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Article

When using psychological tests in practice, normed test 
scores are required to achieve a sensible interpretation. 
Normed scores are derived from a raw test score distribu-
tion of a reference population. In practice, one resorts to 
collecting test scores among a representative sample of the 
reference population. Based on these test scores, the raw 
test score distribution is estimated. When multiple reference 
populations are involved for the same test, for example, 
depending on gender or age, and the raw score distributions 
differ between these populations, different norms should be 
provided. Traditionally, the distributions, and thus the 
norms, were estimated for the different subgroups. For each 
subgroup, norm tables were created that convert the raw 
scores into normed scores.

The main limitation of traditional norming is that all 
demographic variables are treated as discrete values, also 
those that are continuous in nature. This approach is built on 
the assumption that the score distributions are the same for 
all continuous values within a subgroup. This assumption 
may be unrealistic in practice, yielding suboptimal norms. 
In the Wechsler Intelligence Scale for Children–Third edi-
tion (WISC-III-NL; Kort et al., 2002; Wechsler, 1991), a 
difference in age of 1 day can lead to a difference in IQ of 
even 12 IQ-points (Tellegen, 2004), when the test taker 
moves from one age subgroup to the next. Within tradi-
tional norming, a solution for this would be to increase the 

number of subgroups, but this leads to less precise norms as 
the sample size per subgroup decreases (Oosterhuis, van der 
Ark, & Sijtsma, 2016).

To overcome this limitation of discrete values, continu-
ous norming was developed (Gorsuch, 1983), which 
makes it possible to relate the demographic variables to 
the test scores on a continuous basis. A statistical model is 
built that describes the distribution of test scores condi-
tional on the relevant characteristics. In this way, the 
available information from the entire norm group is used 
in estimating the norms. This makes sense, as, for exam-
ple, test scores of 5- and 7-year-old children are informa-
tive for test scores of 6-year-old children. As a result, 
continuous norming requires smaller samples than tradi-
tional norming (e.g., Bechger, Hemker, & Maris, 2009; 
Oosterhuis et al., 2016).

This appealing property is widely recognized, witness the 
fact that most, if not all, modern tests use continuous norming. 
Examples are the Wechsler Intelligence Scale for Children–
Fourth edition (WISC-IV; Wechsler, 2003), Bayley-III 
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(Bayley, 2006), Wechsler Adult Intelligence Scale–Fourth 
edition (WAIS-IV; Wechsler, 2008), and the Snijders–Oomen 
Nonverbal Intelligence Test for 6- to 40-year-old individuals 
(SON-R 6-40; Tellegen & Laros, 2014).

Various continuous norming methods have been pro-
posed. Zachary and Gorsuch (1985) used standard polyno-
mial regression, with age as a predictor. In such a standard 
polynomial regression, the means may vary with age, while 
the distribution at any age is assumed to be normal with 
constant variance. The latter can be highly unrealistic, 
yielding serious forms of misfit, with associated improper 
norms (as discussed in e.g., Van Breukelen & Vlaeyen, 
2005). An alternative which allows for varying means as 
well as varying variances, skewness (and possibly kurtosis), 
is inferential norming (Wechsler, 2008; Zhu & Chen, 2011). 
This procedure involves two steps. First, one models the 
raw score means, variances, skewness, and possibly kurto-
sis, via polynomial regressions, using the relevant 
predictor(s), like age. Second, one aggregates the estimated 
values to generate an estimation of the raw score distribu-
tions, from which the norms are derived, typically using 
some smoothing by hand. This procedure was applied to the 
WAIS-IV test (Wechsler, 2008). The disadvantages of infer-
ential norming are that Step 1 can be suboptimal in view of 
Step 2, and that one step involves subjective decisions.

An alternative which involves only one step, is the use of 
the statistically well-founded generalized additive models 
for location, scale, and shape (GAMLSS; Rigby & 
Stasinopoulos, 2005). The GAMLSS framework includes 
many different distributions. Because of this useful flexibil-
ity, most recently applied continuous norming methods fall 
within this GAMLSS framework. An example is the 
Bayley-III test norming (Bayley, 2006; Cromwell et al., 
2014; van Baar, Steenis, Verhoeven, & Hessen, 2014), 
which involved a polynomial regression using a Box–Cox t 
distribution (rather than a normal distribution, as in stan-
dard regression).

In this article, we focus on the use of the Box–Cox Power 
Exponential (BCPE) distribution. All instances of GAMLSS 
allow for differences in location, most of them also allow 
for differences in spread, and many of them allow for differ-
ences in skewness, or skewness and kurtosis. The BCPE 
distribution allows for differences in location, spread, skew-
ness, and kurtosis. The application of the BCPE model to 
test norming requires model selection. This implies that one 
needs to establish the specific predictors to include in the 
model. It is very convenient if this can be done with an 
automatic selection procedure. However, the performance 
of automatic selection procedures in this context is 
unknown. Hence, in this study, we will compare the perfor-
mance of two stepwise model selection procedures: One 
existing procedure and one that we developed ourselves, 
combined with various criteria, considering the very flexi-
ble BCPE distribution.

The remainder of this introduction is organized as follows. 
First, we will explain the GAMLSS and the BCPE distribu-
tions in more detail. Second, we will explain different model 
selection criteria and the stepwise model selection procedures. 
Finally, we will describe our specific research questions.

GAMLSS and BCPE

GAMLSS. The GAMLSS framework allows the modelling 
of any distribution in the exponential family. GAMLSS has 
been applied not only in psychological test norming (Bay-
ley, 2006; Cromwell et al., 2014; van Baar et al., 2014), but 
also in related areas, namely growth chart developing (e.g., 
Borghi et al., 2006; WHO Multicentre Growth Reference 
Study Group, 2006) and lung function charts (e.g., Cole 
et al., 2009; Quanjer et al., 2012). Growth charts express 
references for measures like length as a function of age. In 
lung function research, spirometry indices (i.e., measuring 
of lung function) are modelled as a function of age.

BCPE. In this article, we focus on the BCPE distribution 
(Rigby & Stasinopoulos, 2004). The BCPE is a highly flexi-
ble distribution, useful for variables on a continuous scale. 
The BCPE is able to model any type of kurtosis (lepto, platy, 
and mesokurtosis), while, for example, the BCT distribution 
does not allow for a platykurtic distribution. This flexibility is 
important, as Rigby and Stasinopoulos (2004) showed that 
both refraining from and incorrect modelling of skewness and 
kurtosis can lead to distorted fitted percentiles. To estimate the 
norms properly, it is important that the distributional parame-
ters are estimated properly. The four parameters of the BCPE 
distribution relate to the location (µ, median), scale (σ, 
approximate coefficient of variation), skewness (ν, transfor-
mation to symmetry), and kurtosis (τ, power exponential 
parameter). The BCPE distribution simplifies to a normal dis-
tribution when ν = 1 and τ = 2 (Rigby & Stasinopoulos, 2004).

Automated Model Selection

The key in using the BCPE for continuous norming is to 
allow the four parameters of the BCPE distribution to vary 
with the continuous predictor, for example, age. The rela-
tionship between these four parameters and age can take dif-
ferent forms. To capture this, we need a flexible model for 
each of the four parameters. In this study, we do this with 
polynomials, for example, µ = β0 + β1 age + β3 age2. We 
make use of orthogonal polynomials to avoid multicollinear-
ity between the various terms in the polynomial. As the num-
ber of possible models is infinitely large, it is important to 
have an automated approach, based on a particular selection 
criterion that finds optimal choices for µ, σ, ν, and τ.

Selection Criteria. Commonly used model selection criteria 
are the generalized Akaike information criterion (GAIC; 
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Akaike, 1983; Rigby & Stasinopoulos, 2006) and cross-
validation (Geisser, 1975; Stone, 1974). Both the GAIC and 
cross-validation try to prevent overfitting of the data, which 
increases the generalizability to other data of the same type 
(Hawkins, Basak, & Mills, 2003). After all, we do not want 
to accurately estimate the norms for the reference sample, 
but for the reference population. This prevention of overfit-
ting is done indirectly by the GAIC, where the number of 
parameters is penalized, and directly by cross-validation, 
where the model’s prediction of new, unseen data is 
evaluated.

The GAIC is given by

 GAIC l( ) . ,p fd= − +2 p d  (1)

where p indicates the penalty, ld  the fitted log-likelihood of 
the data, and df the total effective degrees of freedom used 
in the model. The value p of the penalty determines the 
trade-off between the fit and the complexity of the model. 
The higher the penalty, the higher the penalization of the 
addition of parameters. In general, the fit increases when 
the degree of the polynomial is increased (i.e., parameters 
are added), but this increase in fit has to be in proportion 
with the resulting increase in complexity.

In our study, we look at three special cases of the GAIC, 
namely the Akaike information criterion (AIC; Akaike, 
1974) where the penalty p = 2, the Bayesian information 
criterion (BIC; Schwarz, 1978) where the penalty p = ln(n) 
and n is equal to the sample size, and the GAIC(3) where 
the penalty p = 3. These three penalties were also used by 
Rigby and Stasinopoulos (2004, 2006). According to 
Stasinopoulos and Rigby (2007), the penalty p = 3 appeared 
to be a reasonable compromise between the AIC and BIC. 
For each special case of the GAIC, we selected the model 
with the lowest criterion value.

In K-fold cross-validation, the data are split into K equal 
parts. For each k = 1, . . . , K, the kth part is removed from 
the data set, the model is fitted to the remaining K − 1 parts 
of the data (training set), and then predictions are made for 
the left-out kth part (validation set). The K parts are C1, C2, 
. . . , CK, where Ck refers to the observations in part k. The 
cross-validated global deviance is as follows:

 CV l( ) ,K
k

K

k=
=
∑-2
1



 (2)

where lk  is the fitted log-likelihood, based on a model fit-
ted to the K − 1 part of the data and evaluated at the kth part 
of the data.

There is a bias-variance trade-off associated with the 
choice of K. When K = n, the cross-validation estimator is 
approximately unbiased for the true (expected) prediction 
error. However, it can have a higher variance than for K < n, 
because the n training sets are very similar to one another 

(Hastie, Tibshirani, & Friedman, 2009). Multiple studies 
have found that K = 10 is a good compromise in this bias-
variance trade-off (e.g., Breiman & Spector, 1992; Davison 
& Hinkley, 1997; Kohavi, 1995). We selected the model 
with the lowest global deviance.

Model Selection Procedures. The GAMLSS R package (Sta-
sinopoulos & Rigby, 2007) includes two stepwise model 
selection procedures—denoted in the package by “Strategy 
A” and “‘Strategy B”—that allow for the selection of all 
distribution parameters. Because these procedures may not 
be optimal, as motivated below, we developed an alterna-
tive stepwise model selection procedure.

As we employ orthogonal polynomials in our study, the 
model for a distributional parameter can be depicted as 
follows:

 

βq
q

Qk
q

k

k

kx
=
∑
0  (3)

where qk indicates the degree of the polynomial (qk = 0, 1, 
2, . . . , Qk) for distributional parameter k ∈ (µ, σ, ν, τ), β 
indicates the coefficient of the parameter and x indicates the 
predictor (here: age).

In “Strategy A,” the models for the distributional param-
eters are selected in a fixed order: first µ, followed by σ, 
then ν, and finally τ. That is why, we refer to this procedure 
as the fixed order procedure. To apply this model selection, 
one needs to select a scope of models, which includes a 
range of terms for consideration, and an initial model, M0, 
needs to be selected. The initial model should be small, for 
example, including a linear term for µ (i.e., Qµ = 1), and 

only intercepts for σ, ν, and τ (i.e., Qσ = Qν = Qτ = 0). For 
short, we denote this model as poly(X, 1, 0, 0, 0).

The selection of the parameters involves successive for-
ward selection procedures for Qµ, Qσ, Qν, and Qτ, followed 
by backward selection procedures for successively Qν, Qσ, 
and Qµ to decide whether either the parameters selected in 
the forward selection (i.e., Qk) or an intercept (i.e., Qk = 0) 
should be included in the final model, given the chosen 
models for the other distributional parameters. This fixed 
order is in line with the idea of the authors of the GAMLSS 
R package that the parameter hierarchy (i.e., sequentially µ, 
σ, ν, τ) has to be respected (help function of GAMLSS R 
package version 5.0-1; Rigby & Stasinopoulos, 2005). The 
model selection of the fixed order procedure is based on one 
of the special cases of the GAIC.

“Strategy B” uses the same procedure as the fixed order 
procedure, but each term in the scope is fitted to all four 
distributional parameters, rather than one distributional 
parameter at a time. As a result, the value of Qk is the same 
for all four distributional parameters k. We will not evaluate 
this procedure because we believe it too restricted; we see 
no reason to assume, for instance, that the polynomial 
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degree of the relationship between age and the median score 
equals that between age and the kurtosis of the scores.

We believe that the fixed order procedure is not optimal 
and we provide two arguments for this. First, in the fixed 
order procedure, the distribution parameters are modelled in a 
hierarchical order (first µ, then σ, followed by ν, and finally τ). 
We believe that it is logical to, for example, extend the model 
for τ before that of µ when this results in a better model fit.

Second, in the backward elimination part of the fixed 
order procedure, it is only checked whether the parameters 
that are found in the forward selection for that particular 
distributional parameter are needed. So, if a fourth degree 
polynomial of age is found for µ, it is only checked whether 
it is better to keep this parameter or to use an intercept. 
However, we believe it would be better if other polynomial 
degrees are considered as well. That is why, we developed a 
new stepwise selection procedure, which we term the free 
order procedure, that deals with these issues.

In the free order procedure, the models for the distribu-
tional parameters are selected in a relatively free order. The 
free order procedure always starts with model M0 = poly(X, 
1, 0, 0, 0). Subsequently, four forward models are fitted, 
denoted as M1

Fµ
, MFσ

1 , MFν
1 , and MFτ

1 . In each of these 
models, for distributional parameter k corresponding to 
model MFk

, Qk is increased by one. In addition, if Qk > 0, a 
backward model is fitted for distributional parameter k. In 
the first step of this procedure, only a backward model for µ 
can be fitted, which is the intercept only model, M1

Bµ
 = 

poly(X, 0, 0, 0, 0).
The value of the specific model selection criterion is 

calculated for all fitted models (i.e., the initial model, the 
four forward models, and the backward model). The model 
with the best (i.e., lowest) criterion value is selected, which 
then becomes Ms. Then, the criterion value of model Ms  
is compared with those of the four forward models,  

Ms+1
Fµ

, Ms+1
Fσ

, Ms+1
Fν

, and Ms+1
Fτ

, and the, at most four, 

backward models, Ms+1
Bµ

, Ms+1
Bσ

, Ms+1
Bν

, and Ms+1
Bτ

. This 

process is repeated until model Ms  has the best value of 

the chosen criterion.
The advantage of the free order procedure over the fixed 

order procedure is that the model selection is flexible: the 
order of the distributional parameters which are updated is 
not fixed beforehand, but depends on the model fit, and the 
backward selection allows going back one degree of the 
polynomial instead of choosing between a certain degree 
and the intercept.

Research Questions

The goal of this study is to compare the performance in 
estimating norms in the context of developmental and 
intelligence tests, using two stepwise model selection 
procedures (fixed order and free order) and four model 

selection criteria, AIC, BIC, GAIC(3), and cross-valida-
tion. The performance is assessed considering the differ-
ence in the population and model-implied distributions of 
scores. In our study, we systematically varied the popula-
tion model, sample size, and sampling design. We 
included nine different population models, varying in 
complexity of the relationship between age and the differ-
ent distributional parameters. The sample size N was 
equal to 100, 500, or 1,000. The sampling design was uni-
form or weighted. In uniform sampling, we simulated age 
values equally spread across the age range. In weighted 
sampling, the number of people included with a certain 
age value depended on the change in median test score 
around that age value: the larger the change in test score, 
the more people with that age value included. We applied 
uniform sampling across all population models, while we 
applied weighted sampling only to the simplest popula-
tion model. For each condition, we generated 500 data 
sets. As a result, 500 (replication) × 9 (population model) 
× 3 (sample size) = 13,500 different data sets were 
obtained to which uniform sampling was applied. On the 
other hand, 500 (replication) × 1 (population model) × 3 
(sample size) = 1,500 different data sets were obtained to 
which weighted sampling was applied. Hence, the total 
number of different obtained data sets was 15,000. To 
each data set, we applied the two different stepwise model 
selection procedures (i.e., fixed order and free order pro-
cedure), combined with three GAIC model selection cri-
teria (AIC, GAIC(3), BIC) and cross-validation.

Regarding the population model, we expected the sim-
pler data conditions to outperform the more complex data 
conditions. Regarding the sampling design, we expected the 
weighted sampling to outperform the uniform sampling in 
the simplest data condition, because more information is 
expected to be available when more changes in distribu-
tions are to be estimated.

Regarding the sample size, we expected conditions with 
larger sample sizes to outperform those with smaller sample 
sizes, because with increasing sample size the probability 
that the sample represents the population increases, and 
thus, the precision of estimate would be higher. In addition, 
we expected this effect to be more pronounced for the 
weighted sample conditions than the uniform sample condi-
tions, as the number of observations is extremely small for 
some age ranges with weighted sampling (i.e., interaction 
sample size and sampling design).

Regarding the two stepwise model selection procedures, 
we expected that the free order procedure yields a better fit-
ting model than the fixed order procedure because the free 
order procedure is more flexible. We did not have clear 
expectations for the model selection criteria.

The root mean squared error can be split up in a bias and 
a variance component. We will briefly look at the effect of 
all conditions on bias and variance separately.
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Method

Data Generation

To generate the simulated data, we used the BCPE distribu-
tion within the GAMLSS framework. The four distributional 
parameters are modelled using monotonic link functions. 
We have used the default link functions for the BCPE distri-
bution, namely an identity link for µ and ν, and a log link for 
σ and τ (Stasinopoulos & Rigby, 2007). The log link makes 
sure that the values for the distributional parameters stay 
positive. Even though µ has to be positive, we have chosen 
to use the identity link for µ as this leads to additive effects 
on µ, which makes the interpretation easier. As it turns out, 
all estimates for µ are positive with this identity link function 
as well, further reducing the need for a log link function.

The penalized log likelihood function can be maximized 
iteratively using the Rigby and Stasinopoulos (1996), the 
Cole and Green (1992) algorithm, or a combination of both 
algorithms (see Appendix B of Rigby & Stasinopoulos, 
2005, for a detailed explanation of both algorithms). We 
have chosen to use the Rigby and Stasinopoulos algorithm 
only because it is more stable than the Cole and Green algo-
rithm. To make sure that, on the one hand, the number of 
iterations was enough to reach convergence, but, on the 
other hand, the study remained feasible, we have set the 
maximum number of iterations equal to 10,000.

Population Models. The population models differ in the rela-
tionship between age and the distributional parameters (i.e., 
µ, σ, ν, or τ). The models were chosen such that they differ 
in complexity of the distributions, and such that they are 
realistic representations of models relevant in the context of 
developmental and intelligence tests.

In all conditions, the median score µ depends on age. 
The reason for this is that we believe it is unrealistic to 
assume that this relationship does not exist in developmen-
tal and intelligence tests. Hence, we only varied the depen-
dency of the other three distributional parameters on age. 

The population models result from a completely crossed 2 × 
2 × 2 design, with σage (dependent, independent) × νage 
(dependent, independent) × τage (dependent, independent), 
plus a ninth model, with all parameters (µ, σ, ν, and τ) age 
dependent and µage more complex. We named the nine 
resulting population models “1000,” “1100,” 1010,” 
“1001,” “1110,” “1101” “1011,” “1111,” and “complex,” 
where the “1” refers to age dependence and “0” refers to age 
independence of the distributional parameters “µσντ.” In 
addition, “complex” refers to the ninth model, in which 
there is age dependence for all distributional parameters 
and the age dependence for µ is more complex than in the 
other models.

The age dependence of the distributional parameters is 
expressed in Table 1 and visualized in Figure 1 for the vari-
ous conditions. We have chosen these relationships because 
those relations resemble those found in the norming data of 
the intelligence test SON-R 6-40 (Tellegen & Laros, 2014). 
We made the values of ν range from −2 (age = 5) to 4 (age 
= 40), and the values of τ from 1 (age = 5) to about 3 (age = 
40). Recall that the BCPE distribution simplifies to a nor-
mal distribution when ν = 1 and τ = 2 (Rigby & Stasinopoulos, 
2004). Hence, the distribution ranges from a positively 
skewed (ν < 1) to negatively skewed (ν > 1), expressing 
floor and ceiling effects, respectively. In addition, the distri-
bution ranges from leptokurtic (τ < 2) to platykurtic (τ > 2).

Examples of the resulting probability density functions 
(PDFs) for the ages 8, 22, and 35 in the population are pre-
sented in Figure 2. Panel (a) shows the PDFs for the sim-
plest population model, “1000,” and panel (b) shows the 
PDFs for population model “1111.” The first model shows 
how age dependency for µ only looks like, and the latter 
model shows what the age dependency for all four distribu-
tional parameters looks like (except for the more complex 
relationship for µ in model “complex”).

Sampling Design. We have two different sampling designs 
of age values: uniform sampling and weighted sampling. 

Table 1. Relationship Between Age and the Distributional Parameters in the Simple and Complex Data Conditions.

Parameter Age dependence Age independence

µ (Simple)
220 2 20

1 4 1

age + +( )( )−. —

µ (Complex) 60

13
575 2 2

2

12

13

1

age
age

+ − +( ) 














−

sin
—

σ exp . . . .− − − +( )( )0 0029 23 5 1 4 0 0001
2

age 0.17

ν 1

35
6 100age −( ) 1

τ exp age0 0314 0 1886 0 3781. . .+ −( ) 2

Note. The parameter for age independence refers to the intercept.
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In uniform sampling, we generated N age values uni-
formly distributed from 5 to 40, which is the age interval 
relevant for the SON-R 6-40. In weighted sampling, we 
included more (simulated) people of a certain age when 
we expected more change in the median test score for 
that age. More specifically, we generated a weighted 

sample of age values based on the first derivative of the 
formula of µ, which is dependent on age. As we expected 
the positive effect of weighted sampling to be most pro-
nounced in the simplest data condition, where only µ 
depends on age, we only applied weighted sampling to 
this simplest data condition.

Figure 1. The relationships between age and each of the distributional parameters.
Note. In panel (a), the solid line shows the simple relationship between age and µ, (Models 1 to 8), while the dashed line shows the complex 
relationship between age and µ (Model 9). In panels (b), (c), and (d), the solid line shows the age dependence of the distributional parameter, while the 
dashed line shows the age independence (i.e., intercept). µ always depends on age.

Figure 2. The probability density functions (PDFs) for population model “1000”, with age dependence for µ only, panel (a), and 
“1111”, with age dependence for µ, σ, ν, and τ, panel (b).
Note. The dotted lines represent age 8, the solid lines represent age 22, and the dashed lines represent age 35.
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The function of µ becomes almost flat for age values 
above 25. Hence, to avoid that the sample almost only con-
sists of age values below 25, the sample weights consisted 
not only of the first derivative of the formula of µ, but we 
also added a constant. This constant was set equal to the 
mean of the values of the first derivatives. As population of 
age values, we generated N values uniformly distributed 
from 5 to 40. Using the weights explained above, we sam-
pled (with replacement) N values from this population of 
age values. In the models with the more simple relationship 
between µ and age (Models 1 to 8), the median and mean of 
the age values are 14.02 and 17.18, respectively. In the 
models with the more complex condition between µ and age 
(Model 9), the median and mean of the age values are 13.27 
and 16.72, respectively. The thus sampled age values were 
used across all replications.

Test Score Simulation. The test scores resulting from the dis-
tribution parameters (i.e., µ, σ, ν, and τ) are randomly drawn 
from the Box–Cox power exponential distribution with the 
specific distributional parameters belonging to a specific 
age value.

Examples of percentiles (i.e., 5, 15, 25, 50, 75, 85, 95) as 
a function of age under the simplest and most complex pop-
ulation models with randomly drawn observations with uni-
form sampling (N = 500) are visualized in Figure 3.

Model Selection

We used the program R (R Core Team, 2015) for model 
estimation. The model parameters and distributions were 
estimated with the GAMLSS R package (version 5.0-1; 
Rigby & Stasinopoulos, 2005), which was also used for 
constructing the estimates using the fixed order procedure. 
The R code for the free order procedure is available as sup-
plementary material. The cross-validation was performed 

using the GAMLSS R package. As cross-validation was not 
implemented in the fixed order procedure, we wrote R code 
for this ourselves.

A scope of fitted models had to be specified for both pro-
cedures. In the fixed order procedure, we used as the scope 
of fitted GAMLSS models for µ, ln(σ), ν, and ln(τ), the 
intercept as lower bound and a polynomial fit of degree 7 as 
upper bound. This upper bound was chosen because param-
eters from polynomials of degree 8 onward were in general 
too complex to be estimated, as indicated by nonconver-
gence. In creating the fixed order procedure in combination 
with cross-validation, we even had to set the upper bound 
for τ to a polynomial fit of degree 2 because there was 
(almost) no convergence possible with higher degree 
polynomials.

In the free order procedure, we used as the scope of 
GAMLSS models for µ, ln(σ),ν, and ln(τ), the intercept as 
lower bound and a polynomial of degree 20 as upper 
bound. The scope of models is larger for the free order 
procedure than for the fixed order procedure. The reason 
for this is that for the fixed order procedure, this upper 
bound of models is always fitted for each of the distribu-
tional parameters, while this is not necessarily the case 
for the free order procedure. In the free order procedure, 
we start with a simple model and a polynomial of a par-
ticular degree is only fitted if the previous degree fitted 
well. So, models with very high-degree polynomials, like 
degree 20, are extremely unlikely to be fitted. We did only 
include this parameter in the scope to make sure that the 
scope was large enough.

Note that the model to generate the data differs from the 
fitted models. So, we did not generate the population mod-
els with orthogonal polynomials. This was done to examine 
the stability over these kind of differences, as in empirical 
practice the fitted model will not comply with the data-gen-
erating model, if such a generating model would exist at all.

Figure 3. The percentiles under the population model with uniform sampling and N = 500, and the randomly drawn observations 
under this model for one replication (black dots).

http://journals.sagepub.com/doi/suppl/10.1177/1073191117715113
http://journals.sagepub.com/doi/suppl/10.1177/1073191117715113
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Outcome Variable

As the outcome variable, we consider the difference 
between the PDFs conditional on age in the population, and 
the probability density distributions conditional on age 
implied by the estimated model. The difference between the 
population and model-implied distributions is as follows:

 f xy f xyXY XY( ) ( ),−   (4)

where fXY is the PDF for test scores Y and age X. This differ-
ence is expressed as one value D when marginalizing out 
age x and test score y with

 D y xf xy f xyxy XY XY= ∫ −( ( )) .( ) 

2 d d  (5)

Thus, D is equal to the root mean squared error, and the 
integral has been numerically approximated in R using 
standard numerical integration techniques.

Our outcome measure D captures both variance and bias, 
as D2 = Var + Bias2, where Bias is defined as follows:

 Bias d d= ∫ −xy XY XYf xy f xy y x( ( )) ,( )   (6)

and Var is defined as follows

 Bias d d= ∫ −xy XY XYf xy f xy y x( ( )) ,( )   (7)

In words, the bias tells us how much the expected value of 
an estimator deviates from its population value. Variance 
tells us how large the deviations are between the estimates 
and the expected value of the estimator.

Results

Effect Sizes

Tables 2, 3, and 4 show the median and SD for the value of 
D in each condition, for sample sizes N = 100, 500, and 
1,000, respectively.

To obtain insight into the effects of the factors on our out-
come measure D, a full-factorial mixed effects analysis of 
variance (ANOVA) was performed. Because the procedure 
(fixed order, free order) and selection criterion, AIC, BIC, 
GAIC(3), were run on a single simulated data set, these two 
factors are within factors. Sample size (N = 100, 500, or 
1,000), sampling design (weighted, uniform), and data condi-
tion are between factors. Note that we applied weighted sam-
pling to the simplest data condition (“1000”) only, which 
made a full-factorial design impossible. That is why we per-
formed two full-factorial subanalyses: one analysis with only 
uniform sampling and one analysis with only the simplest 
data condition (“1000”). The latter analysis made it possible 
to compare weighted sampling with uniform sampling.

The total number of observations, resulting from 500 rep-
lications for each of the conditions, excluding weighted 
sampling, would have been 108,000. However, because of 
missingness due to nonconvergence of the algorithm, the 
resulting number of observations for this mixed ANOVA 
was 91,147. The conditions with most missing observations 
were those with N = 100 (36.5% vs. 5.5% for N = 500, and 
4.8% for N = 1,000), the free order procedure (22.7% vs. 
8.5% in the fixed order procedure), and the more complex 
data conditions. The missingness was 26.9%, 19.8%, and 
18.3% in the “1011,” “1111,” and complex data conditions, 
respectively, while it was 8.5% in the simplest data condi-
tion (i.e., “1000”). This difference makes sense, as more dif-
ficult data need to be modelled with less data. In addition, 
unlike the free order procedure, the selection is carried out 
until the end in the GAMLSS fixed order procedure func-
tion, even in the presence of nonconvergence of a model 
(Stasinopoulos, Rigby, Voudouris, Heller, & De Bastiani, 
2015). The total number of observations in the mixed 
ANOVA with only the simplest data condition should have 
24,000 observations, but did have 21,916 observations.

With the large number of replications for each condition, 
it is likely that the mixed effects ANOVA has large power to 
detect even small differences. That is why, we focused on 
effect sizes (partial η2) rather than significance tests. Tables 
5 and 6 show the values of partial η2, the F values, and the 
corresponding degrees of freedom from the two mixed 
effects ANOVAs. We consider effects with partial η2 < .02 
to be too weak to study the corresponding factors in detail. 
The results from both tables are consistent: There appears to 
be no effect of data condition and sampling design, and 
there appears to be a three-way interaction between proce-
dure, selection criterion, and sample size. We do note that 
the distributions of D values within each cell of the ANOVA 
design is considerably skewed, and that the variations 
between conditions differ, thus violating the assumptions of 
the ANOVA. As ANOVA methods are robust against viola-
tions of assumptions (cf. Schmider, Ziegler, Danay, Beyer, 
& Bühner, 2010) and we only use the ANOVA to flag the 
“interesting” conditions, we believe these violations are not 
problematic.

Interaction Procedure, Selection Criterion, and Sample Size. The 
main effects, and two-way and three-way interactions 
between procedure, selection criterion, and sample size are 
summarized in Figure 4, which shows violin plots with box-
plots of the distribution of D for the eight combinations of 
procedure and selection criterion, for N = 100 (panel a), N = 
500 (panel b), and N = 1,000 (panel c). As data condition 
and sampling design have relatively minor effects (η2 < 
.02), we show the results of one condition, that is, uniform 
sampling and the simplest data condition. It can be seen that 
regardless of the procedure and selection criterion used, the 
value of D becomes smaller as N increases. Moreover, the 
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differences between the different combinations of proce-
dure and selection criterion become smaller as N increases. 
For N = 100, see Figure 4(a), the free order procedure in 
combination with one of the GAIC performs better (i.e., has 
a lower median D value and smaller variance) than the fixed 
order procedure in combination with one of the GAIC. 
Cross-validation performs about equal for both procedures. 
Although the variance in D is smaller for cross-validation 
compared with the GAIC, the median D values are smaller 
for the GAIC in combination with the free order procedure 

than for cross-validation. For N = 500, see Figure 4(b), the 
performance is about equal for all combinations of proce-
dures and selection criteria, except that the median and vari-
ance of D are larger for the fixed order procedure in 
combination with the AIC, and perhaps the GAIC(3), com-
pared with the other combinations of procedure and selec-
tion criterion. For N = 1,000, see Figure 4(c), there seem to 
be no differences in D between the different combinations 
of procedure and selection criterion. Again, the fixed order 
procedure in combination with the AIC performs slightly 

Table 5. Values of Partial η2 From Full-Factorial Mixed Effects ANOVA on D (Leaving Weighted Sampling Out).

Source Partial η2 Fa df1 df2

Procedure .079 690.846 1 8,021
Criterion .128 358.319 3 8,019
Data .017 17.748 8 8,021
N .220 1128.701 2 2,207
Procedure × Criterion .821 581.449 3 8,019
Procedure × Data .009 9.408 8 8,021
Procedure × N .082 358.318 2 8,021
Criterion × Data .005 5.200 24 23,258
Criterion × N .105 312.726 6 16,038
Data × N .008 4.014 16 8,021
Procedure × Criterion × Data .005 5.365 24 23,258
Procedure × Criterion × N .075 217.114 6 16,038
Procedure × Data × N .009 4.341 16 8,021
Criterion × Data × N .009 4.691 48 23,851
Procedure × Criterion × Data × N .007 3.471 48 23,851

Note. ANOVA = analysis of variance; df = degrees of freedom. The effects with partial η2 ≥ .02, which we inspected more closely, are displayed in bold 
font.
aCorresponding to Wilks’s Λ, all p < .001.

Table 6. Values of Partial η2 From Full-Factorial Mixed Effects ANOVA on D (For Data Condition “1000”).

Source Partial η2 Fa df1 df2

Procedure .085 197.968 1 2,120
Criterion .207 184.149 3 2,118
Sampling .008 17.149 1 2,120
N .153 191.068 2 2,120
Procedure × Criterion .250 235.167 3 2,118
Procedure × Sampling .008 16.347 1 2,120
Procedure × N .083 95.516 2 2,120
Criterion × Sampling .014 9.916 3 2,118
Criterion × N .106 83.559 6 4,236
Sampling × N .013 13.519 2 2,120
Procedure × Criterion × Sampling .013 9.649 3 2,118
Procedure × Criterion × N .127 103.062 6 4,236
Procedure × Sampling × N .011 11.404 2 2,120
Criterion × Sampling × N .011 8.048 6 4,236
Procedure × Criterion × Sampling × N .011 7.863 6 4,236

Note. ANOVA = analysis of variance; df = degrees of freedom. The effects with partial η2 ≥ .02, which we inspected more closely, are displayed in bold 
font.
aCorresponding to Wilks’s Λ, all p < .001.
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worse compared with the other conditions, but this differ-
ence is very small.

Data Condition and Sampling Design. We have seen in Tables 
5 and 6 that all effects involving data condition and sam-
pling design appear to be weak (η2 < .02). If there are differ-
ences, Tables 2, 3, and 4 show that D becomes larger as the 
population data become more complex and that D is always 
larger for weighted sampling compared with uniform sam-
pling (given the simplest population data condition).

Interpretation Outcome Variable D

So far, we have seen the size of the effects of procedure, 
sample size, selection criterion, data, and sampling design 
on our outcome variable D. A value of D equal to zero 
means that the population and model-implied distributions 
overlap perfectly. So, it is clear that we want the value of 
D to be as small as possible. However, it is not directly 
clear how values of D larger than zero should 

be interpreted. To get a better idea of this, we looked at 
different values of D and examined the corresponding dif-
ference in population and model-implied distributions, the 
difference in the functions of score against age, and the 
difference in percentiles.

Specifically, we considered values of D associated with 
the conditions in Figure 4(a). We have seen that the free 
order procedure in combination with the BIC on average 
has lower values of D than the fixed order procedure in 
combination with the BIC, for N = 100, uniform sampling, 
and the simplest population data condition (“1000”). 
Hence, we have inspected the practical significance of the 
effects. We looked at one particular replication with uni-
form sampling, the simplest data, the BIC, and N = 100, 
selecting an instance for which the D values were close to 
the median values found across the replications, as can be 
seen in Table 2.

Figure 5 shows the PDFs, panels (a), (e), and (f), and 
the corresponding cumulative distribution functions, pan-
els (b), (d), and (f) for age values 8, 22, and 35. The lines 

Figure 4. Violin plots with boxplots of the distribution of D for the eight combinations of procedure and selection criterion, for  
N = 100, panel (a), N = 500, panel (b), and N = 1,000, panel (c).
Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; GAIC = generalized Akaike information criterion; CV = cross-
validation. In all panels, uniform sampling is used in combination with data condition “1000.”



1342 Assessment 26(7)

represent the population model (thick line), fixed order 
procedure model (thin line), and the free order procedure 
(dashed line). It can be seen that the score distribution of 
the fixed order procedure generally deviates considerably 
and in an unrealistic way from that of the population, 
whereas the estimated PDFs based on the free order pro-
cedure provides more accurate results. As a result of this, 
the percentiles as estimated by the fixed order procedure 
will deviate considerably from the actual (population) 

percentiles for these score ranges, as can be seen in the 
corresponding cumulative distribution functions.

Figure 6 shows the relationship between µ and age, for 
uniform sampling, the simplest data condition, the BIC, and 
N = 100. While the functions as estimated by both proce-
dures fluctuate around the population function line, the 
function from the free order procedure generally stays 
closer to the population function than the function of the 
fixed order procedure.

Figure 5. PDFs in panels (a), (e), and (f), and CDFs in panels (b), (d), and (f) for difference age values in each row (8, 22, or 35 years).
Note. PDF = probability density function; CDF = cumulative distribution function. The lines represent the population model (thick line), fixed order 
procedure model (thin line), and the free order procedure (dashed line).The results are based on one replication for uniform sampling, the simplest 
data condition (1000), the Bayesian information criterion, and N = 100.
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Bias and Variance

We have separated our outcome measure D in a bias and vari-
ance component. The tables with results can be found in the 
supplementary material. Tables S1, S2, and S3 show the 
median and SD for the bias in each condition, for sample size 
N = 100, 500, and 1,000, respectively. The bias was in gen-
eral very small: We had to multiply the results by 1,000 to see 
some differences. We see that bias increases as N decreases 
and/or as the population data become more complex. The 
bias seems to be lower for the free order procedure compared 
with the fixed order procedure when N = 100. However, this 
difference disappears when N = 500 or 1,000. Sampling 
design does not seem to have an effect on the bias. Bias 
seems in general to be lower for the GAIC conditions com-
pared with cross-validation. Tables S4, S5, and S6 show the 
median and SD for the variance in each condition, for sample 
size N = 100, 500, and 1,000, respectively. Like the bias, the 
variance increases as N decreases and as the population data 
become more complex. For N = 100, the variance is lower for 
the free order procedure compared with the fixed order pro-
cedure when one of the GAIC is used as selection criterion. 
However, the variance of the free order procedure is higher 
than the fixed order procedure when cross-validation is used. 
For N = 500 and 1,000, the differences become very small or 
even nonexistent. As with bias, the sampling design does not 
seem to have an effect on the variance.

Estimating Norms With GAMLSS: The SON-R 
6-40

The data of the SON-R 6-40 (Tellegen & Laros, 2014) were 
used to illustrate the use of the fixed and free order stepwise 

model selection procedure in combination with the BIC as 
model selection criterion. The sample size of the SON-R 
6-40 data is 1,933. A weighted sampling design, different 
from the one in our simulation study, was used: The number 
of observations gets smaller as age gets larger. For example, 
there are 717 observations between 6- and 11-year-olds, and 
only 66 observations between 35- and 40-year-olds.

Figure 7 shows the observed total scores in the sample as 
a function of age (in years), and the resulting estimated cen-
tile curves, for the fixed order and free order procedure. The 
difference in centile curves between the fixed order and free 
order procedure is very small for age values between 5 and 
35, except for the lowest centile curves. For both proce-
dures, the median test score steeply increases for age values 
between 6 and about 17. After that, the median test score 
remains quite constant. For age values between 35 and 40, 
the centile curves differ quite a lot between the two proce-
dures: The centile curves below the 50th percentile increase 
for the fixed order procedure, while they decrease for the 
free order procedure. This difference is probably due to the 
very small number of observations within this age range.

To further illustrate the estimated model, Figure 8 shows 
the PDFs for 8-year-olds, 22-year-olds, and 35-year-olds. As 
our simulation study clearly showed that the free order proce-
dure performed about equal to or better than the fixed order 
procedure, we only show the PDFs for the free order proce-
dure. The figures do not only show a clear difference in 
median total test score but also in terms of shape: The PDF for 
8-year-olds is quite symmetrical and peaked, while the PDFs 
for the 22- and 35-year-olds are very negatively skewed. As 
soon as you have these distributions, the norms can be deter-
mined for each combination of age value and test score. For 
instance, for an 8-year-old with a total score of 10, the 

Figure 6. Relationships between the median test score and age.
Note. The lines represent the population model (thick line), fixed order 
procedure model (thin line), and the free order procedure (dashed 
line). The results are based on one replication for uniform sampling, the 
simplest data condition (1000), the Bayesian information criterion, and 
N = 100.

Figure 7. The observations (gray squares) and the estimated 
model-implied percentiles (5, 15, 25, 50, 75, 85, 95) for the total 
test scores on the SON-R 6-40 as a function of age (in years).
Note. SON-R 6-40 = Snijders–Oomen Nonverbal Intelligence Test for 
6- to 40-year-old individuals. The fixed order procedure (solid lines) and 
free order procedure (dashed lines) were used in combination with the 
Bayesian information criterion.

http://journals.sagepub.com/doi/suppl/10.1177/1073191117715113
http://journals.sagepub.com/doi/suppl/10.1177/1073191117715113
http://journals.sagepub.com/doi/suppl/10.1177/1073191117715113
http://journals.sagepub.com/doi/suppl/10.1177/1073191117715113
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percentile is 66. For a 35-year-old with the same score, the 
percentile is 3. As the percentiles can be determined for each 
age value, this can be done for the exact age of the test taker.

To facilitate the calculation of the norms, we have imple-
mented our model selection procedure and the determination 
of the resulting percentiles in R code. The only thing the user 
has to do is to specify the data set (including test scores and 
a predictor, like age) and the values of the predictor value 
and test score for which to determine the percentiles. This R 
code can be found as supplementary material.

Discussion

In this study, we investigated the performance in accuracy 
of estimating norms for different stepwise model selection 
procedures (i.e., fixed order and free order), model selec-
tion criteria, that is, AIC, BIC, GAIC(3), and cross-valida-
tion, sample sizes (N = 100, 500, and 1,000), sampling 
design, and population data models, varying in complexity. 
We have found a large effect of sample size: The norms are 
estimated more accurately as sample size increases, regard-
less of the other factors. The relationship between D and N 
was nonlinear: The decrease in D was larger when N 
increased from 100 to 500 compared with when N increased 
from 500 to 1,000. In our study, it appeared that the norms 
are estimated accurately when the sample size is large (i.e., 
N = 500 or 1,000), irrespective of procedure, model selec-
tion criterion, sampling design, and complexity of the data. 
However, it does matter which procedure and which model 
selection criterion is chosen when the sample size is small 
(i.e., N = 100). Our own developed stepwise model selec-
tion procedure, the free order procedure, outperforms the 
fixed order procedure when used in combination with one 
of the GAIC. In terms of median D value, the GAIC 

outperforms cross-validation, regardless of the procedure 
used. Moreover, cross-validation often resulted in noncon-
vergence and required way more computational effort and 
time to compute than the other criteria. We even had to limit 
the model search area for the fixed order procedure in com-
bination with cross-validation to increase the probability of 
convergence. For N = 100, the best combination of proce-
dure and selection criterion is the free order procedure with 
one of the GAIC. As the free order procedure required the 
lowest sample size for the same performance, it is the most 
efficient model selection procedure.

We have seen that the difference between the fixed and 
free order procedure when N = 100 has practical signifi-
cance, as the estimated percentiles for the fixed order proce-
dure deviated a lot from the actual (population) percentiles, 
while the percentiles for the free order procedure were much 
more similar to the actual ones. As the values of D were even 
much smaller for N = 500 and 1,000 compared with those of 
the free order procedure with N = 100, we are confident that 
the estimation of norms is accurate in those conditions with 
larger sample sizes. Even though we expected the simple 
data conditions to outperform the more complex ones, there 
seemed to be only small differences in the accuracy of esti-
mating norms across population data models. This makes us 
confident that similar results will be found for data different 
from the data we simulated in this study. Other data might 
contain different, possibly even more difficult, relationships. 
Interestingly, contrary to our expectations, we did not find 
an effect of sampling design on the accuracy of estimating 
norms. The weighted sampling did not outperform uniform 
sampling. Moreover, we did not find the expected interac-
tion effect between N and sampling design.

In addition to the accuracy, D, we separated this measure 
into a variance and bias component. We found that both vari-
ance and bias increased as N decreased and as the data became 
more complex. For N = 100, there was also a considerable 
effect of procedure and selection criterion. It is interesting that 
sample size has an effect on bias. A reviewer wondered whether 
this is caused by too simple models chosen when the sample 
size is small. Inspection of the chosen polynomial degrees in 
the most complex data condition revealed that indeed more 
complex models were chosen as sample size was larger. We 
believe it is interesting to investigate this further in future 
research. Note that we generated the population data without 
using polynomials, which makes it impossible to compare the 
chosen polynomial degrees with the “true” degrees.

A strength of this study is that we used empirical data in 
combination with simulated data. We based the generation of 
the data on the SON-R 6-40 data (Tellegen & Laros, 2014). 
We tried to make the difference between the data conditions 
as large as possible, while keeping them realistic. In addition, 
we illustrated our method with the SON-R 6-40 data.

The scope of possible terms to include in the models for the 
distributional parameters was broader for the free order 

Figure 8. The fitted PDFs of the total score of the SON-R 
6-40 test, for 8-, 22-, and 35-year-olds (dotted, solid, and dashed 
line, respectively).
Note. PDF = probability density function; SON-R 6-40 = Snijders–
Oomen Nonverbal Intelligence Test for 6- to 40-year-old individuals. 
The free order procedure is used in combination with the Bayesian 
information criterion.

http://journals.sagepub.com/doi/suppl/10.1177/1073191117715113
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procedure (i.e., intercept to polynomial with degree 20) than 
for the fixed order procedure (i.e., intercept to polynomial with 
degree 7). This might have given the free order procedure an 
unfair advantage over the fixed order procedure. However, 
inspection of the selected terms for the free order procedure 
shows that polynomials of degree 8 and higher are rarely cho-
sen and that these selected models perform relatively bad.

Future Research

We have two suggestions for future research. First, it is 
interesting to look at models with multiple predictors. In 
our study, we included one predictor, namely age. We have 
seen in practice that additional demographic characteristics, 
like gender, are used as predictors. We have no reason to 
expect that the results of the present study differ when more 
predictors would be included. However, we believe it is 
interesting to investigate in which way models need to be 
selected for the different predictors. Should the parameters 
be updated subsequently for the different predictors or at 
the same time? The free order procedure does not allow for 
multiple predictors yet. As this procedure in general outper-
formed the fixed order procedure, it is important that this 
procedure allows for multiple predictors as well.

Second, it is very important that can be determined how 
large the norming sample needs to be. We have seen that in 
our study N = 1,000 (and perhaps N = 500) was enough to 
have good estimation of the norms, regardless of the complex-
ity of the data and the choice of procedure, model selection 
criterion, and sampling design. However, this does not mean 
that N = 1,000 is large enough in every norming study. Usually, 
it is very difficult to determine whether your sample size is 
large enough. Oosterhuis et al. (2016) provided sample size 
requirements for regression-based norming, but they assumed 
normality of the score distributions conditional on gender and 
age. Hence, our suggestion for future research is to determine 
sample size requirements for non-normal distributions.

Practical Implications

We have seen that the choice of procedure, model selection, and 
sampling design does not matter when the sample size is large 
enough. As the sample size is often an issue in practice, it is 
interesting to consider the factors that we have shown to per-
form better than others for smaller sample sizes. Our study 
resulted in clear recommendations regarding this: It is best to 
use the free order procedure in combination with one of the 
GAIC. The BIC seemed to perform slightly better than the oth-
ers, which is why we recommend to use this criterion. Even 
though we did not find an effect of sampling design, we still 
have a recommendation regarding this factor. Because this is a 
simulation study, we have the luxury of knowing the true rela-
tionship between age and µ, even before having to determine 
how many people of a particular age to include in the norming 

sample. In practice, however, this function has to be estimated 
with the norming sample. A general estimate of the relationship 
between µ and age can be based on a preliminary sample and/or 
the results of previous (versions of) tests. However, our results 
showed that even knowing this relationship was not helpful. 
The two sampling conditions did not seem to differ. If they did, 
uniform sampling even slightly outperformed weighted sam-
pling. Because of this finding and the fact that weighted sam-
pling is more difficult to carry out, we advise to use uniform 
sampling. Moreover, as a reviewer pointed out, it might even be 
dangerous to use weighted sampling based on change in median 
test score only when other distributional parameters depend on 
the predictor(s) for certain (other) ranges.

When the free order procedure is applied, it is possible 
that the model cannot be estimated. We have seen that this 
problem is most likely to occur for complex data sets in 
combination with a small number of observations. Hence, if 
this occurs in practice, the sample size is probably too small.

Finally, there are fewer observations near the boundaries 
of the data to support the model. On top of this, polynomials 
have notorious tail behavior, which makes the model very 
untrustworthy near the ends of the data, but also outside the 
range of the data (Hastie et al., 2009). Hence, we advise to 
make the age range of the people in the norming sampling 
big enough, even somewhat bigger than the age range you 
want to develop norms for. In addition, statements about 
age ranges outside those in your norming sample (i.e., 
extrapolation) should be avoided.
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