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Prenatal exposure to serotonin reuptake 
inhibitors and congenital heart anomalies: 

An exploratory gene-environment interaction study



7

SR
IS

 A
N

D
 C

O
N

G
E

N
IT

A
L 

H
E

A
RT

 A
N

O
M

A
LI

E
S:

 A
N

 E
X

PL
O

RA
TO

RY
 S

TU
D

Y

144

ABSTRACT

Background: Prenatal use of  serotonin reuptake inhibitors (SRIs) was previously 
associated with congenital heart anomalies (CHA). We aimed to explore whether 
pharmacogenetics has a role in this fetal outcome. 

Methods: A total of  33 case-mother dyads and 2 mother-only (children deceased) 
cases registered in EUROCAT Northern Netherlands were included in a case-only 
study. Of  these, five case-mother dyads and two mother-only (children deceased) were 
exposed to SRIs in the first trimester of  pregnancy. Ten genes encoding enzymes 
or proteins important in determining fetal exposure to SRIs or its mechanism 
were selected: genes coding for CYP450 enzymes (CYP1A2, CYP2C9, CYP2C19, 
CYP2D6), a P-glycoprotein coding gene (ABCB1), a serotonin transporter gene 
(SLC6A4) and serotonin receptor genes (HTR1A, HTR1B, HTR2A, and HTR3B). All 
subjects were genotyped for 58 genetic variations in these genes. 

Results: Among exposed cases, several polymorphisms tended to be associated 
with an increased risk of  CHA: ABCB1 rs1128503, SLC6A4 5-HTTLPR and 
5-HTTVNTR, HTR1A rs1364043, HTR1B rs6296 & rs6298 and HTR3B rs1176744. 
However, the sample sizes of  this exploratory study were limited and our results did 
not reach statistical significance.

Conclusion: This is the first study to explore the CHA risk associated with potential 
gene-environment interaction between pharmacogenetic determinants and SRI use. 
We did find indications of  a role for serotonin receptor polymorphisms in fetuses 
exposed to SRIs that warrants further investigation.
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INTRODUCTION

One of  the most prescribed antidepressant groups is the selective serotonin reuptake 
inhibitors (SSRIs), with up to four in 100 pregnant women being prescribed with this 
group of  antidepressants (1-3). SSRIs are generally well tolerated with the exception 
of  concerns about the increased risk of  fetal congenital anomalies following prenatal 
exposure to these drugs. Following the US Food and Drug Administration (FDA) 
warning about this risk in 2005, many studies have been performed to elucidate the 
magnitude and effect of  this association. However, the results of  these studies have 
been inconsistent. Meta-analyses by two groups of  researchers reported around 
a 40% increase in the risk of  fetal congenital heart anomalies (CHA) following 
prenatal exposure to paroxetine (4-6), but a similar risk increment was not found for 
all SSRIs combined (7). Because clinical trials are not an option to measure the risk 
of  an exposure during pregnancy, most studies were done retrospectively using data 
from pregnancy and/or prescription registries. The conflicting study results impede 
decision-making among clinicians on a safe and effective therapy for their patients, 
and best practice at present is to assess individual risk factors before any treatment 
recommendation. 

We previously identified several genes that might be important in the metabolism and 
mechanism of  action of  SRIs that may also potentially play a role in the development 
of  SRI-related CHA (8). Several polymorphisms of  metabolic enzymes (CYP1A2, 
CYP2C9, CYPC19 and CYP2D6) were reported to affect the pharmacokinetics 
and the risk of  side effects of  SRIs (9,10). P-glycoprotein (P-gp) expressed in the 
placenta plays a role in limiting fetal exposure to SRIs, and several single nucleotide 
polymorphisms (SNPs) were found to reduce P-gp function (11). In addition, a 
number of  polymorphisms of  the serotonin transporter (SERT) and the serotonin 
receptors these genes were associated with variation in the clinical response to SRIs 
and the severity of  side effects (12-14). 

We therefore aimed to explore the genetic variations that may be involved in fetal 
exposure to SRIs, and their mechanism of  action, to further understand why some 
children exposed to SRIs in the first trimester of  pregnancy develop CHA while 
others do not. Our objective was to determine the effect of  the gene x environment 
(G x E) interaction between pharmacogenetic predictors of  the SRIs and prenatal 
exposure to these drugs on the risk of  CHA. 
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METHODS 

Study design and patient sampling

We performed an exploratory G x E interaction study using case-only design. This 
design can detect the effect of  genotype and exposure in a group of  cases when the 
disease is rare. One of  the assumptions made is that the genotype and environment 
are independent of  each other (15-17). The study population includes children 
with CHA registered in the EUROCAT Northern Netherlands (NNL) database, a 
population-based birth defect registry covering the three northern provinces of  the 
Netherlands. EUROCAT NNL registers fetuses or children diagnosed with major 
congenital anomalies before or after birth, and up to 10 years old, upon consent 
of  their parents. For cases registered up to 2001, the types of  CHA were classified 
according to the EUROCAT Subgroup of  Congenital Anomalies version 2012 (18) 
and the International Classification of  Diseases (ICD) coding system 9th revision. For 
cases registered from 2002 onwards, the ICD coding system 10th revision was used 
for classification. We included only major CHA cases, either as single heart anomalies, 
as part of  complex heart anomalies (including cardiovascular anomalies), or as part 
of  complex anomalies involving other organ systems. Diagnosis codes included were 
ICD9 745-746, 7470-7474 (excluding 74550) and ICD10 Q20-Q26 (excluding Q2111). 

Cases born between January 1, 1997 and December 31, 2013 were eligible for this 
study. Exclusion criteria were: 1) cases with genetic disorders, including chromosomal 
anomalies, microdeletions, monogenic disorders and with known teratogenic causes; 
2) case mothers with a previous history of  a malformed child or history unknown; 
and 3) cases in which the mother never used any medication during pregnancy in 
order to reduce the selection bias of  including mothers among the unexposed group 
who were generally ‘healthy’. Cases were invited to participate in this study via the 
Pediatric Cardiology Clinic, University Medical Center Groningen (UMCG), and were 
asked to provide DNA samples. This study received a waiver from ethical clearance 
consideration by the Medical Ethical Committee of  the UMCG. 

Drug exposure

Exposed cases were defined as CHA cases whose mothers had used at least one of  
the following SRIs (ATC codes) at some point between 30 days before conception 
and 90 days of  gestation: fluoxetine (N06AB03), citalopram (N06AB04), paroxetine 
(N06AB05), sertraline (N06AB06), fluvoxamine (N06AB08), escitalopram 
(N06AB10), venlafaxine (N06AX16) and duloxetine (N06AX21). The information 
on drug use in EUROCAT NNL was obtained primarily via pharmacy records, upon 
consent of  the mother, and later verified by telephone interviews to ensure the validity 
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of  the information obtained. The unexposed cases were CHA cases whose mothers 
had used any drugs other than SRIs during pregnancy. Variables like smoking during 
the pregnancy, alcohol intake during the pregnancy, maternal medical history and folic 
acid supplementation were obtained from a questionnaire given upon registration with 
EUROCAT NNL. 

Selection of  candidate genes and SNPs 

We selected 10 genes that encode enzymes or proteins important in determining 
fetal exposure to SRIs: the CYP450 enzymes (CYP1A2, CYP2C9, CYP2C19 and 
CYP2D6), P-gp (ABCB1), SERT (SLC6A4), and serotonin receptors (HTR1A, 
HTR1B, HTR2A, HTR3B). The CYP450 metabolic enzymes are involved in the 
pharmacokinetics of  SRIs and influence the drug concentration in the maternal 
circulation. Since all the SRIs examined in this study are substrates of  P-gp, changes 
in P-gp expression or activity may alter the fetal exposure to SRIs (19,20). SRIs 
inhibit the uptake of  serotonin (5-HT) through the SERT, and 5-HT signals through 
serotonin receptors. A normal 5-HT signaling is important for normal development 
of  fetal heart cells (21). 

For the CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes, we selected 37 SNPs with 
known phenotypes of  either “ultrarapid metabolizer”, “rapid metabolizer”, “extensive 
metabolizer”, “intermediate metabolizer” or “poor metabolizer” ” (http://www.
cypalleles.ki.se/).  The selection of  polymorphisms in ABCB1, SLC6A4 and serotonin 
receptor genes was based on their clinical effects on SRIs treatment: 8 SNPs in 
ABCB1, 2 repeat markers in SLC6A4, 2 SNPs in HTR1A, 2 SNPs in HTR1B, 5 SNPs 
in HTR2A, and 2 SNPs in HTR3B (Appendix 6.1) (8,14,22,23). SNPs with call rates 
of  <90% were excluded from the analysis. 

DNA collection

An invitation letter and package was sent to the mother of  each exposed case, 
followed by a reminder letter after four weeks, if  necessary. Once written informed 
consent was received from the mothers (and children), we sent them the sample 
collection kit including cytobrushes to collect buccal cell samples (Isohelix SK-1 swab 
kits with Isohelix Dri-capsules, Cell Projects Ltd, UK). A clear instruction on how to 
use the sample collection kit was provided, together with the link to an instruction 
video (in Dutch). Mothers (and children) were asked to return the cytobrushes, with 
a silica gel enclosed, to the researchers in prepaid mail envelopes. A reminder letter 
was sent if  we did not receive the samples after four weeks. Each collection tube 
containing the samples was labelled with the identifier code and with ‘Mother’ or 
‘Child’. DNA samples received from the exposed cases were labelled and stored until 
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they were genotyped. The DNA from exposed cases was extracted from the buccal 
cells using Isohelix DNA isolation kit (DDK-50/DDK-3, Cell Projects Ltd, UK). 
For the unexposed cases, DNA samples were retrieved from CHA patients from the 
Department of  Genetics, UMCG who consented with the use of  residual materials. 
The DNA was obtained from blood and the isolation process was performed in the 
same facility as the samples from exposed cases.  

Genotyping 

SNP genotyping for CYPs, ABCB1 and HTR genes was performed using 10 ng 
of  DNA samples using the iPLEX® Gold platform (Agena Bioscience GmbH, 
Hamburg, Germany) according to the standard protocol. The region of  interest was 
amplified by polymerase chain reaction (PCR) using gene-specific primers, followed 
by single base extension using the iPLEX Gold cocktail of  primer, enzyme, buffer 
and terminator nucleotides, resulting in extended fragments with a specific mass 
for each allele. The mass was detected by the MassARRAY® System and genotype 
calling was performed using the MassARRAY® Typer Analyzer 4.0 software tools 
(Agena Bioscience GmbH or Sequenom, Hamburg, Germany). Manual inspection 
and adjustment of  the genotype classifications was also performed by authors on all 
SNPs with call rates of  less than 90%. For the SLC6A4 repeat markers, the regions 
of  5-HTTLPR and 5-HTTVNTR were amplified by PCR using specific primers. 
Amplified DNA fragments were separated by electrophoresis: 5-HTTLPR long and 
short alleles (530 bp and 486 bp, respectively) and 5-HTTVNTR STin2.9, STin2.10 
and STin2.12 (250 bp, 271 bp, and 302 bp, respectively). 

Phenotype and genotype scoring 

The genotypes of  CYP enzyme polymorphisms were grouped into phenotypes that 
depict the functionality of  the enzymes (i.e. normal metabolizer, poor metabolizer 
or rapid metabolizer etc.), and were reported according to the standardized terms 
from the Clinical Pharmacogenomics Implementation Consortium (24,25). Since the 
CYP enzymes in the fetus are not fully developed during the first trimester, only the 
genotype from the mothers was analyzed. 

The risk of  CHA was determined for each genetic variation of  the ABCB1, HTR1A, 
HTR1B, HTR2A and HTR2B genes using a recessive model and for the SLC6A4 
gene using a dominant model, based on the number of  exposed cases to perform 
the analysis. To further explore the cumulative effect of  ABCB1 SNPs, we calculated 
a genetic score per individual based on the number of  risk alleles present as done 
previously (26-28). The score is associated with the transport of  SRIs through P-gp. 
In the mother, P-gp is expressed in the intestine, liver and kidney where it helps to 
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eliminate substrate drugs, while P-gp in the placenta limits drug transport into the 
fetal circulation. A maternal ABCB1 genotype encoding for reduced P-gp function 
increases the plasma drug concentration available for transfer through the placenta, 
while the same genotype in the fetus increases the transfer of  the drug into the fetus. 
Seven SNPs in the ABCB1 gene previously associated with reduced expression or 
function were included in the scoring: rs1045642, rs1128503, rs1882478, rs2032582, 
rs2235040, rs4148739 and rs9282564. The risk alleles can occur in a homozygous or 
heterozygous form; therefore each individual could have 0, 1, or 2 alleles for each 
SNP, resulting in a cumulative risk score up to 14. For the SLC6A4 5-HTTLPR and 
5-HTTVNTR polymorphisms, the cumulative score was up to 4.

Statistical analysis

Deviations from Hardy-Weinberg equilibrium were tested using Pearson’s chi-
square test. To test for the effect of  pharmacogenetic predictors (genotype) and 
prenatal exposure to SRIs (environment) on the risk of  fetal CHA, we determined 
the departure from multiplicative interaction between gene and environment using 
multivariable logistic regression and expressed with interaction odds ratio (OR) and 
95% confidence interval (CI). An OR of  more than 1 indicates that the presence of  
both pharmacogenetic predictors and SRI-use increases the risk of  CHA. 

RESULTS 

Case sampling

From 2,172 CHA cases born between 1997 and 2013 and registered in EUROCAT 
NNL, we selected 1,383 cases that matched the inclusion criteria (Figure 1). For the 
exposed cases, twenty-four case mothers were invited to participate in the study, and 
eight case-mother dyads gave their consent. For cases under the age of  12, written 
informed consent was obtained from their mothers. The DNA samples were available 
for five exposed dyads and two mothers-only (with deceased child) cases; four 
exposed case-mother dyads and two mothers-only cases provided their DNA samples, 
and the samples of  one case-mother dyad were retrieved from the clinical diagnostic 
laboratory. The number of  unexposed cases was decided to be four times the number 
of  exposed cases, therefore 28 unexposed case-mother dyads were randomly selected 
from the available DNA samples. 
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Figure 1: Case sampling

 Cases of major CHA born in 
1997-2013 (n=2,172) 

 
Exclusion of known cause 

anomalies: 
Chromosomal anomalies (n=277) 

Microdeletion (n=44) 
Monogenic disorder (n=78) 
Teratogenic causes (n=5) 

Cases included (n=1,768) 

Exclusion of: 
Previous history of malformed child 

or history unknown (n=87) 
Mothers not using medication 

during pregnancy (n=298) 

Cases included (n=1,383) 

Exposed to SRIs (n=32) Not exposed to SRIs (n=1,351) 

Exclusion of exposure in: 
Preconception only (n=3) 
2nd and/or 3rd trimester 

(n=5) 

Consent received 
(n=8) 

DNA samples not 
received (n=1)  

Exposed cases genotyped 
(n=7) 

Cases with available DNA 
samples (n=59) 

Unexposed cases genotyped 
(n=28) 

Random selection to 
match exposed cases with 

1:4 ratio 
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The characteristics of  all cases and mothers can be found in Table 1. The majority 
of  our cases and case mothers are Caucasians (91.4%). The SRIs used by the case-
mothers were paroxetine (3), fluoxetine (2), venlafaxine (1), and paroxetine and 
venlafaxine (1). Among all cases, the types of  medications used in the first trimester 
are: antiemetics (6), analgesics (6), hormone preparations (5), antacids (4), laxatives (4), 
antibiotics (3), antihistamines (2), thyroid preparation (1), cholesterol lowering agent 
(1) and cough preparation (1). 

Genotyping 

A total of  65 DNA samples were obtained and genotyped: 12 samples from the 
exposed cases (5 children and 7 mothers) and 53 samples from the unexposed cases 
(28 children and 25 mothers). Genotype and allele frequencies for all case-mother 
dyads are listed in Table 2. Out of  58 polymorphisms analyzed, 5 SNPs (CYP2D6 
*4, *6, *8,*17, *41) failed to be genotyped. Out of  53 SNPs, 4 SNPs (CYP2D6*2, 
*9, *11 and *12) had allele calling rates of  less than 90% and the genotype frequency 
for HTR2A rs7997012 was not in Hardy Weinberg equilibrium (p=0.03). Due to the 
different call rates among SNPs, the number of  case-mother dyads differed for each 
G x E interaction analysis. 

CYP enzyme and P-glycoprotein phenotypes, SRI exposure and CHA

The interaction between maternal CYP enzyme phenotypes and SRI exposure does 
not indicate an effect on the risk of  CHA. Among cases exposed to paroxetine (n=4), 
all of  the case-mothers were normal CYP2D6 metabolizers (Appendix 6.2). Two 
cases were exposed to venlafaxine, and one of  them is an intermediate CYP2C19 
metabolizer. Fluoxetine was used by two case-mothers who are both normal CYP2C9 
and CYP2D6 metabolizers. Therefore, we cannot determine the effect of  metabolic 
enzyme phenotypes on the risk of  CHA associated with the use of  SRIs among our 
case-mothers.
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Table 1: Characteristics of  case-mother dyads included in the study (N=35)

Characteristics n %

Child sex

Boy 27 77.1

Girl 8 22.9

Year of  birth

2003-2007 24 68.6

2008-2013 11 31.4

First pregnancy 8 22.9

Types of  birth

Live birth 33 94.3

Termination of  pregnancy   2 5.7

Types of  CHA

Single 22 62.9

Complex 13 37.1

Subtypes of  CHA**

Cardiac cambers and connections, ICD10 Q20 5 14.3

Cardiac septa, ICD10 Q21 11 31.4

Pulmonary and tricuspid valves, ICD10 Q22 2 5.7

Aortic and mitral valves, ICD10 Q23 22 62.9

Great arteries, ICD10 Q25 12 34.3

Maternal age at delivery, mean years (range) 31 24-39

Maternal education level

Low 2 5.7

Middle 18 51.4

High 15 42.9

Folic acid use during pregnancy 33 94.3

Smoking during first trimester 6 17.1

Alcohol intake in the first trimester 14 40.0

Medication use in the first trimester

SRIs 7 20

Other medication*** 23 65.7

Maternal medical history

Gestational diabetes 3 8.6

Congenital anomalies 4 11.4

Chronic disease 6 17.1

CHA: congenital heart anomalies; SRIs: serotonin reuptake inhibitors; **more than one subtype is 
counted for cases of  complex CHA; ***other than SRIs (for exposed group) and folic acid/supplements 
(for unexposed group); within 30 days before conception and 90 days in the first trimester
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For ABCB1, there is no indication of  changes in the risk of  CHA with any of  the 
ABCB1 SNPs in the mothers and the children, except possibly for maternal rs1128503 
(Table 3). However, the sample size was too small to reach statistical significance. For 
the maternal genotype, the mean score among the exposed case mothers was 3.9 + 
0.7, while the mean scores of  the unexposed case mothers was 4.3 + 1.9 (p=0.41). 
The distribution of  the genetic scores of  the exposed and unexposed cases is shown 
in Figure 2. The mean genetic score of  the exposed cases (children) was 5.0 + 1.9 and 
4.4 + 1.8 among the unexposed cases (p=0.47). 

Serotonin transporter and receptor polymorphisms, SRI exposure and CHA

The LL genotype of  the SLC6A4 5-HTTLPR and 12/12 genotype of  the 
5-HTTVNTR indicated an increase in the risk of  CHA among cases exposed to 
SRIs, although not significant (Table 3). The mean genetic scores of  the exposed 
mothers tended to be higher than the unexposed mothers (2.5 ± 0.8 versus 1.88 ± 
0.7, respectively; p=0.061) (Figure 3). Meanwhile, the mean genetic scores of  the 
exposed and unexposed cases (children) were comparable (2.4 ± 0.5 and 2.18 ± 0.8, 
respectively; p=0.57).

For fetal 5-HT receptors, the SNPs in HTR1A, HTR1B and HTR3B showed increases 
in the interaction OR, although none achieved statistical significance (Table 3). We 
then calculated the genetic scores for these SNPs, which include HTR1A rs1364043, 
HTR1B rs6296, rs6298 and HTR3B rs1176744 (maximum score of  8).The mean 
genetic score for exposed cases tended to be higher as compared to unexposed cases 
(3.4 + 2.2 versus 1.9 + 1.6, respectively; p=0.065), and the distribution was skewed 
towards higher genetic scores (Figure 4).
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Table 3: The G x E interaction effect of  several SRIs pharmacogenetic predictors on the risk 
of  CHA

SNPs/Genetic 
variations

Case mothers with variant alleles, n (%) Cases with variant alleles, n (%)

Exposed
n (%)
N=7

Unexposed
n (%)
N=25

OR
(95% CI)

Exposed
n (%)
N=5

Unexposed
n (%)
 N=28

OR
(95% CI)

ABCB1

rs1045642 7 (100.0) 19 (76.0) 0.94 (0.48-1.82) 3 (60.0) 21 (75.0) 0.43 (0.058-3.14)

rs1128503 6 (85.7) 14 (56.0) 3.86 (0.4-37.58) 3 (60.0) 20 (71.4) 0.53 (0.072-3.82)

rs1882478 2 (28.6) 9 (36.0) 0.64 (0.13-3.06) 2 (40.0) 9 (32.1) 0.80 (0.32-1.99)

rs2032582 6 (58.7) 15 (60.0) 0.95 (0.52-1.76) 3 (60.0) 20 (71.4) 0.52 (0.086-3.59)

rs2235040 2 (28.6) 8 (32.0) 0.71 (0.19-2.67) 2 (40.0) 8 (28.6) 0.89 (0.38-2.10)

rs4148739 2 (28.6) 7 (28.0) 0.71 (0.24-2.09) 2 (40.0) 8 (28.6) 0.89 (0.38-2.10)

rs9282564 0 7 (28.0) - 1 (20.0) 8 (28.6) 0.58 (0.07-5.08)

rs10256836 7 (100) 22 (88.0) 0.84 (0.32-2.18) 5 (100) 26 (92.9) -

SLC6A4 [N=6] [N=24] [N=5] [N=28]

5-HTTLPR 
(LL)

2 (33.3) 5 (20.8) 1.90 (0.27-13.52) 1 (20) 5 (17.9) 1.15 (0.11-12.62)

[N=6] [N=25] [N=5] [N=28]

5HTTVNTR 
(12/12)

3 (50) 9 (36) 1.78 (0.3-10.72) 2 (40) 11 (39.3) 1.03 (0.15-7.19)

HTR1B

rs6296 3 (60.0) 11 (39.3) 2.18 (0.31-15.29)

rs6298 3 (60.0) 11 (39.3) 2.18 (0.31-15.29)

HTR2A

rs6313 2 (40.0) 13 (46.4) 0.72 (0.10-5.01)

rs6314 1 (20.0) 6 (21.4) 0.88 (0.082-9.38)

rs1928040 3 (60.0) 20 (74.1) 0.45 (0.06-3.35)

rs6311 2 (40.0) 14 (50.0) 0.67 (0.10-4.62)

HTR3B

rs1176744 4 (80.0) 11 (39.3) 5.82 (0.57-59.32)

rs3831455 0 (3.6) -

N, total number of  cases; * not in Hardy Weinberg equilibrium
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Figure 2: Distribution of  maternal and child ABCB1 genetic scoring associated with reduced 
P-gp function 

Figure 3: Distribution of  maternal and child SLC6A4 genetic scoring associated with 
increased serotonin transporter function
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DISCUSSION

In this exploratory study we tried to find associations of  polymorphisms in 10 genes 
involved in the metabolism of  drugs by pregnant women and the occurrence of  CHA 
in their children. Concerning the ABCB1 SNPs, only maternal rs1128503 had an 
increased, although non-significant, interaction OR and could therefore be associated 
with an increased risk of  CHA following exposure to SRIs. This SNP, together with 
rs1045642 (C3435T) and rs2030582 (G2677T/A), were previously associated with 
reduced expression/function of  placental P-gp and modulated the placental transfer 
of  substrate drugs (29-32). This modulation may affect the protective barrier against 
xenobiotics in the early stage of  pregnancy. It has also been suggested that these SNPs 
play a role in the clinical response of  SRIs because P-gp regulates the transport of  
SSRIs through the blood-brain barrier (45–50). With regard to congenital anomalies, 
two previous observational studies reported that maternal and fetal C3435T increased 
fetal susceptibility to CHA and cleft lip following general medication use during 
pregnancy (39-41).  This association was not found in our study, probably because of  
the different types of  medication included in the exposure groups, as we have focused 
on SRIs use instead of  any medication in general. 

Figure 4: Distribution of  child genetic scoring of  HTR genes associated with increased 
interaction OR
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The L allele of  the 5-HTTLPR and 12 repeats of  the 5-HTTVNTR of  SLC6A4 
had previously been associated with higher efficacy or side effects of  SRI treatment, 
which was proposed to be caused by a higher expression of  the SERT (42-46). In this 
study, the G x E interaction between these variants and SRI-use tended to cause an 
increase in the risk of  CHA, but only for the maternal genotype interaction. Looking 
at the effect on the fetus, one would expect that the fetal SLC6A4 variant would have 
a larger effect on SERT expression in the placenta that is of  fetal origin. However, 
SERT mRNA was also detected in epithelial cells of  early decidua, which is the 
uterine lining of  the maternal endometrium (47). The increase in SERT expression 
may cause a higher response to SRIs, and is manifested by the increased inhibition 
of  5-HT uptake into the placenta. The exact mechanism seems to be intricate and 
unclear; however, we can hypothesize that the combination of  SERT polymorphisms 
and SRI-exposure might cause a disruption in the normal 5-HT level available for the 
transport into the fetal circulation.

Our study found that four SNPs in HTR genes encoding for 5-HT receptors showed 
a possibly increased risk of  CHA after the exposure to SRIs, although the effect 
was not significant. Two of  the SNPs, HTR1A rs1364043 and HTR1B rs6296, had 
previously been associated with an increased response to citalopram (23), while 
HTR3B rs1176744 had been shown to reduce the side effects of  paroxetine (48). 
However, these associations have not yet been replicated in larger studies. On the 
other hand, HTR1B rs6298 was associated with a reduced response to citalopram (23). 
The role of  genetic variations in 5-HT receptors needs further investigation given 
the importance of  5-HT signaling during embryogenesis, particularly in cell division, 
differentiation, migration and synaptogenesis (49). Any alteration in the 5-HT level 
and receptor activity during this period could lead to susceptibility to faulty fetal heart 
development.

Strengths and limitations

One of  the strengths of  this study is that it is the first attempt at elucidating the role 
of  pharmacogenetics in the development of  CHA associated with prenatal use of  
SRIs. A further strength is the G x E interaction approach, which is a powerful design 
for determining the contribution of  genetics to adverse drug events or teratogenicity. 
Previous studies have identified several genetic variations associated with CHA in 
the presence of  environmental factors like maternal obesity, tobacco use and folic 
acid intake (50-53). A third strength is that the EUROCAT NNL database used 
in this study records complete information on maternal risk factors (i.e. smoking-, 
alcohol-, and medication use). Since all cases were selected from the same database, 
any misclassification of  exposure would be non-differential among exposed and 
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unexposed cases. Finally, we also included cases of  terminated pregnancies, which are 
usually missing from the health surveillance databases. 

There are several limitations of  this study. First, a case-only study can only measure 
the risk of  the G x E interaction, not the separated risks of  G or E. Second, this 
design is vulnerable to population stratification, although we can assume this effect 
is minor in this study since the majority of  our population is Caucasian (54). Third, 
we cannot differentiate between different SRIs and doses in the analysis because 
of  the limited number of  cases exposed to SRIs and the exploratory nature of  the 
study. The type of  SRI might also be a relevant factor, since SRIs can have different 
pharmacokinetic and pharmacodynamic characteristics. 

The use of  pharmacogenetics as a tool in personalized drug therapy has been studied 
before, but the importance of  this concept among pregnant patients is now taking 
the spotlight (55-58). The pharmacogenetic parameters explored in this study are 
part of  a complex interplay between other genetic variants and environmental factors 
contributing to CHA. Potential gene-gene (G x G) or G x E interaction can occur 
within the maternal or fetal genotypes and also between maternal and fetal genotypes 
(59). Based on our current, still limited, knowledge on the pharmacogenetics of  SRIs, 
we need more genetic studies among pregnant patients with depression in order to 
promote the safest treatment option for both the mothers and their unborn children. 

CONCLUSION 

Maternal use of  SRIs during the first trimester of  pregnancy has long been studied for 
its association with fetal CHA, although the results to date have been conflicting. In 
this exploratory study, we were not able to find significant genetic variations that may 
modulate the risk of  CHA in fetuses that were exposed to SRIs in the first trimester 
of  pregnancy. Nevertheless, we found that polymorphisms of  5-HT receptors may 
play a role. Future studies will need a larger number of  exposed cases, and possibly 
incorporate the effect of  maternal G x E and fetal G x E contribution to CHA. 
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