ca-
paciteiten van de buizen, opslag en productie, maar ook voorspellingen van de warmte vraag
gebruikt om het meest optimale signaal te genereren. De regelaar die we ontwerpen gebruikt
volume metingen in de opslagtank en voorspellingen van de totale warmtevraag om de productie
van de geothermiebron te regelen. De numerieke data gegenereerd door een simulatie van de
regelaar in gesloten loop met een model van het warmtenetwerk is gebruikt als input voor een 2D
reactief transport model van het reservoir. We tonen aan dat een tijdsvariërende productie geen
nadelige geologische effecten heeft in het reservoir, terwijl deze de efficientie verhoogt van de
geothermische warmte extractie. Deze resultaten maken de weg vrij voor een sterkere integratie
tussen warmtenetwerken en een meer duurzame ontwikkeling en exploitatie van geothermische
energie.
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