
 

 

 University of Groningen

Mining prokaryotes for antimicrobial compounds
Tracanna, Vittorio; de Jong, Anne; Medema, Marnix H; Kuipers, Oscar P

Published in:
FEMS Microbiology Reviews

DOI:
10.1093/femsre/fux014

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Tracanna, V., de Jong, A., Medema, M. H., & Kuipers, O. P. (2017). Mining prokaryotes for antimicrobial
compounds: From diversity to function. FEMS Microbiology Reviews, 41(3), 417-429. [014].
https://doi.org/10.1093/femsre/fux014

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-02-2023

https://doi.org/10.1093/femsre/fux014
https://research.rug.nl/en/publications/139fe0a5-ab49-4ec2-b570-00cc67c56fc7
https://doi.org/10.1093/femsre/fux014


FEMS Microbiology Reviews, fux014, 41, 2017, 417–429

doi: 10.1093/femsre/fux014
Advance Access Publication Date: 11 April 2017
Review Article

REVIEW ARTICLE

Mining prokaryotes for antimicrobial compounds:
from diversity to function
Vittorio Tracanna1,†, Anne de Jong2,†, Marnix H. Medema1,∗

and Oscar P. Kuipers2,∗

1Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Radix West, Building 107, 6708 PB
Wageningen, The Netherlands and 2Molecular Genetics, University of Groningen, Nijenborgh 7, 9726AG
Groningen, The Netherlands
∗Corresponding authors: Marnix H. Medema: 1Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Radix West, Building 107, 6708 PB
Wageningen, The Netherlands. Tel: +31317484706; E-mail: marnix.medema@wur.nl; Oscar P. Kuipers: Molecular Genetics, University of Groningen,
Nijenborgh 7, 9726AG Groningen, The Netherlands. Tel: +31 503632093; E-mail: o.p.kuipers@rug.nl
†Equal contribution.
One sentence summary: Mining prokaryotes for antimicrobial compounds: from diversity to function.
Editor: Ehud Banin

ABSTRACT

The bacterial kingdom provides a major source of antimicrobials that can either be directly applied or used as scaffolds to
further improve their functionality in the host. The rapidly increasing amount of bacterial genomic, metabolomic and
transcriptomic data offers unique opportunities to apply a variety of approaches to mine for existing and novel
antimicrobials. Here, we discuss several powerful mining approaches to identify novel molecules with antimicrobial activity
across structurally diverse natural products, including ribosomally synthesized and posttranslationally modified peptides,
nonribosomal peptides and polyketides. We not only discuss the direct mining of genomes based on identification of
biosynthetic gene clusters, but also describe more advanced and integrative approaches in ecology-based mining,
functionality-based mining and mode-of-action-based mining. These efforts are likely to accelerate the discovery and
development of novel antimicrobial drugs.
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INTRODUCTION

Microbial specialized metabolites are the major source of an-
timicrobials currently used in the clinic, in agriculture and in
food manufacturing. Due to the rapid development and spread
of resistance against these molecules, there is an urgent need
for novel compounds that can supplement the current arsenal.
Since the ‘golden age of antibiotics’ in the sixties and seventies,
there has been a steady decrease of novel antibiotic molecules
entering the market. However, the recent development of com-
putational genomic approaches to natural product discovery is
replenishing hopes that this trend can be turned around: in

prokaryotic genome sequences, tens of thousands of biosyn-
thetic gene clusters (BGCs) have been identified (Cimermancic
et al. 2014; Doroghazi et al. 2014; Skinnider et al. 2016). Thou-
sands of these BGCs are likely to encode the biosynthesis of thus
far unknown molecules (Dejong et al. 2016). To uncover these,
many innovative approaches are being developed to link them
to metabolomic data with high throughput (Kersten et al. 2011,
2013; Medema et al. 2014; Mohimani et al. 2014) or to refactor
synthetic versions of them for heterologous expression (Chang
et al. 2013; Shao et al. 2013; Yamanaka et al. 2014; Kang, Charlop-
Powers and Brady 2016; Montalbán-López and Kuipers 2016; van
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Figure 1. Taxonomic diversity of BGCs across bacteria and archaea. Bar plots indicating gene cluster counts as detected by antiSMASH+ClusterFinder (Cimermancic
et al. 2014; Weber et al. 2015) are plotted onto prokaryotic taxonomy. Circles on the tree indicate the amount of within-taxon variation, estimated using the quadratic

entropy index. Figure adapted from Cimermancic et al. (2014) with permission.

Heel et al. 2016). However, detailed biochemical characterization
of biosynthetic pathways and their products is still painstak-
ingly slow and laborious, andmany BGCs encode the production
of natural products without any (useful) antimicrobial activity.
Therefore, targeted approaches are needed to selectively mine
genomes for natural productswith antimicrobial properties, and
to narrow down from tens of thousands of potentially interest-
ing BGCs to manageable numbers that can be tested in the labo-
ratory. Here, we outline and discuss several currently emerging
computational and experimental strategies to this end, based on
the analysis of chemical diversity, ecology and evolution, organ-
ismal function and/or modes of action.

DIVERSITY-BASED MINING FOR
ANTIMICROBIALS

Genome-based identification of biosynthetic pathways
for antimicrobials

Genomic information has become more and more important
in the process of identifying novel biosynthetic pathways for

the production of antimicrobials. To identify the potential of
a bacterium to produce bioactive natural products, mining for
BGCs is particularly useful. A wide range of bioinformatic tools
(e.g., antiSMASH (Weber et al. 2015), BAGEL3 (van Heel et al.
2013) and PRISM (Skinnider et al. 2016)) are available to iden-
tify these, mostly based on shared properties among known
classes of biosynthetic pathways (Boddy 2014; Medema and Fis-
chbach 2015; Pi et al. 2015; Ziemert, Alanjary andWeber 2016). For
instance, the modification enzymes for the production of lan-
thipeptides are well conserved (Knerr and van der Donk 2012);
as such, they can be used as ‘anchors’ or ‘signatures’ for genome
mining.

Taxonomically, there are significant differences in biosyn-
thetic richness and diversity across various branches of the
tree of life (Fig. 1). Traditionally rich sources of natural prod-
ucts derived from Streptomyces, Bacillus (Zhao and Kuipers 2016)
and Pseudomonas are now becoming supplemented with newly
discovered genera. A great example of taxonomic diversity-
based mining for antimicrobials is provided by Entotheonella,
a group of sponge-microbiota-derived organisms that can
produce extremely highly modified peptides with over six
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different posttranslational modifications, including D-amino
acids, methylated amino acids and dehydrated amino acids
and dozens of residues modified (Wilson et al. 2014). Several
other microbial taxa with high biosynthetic potential, such as
Clostridium, Burkholderia, Pseudonocardia, Photorhabdus, Xenorhab-
dus, Chitinophaga, Herpetosiphon and Planctomyces, are emerging
as novel target genera (Challinor and Bode 2015). Most of these
genera are characterized by large genome sizes, which has been
shown to correlate with an increased percentage of genomic ca-
pacity devoted to specialized metabolism (Cimermancic et al.
2014); however, a very large percentage of extant biosynthetic
diversity in the biosphere is still found in the smaller genomes
of the majority of bacteria, which should not be discarded in the
search for antimicrobials; e.g. the biosynthesis of the recently
discovered antibiotic non-ribosomal peptide lugdunin (Zipperer
et al. 2016) is encoded in the genome of the human commensal
Staphylococcus lugdunensis, which harbors just four other BGCs
(as identified in antiSMASH-DB, Blin et al. 2017). The wide diver-
sity of BGCs found in large as well as small genomes emphasizes
the almost boundless chemical diversity of nature, and it is not
at all unlikely that new classes of antimicrobials will be discov-
ered from many novel sources in the next decades.

Even though natural product BGCs can thus be accurately
identified and quantified, the question still remains which of
these are most likely to encode the production of potent antimi-
crobials. Not only the taxonomic origins, but also the chemical
structures of antimicrobials are highly diverse. Indeed, known
antimicrobial compounds represent a cross-section of several
chemical and biosynthetic classes, such as ribosomally synthe-
sized and posttranslationally modified peptides (RiPPs), non-
ribosomal peptides, polyketides, terpenoids and even oligosac-
charides (see Table 1 for a comprehensive schematic overview).
Although the percentage of antimicrobials is probably higher
among RiPPs than among saccharides, for example, each chem-
ical class of natural products comprises both many antimicro-
bials and many compounds with different biological activities.
To prioritize specifically for antimicrobials, it is necessary to go
beyond the genome sequences and couple the genomic infor-
mation to ecological and functional data.

ENVIRONMENTAL AND ECOLOGY-BASED
MINING FOR ANTIMICROBIALS

Using metagenomics to chart biosynthetic diversity

From soil to ocean, from plant roots to animal guts, the ecosys-
tems in which natural products are found are highly diverse.
Also within these ecosystems, the diversity is enormous: a gram
of soil is estimated to contain hundreds to thousands of differ-
ent species (Curtis, Sloan and Scannell 2002) that form an ex-
tremely intertwined society. The metabolic potential hidden in
those communities is immense, and systematic analysis of soils
across the globe shows very little overlap between the secondary
metabolite repertoire of similar soils (Charlop-Powers et al. 2014).
Potentially, understanding of ecology and microbial communi-
ties can be used to chart this variation and prioritize BGCs that
are likely to encode the synthesis of molecules that function as
potent antimicrobials.Metagenomics is a key technology that al-
lows surveying BGCs and their abundances across varying com-
munities (Wilson and Piel 2013; Charlop-Powers, Milshteyn and
Brady 2014).

In the hunt for novel antimicrobials from the environment,
there are two important strategies: searching for novel chemical
scaffolds and searching for novel congeners. Compounds with

novel scaffolds are more difficult to discover (also due to redis-
covery of known molecules for which no BGCs have yet been
characterized), and predicting chemical structures and biologi-
cal activities from BGC sequence data alone is very challenging.
BGCs encoding the biosynthesis of potential congeners, variants
upon an existing (and often extensively studied) molecular scaf-
fold, however, can easily be identified based on sequence ho-
mology. While sharing the biosynthetic origin with their well-
known counterparts, the small differences in the structures of
some congeners can have a major effect on different character-
istics of the molecule. Notably, those changes may affect the po-
tency, toxicity profile, or the target of the compound, or even
the resistance of microorganisms against it. Phylogenetic stud-
ies on novel variants of known BGCs can potentially be used to
infer the substrates involved and the final products synthesized
by the encoded pathway. Regardless of the product type and its
discovery method, engineering expression of identified BGCs in
a native or heterologous host is frequently necessary for both
novel scaffolds and congeners, and is currently a rate-limiting
step in antibiotic discovery. Another bottleneck lies in the chart-
ing of biosynthetic diversity, as this is often limited to organisms
that are easy to culture in the laboratory.

Metagenomics can overcome culture restrictions by sam-
pling material directly from the environment of interest. Al-
ternatively, functional amplicon sequencing approaches can
achieve high-sequencing depth for BGCs by targeting the
shared conserved regions of, e.g. polyketide synthases or non-
ribosomal peptide synthetases with degenerate primers based
on previously characterized genes. The molecule type for which
the biosynthesis is encoded in an underlying BGCs can be
predicted by assessing the sequence similarity between the
sequence of the amplicon in question and curated data ag-
gregation platforms such as MIBiG (Medema et al. 2015) and
eSNaPD (Reddy et al. 2014). Development of primer pairs based
on BGC classes that specifically encode the biosynthesis of an-
timicrobial compounds can be used to specifically target BGCs
for potential congeners of known antimicrobials. The enormous
cost decrease of high-throughput sequencing technologies now
also allows generation of the immense quantity of data nec-
essary to assemble BGCs directly from microbial communities.
In shotgun metagenomics, environmental DNA, eDNA, is ex-
tracted from a community sample and sequenced with short
read NGS technology. Sequence information can be assembled
with metagenomics-specific assemblers as metaSPAdes (Nurk
et al. 2016) or Ray Meta (Boisvert et al. 2012). Additional sequenc-
ing platforms such as PacBio and more recent Oxford Nanopore
can be used to produce long sequence reads, which can aid in as-
sembling contigs long enough to harbor complete BGCs, even in
complex communities. Perhaps even more powerful to this end
are artificial long read technologies: due to their high through-
put, platforms as 10X Genomics and TruSeq, may start a new era
in metagenomics studies. These synthetic long read platforms,
can be used to reconstruct large numbers of long eDNA stretches
with low error rates from complex metagenomes. eDNA is first
digested in high molecular weight fragments, which are sorted
and barcoded in different pools. Standard shotgun sequencing of
each pool is then followed by an assembly of each high molec-
ular weight DNA molecule. Although some species bias is intro-
duced during library preparation, the approach has been shown
to enable the assembly of synthetic long reads from relatively
rare microorganisms in soil (Sharon et al. 2015). TruSeq has the
read length necessary to assemble whole-length BGCs even in
complex metagenomes, aided by specialized algorithms such as
TruSPAdes (Bankevich and Pevzner 2016).
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Table 1. Overview of known antimicrobial compound classes. For information on the biosynthetic diversity of all these compounds the reader
is referred to several excellent recent reviews (Sanchez, Chiang and Wang 2008; Strieker and Marahiel 2009; Arnison et al. 2013; Fisch 2013;
McCranie and Bachmann 2014; Yim et al. 2014; Dickschat 2016; Helfrich and Piel 2016; Ortega and van der Donk, Wilfred 2016).

Class Example compound Simplified structure

Class I: RiPP (<10 kDa)

1. lanthipeptides Type 1: nisin

Type 2: mersacidin

2. head to tail cyclized AS-48

3. sactipeptides subtilosin

4. linear azole containing (LAP) microcin B17

5. thiopeptides thiocillin

6. glycocins sublancin

7. lassopeptides microcin J25

8. polytheonamides proteusin

Class II: unmodified ribosomal peptides (<10kDa)

1. pediocin-like pediocin

2. other lactococcin A

Class III: large antimicrobial peptides (>10 kDa)

Colicins and megacins colicin B

NRPS

Lipopeptides daptomycin

Glycopeptides vancomycin

Pyrrolobenzodiazepines anthramycin

Lincosamides lincomycin

Cyclododecapeptides valinomycin
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Table 1 (continued).

Class Example compound Simplified structure

Bleomycin-like antitumor antibiotics bleomycin

Quinomycin antibiotics echinomycin

Capuramycin-type antibiotics capuramycin

Tuberculostatic antibiotics (viomycin-like) viomycin

Cyclic diamidines congocidine

Indolactams pendolmycin

Pyrrothine antibiotics thiolutin

Uridyl peptide antibiotics pacidamycin

Beta-lactam antibiotics cephamycin C

Chloramphenicol chloramphenicol

PKS

Macrolides, macrolactams, polyethers, polyenes erythromycin (macrolide)

vicenistatin (macrolactam)

amphotericin B (polyene)

Ansamycins rifamycin

landomycinA (angucycline)
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Table 1 (continued).

Class Example compound Simplified structure

Anthracyclines daunorubicin

Enediyines neocarzinostatin

Benzoisochromanequinones actinorhodin

Tetracyclines tetracycline

Others

Nucleoside antibiotics tunicamycin

Carbapenems thienamycin

Aminoglycosides / aminocyclitols spectinomycin

Aminocoumarins novobiocin

Antimicrobial terpenoids pentalenolactone

Phosphonate antibiotics fosfomycin

Phenazine antibiotics phenazine

Indolocarbazoles staurosporine

Quinolones quinolone

Metagenome sequencing is able to find novel BGCs re-
gardless of their conservation or representation across known
genomes. The main advantage of these techniques compared
to amplicon-based approaches lies in their unbiased nature
(Table 2). The main disadvantage of this approach lies in
the data complexity. However, a plethora of different solu-
tions are becoming available to tackle this. One direct solu-
tion that allows untangling of the community is represented
by single-cell sequencing. Although the protocols vary and
evolve over time, the scope is unchanged: a single cell is

isolated, its DNA extracted and amplified to undergo a PCR
screen or genome sequencing step. There are examples of suc-
cessful application of single-cell sequencing to identify im-
portant secondary metabolite gene clusters such as the apra-
toxin pathway from a filamentous cyanobacterium (Grindberg
et al. 2011).

Important steps are being made to apply the latest chro-
matin fixation techniques, such as Hi-C and 3C, to improve
metagenomic assemblies. As of now, those techniqueswere suc-
cessfully used to aid the assembly of synthetic metagenomes
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Table 2. Strong and weak points of the different sequencing methods are described in this table. In the figures, arrows represent genes that are
part of a BGC, and genes with the same colors originate from the same operon. The pins in the top right figure indicate conserved stretches
targeted by custom primers.

(Beitel et al. 2014; Burton et al. 2014). Potentially, fixation tech-
niques can become powerful tools to validate metagenomics as-
semblies, as they provide an extra layer of information that is
not used by current binning tools. In addition, information on
contiguity or genomic distance between contigs will allow to re-
construct longer andmore complete clusters from raw sequence
data.

Metagenomics-derived BGCs are not easy to revive in het-
erologous hosts. For instance, proper amounts of physical DNA
that contains the BGC of interest is often not readily available;
hence, the isolation of the natural producer or synthetic refac-
toring of the gene cluster is required. Also, regulation of the
transcription and the precursors required for the encoded path-
way are sometimes not functionally available in classic hosts.
Synthetic DNA costs have decreased substantially in the last
years, opening the path to high-throughput expression of BGCs
through synthesis and refactoring in order to match the impres-
sive output of metagenomics analysis. Refactored BGCs are de-
signed to achieve a better control over expression levels in the
heterologous host, by replacing native regulation by synthetic
promoters, ribosome-binding sites and terminators (Medema
et al. 2011; Smanski et al. 2016). Also, codon usage can be re-
designed tomatch the host to increasemRNA translation speed.
Further manipulation of refactored BGCs is much easier com-
pared to the original, greatly reducing the development time for

BGC-derived products. Key challenges that need to be overcome
here are DNA synthesis costs, tuning stoichiometry of gene
expression and avoiding the introduction of unexpected func-
tions into synthetic DNA.

Ecology-based prioritization for antimicrobial function

To understand bacteria and harness their metabolic potential,
it is important to consider them within a microbial community
framework. Indeed, bacteria that thrive under physicochemi-
cal conditions in which they have an elaborate interaction net-
work with other species are excellent targets for identification
of secondary metabolites. Accordingly, complex communities
are reported to be more resistant to invasion from alien species
(van Elsas et al. 2012). Multiple factors can influence community
resilience, including the production of secondary metabolites
with a negative interspecies interaction function, i.e. antibiotics
(Cordero et al. 2012).

Given the ubiquitous nature of potential target communi-
ties, the selection of promising candidates is vital during the
experimental design phase. Biologists can use knowledge on
an unexpected phenotype to deduce the presence of potent
antimicrobial compounds. Marine sponges are a great exam-
ple of prime candidates when hunting for novel and potent
antibacterial compounds. Sponges have a strong endosymbi-
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otic relation with bacteria to the point that up to 40% of
their bio mass is composed by bacterial cells (Friedrich et al.
2001). The microbial community inside the sponge is radi-
cally different from the surrounding water. Lately, sponge com-
munities were successfully targeted for identification of novel
natural products with antibacterial properties, such as poly-
theonamides (Trindade-Silva et al. 2012), which might play a
role in protecting the sponge host against predators. Suppres-
sive soils are another great example of ecology-inspired min-
ing. These soils provide protection to plants against specific
pathogens. Conducive soils, which do not restrain the devel-
opment of a disease, can be gradually transformed into sup-
pressive soils by infecting plants that grow in it in multiple cy-
cles (Berendsen, Pieterse and Bakker 2012). Hence, by investi-
gating the BGCs that are abundant in or expressed by a com-
munity in specific conditions (e.g. treatment of suppressive soil
with a pathogen compared to control), candidates responsi-
ble for the phenotype can be prioritized: this type of strat-
egy has led to the discovery of the lipopeptide thanamycin,
which suppresses fungal root pathogens (Mendes et al. 2011;
Watrous et al. 2012).

Principled approaches to prioritize environmental BGCs
based on ecology require more than just bare metagenome se-
quences. Specifically, metatranscriptomics and/or environmen-
tal metadata can be used to map and understand differences in
BGC abundance and expression, in order to prioritize for those
that are most likely to function as antimicrobials. Also, meta-
data on environmental and physicochemical conditions per-
taining microbial communities can potentially be used to di-
rect the search of BGC hotspots. Localized nutritional hotspots,
such as organic particles in the ocean, may create highly com-
petitive environmental niches, where microbes utilize antimi-
crobials to secure resources against competitors. Therefore,
metadata on, e.g., nutrient availability could potentially be ex-
ploited to identify priority targets. When metatranscriptomics
data are generated for diverse samples for which metadata are
also recorded, one could even identify BGCs that are expressed
specifically under such conditions; these would then have an
elevated probability to be involved in generating antimicrobial
activity.

Several tools and databases are available to study
metagenomes in the context of metadata: e.g. the eSNaPD
webserver (Owen et al. 2013) is a metagenomics atlas that holds
BGC distributions in soil across the globe. Different physio-
chemical characteristics and secondary metabolite repertoires
are aggregated for over 100 samples of different biomes. The
tools integrated in the webserver allow a quick and intuitive
inspection of the data. Similarly, the Tara ocean webserver
(https://www.embl.de/tara-oceans/) hosts metagenomic infor-
mation and metadata on a wide range of marine environments.
Particular attentionwas directed towards the different sampling
depths as they are related to the light intensity, an essential
driver of community composition. For the human microbiome,
which also hosts a wide range of BGCs (including antimicro-
bials, see Donia et al. 2014), several datasets are available with
rich clinical metadata, such as the Belgian Flemish Gut Flora
Project (Falony et al. 2016) and the Dutch LifeLines-DEEP study
(Zhernakova et al. 2016).

As more and more metagenomes become available with bet-
ter assemblies (and including more and more metagenome-
assembled genomes), richer metadata and rapidly rising
amounts of comprehensive (time-series) metatranscriptomics
data, the opportunities for ecology-based antibiotic discovery
are likely to increase drastically.

FUNCTION-BASED MINING FOR
ANTIMICROBIALS

Use of protein domains for genome mining based on
predicted function

In any strategy for genome-based mining for antimicrobials, a
key step is the identification of genes involved in their biosyn-
thesis. A robust method to achieve this, especially for proteins
that do not have high similarity to proteins with known func-
tion, is through the detection of one or more conserved protein
domains using curated models. Certain protein domains or do-
main combinations are indicative of biochemical functions that
are specific to certain biosynthetic pathways; hence, they can
be used as ‘anchors’ or ‘signatures’ to identify certain classes of
BGCs. The gene cluster identification algorithms in tools such
as antiSMASH, BAGEL3 and PRISM are based on this principle.
As we learn more about the enzymology of novel classes of
natural products, this will allow the addition of more ‘domain
markers’ that can be used for new mining strategies. Recently,
such strategies have been used to systematically mine genomes
for biosynthetic pathways encoding cyanobactins (Leikoski et al.
2013), thiazole/oxazole-modified microcins (Cox, Doroghazi and
Mitchell 2015) and enediynes (Shen et al. 2015).

Identifying natural products by phenotypic and
metabolic profiling

Several types of high-throughput profiling methods have be-
come available to screen large collections of organisms for their
natural-product-producing potential. Besides (meta)genomic in-
formation, these also leverage phenotypic and metabolomic
data.

Traditionally, phenotypic information has been key in the
discovery of antimicrobials, as strain collections were screened
for activity against various pathogens. Besides conventional
growth inhibition assays, an interesting emerging technique is
cytological profiling, which allows ‘function-first’ mining of nat-
ural products with desired biological activities by predicting the
mechanisms of action based on microscopy analysis of the cel-
lular responses of target strains (Nonejuie et al. 2013; Potts et al.
2013; Schulze et al. 2013; Woehrmann et al. 2013). When applied
onto microbial extracts, this technique can be used to specifi-
cally search for natural products with certain functional profiles
(i.e. activity profiles that match those of molecules with known
modes of action) (Ochoa et al. 2015). A proof-of-principle study
in Bacillus subtilis showed that through activity-guided purifica-
tion,molecules withmultiplemechanisms of action can even be
separated based on this technology (Nonejuie et al. 2016). More-
over, connecting molecules to activities can even be automated
through a procedure called Compound Activity Mapping (Zhang
et al. 2016), which applies networking analysis to correlate spe-
cific molecules to each activity.

Metabolic profiling can be done, for example, through large-
scale mass spectrometric analysis of strain collections in order
to identify all themolecular families (Watrous et al. 2012; Nguyen
et al. 2013) that are produced under typical laboratory condi-
tions. This is facilitated by public platforms such as Global Natu-
ral Products Social Molecular Networking (http://gnps.ucsd.edu)
(Wang et al. 2016), which allow connecting metabolomic data
from multiple sources. A recent study showed how comprehen-
sive molecular networking analysis of hundreds of strains from
the same genus (Pseudomonas) can effectively identify novel nat-
ural products by comparing all molecules observed across these

https://www.embl.de/tara-oceans/
http://gnps.ucsd.edu
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Figure 2. Correlation between the presence of lanthipeptide BGCs and the predicted proteolytic activity. On top, the taxonomic tree of Gram-positive bacteria and the
green branches indicate the putative presence of lanthipeptide biosynthetic genes. The purple bars below the tree indicate the predicted abundance of proteolytic
enzyme-coding genes. In gray the organism names which can be read in Table S1. The orange bars indicate the position of groups of bacteria.

strains with a set of reference molecules (Nguyen et al. 2016).
For some compound types, such as RiPPs and NRPs, dereplica-
tion (i.e. identification of novelty) can also be automated with
algorithms such as DEREPLICATOR (Mohimani et al. 2016). A dis-
advantage of metabolomics-based natural product discovery is
that one can only observe molecules that are produced under
the conditions tested; yet, this can be partially mitigated by per-
forming molecular networking on co-cultivated strains (Traxler
et al. 2013; Briand et al. 2016).

Although the throughput of metabolic and cytologic profiling
methods is increasing, smart selection strategies for strains to
be used as input are still very important. Genome-based anal-
ysis of biological features that correlate with natural product
biosynthetic potential could be an interesting strategy for this.
For example, bacteria that have a large capacity for the biosyn-
thesis of posttranslationally modified (and thus more stable) ri-
bosomally synthesized natural products (instead of unmodified
bacteriocins) would be expected to show relatively high pro-
teolytic activity. Hence, genomic profiling of proteolytic capac-
ity could enable selection of taxonomic groups that are more
likely to yield novel RiPPs, as the RiPP BGC types that can be de-
tected with current bioinformatic methods are likely to be just
the tip of the iceberg. Such an analysis could help identify bacte-
ria that are good candidates for discovery of novel RiPP classes.
Figure 2 shows that, indeed, for a number of taxa, the presence of
proteases and peptidases in the genome shows a clear correla-
tion to the presence of lanthipeptide BGCs. To analyze this, we
selected 180 peptidase and 30 protease motifs from the PFAM
database (Table S1, Supporting Information) and screened all
complete bacterial genomes for the number of motifs present
to get a rough indication of the proteolytic activity of each bac-
terium. One would expect highly proteolytic bacteria such as
Bacillales and Actinomycetes to produce a high fraction of mod-
ified peptides relative to unmodified ones, to avoid proteolytic
degradation. Based on simplematching, the correlation between
the presence of predicted lantibiotic and high protease or pep-
tidase abundance (number of motifs above the median) is 0.75
and 0.62, respectively. Although the expected correlation can be
shown in several cases, it is not always consistent. Staphylo-
cocci and corynebacteria show low proteolytic enzyme-coding
gene abundance, but do encode the biosynthesis of many puta-
tive lantibiotics. Clearly, there are other factors also involved in

the evolution of RiPP repertoires. One of them could be the na-
ture of the environment the producing bacteria are thriving in,
which could also be very proteolytic. Still, exploration of these
and other genomic and phenotypic features that correlate with
biosynthetic potential could be useful for strain selection pur-
poses in large-scale genomic and metabolomic experiments.

MODE-OF-ACTION-BASED GENOME MINING
FOR ANTIMICROBIALS

As indicated earlier, it is difficult to predict which BGCs encode
the production of natural products with antimicrobial activity
from sequence alone. Yet, there are at least two potential op-
tions to do so: resistance-based genome mining and mining for
synergistic antibiotics.

Resistance-based mining (recently also reviewed in some
detail by Ziemert, Alanjary and Weber 2016) utilizes the fact
that many BGCs encoding the biosynthesis of antibiotics will
also encode one or more genes that confer self-resistance to
the molecule produced, in order to avoid suicide. These self-
resistance genes are frequently the same or very similar to
the resistance genes used by other bacteria to evade antibi-
otics, and are probably acquired by the latter through horizon-
tal gene transfer (Mak et al. 2014; Ogawara 2016); they include
transporters, drug-modifying enzymes and, most interestingly,
paralogous genes encoding ‘resistant’ copies of housekeeping
proteins that are targeted by the antibiotic. Hence, the iden-
tification of self-resistance genes in BGCs can be very effec-
tive predictors of antibiotic function of their products. More-
over, if these genes are resistant paralogs of housekeeping genes
that are targeted by the antibiotic, they can even be used to
predict the target. Recently, Tang et al. (2015) used this ap-
proach to identify the BGC for the thiotetronate antibiotic thi-
olactomycin in Salinispora genomes based on the presence of
a resistant copy of a fatty acid synthase gene. Similarly, Yeh
et al. (2016) identified the biosynthetic genes for the protea-
some inhibitor fellutamide B through the identification of a pro-
teasome subunit-encoding gene inside a gene cluster. Intrigu-
ingly, the strategy can also be used to predict natural products
with new modes of action; Johnston et al. (2016) recently used
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resistance-based mining to show that the telomycin family of
natural products targets the phospholipid cardiolipin.

Several good libraries of known self-resistance genes and de-
tection models for them are now available (Jia et al. 2016). In
particular, the ResFams database (Gibson, Forsberg and Dan-
tas 2015) contains a rich set of profile Hidden Markov Models
(pHMMs) that allow detection of resistance genes against a wide
range of antibiotics; in their abovementioned study, Johnston
et al. (2016) supplemented these pHMMs with an additional 91
models for additional resistance genes found in the literature.
Additionally, phylogenetic analysis (reminiscent of the EvoM-
ining approach recently described by Cruz-Morales et al. 2016)
may make it possible to hunt for additional resistant paralogs
of housekeeping genes, by identifying aberrant copy numbers
of such genes in genomes, where the additional copy has long
branch lengths and resides inside a BGC. By doing this system-
atically, while using inclusive and broad probabilistic BGC pre-
dictions as offered by algorithms such as ClusterFinder (Cimer-
mancic et al. 2014), large numbers of both novel modes of action
and novel antibiotic biosynthetic classes may be discovered.

The second possible bioinformatic strategy to prioritize BGCs
for their potential to encode novel antibiotics is based on syn-
ergistic interactions. Many cases are known in which a com-
bination of two bioactive compounds acts in a synergistic way
to obtain higher antimicrobial efficacy or circumvent resistance
mechanisms in the target strains. A famous example of this,
that is still used in the clinic, is Augmentin R©, a combination of
the beta-lactam antibiotic amoxicillin with the beta-lactamase
inhibitor clavulanic acid. In theory, synergistic pairs of natural
products have a major advantage in the battle against antimi-
crobial resistance, as it is more difficult for pathogens to de-
velop resistance against bothmolecules. Synergistic pairs of nat-
ural products also occur in nature. In fact, Augmentin was mod-
eled after the combination of cephamycin and clavulanic acid,
which is naturally produced by Streptomyces clavuligerus. In the
genome of S. clavuligerus, the BGCs for the two compounds are
intertwined in a ‘supercluster’ configuration, allowing the co-
ordinated regulation of both biosynthetic pathways (Ward and
Hodgson 1993; Medema et al. 2010). Intriguingly, multiple other
cases have been identified where two synergistic natural prod-
ucts are jointly encoded in such superclusters: examples include
the synergistic antibiotics lankamycin and lankacidin (Suwa
et al. 2000), which bind complementary sites on the large riboso-
mal subunit (Belousoff et al. 2011), and the synergistic antibiotics
griseoviridin and viridogrisein (Xie et al. 2016). Hence, it is likely
that intertwined supercluster configurations are indicative of
synergistic interactions between natural products, which thus
far has only been linked to antibiotic function. Automated com-
parative genomic analysis of exceptionally large ‘hybrid’ BGCs
(encoding enzymes to generatemultiple different scaffold types)
predicted by tools such as antiSMASH, may make it possible
to trace the evolutionary histories of their genes, and assess
whether they encode ‘superclusters’ encoding the production of
multiple different (and possibly synergistic) molecules, based on
whether the BGC has relatively recently originated by merger of
two previously independent gene clusters. Furthermore, anal-
ysis of regulatory motifs for transcription factor binding sites
(Wolf et al. 2016) can potentially distinguish such superclusters
from pairs of gene clusters which happen to be encoded right
next to each other on the genome by chance, by assessing the
likelihood that genes on both sides of the putative supercluster
are in fact coregulated.

All in all, at least two strategies based on sequence analysis
alone are available to mine the vast numbers of extant BGCs for

novel antibiotics. Yet, when sequence analysis is complemented
by ecological information, e.g. from metagenomics, many more
identification possibilities become available.

DISCUSSION AND OUTLOOK

Considering the wealth of opportunities offered by the ever-
increasing sequencing power that allows studies ranging from
community mining to elucidating expression circuitries and
protein functional analyses, we can only expect an ever-
increasing pile of information on known and novel antimicro-
bials. Big tasks ahead are the functional and structural charac-
terization of these compounds, assessing their potential syn-
ergistic or antagonistic activities, and determining the roles of
(cross)immunity against these compounds. As also completely
novel biosynthetic routes and new peptidemodifications are be-
ing discovered at a regular pace, we need to codevelop high-
throughput methodologies for activity screening, employing
elicitors of their production if necessary. The interplay of bac-
teria with their environment, with other organisms and with
hosts (e.g. gut microbiota, plant microbiota) will certainly in-
volve antimicrobials of all sorts, and assessing their role in pop-
ulation dynamics will be an important area of research in the
coming decade. Moreover, synthetic biology and novel chem-
istry approaches will enable the production of new-to-nature
compounds to fight the increasing and important problem of
antibiotic resistance inmajor human pathogens. A combination
of mining approaches at all levels, followed by biochemical and
pharmaceutical studies, will be greatly beneficial to find the so-
lutions for major societal problems ahead.
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