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Mendelian Disorders of High-Density Lipoprotein Metabolism 

ABSTRACT 

High-density lipoproteins (HDLs) are a highly heterogeneous and dynamic 
group of the smallest and densest lipoproteins present in the circulation. This 
review provides the current molecular insight into HDL metabolism led by 
articles describing mutations in genes that have a large effect on HDL 
cholesterol levels through their roles in HDL and triglyceride metabolism. 
Using this information from both human and animal studies, it is discussed 
how HDL is produced, remodelled in the circulation, affected by factors that 
control the metabolism of triglyceride-rich lipoproteins, how it helps maintain 
cellular cholesterol homeostasis, and, finally, how it is catabolized. It can be 
concluded that HDL cholesterol as a trait is genetically heterogeneous, with as 
many as 40 genes involved. In most cases, only heterozygotes of gene variants 
are known, and HDL cholesterol as a trait is inherited in an autosomal-
dominant manner. Only 3 Mendelian disorders of HDL metabolism are 
currently known, which are inherited in an autosomal recessive mode.  

NONSTANDARD ABBREVIATIONS AND ACRONYMS 

ABCA1, G1 ATP-binding cassette transporter A1, G1 
ANGPTL3 angiopoietin-like 3 
apoA-I apolipoprotein AI 
apoM apolipoprotein M 
CAD coronary artery disease 
CE cholesteryl ester 
CETP cholesteryl ester transfer protein 
CVD cardiovascular disease 
FC free cholesterol 
GWAS genome-wide association study 
HDL high-density lipoprotein 
HDL-C high-density lipoprotein cholesterol 
LCAT lecithin:cholesterol acyltransferase 
LDL-C low-density lipoprotein cholesterol 
LIPC hepatic lipase 
LIPG endothelial lipase 
LPL lipoprotein lipase 
ORPs oxysterol-binding protein–related proteins 
PLTP phospholipid transfer protein 
SNP single nucleotide polymorphism 
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sPLA2 secreted phospholipase A2 
SR-B1 scavenger receptor class B member 1 
TRIB1 tribbles homolog 1 
TRL triglyceride-rich lipoprotein 
VLDL very-low-density lipoprotein 

INTRODUCTION 

Mendelian disorders refer to diseases caused by mutations in single genes 
that are inherited following a simple pattern. When considering high-density 
lipoprotein (HDL) metabolism, 3 such disorders can be distinguished. These 
are APOAI, LCAT, and ABCA1 (encoding apolipoprotein AI [apoA-I], 
lecithin:cholesterol acyltransferase [LCAT], and ATP-binding cassette 
transporter A1 [ABCA1], respectively) deficiency, which all cause a loss of the 
capacity to produce or  mature  HDL.  All  3  are inherited in an autosomal-
recessive  manner.  Although  homozygotes and compound heterozygotes for 
loss-of-function mutations  in  these  genes  mostly  have  clinical  
complications,1 heterozygotes are generally without clinical symptoms. In this 
context, HDL cholesterol (HDL-C) levels can be considered a Mendelian trait 
with levels depending on the action of single gene products. On the contrary, 
this trait is genetically also heterogeneous because >40 different genes are 
currently reported to affect HDL-C levels. In the majority of cases, only 
heterozygotes for loss-of-function mutations are known and, despite their 
effect on HDL-C levels, they are again not reported to cause disease. This 
review is an attempt to discuss the genes for which there exists clear evidence 
that they play important roles in regulating HDL-C levels  in humans and mice. 
The Figure  gives an overview of the knowledge that has been obtained 
through mutations (or targeted disruption) of these genes and illustrates the 
current molecular details of HDL anabolism, conversion, and catabolism. The 
Table summarizes how mutations in these genes may affect atherosclerosis. 

Terminology 

Definitions of HDL and HDL-C 

The mobilization of cellular cholesterol by HDL, the transport of cholesterol by 
HDL in the circulation, and the hepatic up- take of HDL-C are generally 
considered as key to the function of this lipoprotein class. However, from a 
biochemical perspective, HDL-C is a mere figure indicating how much 
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cholesterol is carried by the pool of HDL in blood. Unfortunately, the terms 
HDL and HDL-C are often used interchangeably. This leads to confusion and 
sometimes wrong interpretations. In the lay literature, HDL-C is often typed as 
the good cholesterol, suggesting that cholesterol is beneficial as long as it is in 
HDL that diverts from the multiple functions that are attributed to HDL that 
has little if nothing to do with its cholesterol component. In this review, HDL is 
used when either the particle or the pool of circulating HDL is meant, whereas 
HDL-C refers to the free cholesterol (FC) and cholesteryl ester (CE) carried by 
HDL in the circulation. HDL deficiency indicates that HDL and, therefore, 
HDL-C are (close to) absent. In an attempt to be comprehensive, we have 
combined genetic insights from both animal and human studies. Finally, the 
terms hypoalphalipoproteinemia and hyperalphalipoproteinemia are used 
when HDL-C concentrations are <10th percentile or >90th percentile for age 
and sex, respectively. 

Reverse Cholesterol Transport and Cellular Cholesterol Homeostasis 

Reverse cholesterol transport is generally used to describe  the transport of 
cholesterol by HDL from the vascular wall to the liver for excretion into bile as 
neutral sterol or bile acid. Despite ≈50 years of research, there is, as of yet, 
little evidence that HDL can transport cholesterol from the vessel wall to the 
liver for catabolism. The overall key scheme presented in the Figure is thus 
not meant to illustrate the routing of cholesterol that may be mediated 
through HDL but rather to illustrate the main HDL pathways known to date. 

Structure and Composition of HDL 

HDLs are characterized by several distinct subpopulations. By 
ultracentrifugation, one can distinguish 2 main subfractions, namely the larger 
HDL2 and the smaller and denser HDL3. The dynamic macromolecular HDL 
complexes range from 70 to 100 Å in diameter and from 200,000 to 400,000 
daltons in mass, are rich in protein (50%), and transport tri- glycerides and CE 
packaged in a monolayer of phospholipids and apolipoproteins.1 ApoA-I and 
apoA-II are the major structural components of HDL, and many other 
amphipathic apolipoproteins104 are isolated in HDL preparations. Adding to 
the complexity, many HDL-associated bioactive lipid species are thought to 
play important roles in various processes. 
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Main Determinants of HDL-C Levels 

Genes 

Family and twin studies have shown that circulating levels  of HDL-C have a 
strong inherited basis, with heritability  estimates ranging from 40% to 
80%.105–107 Accordingly, numerous genes affecting HDL metabolism have been 
described in humans or mice or both. Recently, data have emerged that 
suggest that extreme levels of HDL-C in families can have a polygenic 
origin,59,108,109 and that common genetic variation can explain a large 
proportion to the heritability of HDL-C levels.110 

One can generally distinguish between genes that directly affect de novo HDL 
genesis and those affecting HDL more indirectly through, for example, 
affecting hepatic triglyceride output or affecting the lipolysis of triglyceride-
rich lipoproteins (TRL). This latter process likely explains the generally tight 
inverse relationship between plasma levels of HDL-C and triglycerides. 
Increased plasma triglyceride lipolysis can increase HDL-C levels111 but, on the 
contrary, this process cannot recapitulate HDL-C levels in case the de novo 
production of HDL is completely disrupted as, for example, in APO-AI 
deficiency. 

Lifestyle and Disease States 

Age and sex belong to the no modifiable risk factors influencing plasma HDL-C 
levels, with age being positively correlated with HDL-C levels112 and male sex 
being associated with lower HDL-C.113 On the contrary, obesity, diet, physical 
activity, smoking, alcohol, and drugs are part of modifiable risk factors.107,114 

It is furthermore well-acknowledged that disease-related states, such as type 
2 diabetes mellitus, metabolic syndrome, and kidney disorders, are all 
associated with reduced HDL-C levels. In addition to an increased turnover 
and remodelling  of large HDL, these conditions all feature dense and small 
HDL, suggestive of an impaired conversion from small to large HDL.115,116 
Alcohol intake increases HDL-C in a dose-dependent fashion,117 whereas 
smoking is associated with low circulating levels of HDL-C,118 and several 
classes of drugs affect HDL metabolism.28 Recent studies have also shown that 
HDL-C levels are low in patients with liver failure and even reflect its 
severity.119 Low plasma HDL-C levels are associated not only with an increased 
risk of cardiovascular disease (CVD) but also with the rate and incidence of 
cancer120 as well as neurological disorders.121 Combined, the data suggest that 
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HDL-C levels can be considered as a general biomarker for compromised 
health. Thus, plasma HDL-C levels are an outcome measure of genetics, 
lifestyle, and possible disease states. 

HDL and CVD 

Epidemiology and Pharmaceutical Modulation 

Epidemiological studies have indisputably shown that low circulating levels of 
HDL-C represent a significant, robust, and independent predictor of CVD.122,123 

This association was first reported by Barr et al124 and was ignored until 
attention was given by the Framingham Heart Study. HDL-C has since been 
used as an important risk factor to assess cardiovascular risk. In light of these 
observational findings, clinical trials have been performed to study whether 
intervention to increase HDL-C would result in reduced risk of CVD

125,126 
but,

so far, no trials have proved to be effective. Details of these studies and those 
that are ongoing are discussed elsewhere in this review series. 

Complete Loss of Function of Major HDL Genes in Humans 

The number of reported families with severe HDL disorders is small and, as a 
consequence, it is hazardous to speculate on the risk of CVD. In the Table, we 
have tried summarizing the current data. Most of the mutations in APOAI are 
associated with increased CVD.

127–129 However, heterozygotes of the apoA-I
Milano variant exhibit low HDL-C levels but reduced premature coronary 
artery disease (CAD),

130,131 whereas carriers of the apoA-I Paris variant have
also been reported to be protected against CAD onset.

132 Carriers of mutations
in LCAT that cause HDL deficiency and 40% reductions of HDL-C in 
homozygotes and heterozygotes, respectively, have been reported to be at 
increased risk and decreased risk of atherosclerosis.

133,134 Also, when it comes
to HDL deficiency caused by mutations in ABCA1, evidence supporting an 
increased risk of CVD is unequivocal.

2,135,136 On the contrary, cholesteryl ester
transfer protein (CETP) deficiency causes strong increases in HDL-C levels. 
Although genetic CETP deficiency was first considered to be associated with 
low morbidity from CAD and longevity,

137 this was subsequently the subject of
debate.

138 To date, only a few patients with hepatic lipase (LIPC) deficiency
(encoding LIPC) have been described,

139,140 whereas LIPC promoter variants
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are associated with elevated plasma levels of HDL-C and paradoxically 
increased cardio- vascular risk.

141,142 Because most family studies originate
from index patients who were referred to the clinic, one may ask the question 
whether mutations in any of these genes are associated with altered CVD risk 
in the general population. 

Genetic Population Studies 

Because this is a topic of another review in this series, we only briefly address 
this topic. There is evidence that both rare and common alleles with major 
phenotypic effects contribute significantly to low plasma HDL-C levels in the 
general population.

65,143,144 Recent whole-genome sequencing and analysis
suggested that common variation contributes more to heritability of HDL-C 
levels than rare variation.

110 However, it has become clear that genetic
variation causing either increased or decreased levels of HDL-C is generally 
not associated with the anticipated low risk and higher risk of 
atherosclerosis.

145,146 Also, results from genome-wide association studies
(GWAS) have shown that variation in genes associated with HDL-C levels are 
not associated with CVD, whereas by contrast this is the case for variation in 
genes associated with low-density lipoprotein cholesterol (LDL-C) levels.

61

Mendelian Randomization Studies 

This approach has been recently used to investigate whether genetically 
altered HDL-C levels associate with the estimated risk of cardiovascular 
events: genetic information is used to test for associations between 
intermediate phenotypes, such as HDL-C levels, and disease outcome.

147 In 2
such studies, several single nucleotide polymorphisms (SNPs) consistently 
associated with high HDL-C levels were not found to be associated with 
cardiovascular events.

65,148
 Clinical and genetic studies to date have shown

that changes in HDL-C concentration are generally not associated with the 
anticipated outcome. Reconsidering these recent outcomes, many 
investigators point to the notion that the plasma level of HDL-C does not 
account for beneficial functions associated with HDL.

1,149 This is true, but none
of the HDL function parameters or biomarkers have yet provided answers why 
increasing HDL-C did not provide the anticipated atheroprotection. It should 
also be kept in mind that epidemiological studies show that it is the level of 
HDL-C in plasma that has prospective value. Clearly, new tools and 
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approaches are needed to unravel how HDL and HDL-C relate to 
pathogenesis.

150

HDL METABOLISM FROM A GENETIC PERSPECTIVE 

The Figure illustrates the roles of most of the major genes involved in the 
genesis, conversion, and catabolism of HDL. We describe the genes involved 
in the biogenesis of the nascent HDL and its maturation. In the Table, we 
have summarized the main findings in both humans and mice. 

Figure 1. Illustration of the major genes involved in the genesis (1–4), 
remodelling (5–9), and catabolism (7,8) of high-density lipoprotein (HDL). 
The figure is based on data obtained through studies in humans and mice. 1, 
The liver and small intestine are the only organs able to produce nascent HDL. 
This involves the intracellular maturation of proapolipoprotein AI (apoA-I) into 
apoA-I requiring bone morphogenetic protein-1 (BMP1) and procollagen C-
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proteinase enhancer-2 protein (PCPE2), followed by (2) the early acquisition 
of phoshpholipids (PL) and free cholesterol (FC) of apoA-I through ATP binding 
cassette transporter A1 (ABCA1) activity, which results in the production of 
pre-β-HDL at the cellular membrane. In this process (3) CTP:phosphocholine 
cytidylyltransferase (PCYT1; delivery of PL) and also apolipoprotein M (ApoM) 
and oxysterol-binding protein-related protein 8 (OSBPL8) have been shown to 
play a role. In the circulation (4), nascent HDL matures through the acquisition 
of cholesteryl ester (CE) that are generated by lecithin:cholesterol 
acyltransferase (LCAT). The enrichment of the core of HDL with CE causes HDL 
to become spherical and less dense (generating the HDL3 and HDL2 

subspecies). 5, Cholesteryl ester transfer protein (CETP) facilitates transfer of 
CE from HDL to triglyceride-rich lipoprotein (TRL) in exchange for triglycerides 
(TG). 6, Phospholipid transfer protein (PLTP) is known to fuse smaller HDL (not 
shown here) and to accommodate the transfer of PLs from TRL to HDL. The 
actions of both hepatic lipase (LIPC) and endothelial lipase (LIPG; 7, 8) in 
breaking down HDL-TG and PL, respectively, enhance the dissociation of lipid-
free or lipid-poor apoA-I from larger HDL, making HDL prone to renal 
catabolism via low-density lipoprotein–related protein 2 (LRP2) and cubilin 
(CUBN), which are thought to play a role here. 9, Many factors affect 
lipoprotein lipase (LPL)–mediated lipolysis of TG in triglyceride-rich 
lipoproteins (TRL), which include activators /modulators (apolipoprotein CII 
[APOCII], AV, GPI-anchored HDL binding protein-1 [GPIHBP1]) and inhibitors 
(APOCIII, ANGPTL3,4) of this reaction. The LPL reaction frees constituents 
(apolipoproteins, PL, and FC) for the pool of HDL particles. 10, SR-BI, the main 
HDL receptor, can mediate the uptake of CE in the liver and in steroidogenic 
tissues (latter not shown here). PC indicates phosphatidylcholine. 
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Biogenesis of Nascent HDL and Its Early Maturation 

Apolipoprotein AI 

The de novo synthesis of HDL involves the secretion of apoA-I by the liver 
and small intestine into the circulation, followed by a largely extracellular 
acquisition of      phospholipids (PL) and cholesterol leading to the formation 
of nascent HDL (step 1 in Figure). The gene is located on chromosome 11q23 
and encompasses 4 exons encoding a primary transcript of 267 amino acids. 
APOAI/ApoAI gene deletion results in extremely low levels of HDL-C in both 
humans and mice, respectively.

151 Intracellularly, an 18-amino-acid pre- 
peptide is cleaved at the endoplasmatic reticulum by a signal peptidase, 
whereas an intermediate pro–apoA-I with a hexa- peptide extension at its 
amino (N-) terminus

152 is secreted into extracellular fluids and plasma.
Subsequent cleavage of the hexapeptide produces the mature 243-amino-
acid protein, which is necessary for the assembly of small disc-shaped native 
HDL.

153 In vitro studies have shown that the latter reaction is mediated by
bone morphogenetic protein-1.

154 Recent studies in knockout (KO) mice have
also highlighted a key role for procollagen C-proteinase enhancer-2 protein in 
mediating this last step of apoA-I maturation. The data suggest the 
mandatory involvement of a ternary complex composed of pro–apoA-I, bone 
morphogenetic protein-1, and procollagen C-proteinase enhancer-2 
protein.

155 Multiple other HDLs can be formed in the absence of apoA-I with
roles for apoA-II, apoE, and apoA-IV,

156 but without apoA-I present HDL-C
levels are generally low. To date, 63 mutations have been identified in 
APOAI

157 with >70% variants directly implicated in
hypoalphalipoproteinemia. ApoA-I deficiency is a rare disorder that is 
characterized by the total absence of apoA-I in the circulation along with a 
low or absent HDL-C,

22,158 whereas LDL-C and tri- glyceride levels are not
affected. Typical clinical symptoms of apoA-I–deficient patients are 
xanthomas and mild-to- moderate  corneal  opacification.  Heterozygote  
individuals present with ≈50% of normal HDL-C and apoA-I levels without 
explicit clinical symptoms.

159 Although the impact of APOAI mutations is
variable, they seem to cause the utmost elevation in cardiovascular risk 
compared with mutations in other genes implicated in HDL 
metabolism.

22,158,160
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ATP-Binding Cassette Transporter A1 

The early apoA-I lipidation with FC and phosphatidylcholine (PC) occurs on its 
critical interaction with ABCA1 and results in the formation of discoidal pre–β-
HDL particles (step 2).  Its major role in HDL biogenesis was recognized after 
the discovery in 1999 that lack of ABCA1 (9q31.1) causes HDL deficiency in 
Tangier disease.

135,161,162 An impaired FC efflux from Tangier cells leads to
intracellular accumulation of CE visible in the characteristic deposits of lipids in 
lymphoid organs, such as the tonsils, and can be accompanied by other clinical 
features including peripheral neuropathy, hepatosplenomegaly, corneal 
opacities, thrombocytopenia, premature myocardial infarction, or stroke.

135

This disorder has since been diagnosed in ≈100 patients worldwide,
163 and

>170 mutations have been reported. In patients with Tangier disease, plasma
levels of apoA-I are only 3% of that of controls, whereas triglyceride levels
(>200 mg/dL) are increased along with reduced LDL-C (50% of normal).
Heterozygotes for deleterious mutations present with half-normal levels of
HDL-C and apoA-I but without apparent clinical symptoms.

164,165 When ABCA1
function is impaired, apoA-I cannot be lipidated, leading to its rapid clearance 
from the plasma circulation, resulting in significantly reduced levels of apoA-I 
and the presence of only small pre–β-HDL particles. The importance of ABCA1 
to maintain normal HDL-C levels in mice was illustrated by liver-specific ABCA1 
KO mice showing an 80% decrease in HDL-C levels.

166

Apolipoprotein M 

ApoM is an HDL-associated apolipoprotein that affects HDL biogenesis by 
affecting nascent pre–β-HDL assembly through ABCA1 (step 3).

167 Wolfrum et
al

50 demonstrated that apoM KO mice have impaired HDL interconversion and
store cholesterol in large HDL. ApoM deficiency decreases plasma HDL-C 
concentrations by ≈25%.

50 Furthermore, RNA-mediated knockdown of ApoM
in vivo causes a reduction in pre–β-HDL.

50,51 It has been shown that variation
in the promoter region of ApoM gene is associated with plasma cholesterol 
levels,

168 but this was not replicated.
169 Interestingly, Arkensteijn et al

170

recently showed a specific role of apoM as a carrier of the sphingosine 1 
phosphate. This sphingholipid activates 5 different G-protein–coupled 
receptors that affect numerous vascular functions.

171,172 Recently, Karuna et
al

173 reported that plasma levels of sphingosine 1 phosphate in apoM KO and
transgenic mice were reduced by 30% and increased by 270%, respectively. In 

46



Mendelian Disorders of High-Density Lipoprotein Metabolism 

addition, mutations in APOA1, ABCA1, or LCAT in humans reduced plasma 
levels of HDL-C and apoA-I as well as sphingosine 1 phosphate in an apparent 
gene–dose-dependent fashion. In contrast, mutations that increase plasma 
concentrations of both HDL-C and apoA-I did not affect sphingosine 1 
phosphate levels.

173

Lecithin:Cholesterol Acyltransferase 

In the circulation, nascent disc-shaped HDL is, under nor- mal conditions, 
thought to mature into larger spherical HDL. This process entails acquisition 
of CE in its hydrophilic lipid core, a step made possible through LCAT (step 4). 
The gene is localized in the q21-22 region of chromosome 16 and encodes a 
416-amino-acid glycoprotein that is (as apoA-I and ABCA1) expressed in the
liver and small intestine where it is secreted into plasma and where it mostly
associates with discoidal HDL.

72 This enzyme hydrolyses fatty acids from  PC
and subsequently transfers and esterifies  these  to  the free hydroxyl group 
of FC. The acquisition of CE converts disc-shaped HDL into spherical HDL that 
are predominant  in human plasma.

174 Through the esterification of FC, LCAT
is thought to maintain a cholesterol gradient that promotes cholesterol 
efflux from peripheral cells to HDL. The identification of patients with HDL 
deficiency and abnormal cholesterol and phospholipid tissue deposition have 
elucidated the fundamental role that LCAT plays in human HDL 
metabolism.

175,176 LCAT deficiency, in both humans
62 and mice,

177 causes HDL
deficiency that is accompanied by accelerated catabolism of apoA-I and 
apoA-II.

178 Loss of LCAT  activity in humans, with 94 LCAT single gene defects
reported worldwide, is associated with 2 autosomal-recessive phenotypes, 
respectively, familial LCAT deficiency exhibiting total loss of enzyme activity 
and fish-eye disease, a less severe deficient form.

62 Individuals with the
former phenotype present with low HDL-C and apoA-I levels, reduced    or 
normal LDL-C levels, accelerated apoA-I/II catabolism, and 
hypertriglyceridemia, in addition to the typical triad of diffuse corneal 
opacities, anemia, and proteinuria with renal failure.

179 Patients with fish-eye
disease generally only display corneal opacities despite complete HDL 
deficiency. Studies in homozygote LCAT–deficient mice display  severe 
reductions in apoA-I, HDL-C, and total cholesterol, as in humans with a 
significant increase in plasma triglycerides,

66,180 whereas heterozygotes have
60% of normal total and HDL-C.

181 Overexpression of human LCAT results in
significantly increased HDL-C.

182
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CTP:Phosphocholine Cytidylyltransferase 

Jacobs et al
183 showed that CTP:phosphocholine cytidylyl- transferase

(encoded by Pcyt1a,b)184 regulates plasma levels of HDL-C and very-LDL 
(VLDL) in liver-specific cytidylyltransferase alpha (α isoform) KO mice. It 
concerns a key enzyme in the cytidine diphosphate-choline pathway for the 
biosynthesis of phosphatidylcholine, a vital component for the structural 
integrity of mammalian membranes and the primary phospholipid in plasma 
lipoproteins.

185 Plasma HDL (PC, cholesterol, and apoA-I) was 50% lower in
the KO mice than in the control mice, indicating that hepatic PC supply from 
CTα  is vital for plasma HDL.

183
 In conclusion, APOAI, ABCA1, and LCAT are

key regulators of HDL metabolism. Remarkably, the loss of a single allele of 
any of the 3 genes cannot be compensated because all cause similar 
reductions of HDL-C levels. Apparently, apoAI production, apoAI lipidation, 
and CE acquisition by nascent HDL are equally important to steady-state 
levels of plasma HDL-C. The roles of ApoM and particularly PCYT1 in the 
biogenesis of HDL have primarily been studied in mice, and there are, to our 
knowledge, no reports on the effects of variation in these genes on human 
metabolism to date. 

Remodelling of HDL in the Circulation 

In the circulation, several proteins and enzymes modulate HDL. In humans, 
these include CETP, phospholipid transfer protein (PLTP), LIPC, endothelial 
lipase (LIPG), and secreted phospholipase A2 (sPLA2).

186 Mice lack CETP and
sPLA2. Loss-of-function mutations in these genes can underlie either 
hyperalphalipoproteinemia (CETP, LIPG, sPLA2) or hypoalphalipoproteinemia 
(PLTP). Whereas CETP and PLTP are lipid transfer proteins without catalytic 
activity, the remaining players discussed in this section all exert enzymatic, 
that is, lipolytic functions that are thought to affect apoAI turnover. 

Cholesteryl Ester Transfer Protein 

This protein accommodates the transfer of CE from HDL to apoB-containing 
lipoproteins in exchange for triglycerides (step 5). Once CEs are conveyed to 
apoB-containing lipoproteins, they are made available for uptake of LDL via 
hepatic receptors.

72 The evidence that CETP is essential for human HDL
metabolism came about with the discovery of human CETP deficiency,

137,187
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with 2-fold to 3-fold increases of HDL-C levels and remarkably large HDL. 
Heterozygous CETP deficiency results in less significant increases in HDL-C 
levels ranging between 10% and 35%.

105,188 To date, 39 CETP (16q21) variants
have been reported with most data retrieved from Japanese families. Despite 
the presence of frequent CETP variants with significant effects on HDL-C, the 
role of CETP in atherogenesis remains controversial.

52,53,189 In mice, which
naturally lack CETP, the introduction of the human CETP transgene decreases 
HDL-C and apoA-I levels,

190 whereas overexpression can either increase or
decrease atherosclerosis, depending on the introduction of other human 
genes.

57,191

Phospholipid Transfer Protein 

PLTP is crucial to HDL particle remodelling. As shown in step 6, PLTP facilitates 
the transfer of PL from TRL to HDL with the formation of both larger and 
smaller particles,

192 whereas it can also induce fusion of smaller HDL.
193 PLTP

KO mice show decreased HDL-C and apoAI levels.
90,91 The role of PLTP in the

transfer and exchange of PL between TRL and HDL has also been tested in 
animals overexpressing human PLTP. A 29% increase of PLTP activity promoted 
net phospholipid movement into HDL and, as a result, HDL phospholipid and 
FC were significantly increased.

194 Thus far, studies of PLTP (20q12-q13.1) in
humans are restricted to association studies showing that variation in the 
PLTP gene is associated with HDL-C levels

89,195 
but no cases of human PLTP

deficiency have been described. 

Hepatic Lipase 

Located on chromosome 15q21, this gene encoding hepatic lipase (HL) is 
involved in breaking-down HDL-TG and PL, thereby reducing HDL size and 
enhancing the dissociation  of lipid-free/lipid-poor apoA-I from larger HDL 
(step 7).

196 Anchored to cell surface proteoglycans in humans (while
circulating in mice), HL also has a bridging function promoting receptor-
mediated uptake of lipoproteins.

197 Complete LIPC deficiency constitutes a
rare metabolic condition genetically transmitted in an autosomal recessive 
pattern, resulting in in- creased HDL-C levels attributable to decelerated HDL 
catabolism.

139,198,199 To date, ≈60 individuals (8 homozygotes) have been
reported worldwide. All affected individuals present with increased plasma 
cholesterol (>90th percentile) and TG levels and accumulation of large 
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triglyceride-rich HDL and LDL particles. HL has been proposed to be both 
proatherogenic and antiatherogenic after studies in mice. Subjects with absent 
HL activity have been shown to have premature CAD.

196

Endothelial Lipase 

This gene on chromosome 18 encodes for endothelial lipase (EL) a second 
lypolytic enzyme. It is expressed in the liver, lung, kidney, and placenta. The 
enzyme has shown to exhibit more phospholipase activity than TG lipase 
activity with a major preference for HDL instead of TRL (step 8). It was first 
described in 1999 through in vitro expression studies in cells of human origin 
and through in vivo injection of adenovirus encoding human EL in mice.

82,200

Overexpression of LIPG in mice leads to a reduction of HDL-C
79,82 

and apoA-I
levels. In contrast, loss of EL in mice leads to significant increase in plasma 
HDL-C

79,201 
and reduced atherosclerosis.

80 Like HL, EL has also been shown to
be capable of bridging HDL and other lipoproteins with cell surface 
proteoglycans.

202 An association between LIPG variation and HDL-C levels has
been confirmed through GWAS,

77,203 and several studies suggest that
mechanisms underlying the associations between the LIPG SNPs and HDL 
metabolism may involve loss of function

204 as well as impaired secretion of
EL, both resulting in elevated levels of HDL-C.

205 Singaraja et al
206 identified

and functionally characterized several partial and complete loss- of-function 
LIPG mutations. Their impact on HDL-C is directly related to their effect on 
loss of EL function, supporting the hypothesis that antagonism of EL function 
would provide cardio-protection.

206

Secreted Phospholipase A2 

Encoding for the sPLA2 is highly expressed in the liver, particularly during 
acute and chronic inflammatory states.

207 This enzyme hydrolyzes the sn-2
ester bond of phospholipids to release a lysophospholipid and a 
nonesterified free fatty acid. Overexpression of human group IIa sPLA2208 in 
mice (naturally sPLA2-IIA deficient) results in a reduction of HDL-C levels, HDL  
size,  and  increased  HDL  catabolism.

209 Webb et al
208 recently showed that

sPLA2-IIa can contribute to atherosclerotic lesion development in mice 
through a mechanism that is independent of systemic lipoprotein 
metabolism. Recently, 2 sPLA2-IIA noncoding SNPs have been shown to be 
functional, making them valuable tools to assess whether the relationship 
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between sPLA2-IIA and coronary heart dis-ease is causal.
210 To our

knowledge, there are no reports on mutations in sPLA2 in humans. The 
genes discussed in this section all markedly affect HDL-C levels either through 
facilitating the transfer of neutral and phospholipids (CETP and PLTP, 
respectively) between HDL (and among HDL) and apoB-containing 
lipoproteins or by lipolysis of HDL phospholipids and triglycerides (EL and HL, 
respectively). The combined local or systemic actions of these factors and 
those already discussed, however, do not ultimately determine the actual 
level of HDL-C in plasma. In this regard,  it may be noted that all reports 
discussed to date have merely studied HDL and other lipids under fasting 
conditions, whereas for a large portion of the human population worldwide 
this has become a scarce situation. We will continue with studies describing 
how the catabolism of TRL affects HDL and HDL-C, although these data are, 
again, mainly obtained after fasting. 

Interaction of HDL With TRLs 

This section focuses on proteins and enzymes that affect HDL metabolism 
through their impact on plasma triglyceride lipolysis. These mostly affect the 
activity of lipoprotein lipase (LPL), the sole enzyme capable of hydrolyzing 
plasma triglycerides in plasma TRL.

196,211 LPL is synthesized and secreted by
parenchymal cells in metabolically active muscle and adipose tissue. At these 
sites, surface lipid (FC and PL) and apolipoproteins resulting from TRL 
hydrolysis are conveyed from TRL to HDL (step 9).

196

Lipoprotein Lipase 

The LPL gene is located on chromosome 8p22 and >160 mutations have been 
reported. LPL deficiency is an autosomal-recessive disorder characterized by 
severe hypertriglyceridemia (because of the accumulation of chylomicrons) 
and marked decreases of HDL-C and LDL-C levels.

32,212 Although homozygote
patients can present with severe pancreatitis, heterozygotes do not have 
clinical complications and show normal to elevated triglyceride levels and 
decreased HDL-C. LPL KO mice display hypertriglyceridemia and low HDL-C 
levels, whereas overexpression of LPL causes an increase in HDL-C levels.

86

Several common coding SNPs in the LPL gene have been reported to have a 
significant impact on HDL-C levels,

32 and these associations are confirmed by
meta-analysis and are consistent with findings from recent GWAS.

83,213 
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Determinants of LPL Activity 

Apolipoprotein CII 

For its catalytic activity, LPL needs apoC-II as cofactor, a small protein of 79 
amino acids present on TRLs and HDL. Human APOCII deficiency (20 kindreds 
reported worldwide) is like LPL deficiency associated with chylomicronemia 
and low HDL-C.

1,214 All defects in APOCII (19q13.2) concern nonsense
mutations. Heterozygote individuals usually present with normal plasma 
triglyceride levels.

215 In APOCII-deficient patients, the mature HDL subfractions
have been reported to be reduced or lacking.

216,217

Apolipoprotein AV 

ApoA-V can be considered as a modulator of LPL activity. APOAV (11q23) is 
expressed in the liver and the protein is secreted into plasma, where it 
associates with VLDL, chylomicrons, and HDL.

218 It seems to be a key
modulator of plasma TG homeostasis but the molecular mechanisms are not 
fully understood.

33,34 ApoA-V may act by increasing LPL activity in a fashion
similar to that of apoC-II,

219 although other studies do not support this.
33

Individuals with complete apoA-V deficiency  may  present  with  
hypertriglyceridemia  and low HDL-C, but the penetrance often depends on 
other deleterious parameters. Heterozygote individuals have normal or 
moderately elevated plasma TG.

35 Remarkably, APOAV gene polymorphisms
display the most significant associations with HDL-C levels when compared 
with genes encoding for other apolipoproteins.

33,34,36 It may be noted,
however, that APOAV is part of the AI-CIII-AIV gene cluster that is highly 
polymorphic, and genetic variation may also affect the transcription of these 
genes. Accordingly, this gene cluster is significantly associated with both 
triglyceride and HDL-C levels in recent GWAS.

78 Of note, in this regard GWAS
have identified APOAI as a gene with TG as main lipid trait.

61

GPI-Anchored HDL-Binding Protein-1 

The GPIHBP1 is located on chromosome 8q24.3 and encodes the 
glycosylphosphatidylinositol (GPI)-anchored HDL-binding protein-1 and was 
originally identified as an HDL-binding protein,

220 but the finding that Gpihbp1
knockout mice have severe hypertriglyceridemia revealed an essential role for 
the protein in the action of LPL in capillary endothelium.

221 In these mice, the
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majority of the triglycerides and cholesterol are present in large lipoproteins, 
whereas HDL-C levels are low. Gpihbp1 is produced in cardiac muscle, 
skeletal muscle, and adipose tis- sue, and has been suggested to facilitate LPL 
trafficking over the endothelium and to operate as a scaffold for LPL and its 

substrates at the luminal side of these cells.
221,222 To date, a few point 

mutations and 1 large deletion in GPIHBP1 have been reported in patients 

who present with severe hypertriglyceridemia
223–225 

and low HDL-C.
226

Inhibitors of the Catalytic Activity of LPL 

The LPL reaction is regulated in a spatiotemporal fashion by several 
inhibitory factors encoded by APOCIII, angiopoietin-like 3 (ANGPTL3), and 
ANGPTL4, which all affect HDL metabolism. 

Apolipoprotein CIII 

APOCIII secreted from the liver and, to a lesser extent, by  the intestine is a 
component of both HDL and TRL. Loss-of- function mutations have been 
associated with higher levels of HDL-C and lower levels of LDL-C and TGs. To 
date, 12 mutations have been described in APOCIII (11q23.3) associated with 

apparent cardio-protection.
43 Overexpression of human apoC-III in mice

results in hypertriglyceridemia,
227 whereas targeted disruption of Apoc3 

results in a reduction of plasma triglyceride and protection from postprandial 

hypertriglyceridemia.
228 It has also been suggested that apoC-III increases 

the catabolism of HDL and is involved in other relevant lipid metabolic 

functions.
43

GALNT2 

UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-
acetylgalactosaminyl-transferase 2 (GalNAc-T2) encoding the polypeptide 
N-acetylgalactosaminyltransferase 2 has been reported to affect HDL and 
TG metabolism through glycosylation of apoC-III.

60 This enzyme is involved in 
the regulation of the O-linked glycosylation of proteins.

229 Common SNPs in 
this gene through GWAS were shown to be associated with HDL-C and TG 
levels. Overexpression in mouse liver reduces HDL-C levels, whereas 
silencing hepatic gene expression leads to an increased HDL-C.

61             
In  2  families, it  was  reported that a  functional  GALNT2  mutation  affects 
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HDL metabolism by accelerating postprandial TG clearance.
60

Angiopoietin-Like 3 and Angiopoietin-Like 4 

Although ANGPTL3 (1p31.3) is secreted exclusively from  the liver, ANGPTL4 
(19p13.2) is primarily found in those tis- sues that also express LPL. Both 
encoded proteins can act as inhibitors of LPL activity by promoting, in 
different ways, the dissociation of the active LPL homodimer into inactive 
monomers. Angptl4 KO mice exhibit increased LPL activity, 65% to 90% lower 
TG levels, slightly lower total cholesterol levels, lower HDL-C, and circulating 

VLDL,
230,231 whereas transgenic mice have reduced post heparin plasma LPL

activity and elevated plasma triglycerides.
231

  Angptl3 KO mice also show
lower plasma triglyceride and cholesterol levels.

232 Interestingly, these mice 
display a counterintuitive 50% reduction in plasma levels of HDL-C. This has 
been explained by evidence that ANGPTL3 also inhibits EL. Thus, a resulting 
increase of EL activity would reduce plasma levels of HDL-C. Angptl3-deficient 
mice showed a significant decrease in HDL-PLs and cholesterol, which could be 

restored through reintroducing ANGPTL3.
233,234

Double Angptl3/Angptl4 KO mice die before birth or 2 months after showing 
almost undetectable low cholesterol and TG levels, therefore proving the 

pivotal role of Angptl3/4 in lipoprotein metabolism.
232 Recently, it was shown 

that rare ANGPTL3,4 gene variants are associated with low plasma TG levels 

and increased HDL-C in humans.
235,236 All mutant alleles that were associated 

with low plasma TG levels interfered either with the synthesis or secretion of 
the protein  or with the ability of the ANGPTL protein to inhibit LPL. In 
contrast to the mouse studies, loss-of-function mutations in ANGPTL3 in 

humans were not associated with a decrease in plasma levels of HDL-C.
236 On

the contrary, Musunuru et al
237 found that complete ANGPTL3 deficiency in 

humans results in extremely low plasma levels of LDL-C, HDL-C, and TG. 
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Other Modulators of HDL and TG Metabolism 

TRIB1 and glucuronic acid epimerase (GLCE) have also been shown to affect 
HDL metabolism in both human and mouse studies. 

Tribbles Homolog 1 

Tribbles homolog 1 is a member of the recently identified tribbles protein 
family, mapping within 8q24 locus and with suggested function as adaptor or 
scaffold protein.

238 Minor alleles in TRIB1 SNPs have been found to be
associated with lower TG, LDL-C, and higher HDL-C, and also with a 
significantly reduced risk of CAD.

61 Studies in the general population
highlighted the strong association between TRIB1 variation and HDL-C and a 
less strong, but still significant, association with TG. The mechanism by which 
TRIB1 affects lipid metabolism is unknown. It may be mediated through 
mitogen-activated protein kinase pathway, which is directly controlled by 
TRIB1.

239 Burkhardt et al
240 

provided evidence that TRIB1 is implicated in
regulation of hepatic lipogenesis and VLDL production in mice: hepatic-
specific overexpression of Trib1 reduces levels of plasma TG and VLDL, LDL-C, 
and HDL-C by decreasing VLDL production. Conversely, Trib1-KO mice showed 
elevated levels of plasma TG, VLDL, and LDL-C because of increased VLDL 
production, whereas HDL-C  was not significantly affected. These TRIB1 
studies illustrate that HDL-C is not always inversely related to TG levels in the 
circulation. 

GLCE 

GLCE is another genetic locus in the 15q21–23 region (which includes LIPC), 
which was recently linked to HDL-C levels in Turkish families. The gene 
encodes a glucuronic acid epimerase and is critically important for the 
biosynthesis of heparin-sulfate proteoglycan, which in turn plays a major role 
in clearing TRLs from the plasma

241 along with apoE.
242 Moreover, analyses

of plasma lipids in Glce+/− mice on the Apoe−/− back- ground support the 
involvement of Glce in lipid metabolism.

243 From this section, it is clear that
many factors impact HDL metabolism either through directly  affecting the 
hydrolysis of plasma triglycerides or through modulating hepatic VLDL 
secretion. These observations seem to have thus far received little attention 
in the HDL and TG research fields, which may need to change when 
considering, for example, diabetic dyslipidemia characterized by decreased 
HDL-C and increased plasma TG. 
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HDL and Cellular Cholesterol Homeostasis 

HDL is known for its important role in acting as an acceptor of cellular 
cholesterol in which ≥3 major genes encoding ABCA1,

244 ATP-binding
cassette transporter G1 (ABCG1),

21 and scavenger receptor class B type 1
(SR-B1)

245 play key roles. This is discussed in detail in another review in this
series. The genetics of ABCAI have already been addressed, and this section 
we address studies of defects in ABCG1, SR-B1, ORPs (oxysterol-binding 
protein–related proteins), and lysosomal storage disorders that affect 
plasma HDL-C levels. 

ATP-Binding Cassette Transporter G1 

ABCG1 has been shown to play a fundamental role in the regulation of 
cellular cholesterol homeostasis through actively mediating cholesterol 
transport to maturated HDL. The gene is located at 21q22.3, with the highest 
expression in the macrophages, adrenal glands, heart, lung, and spleen.

246,247

Feeding ABCG1 KO mice a cholesterol-rich, high-fat diet markedly reduces 
plasma HDL-C levels and increases biliary cholesterol secretion.

248 Little is
known about the role of ABCG1 in human metabolism. Schou et al

249

reported a functional ABCG1 promoter variant that associates with increased 
risk of myocardial infarction and ischemic heart disease in the general 
population but without affecting levels of HDL-C or other lipids or 
lipoproteins. Abellán et al,

15 however, described a significant association
between promoter variant and HDL-C levels. More recently, interactions of 
ABCG1 gene variants with diet were proposed.

16

Scavenger Receptor Class B Member 1 

The SCARB1 gene (12q24.31) encoding for the main HDL receptor is 
expressed mainly in steroidogenic tissues and the liver, where it controls the 
selective uptake of CE from HDL.

27 In contrast to ABCA1 and G1, it mediates
bidirectional flux  of un-CE between cells and HDL.

27,245,250 SR-B1 KO mice
display a 2-fold increase in plasma HDL-C,

98 accelerated atherogenesis, and
disruption  of  cholesterol  transport  to  the liver.

99,251 SR-B1 overexpression
in mice reduces plasma HDL-C levels.

252 In mice, HDL delivers cholesterol to
the adrenal gland for steroid production.

253,254 Consistently, mice lacking SR-
B1 show an impaired adrenal glucocorticoid stress response.

255 
Genetic
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association studies in humans show sex-dependent association with HDL-C 
and LDL-C levels.

256,257 Several rare point mutations in SR-B1 in patients with
high HDL-C levels have been functionally characterized.

95–97 In one case,
carriers of a functional mutation displayed augmented HDL-C levels, reduced 
cholesterol efflux from macrophages, and mild adrenal insufficiency.

95 In a
recent study, it was reported that basal, but not stimulated, corticosteroid 
metabolism is lessened in carriers of individuals with mutations in LCAT or 
ABCA1, supporting a role for HDL as a cholesterol donor for basal adrenal 
steroidogenesis in humans.

258

Oxysterol-Binding Protein–Related Protein 8 

Another gene (12q14) that has been shown to play a role in HDL metabolism 
is OSBPL8, a member of the ORPs family that is known to be implicated as 
intracellular sterol sensors that regulate cellular functions ranging from sterol, 
sphingolipid, and neutral lipid metabolism to vesicle transport and cell 
signalling.

259–261 In previous studies, ORP8 has been shown to affect the
expression of ABCA1 and cellular cholesterol efflux,

262 and with ORP8
knockdown leading to several alterations in the cellular lipidome, including 
increased levels of both FC and CE.

263 Recently, the first Osbpl8 KO mouse was
generated, and Osbpl8 deficiency was found to cause a significant elevation of 
HDL-C, choline phospholipids, and sex-specific alterations of lipid 
metabolism.

264

Glucocerebrosidase 

Gaucher disease is the most common of the lysosomal storage disorders, 
characterized by deficiency of the glucocerebrosidase (encoded by GBA) and 
resulting in accumulation of glucocerebroside in macrophages. This cellular 
metabolic abnormality leads to chronic systemic inflammation and a 
heterogeneous, multisystemic phenotype including hepato- splenomegaly, 
skeletal disease, and cytopenia, in addition to an abnormal cholesterol profile 
(HDL-C <50 mg/dL).

265,266 Type 1 Gaucher disease is the most prevalent form,
with >50 mutations reported to date.

157 Interestingly, although carriers of one
GBA mutation do not exhibit any Gaucher symptoms, significantly lower HDL-c 
levels have been reported.

265,267
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Lysosomal Acid Lipase 

Lysosomal acid lipase, encoded by LIPA (10q23.2–q23.3), is a lysosomal enzyme 
that hydrolyzes CE and TG and is internalized via receptor-mediated 
endocytosis of plasma lipoproteins. At present, 47 mutations have been 
reported that are responsible for Wolman disease or cholesteryl ester storage 
disease, respectively.

157 Wolman disease is a rare recessive disorder caused by
homozygous and compound heterozygous mutations that results in complete 
lysosomal acid lipase deficiency, with massive storage of CE and TG in most 
tissues, hepatosplenomegaly, adrenal calcification, HDL-C levels, and 
anemia.

268 Subjects carrying mutations resulting in residual lysosomal acid
lipase activity experience development of the less severe phenotype, 
cholesteryl ester storage disease, characterized by low HDL-C, hyperlipidemia, 
hepatic fibrosis, and premature atherosclerosis.

269 The mechanism responsible
for low plasma HDL-C is currently unknown but is likely attributable to the 
reduced FC transported to the plasma membrane, which could affect ABCA1-
mediated cholesterol efflux from the cell membrane to extracellular 
acceptors, such as lipid-poor apoA-I particles.

151,270

HDL Catabolism 

SR-B1, as the main high-affinity receptor for HDL, enables the selective 
uptake of CE from circulating HDL via apoA-I recognition.

271 This occurs,
however,  without  mediating the degradation of HDL, as is the case for LDL. 
In humans, plasma levels of HDL-C and apoA-I are inversely related to the 
catabolism of apoA-I,

272 which takes place in the kidney, where lipid-poor
apoA-I is initially filtered at the level of the glomerulus and subsequently is 
catabolized by proximal renal tubular epithelial cells. Chronic kidney disease 
is associated with marked reductions of plasma HDL-C.

273 However, only little
is known about the molecular mechanisms. A protein involved in this process 
is cubilin (CUBN; 10p12.31), an extracellular protein synthesized by proximal 
renal tubular cells and expressed at the apical surface.

274 It has the capability
of binding HDL and apoA-I with high affinity and interacting with a co-
receptor named megalin or LDL-related protein 2 (4q35.1), a member of 
LDLR gene family, which facilitates uptake and degradation of apoA-I.

275

Studies of cubilin deficiency in animals or humans, however, have not shown 
marked changes in plasma HDL-C or apoA-I levels.

276 
It is currently thought

that the rate of renal apoA-I catabolism is determined by both apoA-I 
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lipidation (ABCA1, LCAT) and apoA-I delipidation processes (EL, HL) as 
described.

151

CONCLUSIONS 

The unravelling of the causes of severe hypoalphalipoproteinemia and 
hyperalphalipoproteinemia in humans  and  mice and the use of candidate 
gene approaches have helped in discovering the major HDL pathways in the 
past century. These included those relating to the 3 Mendelian disorders  of 
HDL metabolism (APOAI, ABCA1, and LCAT deficiency). These key findings 
have helped to develop novel therapeutic intervention methods, some of 
which are still undergoing study.

126,277  Since 2008, GWAS have subsequently
rediscovered the known genes but also have identified many additional 
candidate genes or genomic regions that are associated with HDL-C levels. 
Follow-up reports are discussed in this review. GWAS of lipid metabolism have 
underscored that HDL-C and TG levels in plasma can barely be considered as 
independent traits. We have discussed mutations (or targeted disruptions) in 
genes affecting either or both traits in an attempt to provide a complete 
picture. This review has used the genetic handholds to describe the major 
players in HDL anabolism and catabolism, for which studies in both humans 
and mice were considered. In summary, the de novo synthesis of HDL is de- 
pendent on 3 major players, respectively, APOAI, ABCA1, and LCAT, each of 
which confer severe HDL deficiency in case of a total gene loss. For the 
generation of pre–β-HDL, roles for PCYT1, ApoM, and OSBPL8 are also 
recognized. HDL   is further modulated in the circulation through lipid 
transfer proteins (CETP, PLTP) and lipolytic enzymes (encoded by LIPC, LIPG, 
sPLA2) that affect apoA-I turnover, and mutations in these genes all 
markedly affect HDL-C levels. The genes that have an impact on HDL 
metabolism through their effect on plasma TG lipolysis in TRL and 
modulating hepatic VLDL secretion are, respectively, those 
affecting/stimulating LPL function (APOCII, APOA-V, and GPIHBP1) or 
inhibiting LPL (APOCIII and ANGPTL3,4) and, finally, those for which it is 
currently not known what the molecular mechanisms are through which they 
operate (TRIB1 and GLCE). In addition, we describe the roles of other players 
in the field, including OSBPL8, GBA, and LAL, that affect cellular but also 
systemic HDL-C homeostasis. Finally, it is recognized that early lipidation of 
apoA-I and the lipolysis of HDL-TG and HDL-PC are the apparent major 
determinants of HDL/ apoA-I clearance by the kidney. 
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PERSPECTIVES 

During the past 14 years, HDL gene finding and candidate gene studies have 
not delivered major  breakthroughs  that may relate to the notion that there 
are no other major HDL genes left to be found. This fits with the fact that the 
molecular defects responsible for extreme HDL-C phenotypes  in patients with 
clear clinical symptoms have, to our knowledge, all been elucidated. Another 
point is that several studies have now provided evidence that even in cases of 
extreme hypoalphalipoproteinemia or hyperalphalipoproteinemia in humans, 
multiple mutations combined  can  be  responsible for these phenotypes. In 
other words, the HDL-C trait can be polygenic in even these extreme cases. In 
the respective studies, only the coding regions of a few

59 (≤197, genes
109

)
were investigated. As discussed in  this  review,  ≥40  genes are now reported 
to be significantly associated with plasma levels of HDL-C and this list is likely 
to grow, as we previously reported.

150 However, the integration of the effects
of multiple rare and common gene variants has only just begun. A recent 
whole-genome sequencing study provided evidence that common DNA 
variations can explain most of the heritability of HDL-C levels in a general 
population sample, whereas most of these variants were found in intergenic 
regions.

110 The question is whether the genetic HDL picture is nearly
complete. This is an intriguing question for especially geneticists. For the HDL 
scientist, it may be interesting to unravel the molecular mechanisms by which 
(new) candidate genes affect HDL-C. But where does one start? It is evident 
that, for example, the effect size of genetic variation identified through GWAS 
on plasma HDL-C levels is  not necessarily related to the potential importance 
of a candidate gene. For instance, variation in the LCAT gene was indicated by 
GWAS as being associated with HDL-C levels but only when >100 000 
individuals were studied, whereas loss of LCAT function results in HDL 
deficiency. This means that every candidate gene or regulating entities in 
intergenic regions could be relevant to the field. What complicates matters is 
that with the advance of genome sequencing, we are faced with hundreds of 
putatively functional mutations   in DNA in each individual. To help 
prioritizing, new tools to select the most promising mutations for functional 
genetic studies are much needed. Coexpression analyses

278 and metabolic
profiling

279 may give handholds to further dissect HDL metabolism.

Finally, to improve the understanding of how plasma HDL (and HDL-C) and 
TG relate to atherogenesis, there is, in our opinion, a need to integrate 
insights from both fields of re- search. It may help in the understanding of the 
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pathogenesis of diabetic dyslipidemia (as seen in patients with the metabolic 
syndrome) characterized by high TG levels and low HDL-C. Integrating 
knowledge obtained through studies under fasting and nonfasting conditions 
with a focus on the key candidate genes may probably be a first step to take. 
Maybe this will help us obtain insight into which parameters determine 
plasma lipid fluxes that will ultimately lead to a better understanding of which 
pharmaceutical strategy may reduce the risk of CVD. 
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