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It is estimated that more than 200,000 cases of invasive aspergillosis (IA) induced by Aspergillus 

species occur each year, including more than 10% of patients with acute leukemia, bone 

marrow and other transplant patients (>105,000 cases), and 1.3% of COPD patients admitted 

to the hospital (60,000 confirmed cases). However, because of underdiagnosis, these estimates 

likely represent only 50 to 65% of actual existing cases. Invasive aspergillosis carries an overall 

50% mortality rate even if diagnosed and treated, but if the diagnosis is missed or delayed, then 

it is nearly 100% fatal (1). Aspergillus fumigatus (A. fumigatus) is the most commonly isolated 

species (92%) and the lung represents the most frequent site of infection of invasive pulmonary 

aspergillosis (IPA) (2). IA is increasing because of the high incidence of cancer, the widespread 

use of immunosuppressive agents and the aggravation of the aging society (3,4). Besides IA, 

A. fumigatus can induce allergic asthma and allergic bronchopulmonary aspergillosis (ABPA) in 

immunocompetent individuals. 

A. fumigatus

A. fumigatus is responsible for approximately 90% of human Aspergillus infections. It is a 

saprotrophic filamentous fungus widely distributed in nature and also the most prevalent 

airborne fungal human pathogen. It can produce a large number of tiny conidia (2-3μm). It 

is estimated that an individual inhales several hundred conidia per day (5). Conidial size, cell 

wall composition, secretion of secondary metabolites and special invasion mechanisms of A. 

fumigatus play an important role in its infection pattern (5-7). But the molecular mechanisms 

underlying the pathogenesis of aspergillosis remain poorly understood. 

 The composition of the A. fumigatus cell wall includes a variety of proteins, lipids, melanin, 

and polysaccharides, which are the most abundant molecules within this structure (8). As seen 

in Figure 1, the outer surface of the resting conidium is covered by a layer of tightly organized 

proteins known as hydrophobins, of which RodA is the most important and well-characterized 

(9). The other important outer component is dihydroxynaphtalene (DHN)-melanin, which is 

responsible for the grayish-green color of A. fumigatus. Conidial swelling causes dissolution 

of the rodlet layer and melanin and subsequently exposure of main components of the A. 

fumigatus cell wall including various polysaccharides (10). Among them, β-1,3-glucan is the 

most important one. In addition, A. fumigatus also secretes various toxins, phosphatases 

and proteases. These factors enable A. fumigatus to infect host by interfering with defense 

mechanisms of the host, mediating its adhesion and internalization, and inhibition of 

immunocyte phagocytosis (11-13). Gliotoxin is one of the well-known virulence factors 

produced from A. fumigatus (14). Also some phospholipases (15) are known to damage host 

cells and thereby to facilitate tissue infection. 

 Currently, it is generally accepted that there is no unique essential virulence factor for A. 

fumigatus, and its virulence appears to be under polygenetic control (3,16). Until now, key 

virulence factors are still unclear.
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Figure 1. Molecular features of A. fumigatus conidia. Schematic representation of resting conidia (left) 
and swollen conidia (right). The organization of conidia is depicted, with specific cell wall and secreted 
components.

Pulmonary Epithelial Cell

The respiratory tract is a complex organ system that is divided into the upper and lower 

respiratory tract. The primary function of the mammalian lung is gas exchange. The lower 

respiratory tract comprises the conducing airway (the trachea, bronchi and bronchioles) and 

the alveoli, in which gas exchange takes place. The mature alveolar epithelium consists of type 

I and type II alveolar epithelial cells (ACE I and ACE II), also called type I and type II pneumocytes 

(17). Next to gas exchange, one of the major roles of the pulmonary epithelium is its function 

as a physical barrier to defend pathogens, allergens and other noxious substances. In addition 

to their function as mechanical barrier, pulmonary epithelial cells have been demonstrated 

to act as an important member of the first defense line of the host innate immune system 

like alveolar macrophages, neutrophils and others (18). They play an essential role in releasing 

inflammatory factors, presenting signals to lymphocytes and even directly killing microbes 

(19). Because of lack of a better system, the involvement of pulmonary epithelial cells in innate 

immunity responses against infections has been studied in the lung carcinoma A549 cell line 

which represents type II-like lung epithelial cells covering only less than 5% of the alveolar 

surface (20). 
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A. fumigatus Internalization into Pulmonary Epithelial Cells

A. fumigatus airborne conidia are inhaled from the environment and then colonize within the 

lung alveoli. Like many intracellular bacterial pathogens (21), A. fumigatus conidia are able to 

bind to and internalize into pulmonary epithelial cells. Consequently, A. fumigatus conidia 

survive and disseminate within these normally non-phagocytic host cells (22-24). Thereby 

immune evasion as well as dissemination may occur (18,25,26). To date, it has been shown 

that the internalization of A. fumigatus conidia into type II A549 pulmonary epithelial cells is 

closely related to host cell cytoskeletal dynamics, which induce the invagination of the host 

cell membrane and the engulfing of the conidia by pseudopods (26,27). The process of A. 

fumigatus internalization into pulmonary epithelial cells is represented in Figure 2. To date, 

the mechanism associated with A. fumigatus internalization into pulmonary epithelial cells 

including possible host cellular receptors and intracelluar signaling pathways remains largely 

unclear.

Figure 2. Schematic diagram of A. fumigatus internalization into pulmonary epithelial cells. For 
further explanation, please see text.
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Virulence Factors and Components of A. fumigatus 

β-1,3-glucan
The core component of the A. fumigatus is β-1,3-glucan. It is generally accepted that the 

recognition and induction of inflammatory responses to A. fumigatus by host alveolar 

macrophages rely on the obligate stage-specific exposure of β-1,3-glucan during conidial 

germination (28-30), which is characterized by conidial swelling, dissolution of the rodlet 

layer, and appearance of polysaccharide moieties on the cell wall (10). It is well-known that a 

major mammalian receptor for β-1,3-glucan is dectin-1, which is expressed predominantly by 

myeloid cells (31-33). In addition, mammalian toll-like receptors (TLR) (34), mannose receptors 

(35) and complement receptor 3 (CR3) (36) have all been implicated in the recognition of the 

cell wall components of A. fumigatus conidia and hyphae. 

Phospholipase D ( PLD)
PLD hydrolyzes the phosphodiester bond in the phospholipid backbone through its 

highly-conserved HKD motifs to yield phosphatidic acid (PA) and choline or ethanolamine, 

depending on the specific phospholipid species involved, i.e. phosphatidylcholine or 

phosphatidylethanolamine (37-39). Currently, mammalian PLDs are recognized as key enzymes 

in intracellular signaling involved in processes such as inflammation, endocytosis and cell shape 

changes (40), while bacterial PLDs from Corynebacterium pseudotuberculosis and Acinetobacter 

baumannii have been shown to acts as critical virulence determinants of these organisms (41-

43). In fungi, PLD appears to be closely related to fungal cell shape changes, such as sporulation 

in Saccharomyces cerevisiae (44) and the dimorphic transition of C. albicans (45). Moreover, 

C. albicans PLD1-deficient mutants exhibit a substantially reduced ability to internalize into 

epithelial cells and a low virulence in immunodeficient mice, indicating that PLD may also 

be an important virulence factor in fungal pathogenesis. To date, three PLD isoforms, PLD, 

PLD1 and PLDA, have been reported in A. fumigatus, but their extracellular existence remains 

undetermined, and their role in pathogenesis has not yet been studied. Compared to PLD1 and 

PLDA, PLD of A. fumigatus, encoded by the pld gene, is rather specific and more distinct from 

the PLDs in other medically important fungi by phylogenetic analysis (46,47). Therefore, in this 

thesis we explore the function of the pld gene in development and virulence of A. fumigatus.

Gliotoxin
Gliotoxin is one of the well-known members of the epipolythiodiopiperazine class of 

metabolites produced by A. fumigatus. It is characterized by a disulfide briage across a piperazine 

ring which is essential for its toxicity. It should be noted that gliotoxin possesses multiple 

immuno-suppressive activities (48). In murine models of invasive aspergillosis (IA), gliotoxin 

has been shown to inhibit specifically the nuclear transcription factor NF-κB (49,50), which 

consequently induces host cell apoptosis (51,52) and suppresses the cytotoxic T-cell response 
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(53,54). Moreover, gliotoxin is also able to inhibit macrophage and polymorphonuclear cell 

function, including phagocytosis (55) and respiratory bursts (56,57). It has been demonstrated 

that gliotoxin from A. fumigatus affects the process of phagocytosis and actin cytoskeleton 

rearrangement of human neutrophils through distinct signaling pathways, which involve cyclic 

adenosine monophosphate (cAMP) and arachidonic acid signals, respectively (58). Recently, an 

immune-active role of gliotoxin has been demonstrated and linked to its antifungal properties 

and ability to activate platelets (59). In epithelial cells, it has been shown that gliotoxin reduces 

ciliary movement and alters membrane permeability thereby leading to epithelial cell damage 

(55,60,61). At low concentrations (<50 ng/ml), gliotoxin seems also to reduce the amount of 

transforming growth factor β1 (TGFβ1), interleukin-6 (IL-6) and interleukin-8 (IL-8) levels in 

A549 lung epithelial cells (61). However, much less is known about the effect of gliotoxin on A. 

fumigatus internalization into lung epithelial cells and warrants more research on this aspect.

DHN-Melanin
The DHN-melanin is responsible for the grayish-green color of A. fumigatus and is a protective 

factor for conidia by limiting the activation of the complement cascade and neutrophils, 

providing resistance against reactive oxygen species and masking the antigens on the 

surface of conidium (62). Most studies proposed that that A. fumigatus melanin acts as an 

immunological inert material and works by covering components with immune activity (63). 

For example, a A. fumigatus mutant lacking DHN-melanin is able to expose polysaccharides on 

its surface, such as β-glucan and mannose, to induce the release of inflammatory factors from 

peripheral blood mononuclear cells (64). However, DHN-melanin seems not only to act as an 

inert component but also to directly regulate innate immune response. Recent data showed 

that DHN-melanin seem to act as an important pathogenicity factor able to significantly 

activate platelets and thus to influence immune response and inflammation in infected 

patients (65). Thus, the functions of DHN-melanin need to be elucidated during A. fumigatus 

internalization into pulmonary epithelial cells.

Host Cellular Receptors and Intracellular Signaling Molecules 

Dectin-1
Dectin-1 is a transmembrane protein present in leukocytes, with the highest levels of cell surface 

expression in neutrophils, macrophages, and dendritic cells (66). Expression has also been 

reported on other cell types including humans B cells and eosinophils (67). Dectin-1 contains 

a single c-type like domain in the extracellular region and an immunoreceptor tyrosine-based 

activation-like motif (ITAM) within its intracellular tail. By interacting with a particulate glucan, 

ITAM is phosphorylated, triggering several biological effects, including the production of 

superoxide, increase of phagocytosis, and induction of cytokines or anti-fungal effectors (32). 
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Dectin-1 appears to play various roles in different fungal species, such as Candida albicans (68), 

A. fumigatus (69) and Cryptococcus neoformans (70). However, the functions of dectin-1 during 

A. fumigatus internalization into pulmonary epithelial cells are presently unknown.

 

PLD in host cell 
PLD is an enzyme that catalyzes the hydrolysis of the most abundant membrane phospholipids, 

phosphatidylcholine (PC) to produce PA and choline (71). In above paragraph, A. fumigatus PLD 

has been introduced. Here, we will introduce PLD in the host. Two mammalian PLD isoforms, 

PLD1 and PLD2, have been identified. Stimulation of PLD has been described in many cellular 

systems in response to a large variety of agonist-activated tyrosine kinase receptors and 

receptors coupled to heterotrimeric G proteins (40,72). In mammalian cells, PLD activity has 

been found to be closely related to actin dynamics (73-75). PLD is recognized as an effector 

of small GTPases and cofilin, both signaling families are central regulators of cellular actin 

dynamics (76,77). In addition, it has been demonstrated that macrophage phagocytosis might 

be coordinately regulated by PLD1 and PLD2 (78,79). Therefore, we hypothesized that host 

cellular PLD might play an important role during A. fumigatus internalization into pulmonary 

epithelial cells.

Cofilin
The dynamic processes of the actin cytoskeleton have been proposed to be highly regulated 

by various factors, among which the ADF (actin depolymerizing factor)/ cofilin family plays an 

essential and conserved role (80). In mammalian cells, the ADF/cofilin family consists of three 

similar members: cofilin-1, cofilin-2 (distributed specifically in muscle cells) and ADF (destrin) 

(81,82). Cofilin-1 is the most ubiquitous form and has been the most widely studied. Cofilin 

binds the minus end of actin and inhibits the formation of actin filaments (F-actin), whereas 

the Arp2/3 protein binds to the plus end of actin and activates the formation of F-actin (83,84). 

When the third amino acid of the conserved N-terminus (Ser) is phosphorylated, cofilin loses its 

actin depolymerizing activity, leading to the inhibition of F-actin severing and the production 

of filopodia/lamellipodia. The threonine kinase family LIM kinases (LIMK) phosphorylate and 

deactivate cofilin. Accordingly, dephosphorylation by the slingshot phosphatases (SSH) results 

in reactivation of the actin binding activity of cofilin (85). Recent studies have shown that 

cofilin activity is required for entry into host cells by many pathogens, including HIV (human 

immunodeficiency virus), Cryptococcus neoformans, and Listeria monocytogenes (74,86,87). 

Due to the vital role of cofilin in the invasion process of host cells by pathogens, studies 

on the involvement and function of cofilin in host cells during A. fumigatus infections is of 

considerable importance. 
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cAMP
cAMP is an important intracellular second messenger being widely studied before (88,89). A 

plenty of studies showed that host cell cAMP plays important roles in many lung diseases such 

as asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis and other lung 

inflammatory diseases (90-92). The most important downstream signaling molecules of cAMP 

are exchange protein directly activated by cAMP (Epac) (93,94) and protein kinase A (PKA) (95). 

Host cell cAMP also plays important roles during the interactions between pathogens and 

hosts. Some studies reported that increased intracellular cAMP levels inhibited Escherichia coli 

internalizing into renal tubular epithelial cells (96) and bladder epithelial cells (97). Gliotoxin, 

a toxin of A. fumigatus, interferes with the intracellular cAMP homeostasis and inhibits 

phagocytosis of neutrophils to A. fumigatus (58). But still unclear are the underlying mechanisms 

leading to the alterations in regulation and function of host cell cAMP, the components of A. 

fumigatus being involved in this process, host cellular receptors and intracellular signalling 

molecules during A. fumigatus internalization into pulmonary epithelial cells.

Diagnosis and Treatments for Aspergillosis

Aspergillus spp. can cause a wide range of diseases ranging from allergies to invasive 

infections in human. Invasive aspergillosis is the most serious infection caused by it and the 

lung is the most common site of Aspergillus infections. Early diagnosis and correct antifungal 

treatment have a direct impact on patient recovery and survival (98). Currently, the diagnosis 

of Aspergillus infections mainly depends on conventional methods (99), biomarker tests (100), 

PCR-based DNA detection assays (101) and other new biomarker detection technologies (102). 

The conventional methods, cultures along with histopathologic detection of the fungus on 

biopsy specimens are still the gold standard methods for the diagnosis of infections. However, 

biopsies are not always obtained and cultures of respiratory specimens have relatively low 

positive predictive value (103). Treatment options are limited to three antifungal drug classes: 

polyenes (amphotericin B), azole drugs and echinocandins. Among them, azoles are the 

first-line drugs in treating disease caused by Aspergillus spp (104). However, reports in A. 

fumigatus azole resistance is markedly increasing (105,106) and antifungal resistance became 

an emerging problem in recent years (107). In addition, A. fumigatus might be able to adapt 

to the human host during infection and such adaptation may contribute to treatment failure 

and persistence of the fungus (108). Nowadays Aspergillus infections become more and more 

serious because of the high incidence of cancer, organ (lung) transplantation and other 

diseases known to suppress or damage the host immune system (108,109). Therefore, it is very 

important to identify some novel possible molecular targets to develop better early diagnostic 

methodologies or new antifungal drugs. In this thesis, we aim to provide some new insights.
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Scope of the Thesis

The objective of this thesis is to investigate possible novel mechanisms during A. fumigatus 

internalization into pulmonary epithelial cells. We studied molecular mechanisms of two 

aspects, the pathogenic fungus and the host. In chapter 2, we mainly focused on PLD as the 

host intracellular signaling molecule. We found that β-1,3-glucan stimulated PLD activity of 

type II pneumocytes A549 cells to improve the internalization of conidia. PLD activation and 

conidia internalization were inhibited by an anti-dectin-1 antibody. We proved that dectin-1 

was indeed expressed in A549 cells. Followed, in chapter 3, we demonstrated using a pld 

gene deletion strategy that PLD of A. fumigatus act as an important virulence factor on its 

own. Our results suggested that PLD of A. fumigatus regulated its internalization into lung 

epithelial cells and may represent an important novel virulence factor during A. fumigatus 

infections. In chapter 4, we studied gliotoxin. Our data indicated that gliotoxin modulates 

A. fumigatus internalization into epithelial cells through activation of host intracellular PLD1 

and actin cytoskeleton rearrangement. Furthermore, in chapter 5, we studied the role of 

host intracellular cofilin. The results indicated that cofilin enable A. fumigatus internalization 

through the RhoA-ROCK-LIM kinase pathway. In chapter 6, we investigated the effects of 

DHN-melanin on the surface of A. fumigatus resting conidia on host intracellular cAMP and 

its downstream signaling molecules in pulmonary epithelial cells. Current data indicated that 

DHN-melanin significantly decreased the cAMP level whereas the expression level of both 

Epac1 and Epac2 were increased. To collect overall informations, in chaper 7, we used RNA-

seq technology to assess the transcriptome profiles of A549 cells following direct interactions 

with conidia of A. fumigatus. We found several differentially expressed genes. In agreement 

with elevated immunological responses upon A. fumigatus infections, our results provided 

important insights into dynamic changes of gene expression in lung epithelial cells. The 

findings presented in this thesis will support the identification of yet unknown pathogenic 

mechanisms of A. fumigatus and host cell responses, and provide some important scientific 

insight to unravel new possible antifungal drug targets. Finally, in chaper 8, we summarize and 

discuss the novel findings presented in this thesis and provide future perspectives.
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