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The brain is often thought of and talked about as functioning like a computer. In this met-

aphor, memory is clearly the hard drive. Many interesting aspects of human memory are re-

vealed by understanding why this metaphor is fundamentally flawed. Computers save files to 

a specific location on the drive such that storage space decrease with each file that is saved. In 

contrast, human memory actually gets bigger because information is stored in terms of rela-

tionships to existing knowledge. The more knowledge is already encoded, the easier it becomes 

to add more to it. That is why it is easier to learn a new word in a language one already speaks 

– such as gorgonize in English1 – than a single word in a language one is not familiar with. 

However, the amount of information that can be encoded in a human brain is so large that it is 

practically infinite (e.g., Bartol et al., 2015). Furthermore, computers treat all files equally: how 

long it takes to open a file with a name in it does not depend on the name. Human memory, on 

the other hand, is subject to lots of biases: your mother’s name will come to mind much easier 

than the name of the kid two rows ahead in fourth grade (LaBar & Cabeza, 2006).

One aspect in which human and computer memory are comparable is that we can dis-

tinguish between three distinct stages: encoding, storage, and retrieval (Tulving, 1995). Func-

tionally, however, the three stages are fundamentally different. A computer would be use-

less if it did not encode, store, and retrieve data with perfect accuracy. And because of the 

location-specific and content-independent storage in a computer, saving a thousand copies 

of a French word is not different from saving a thousand different French words. Saving an 

additional copy has no effect on the existing copies and retrieving a copy does not alter any 

other copy. Not so in human memory. Storage is inherently interconnected and a thousand 

repetitions of the same French word would strengthen the neural representation of the con-

cept, not create a thousand copies of it. Furthermore, retrieving information from memory 

changes that memory. A memory will be easier to retrieve if it has been retrieved recently 

(van den Broek et al., 2016). This is why retrieval practice is a more effective study strategy 

than re-reading (Karpicke & Roediger, 2008). Conversely, related memories that rely on the 

same cues might become less available – a phenomenon referred to as retrieval-induced for-

getting (M. C. Anderson, Bjork, & Bjork, 2000, 1994). And even though the originally encoded 

information might become unavailable, human memory often fills in the gaps and supplies 

“false memories” (e.g., Brewin & Andrews, 2016; Otgaar, Merckelbach, Jelicic, & Smeets, 2016). 

And more worryingly, people often report inaccurately recalled information with high confi-

dence (e.g., Busey, Tunnicliff, Loftus, & Loftus, 2000).

If a computer routinely provided wrong files without appropriate warning messages, we 

1 verb – gor·gon·ize – \̍gȯr-gə-̩nīz\ – to have a paralyzing or mesmerizing effect on
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would deem it useless, throw it out, and replace it with reliable hardware. We do not have this 

privilege with our wetware, though. A key difference between the two systems is that com-

puters are intelligently designed while memory evolved. As such, memory is adapted to the 

properties of the environment and while forgetting might seem like a nuisance, it can be adap-

tive (Kraemer & Golding, 1997). The world constantly changes and remembering all previous 

instances – for example, all the places you have ever parked your car – would greatly interfere 

with what is currently relevant (e.g., Unsworth, Brewer, & Spillers, 2013). Some aspects of the 

environment follow regularities, though, and it has been argued that memory evolved to mir-

ror these regularities (an approached known as rational analysis; e.g., J. R. Anderson & Milson, 

1989; J. R. Anderson & Schooler, 1991; Pachur, Schooler, & Stevens, 2014; Stevens, Marewski, 

Schooler, & Gilby, 2016). 

Interestingly, memory has evolved to be seemingly infinite yet severely limited. The 

amount of autobiographical events we can recount in vivid detail is astonishing, we can sing 

along to hundreds of songs, can recall countless facts, and have learned hundreds of names 

and faces throughout our lives. And yet it is impossible for most of us to keep more than a 

couple of digits in working memory at the same time (Cowan et al., 2005). Making the most of 

human memory requires understanding “important peculiarities” of the storage and retrieval 

processes (Bjork & Bjork, 1992) and to be aware of its weaknesses and exploit its strengths (see 

Bjork, Dunlosky, & Kornell, 2013 for an excellent review).

Such understanding – just like memory – has many different facets. All investigations into 

the various parts of memory strive to develop theories that give coherent accounts of the 

complex behavioral patterns we observe (e.g., Gabrieli, 1998; Wixted, 2004). All theories have 

competitors and rigorously testing theories’ assumptions and predictors is the core of the sci-

entific method. The more tests a theory passes, the more confidence we put in the theory’s 

predictions. And even though the brain-as-a-computer metaphor is not helpful for memory, 

implementing theories as computational models can be an excellent way to test assumptions 

and generate predictions. 

The first part of this thesis applies the predictions of a prominent theory of declarative 

memory to improve learning and the second part of this thesis tests a specific assumption 

prevalent in the visual working memory literature.

Part 1: Studies on personalized fact-learning
An adaptive fact-learning system is a computerized learning environment in which learn-

ers can study a set of facts in a way that is tailored towards their particular strengths and 

weaknesses. Ideally, such a system can estimate – in real time – how well each learner has 
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mastered each fact in the set and adjust the order in which facts are presented for review dy-

namically. The goal is to adapt to the learners’ needs and provide a personalized learning ex-

perience that yields better long-term retention of the studied material than a one-size-fits-all 

approach would. The crux, of course, is the way the computerized system probes the current 

state of the learner’s memory to learn how well individual facts have been mastered and how 

that information is used to devise a personalized learning schedule on the fly.

Chapter 2 opens with the main motivation behind developing an adaptive fact-learning 

system that incorporates response latency instead of relying solely on the accuracy of re-

sponses: If only accuracy is used to gauge how well each fact has been learned, a fact-learning 

system has to ensure a sufficient number of errors to assess how well facts are known. This 

need for errors is greatly reduced if an alternative measure of memory strength can be used. 

Response latency can serve as such a measure. After outlining the adaptive fact-learning sys-

tem that incorporates both accuracy and response latency, this chapter presents the results 

from an experiment demonstrating that the model outperforms a study method often used by 

students: flashcards. More specifically, the model is pitched against a “smart” flashcard sys-

tem – essentially a control condition with high face validity – in a within-subject design: each 

participant studied a set of foreign vocabulary with both methods. The statistical analyses 

confirm that many participants benefit from studying with the adaptive system relative to the 

flashcards, especially low-performing learners.

Chapter 3 zooms in on the model parameter that makes the adaptive learning system 

adaptive. The theoretical framework is presented again to highlight the crucial role that the 

model’s decay parameter plays in tracking the memory strength of each fact during learning. 

The reported experiment was designed to shed light on a specific question with regard to the 

model’s parameter: if a parameter is estimated for a given participant while learning one type 

of material, how reliable is that estimate? This question has two important dimensions: how 

stable is the parameter over time – that is, when the parameter is estimated while learning one 

type of material this week, how similar will a parameter estimate be when estimated from the 

same type of material a week later? – and how stable is the parameter over materials – that is, 

how similar will parameter estimates for the same person be between different types of mate-

rials. The main finding is summarized in the title of the article that this chapter was published 

as: “An individual’s rate of forgetting is stable over time but differs across materials”.

In previous studies, we have observed a very high correlation between the parameters 

extracted from the model at the end of the learning session and delayed recall performance 

on the studied material. This is both interesting and potentially very useful because it implies 

that we can predict how well a learner will perform on a delayed test purely based on their 
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performance while studying the material. We were wondering whether the model param-

eter we estimated during learning truly reflected a marker of someone’s ability to encode 

and retrieve the studied material or whether the parameter was merely an artifact of a more 

general property of the learner. Therefore, we set out to test whether the estimated rate of 

forgetting of a learner is related to two commonly used and validated measures of cognitive 

functioning: working memory capacity and general cognitive ability. That is, while Chapter 3 

focuses on the “internal consistency” of the estimated model parameter, Chapter 4 looks at the 

relationship between the model’s parameter with two “external” constructs. Two important 

conclusions can be drawn from the data presented in Chapter 4: first, we replicate earlier ob-

servations and find a very high, negative correlation between the estimated rate of forgetting 

and subsequent delayed recall performance; both with a delay of 80 minutes and three days. 

This implies that the model parameter is a good indicator of future test performance. And 

second, we show that the estimated rate of forgetting is not significantly correlated with either 

working memory capacity or general cognitive ability. Furthermore, the analyses presented 

in Chapter 4 show convincingly that in the tested sample, neither of the two “external” mea-

sures predicts significant amounts of variance in delayed recall and that the model’s parame-

ter is the single best predictor of future test performance.

In summary, the first part of the thesis introduces an adaptive, theory-based fact-learning 

system. We show that the system works better than a method that many students report using: 

flashcards. Then the parameter underlying the adaptive mechanism at the core of the model 

investigated more closely and we find that it is stable over time within a learner, strongly re-

lated to delayed recall of studied material, and not related to either working memory capacity 

or general cognitive ability. Overall, the work report in Part 1 of the thesis implies that the rate 

of forgetting can be estimated reliably, can distinguish between learners that are likely to have 

mastered the studied material and those that are not, and that it is an independent, useful 

measure of individual differences in the context of an adaptive learning environment.

Part 2: A study on visual working memory
We perceive the world through different modalities and can keep incoming information 

in working memory for short durations. One on-going discussion in cognitive psychology is 

the nature of working memory as a whole and how to estimate specific parts of it. (Whether 

those parts even exist is also part of the discussion.) One potential problem we face if we want 

to study visual working memory is that participants in our experiments might see, say, a red 

square but instead of remembering the red square as a visual percept, they might recode it by 

rehearsing, quietly to themselves, “red square, red square, red square”. A potential problem 
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with this approach – especially in the framework of the influential multi-component model of 

working memory – is that participants are effectively using both their visual and their verbal 

memory resources to store the stimulus. This makes it impossible to get a clean estimate of the 

part of someone’s memory that is purely visual.

The way to fix this problem is usually to enforce what is known as articulatory suppres-

sion: the participant is required to repeat out loud a series of non-sense syllables so that their 

verbal resources cannot be recruited to store the percept of the red square and they have to 

rely solely on their visual working memory. To the dismay of both participants and research-

ers, the use of articulatory suppression is common practice – it is inconvenient and awkward 

for everyone involved. 

Various studies cast doubt on whether the distinction between verbal and visual resources 

is meaningful and, by extension, whether articulatory suppression is necessary. In Chapter 5, 

we report findings from an experiment specifically designed to test this idea. We had partici-

pants perform a visual change detection task to assess their visual working memory capacity. 

Each participant performed the task under different conditions that were designed to make it 

either very easy to recruit potential verbal resources (stimuli were presented sequentially and 

no articulatory suppression was required) or very hard to recode the visual material (stimuli 

were presented simultaneously and articulator suppression was required).

The collected data was subjected to a Bayesian state-trace analysis and were found to 

provide very strong evidence in favor of the statistical model that assumes only a single un-

derlying resource. That is, the data presented in Chapter 5 strongly suggest that articulatory 

suppression is not necessary to obtain an unbiased estimate of a participant’s visual working 

memory capacity. By extension, this implies that – at least in the setup used here – it is unlikely 

that multiple working memory components are at play.

We hope that fewer researchers in the future will be required to listen to a participant 

mumbling “da da da da” for extended periods of time. 

Taken together, the studies in Part 1 demonstrate that the adaptive fact-learning model 

outperforms a traditional flashcard method. The parameter extracted from the model is sta-

ble over time and is not merely an artifact of attentional control and cognitive functioning. In 

the final chapter, we will discuss in more detail how the estimated rate of forgetting relates to 

delayed recall performance, how useful it is as an individual differences measure, and poten-

tial future developments of the model. The work presented in Chapter 5 suggests that articu-

latory suppression is not necessary to obtain unbiased estimates of visual working memory 

through visual change detection tasks.
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Abstract
To learn effectively, students should exploit techniques that are known to enhance reten-

tion, such as the spacing and retrieval practice. However, self-reported study behavior often 

does not include such techniques. Computerized learning systems can incorporate effective 

techniques and help students to use their study time efficiently by tailoring the session to 

their needs based on information gathered during study. To determine whether such adaptive 

methods should be used instead of those commonly employed by students – primarily flash-

cards – requires testing their effectiveness relative to current methods. Here, we present data 

from a within-subject experiment contrasting an adaptive method with a traditional flash-

card method. Statistical analyses reveal that students generally benefit from using the adap-

tive method, both in their performance during study and on subsequent tests of the studied 

material. The differences in the methods resulting in this benefit are discussed in detail and 

possible extensions of the current work are proposed.
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Ever since the earliest systematic investigations of learning, we have known of a phenom-

enon referred to as the spacing effect: we learn more material when study time is distributed 

over multiple sessions (see Dempster, 1988; Donovan & Radosevich, 1999; Rohrer, 2015 for 

reviews). The optimal schedule for multiple study sessions depends on the time between the 

last study session and the moment of the test (Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008; 

Mozer & Lindsey, 2016). Surveys showing that students gravitate towards massing their prac-

tice (e.g., Taraban, Maki, & Rynearson, 1999) suggest that the benefit of the spacing effects is 

not exploited by students (Dempster, 1988).

In most studies of the spacing effect, a test is administered to assess retention of studied 

material after a delay. However, it was discovered early on that testing itself improves learn-

ing (Gates, 1917; Spitzer, 1939), a phenomenon that is still a highly relevant topic of research 

today (Karpicke & Roediger, 2008). This testing-induced benefit on long-term retention is re-

ferred to as the testing effect (van den Broek et al., 2016). The testing effect is most pronounced 

if retrieval attempts are successful (Carrier & Pashler, 1992) but no benefit is observed for 

non-retrievable items (Jang, Wixted, Pecher, Zeelenberg, & Huber, 2012). Furthermore, testing 

is especially effective when retrieval is difficult (Gardiner, Craik, & Bleasdale, 1973; Karpicke & 

Roediger, 2007; Pyc & Rawson, 2009). These constraints make clear when the optimal time for 

a testing event would be: not too close to the initial learning (to maximize spacing and produce 

“desirable difficulties”, Bjork, 1994) but not too long after initial learning either to ensure that 

items are still retrievable. 

Determining the optimal moment for a repetition is therefore dependent on knowing how 

well something has been learned (i.e., how retrievable a certain information is). However, 

making accurate judgments of learning is difficult, especially if they involve predictions re-

garding the retrievability of learned information in the future (see Bjork et al., 2013 for a 

review). Exploiting our theoretical knowledge in practice would also require that students are 

aware of effective study methods and use them. However, they are often not aware of them 

(Hartwig & Dunlosky, 2012; Kornell & Son, 2009; McCabe, 2011) and do not use them (Carrier, 

2003; Karpicke, 2009; Karpicke, Butler, & Roediger, 2009; Kornell & Bjork, 2008b). For example, 

McCabe (2011) reports that students believe re-reading is a more effective study strategy than 

self-testing and Kornell (2009) demonstrates that even though spacing produced better learn-

ing outcomes than massing for 90% of the participants, 72% of those participants believed the 

opposite when asked after learning.

One study method that many students report using is flashcards (Wissman, Rawson, & 

Pyc, 2012), cards containing small bits of information (such as the definition of a term) used 

as a study and memorization aid. However, flashcards – even if combined with self-testing – 
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are often not ideal because students tend to opt for spacing intervals that are too short (Pyc 

& Dunlosky, 2010; Taraban et al., 1999; Wissman et al., 2012). This not only means that they 

do not take optimal advantage of the spacing effect but it also produces stronger feelings of 

familiarity (or retrieval fluency) with the material (Benjamin & Bjork, 1996; Matvey, Dunlosky, 

& Guttentag, 2001), which is not necessarily a good indicator of having mastered the material 

(Jacoby, Kelley, & Dywan, 1989; Kelley & Lindsay, 1993). This will lead a student to forfeit ad-

ditional repetitions due to familiarity-induced, overconfident judgments of learning (Bjork et 

al., 2013).

Therefore, it would be desirable to provide students with the opportunity to circumvent 

biased meta-memory judgments and teach them to self-regulate their learning. One way could 

be through educating students about effective study techniques (de Boer, Donker, & van der 

Werf, 2014; Donker, de Boer, Kostons, Dignath van Ewijk, & van der Werf, 2014; Dunlosky, 

Rawson, Marsh, Nathan, & Willingham, 2013). Additionally, students could be supplied with 

tools to help them schedule the introduction of new material and repetitions of old material. 

The most promising tool would be computerized learning environments that exploit our the-

oretical understanding of human memory to devise a learning schedule that is as close to op-

timal as possible. Achieving this goal requires potential learning environments to be adaptive 

because the needs of individual learners vary: A schedule that is optimal for a high-perform-

ing learner with prior knowledge is not optimal for a low-performing learner with no prior 

knowledge, for example.  

Here, we will focus specifically on scheduling repetitions of items within a single study ses-

sion because students often report studying the night before a test (e.g., Taraban et al., 1999). 

Ideally, students would space their learning over multiple session leading up to the test but 

since they typically do not, providing them with information about how to study effectively 

(Putnam, Sungkhasettee, & Roediger, 2016) and supplying them with tools that fit their needs 

will have to suffice.

A promising path towards an adaptive system is via retrieval practice (e.g., Roediger & But-

ler, 2011). Rather than passively re-reading the to-be-remembered material, each repetition 

during retrieval practice is a test event that requires actively retrieving the answer from mem-

ory. This not only boosts retention by exploiting the testing effect but has an additional benefit: 

The probability of a successful retrieval decreases as a function of time (Wixted & Carpenter, 

2007) and through continuous testing, the learner’s current knowledge state can be assessed 

(Mozer & Lindsey, 2016). That is, we can use an observable behavior – a learner’s response to a 

cue – to learn about the (unobservable) memory strength of an item. Many models developed 

to optimize fact learning use this basic idea by making each trial a test and using the response 
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to schedule subsequent trials (Atkinson, 1972; Lewis, Lindsey, Pashler, & Mozer, 2010; Mettler, 

Massey, & Kellman, 2011; Pavlik & Anderson, 2008; Woźniak & Gorzelańczyk, 1994).

However, using only accuracy information from each trial to personalize the sched-

uling of a learning session poses a potential problem: To discriminate between easy and 

difficult items, the system has to ensure a sufficient number of errors. Systematically 

producing errors is not optimal, though, because learners do not benefit from the testing 

effect if they cannot retrieve the item (Jang et al., 2012) and an opportunity to re-study 

is necessary after retrieval failure to enable subsequent testing events. The optimal du-

ration of such corrective feedback is about four seconds (de Jonge, Tabbers, Pecher, & 

Zeelenberg, 2012; Zeelenberg, de Jonge, Tabbers, & Pecher, 2015) – time that could other-

wise be spent on additional, more effective testing events. Consequently, errors should 

be avoided if possible.

Luckily, each trial contains at least one additional piece of information besides accuracy: 

response latency. The assumption is that there is a link between how quickly a learner can 

respond to a prompt and how strong the memory trace for that particular item is at that point 

in time. Strength theory assumes such a link (Murdock, 1985; Norman & Wickelgren, 1969) 

but the idea is still present in more recent work. For example, Madigan, Neuse and Roeber 

(2000) report experimental data supporting the link, and converting observed reaction times 

to estimated memory strength (and estimated memory strength to predicted reaction times) 

is a core function of ACT-R’s declarative memory (J. R. Anderson et al., 2004). With regards to 

fact learning, Mettler et al. (2011) have shown that an adaptive learning system based on both 

accuracy and latencies outperforms one that only incorporates accuracy, which suggests that 

latency provides useful information on a trial-by-trial basis (Mettler & Kellman, 2014). More 

generally, Van den Broek and colleagues suggest that testing strengthens the cue-response as-

sociation more than re-studying (van den Broek, Takashima, Segers, Fernández, & Verhoeven, 

2013) and, more specifically, that the response latency can serve as a proxy for the strength of 

that association (van den Broek, Segers, Takashima, & Verhoeven, 2014). Thus, a system that 

seeks to improve the computation of an optimal schedule of practice might be improved by 

incorporating both the accuracy and the response latency recorded for each retrieval attempt. 

Taken together, it seems likely that theory-based adaptive fact-learning systems could 

have a number of advantages over methods typically employed by students, particularly 

flashcards. First, they could maximize retrieval practice. Students report creating flashcards 

to study but often use self-testing as an assessment tool, not as a study strategy (Hartwig & 

Dunlosky, 2012; Karpicke et al., 2009; Kornell & Son, 2009; McCabe, 2011). Second, they can 

keep accurate records of response-related measures such as accuracy and latency rather than 
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relying on students’ subjective judgments of learning or feelings of familiarity. Third, using a 

theoretical framework that allows incorporating those recorded measures to devise person-

alize learning schedules circumvents biased judgments of learning and, ideally, can provide 

unbiased estimations of mastery. 

Evaluating whether an adaptive fact-learning system that utilizes these principles actually 

produces better learning outcomes requires comparing it against a criterion. Relatively smart 

flashcard systems provide a good benchmark because they have high face validity. Demon-

strating experimentally that a candidate system produces better results than the default study 

method of many students (e.g., Wissman et al., 2012) provides a natural threshold for calling 

an adaptive method effective.

Here, we present data from a within-subject experiment that directly compares an adap-

tive system that makes use of response latencies with a traditional flashcard system1. Specif-

ically, we will test how studying with the adaptive system affects the proportion of correct 

responses during learning and on two subsequent tests. In other words, how using the adap-

tive system affects both the process and the outcome when studying with the adaptive system 

rather than flashcards.

MethodS

Study Methods
Participants studied word pairs with two methods: an adaptive method and digital flash-

cards. It is important to note that the two methods only differed in the scheduling of the items 

(discussed in the next sections) but otherwise looked the same. We will describe these meth-

ods in detail2 because they determine the order in which participants studied and repeated 

items during the 20-minute learning sessions. Both methods used the same presentation pro-

cedures. The first encounter of an item was always a study trial that featured the Swahili word 

along with the English translation and an input field. The participant had to type in the English 

1 Technically, both of these systems could be called flashcard systems. The graphical interface does not differ 
between the systems and the presentation style is akin to digital flashcards. What differs is only the algorithm 
determining the order of repetitions. We refer to them as “the adaptive system” and “flashcard system” because 
the emphasis in the former is on the adaptive nature of the underlying algorithm, while the emphasis in the latter is 
emulating traditional flashcards as often used by students.
2 This description is largely taken from a manuscript that is currently in preparation and will combine the experiment 
reported in this chapter along with the one reported in Chapter 4 and an additional study conducted under realistic 
conditions in high school classrooms.
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translation and press Enter to proceed. All subsequent repetitions of that particular item were 

presented on test trials that presented the Swahili word and showed an input field but not of 

the English word. If a correct response was entered, the test trial was followed by a 600 ms 

feedback screen displaying “Correct!”. If the response was incorrect, a study trial without the 

input field was presented for four seconds along with the feedback “Incorrect!”. 

The Adaptive Method. The adaptive method is based on the ACT-R theory’s declarative mem-

ory (J. R. Anderson, 2007). In this framework, each studied word pair is encoded in memory 

and has a memory trace associated with it. The trace’s activation changes as a function of 

usage: Activation will be high if the word pair has been retrieved recently and decays as a 

function of time and previous encounters. The decay (di,j) of a particular trace (j) of an item (i) 

depends on an item’s activation (Ai) at the time of the trace’s instantiation (tj), modulated by a 

scaling parameter (c, fixed at .25) plus a constant intercept (a): 

di,j  = ce             + ai

On the first encounter of each word pair, the decay will be identical to the intercept α (set to 

0.3) because the activation is set to -∞ initially. This equation implies that if a study item (i) is highly 

activated (i.e., has a relatively high Ai) when a presentation of that study item is encountered (tj), 

the new trace (j) will be associated with a high decay value (di,j). On the other hand, if activation 

is low, decay will also be relatively low. As activation is assumed to decrease with time, increased 

spacing will result in lower decay values, potentially resulting in better later recall (Pavlik & An-

derson, 2005). The combination of decay values and the distribution of previous presentations (n) 

of a study item over time (tj) determine the activation value of that study item at time t:

As explained in the Introduction, the goal of an adaptive learning environment should 

be to estimate – for every learner, for every item they study – the optimal time when a mem-

ory query yields maximum benefits in terms of the spacing and testing effects. This activa-

tion-based framework provides an opportunity to do exactly that: The system keeps track of 

the estimated activations of all word pairs that have been presented in the current session. 

At the start of each trial, the system assesses if any word pairs have an activation below the 

retrieval threshold (t, set to -0.8) or an activation that is estimated to drop below the retrieval 

threshold during the next presentation (assuming a presentation duration of 15 seconds). If 

so, the system selects the word pair with the lowest activation. If the activation of all word 

pairs is expected to be above the retrieval threshold, a new word pair is chosen randomly and 

presented to the participant. 

Ai(tj )

Ai(t) = In 
n; tj<t

j=1

(t - tj)S( )-di,j
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Although the activation of a memory trace for a given word pair is a theoretical construct, 

activation can be mapped to an observed variable as Anderson et al. (2004) proposed a link 

between memory activation and response latency: The expected response latency of an item 

(Li) at time t can be computed using: 

Li(t) = Fe                    + fixed time cost

in which F is a scaling parameter set to 1. As we did not model variations in perceptual 

and motor action required to perceive the stimulus and type the first word, we set the fixed 

time cost parameter to 300 ms for all items and participants – assuming 100 ms for perceptual 

encoding and 200 ms for the initial motor response (Byrne & Anderson, 1998) – for cues that 

contain only a single word (as in the experiment reported here). If the cue has more than two 

words, the fixed time costs are (-157.9 + 19.5x), where x is the number of characters in the cue. 

However, the fixed time costs cannot be less than 300 ms.

Every time a response is collected, the system calculates the difference between expected 

and observed response latency and a binary search is performed to minimize the absolute dif-

ference between the predicted and observed response latencies across the last five encounters 

of the item. The boundaries for the binary search are the current a and the current a ± 0.05 to 

dampen the effect of extreme differences in expected and observed latency and to ensure a 

gradual adaptation. If an incorrect or no response was given, the observed response latency 

is replaced with the latency that would be expected if the activation had been 1.5 times the 

activation at the retrieval threshold. This dynamic adjustment of the α parameter is done for 

each item individually.

In summary, the equations outlined here can be used to ensemble an adaptive learning 

system that estimates the strength of the memory trace associated with each studied item 

and updates its estimate based on the accuracy and latency of the learner’s incoming re-

sponses. In practice, the system will start a study session by selecting a random word pair 

and presenting it on a study trial. On every subsequent trial, the system goes through the 

following steps: the activation 15 seconds from now is calculated for all items that have al-

ready been presented. If any item’s estimated activation is expected to be below the retriev-

al threshold, that item (or the one with the lowest estimated activation if there are multiple) 

is presented on a test trial. The expected latency will be compared to the observed latency 

to update the model’s parameters. If any time is left, the same procedure starts again. If 

the estimated activation of all items that have already been encountered is still above the 

retrieval threshold 15 seconds from now, the model will select a new item randomly and 

present it on a study trial. If there are no new items left, the model selects the item with 

the lowest estimated activation regardless of whether the activation is below the retrieval 

-Ai (t)
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threshold or not. As a result, the study time can expire before the participant has been in-

troduced to all items in the set. 

Flashcards. In the flashcard condition, the list of word pairs was divided into “stacks” of 

five. All items in a stack were presented a single time on study trials, one after another. Next, 

items from the same stack were presented again on test trials. If a response on a test trial was 

incorrect, the associated word pair was added to the end of that stack. Correctly answered 

items were removed from the current stack. The system only commenced to the next stack of 

five after all word pairs in the current stack had been correctly responded to once. After all 50 

items (i.e., ten stacks) have been completed, the participant started with the first again until 

the time was up. Each time a new stack was presented, the order of the items in that stack 

was randomized but the items making up each stack remained the same. Note that this setup 

results in closely spaced repetitions when a response is incorrect (at most four responses be-

fore a repetition), and widely spaced repetitions if a response is correct (at least [total number 

of items] – [stack size] = 45  trials but probably more assuming that errors were made which 

would add additional intervening trials). 

Participants
A total of 53 participants were recruited through a local social media group and were paid 

€10 for compensation. One participant was excluded because the wrong tests were adminis-

tered in both sessions. Therefore, data on the test performance for this participant was not 

available and the participant was excluded from all analyses. 

Of the remaining 52 participants, 36 were female (69%) and the median age was 22.5 

(SDage = 2.82; rangeage = [18, 29]). Most (37) indicated no familiarity with Swahili but 15 in-

dicated minimal familiarity – most likely because they have participated in experiments 

that used a different sets of Swahili stimuli earlier in the semester. All participants gave in-

formed consent in line with the approval of the study by the Ethics Committee Psychology 

(ID: 15161-NE+PPP). 

design, Stimuli, and Procedure
Each participant came in for two 90-minute sessions. In the first session, they studied with 

both the adaptive method and the flashcard method outlined above. The order of the study 

conditions was counterbalanced between participants using the parity of random participant 

IDs. The studied stimuli were the 100 Swahili-English word pairs reported in Nelson and Dun-

losky (1994). For each participant, the 100 stimuli were randomly split in two sets, one as-

signed to the adaptive and one assigned to the flashcard method.
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At the beginning of the first session, participants signed an informed consent form and 

completed a short questionnaire regarding demographic information. Then they began the 

first 20-minute study session of the first random subset of 50 Swahili-English word pairs. The 

study session was followed by a 15-minute break during which participants played Tetris. 

The break was followed by a test of the word pairs. The test was a list of all 50 items that par-

ticipants could have encountered during the study session and they were asked to provide 

answers to as many as items as possible without a time limit. No feedback was provided. After 

completion of the test, the participants went through the same study-break-test cycle again, 

this time studying with the other method.

At the beginning of the second experimental session, exact copies of the two tests 

taken during the initial 90-minute session were administered. Thus, each participant was 

tested on all potential items twice. The retention intervals ranged from 3 to 17 days with 

a mean of 7.5 days (SD = 2.12; 78% of the retention intervals were between 6 and 8 days). 

Participants spent the rest of the second session completing an unrelated experiment 

based on a variation of an attentional blink task. The outcomes of this task will not be 

discussed here. 

ReSultS

The main questions were (1) whether the performance on the tests varied as a function 

of the study method and (2) which method produced fewer errors during learning. Not all 

items were necessarily studied by every participant (especially in the adaptive condition) 

but for items that were, we have information regarding the proportion of correct responses 

to test trials during study. Regardless of whether items were studied, we have information 

about whether an item was answered correctly on the two tests. To address the two ques-

tions, we fit mixed-effects regression models to the item-level data (instead of aggregates 

per participant) and determined the best-fitting model for each of the two outcome mea-

sures. In both analyses, the effect of study method is most relevant to evaluate the research 

questions but other predictor variables and possible interactions were also added to test 

for their potential influence.

Bayesian statistics offer various conceptual and practical advantages over null-hypothesis 

testing (e.g., Wagenmakers, Morey, & Lee, 2016) but current software packages do not offer the 

ability to fit logistic regression models, yet. For the sake of consistency, we will fit both the logistic 

and the linear mixed-effects regression models using the lme4 package (Bates, Mächler, Bolker, & 
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Walker, 2015) in R (R Development Core Team, 2016)3 and approximate Bayes factors for model 

comparison from the output they provide. The best-fitting models were determined by fitting 

the full model first (i.e., the model including all predictors and all their interactions) and then 

removing fixed effects in a step-wise procedure. When removing effects, we started with the 

highest-order interactions and proceeded to the lower-order interactions and finally the main 

effects (Gelman & Hill, 2007). If multiple interactions of the same order were present, the one with 

the lowest absolute t- or z-value was removed first. At every step of the procedure, the simpler 

model was evaluated against its more complex predecessor by comparing models’ Bayesian in-

formation criteria (BIC) to approximate Bayes factors (as advocated by Wagenmakers, 2007; see 

equation 10 specifically). The Bayes factors express how likely one model is relative to another 

given the data and provide an intuitive interpretation of the strength of the evidence (Kass & Raf-

tery, 1995). If the Bayes factor for a comparison was inconclusive, the AIC and Chi-squared tests 

were consulted to determine whether using the more complex model was justified.

Performance on the tests
All participants were asked to provide an answer to all items on both tests, independent 

of whether they practiced the item during the learning phase. The scores on all items were 

included in the following analysis. Alternatively, one could only include the items that par-

ticipants actually studied. However, due to the way new items were introduced, this would 

bias the analysis strongly in favor of the adaptive method, which only introduces new items 

if previous items are estimated to be learned well, whereas participants are much more likely 

see all 50 items when studying with flashcards. Only introducing new items when previously 

introduced items have a sufficiently high activation is an inherent part of the algorithm (as 

outlined in the sub-section The Adaptive Method above; also see the Discussion). If introducing 

the possibility that some learners will not see all items is a good strategy, their performance 

should benefit from it in absolute terms. Therefore, we included all items in the test perfor-

mance analysis in both conditions.

A visual overview of participants’ performance is provided in Figure 2.1. Logistic mixed-ef-

fects regression was used to predict whether an item was answered correctly on the test. The 

study method, order, session, and retention interval were used as predictors. The predictors 

session and order were contrast-coded (specifically, session = {-0.5 = first session; 0.5 = second 

3 Alternatively, we could have fit the logistic mixed-effects regression using lme4 and the linear mixed-effects 
regression using BayesFactor (R. D. Morey & Rouder, 2015b). We verified that fitting the linear models using 
BayesFactor yields the same best-fitting model (see supplement at www.osf.io/3g6pq ) but opted to report the 
results from lme4 for consistency’s sake.
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session} and order = {-0.5 = started with flashcards; 0.5 = started with adaptive method}) and 

the predictor retention interval was centered by subtracting the median retention interval of 

7 days. Study method was coded as {0 = flashcards; 1 = adaptive method}. This coding makes 

the interpretation of the model’s coefficients straightforward: The intercept will yield the pre-

dicted probability of answering an item correctly on the test for a participant that studied with 

flashcards, independent of the order and session for the median retention interval. The coeffi-

cient for study method expresses the main comparison of interested: the change in predicted 

probability when studying with the adaptive method rather than flashcards, independent of 

the other predictors. 

All models also include random intercepts for participants and items to capture variance 

associated with differences between learners and item difficulty that are unrelated to the pre-

dictors included in the model. As we are only interested in the group-level effects, we will 

only discuss the fixed effect The best-fitting model was determined using the model selection 

procedure outlined above. 
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Figure 2.1. Test performance as a function of session, study method, and order. Each semi-transparent point 

shows a participant’s proportion of correct responses on the test across all items in each condition and is color-

coded based on the method that each participant started with (i.e., order). For each participant, performance 

on items studied with the two study methods is plotted against each other to show the relative difference 

performance.Consequently, points falling above the diagonal line indicate that a participant’s score on the test 

was higher after studying with the adaptive method than after studying with the flashcard method. 
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The effect we were primarily interested in is that of study method. The results listed in 

Table 2.1 show that studying with the adaptive method has a significant, positive effect on 

test performance independent of session and order for a median retention interval. Overall, a 

participant’s probability of answering an item correctly is 0.32 when studying with flashcards 

and 0.38 when studying with the adaptive method4. This effect should be interpreted consider-

ing the significant interaction between study method and session, though: the difference in test 

performance is much larger in the first session than in the second. More specifically, assuming 

a retention interval of 7 days, the predicted probability of answering an item correctly on the 

first test is 0.605 for someone studying with flashcards and 0.693 for someone studying with 

the adaptive method – a difference of about 10% in test scores. This difference decreases to 

less than 1% in the second session (i.e., to 0.133 and 0.141, respectively). 

The main effect of retention interval indicates that longer intervals between the first and 

second session affect recall negatively. Keeping all other predictors constant, the expected de-

crease in the probability of answering an item correctly in the second session is 0.013 for 

4 Since this is a logistic regression, these numbers were computed by taking the inverse logit of the sum of the 
relevant coefficients. For example, logit-1(-0.747) = 0.32 and logit-1(-0.747 + 0.255) = 0.38.

The best-fitting model contained the all four main effects and the two second-order inter-

actions listed in Table 2.1 and the approximated Bayes factor indicates that it is 35,738 times 

more likely than the full model given the data. The best-fitting model is only 1.8 times better 

than the next best model (that does not contain the interaction between study method and 

session) according to the approximated Bayes factor but both the differences in AICs (9131.6 

vs. 9123.3) and the Chi-squared test (χ2(1) = 10.4 with p = 0.001) favor the more complex model 

summarized in Table 2.1.

table 2.1. Estimated coefficients of best-fitting logistic regression model to predict accuracy of responses on the two tests.

estimate Std. error z-value p-value

Intercept -0.747 0.218 -3.4 <0.001

Study method 0.255 0.055 4.6 <0.001

Ordera 0.829 0.420 2.0 0.048

Sessiona -2.262 0.084 -26.9 <0.001

Retention intervalb -0.115 0.029 -4.0 <0.001

Study method * session -0.354 0.110 -3.2 0.001

Retention interval * ordera -0.356 0.058 -6.1 <0.001

Note: a = variable was contrast-coded; b = variable was centered.
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every additional day between the study phase and the test. This effect interacts significantly 

with order such that someone studying with flashcards can expect a decrease of 0.040 for each 

additional day since studying if they started studying with flashcards. If they started studying 

with the adaptive method, on the other hand, they can expect their performance to decrease 

by 0.079 for each additional day since studying.

In summary, the analysis of the test performance data shows that there is a substantial 

effect of study method. The overall benefit of studying with the adaptive method as well as 

the interaction with session are also apparent in Figure 2.1: Most participants perform better 

on the first test when studying with the adaptive method than with flashcards (i.e., there are 

more points above the diagonal line in the left panel) but this benefit is diminished on the test 

in the second session. The analysis also suggests that an extension of the retention interval gen-

erally decreases the probability of answering an item correctly but that participants starting 

with the adaptive method are affected about twice as much as those starting with flashcards.

Performance during studying
Not all items were studied by all participants, especially when using the adaptive system. 

For items that were studied, the number of repetitions per item and the proportion of correct 

responses during learning were recorded. An overview of the data is provided in Figure 2.2. 

To test whether the proportion of correct responses during learning differs between the two 

study methods, the best-fitting linear mixed-effects regression was determined as described 

above. The included predictors were study method, order, and repetitions and random inter-

cepts were added for participants and items again. As in the first analysis, the predictor order 

was contrast-coded as {-0.5 = started with flashcards; 0.5 = started with adaptive method} and 

study method was coded as {0 = flashcards; 1 = adaptive method}. The additional predictor 

repetition indicates how many test trials a participant completed for each item. The mean 

number of repetitions across all participants and conditions was five and the predictor was 

centered by subtracting this average.

 The best-fitting model includes all three main effects and the three second-order inter-

actions. Its fixed effects are summarized in Table 2.2. According to the approximated Bayes 

factors, the best-fitting model was 62.9 times more likely than the full model given the data but 

only 1.2 times more likely than the model that did not include the interaction between order 

and repetitions. The more complex model was considered the best-fitting because both the 

Chi-squared test (χ2(1) = 7.94 with p = 0.005) and the AICs (-4652.4 vs. -4658.3) favored the more 

complex model listed in Table 2.2.
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The coding of the predictors ensured that the estimated coefficient for study method ex-

pressed the change in proportion correct during learning for an item with an average number 

of repetitions independent of order for a learner studying with the adaptive method rather 

than flashcards. Overall, the expected proportion of correct responses during learning is .672 

when studying with flashcards (i.e., the model’s intercept) and the proportion increases by 

.197 (i.e., the main effect of study method) to .869 when studying with the adaptive method. 

One interesting pattern emerges from the interaction between study method and repetitions: 

The coefficient for the main effect of repetition and the one for the interaction between study 

method and repetition almost cancel each other out (i.e., -0.09 vs. 0.08, respectively). This 

means the proportion of correct responses for a participant studying with flashcards is ex-

pected to decrease as the number of repetitions increases (because study method = 0) while the 

expected proportion of correct responses for a participant studying with the adaptive system 

will hardly be affected by the number of repetitions. For example, ignoring the effect of order, 

the predicted proportion decreases from .67 to .22 when the repetitions increase from 5 (the 
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Figure 2.2. Performance during learning as a function of study method and order. Each point indicates a 

participant’s proportion of correct responses across all items when using the two study methods and are color-

coded based on which condition that particular participant started with (i.e., order).
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average) to 10 for a flashcard learner. For someone studying with the adaptive system, the 

same change is much less extreme: from .87 to .82.

table 2.2. Estimated coefficients of best-fitting model to predict the proportion of correct responses during learning.

estimate Std. error t-value p-value

Intercept 0.672 0.016 42.9 <0.001

Study method 0.197 0.005 40.3 <0.001

Ordera 0.041 0.031 1.3 0.191

Repetitionsb -0.090 0.002 -46.0 <0.001

Study method * order -0.051 0.010 -5.4 <0.001

Study method * repetitions 0.080 0.002 37.8 <0.001

Order * repetitions -0.004 0.002 -2.8 0.005

Note: a = variable was contrast-coded; b = variable was centered.

The predictor study method also interacts significantly with order such that the proportion 

of correct responses is generally lower when studying with flashcards but the exact difference 

between study methods (i.e., the benefit of the adaptive method) depends on order. An aver-

age participant starting with flashcards can expect their proportion of correct responses to 

increase from 0.69 to 0.86 when switching to the adaptive method (a difference of 0.17; for an 

average number of repetitions). Conversely, if the same hypothetical participant had started 

with the adaptive method, they could expect their performance to drop from 0.87 to 0.65 – a 

difference of 0.22 – when switching to flashcards (for an average number of repetitions again). 

While the main effect of order is not significant by itself, it does interact significantly with 

repetitions. The negative effect that more repetitions have on the proportion of correct responses 

during learning is slightly larger (0.004, see Table 2.2) for a learner that starts with flashcards. 

For example, for someone studying with flashcards who started with flashcards, the expected 

proportion of correct responses drops by 0.092 for every additional repetition while the same 

decrease is 0.088 (i.e., a difference of 0.004) had they started with the adaptive method.

In summary, the linear mixed-effects regression highlights the benefit of the adaptive meth-

od relative to flashcards on the proportion of correct responses while studying, an effect also 

evident in Figure 2.2. The effect of the number of repetitions interacts significantly with study 

method such that additional repetitions have a large negative effect on expected performance 

during learning when studying with flashcards but the decrease is markedly smaller when using 

the adaptive method. This difference is slightly amplified for participants that started with flash-

cards, as indicated by the significant interaction between order and repetitions.
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descriptive analysis of performance differences between the study methods 
The overall advantage of the adaptive method revealed by the previous two analyses is 

closely linked to four measures that capture performance during learning: the time spent re-

ceiving feedback, the total number of trials completed in the 20-minute study phase, the aver-

age response times on test trials, and the mean number of repetitions per item (see Figure 2.3). 

All four measures are closely interconnected and any difference in the measures between the 

study methods is a result of how the introduction of new items and the repetition of old items 

is implemented in the two methods. The current experiment was not designed to disentangle 

which of these factors has a unique or dominant influence on the improved performance 

(both during learning and on subsequent tests) but it is nevertheless interesting to consid-

er how they interact to appreciate how better outcomes emerge in the adaptive method for 

many of the participants.

Figure 2.3 provides a graphical summary of the four measures that are of interest when 

comparing performance during the study phase between the two methods. In all four panels 

of Figure 2.3, each point represents a participant’s value for each study method. Two partici-

pants have been highlighted so they can be compared across the four panels: The red triangle 

indicates a relatively high-performing participant and the red square indicates a relatively 

low-performing participant (see the Discussion for an in-depth comparison). To further aid 

interpretation, the diagonal line in each panel indicates equal performance with both study 

methods and data points are color-coded such that green points signal participants that bene-

fit from studying with the adaptive method and gray points those that perform better with the 

flashcard method (or equal in both conditions).

Figure 2.3A depicts the time participants spent receiving corrective feedback in both 

study conditions. Since feedback after an incorrect response always lasted four seconds, 

the durations are a linear transformation of the total number of errors made during study. 

The average time receiving feedback is 213 seconds when studying with flashcards and 

140 seconds when studying with the adaptive method. A Bayesian paired t-test5 confirms 

that participants’ durations are shorter when studying with the adaptive method (BFH1 = 

667,441).

The total number of trials completed in the two conditions are contrasted in Figure 2.3B. 

The average number of trials is higher when participants study with the adaptive method (225 

vs. 195) and the data overwhelmingly support the alternative hypothesis of unequal means in 

a Bayesian paired t-test (BFH1 = 1,143,511).

5  All Bayesian paired t-tests reported here were conducted using the default settings in the BayesFactor package (R. 
D. Morey & Rouder, 2015b).
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Figure 2.3. Four performance measures contrasted for the two study methods. In all four panels, green points 

indicate participants that have a relative advantage when studying with the adaptive method and gray points those 

with an advantage using the flashcard method. Two participants are highlighted in red symbols so the relationship 

between the four performance measures can be compared across the four panels. The performance measures 

for each study method are: (A) the number of seconds a participant spent receiving corrective feedback (i.e., the 

number of errors multiplied by four seconds); (B) the total number of trials completed, including both study and 

test trials; (C) the median response time on correct test trials; and (D) the average number of repetitions for each 

item studied.
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The only measure in Figure 2.3 that does not show a substantial difference between study 

methods in the median response time on correct trials per participant and is shown in panel 

C. The Bayesian paired t-test is inconclusive (BFH1 = 1.89) and the mean of the median response 

times is only 70 ms lower for the adaptive method than for the flashcards (1,803 vs. 1,873 ms). 

Participants whose median response time is lower for the adaptive method were coded in 

green indicating an advantage for that condition because only response times from correct 

trials were included and a longer response time that leads to a correct response is a proxy 

of more effortful retrieval, which is beneficial for learning6. Considering only incorrect trials 

yields median response times that are, on average, much longer (4,598 ms in the adaptive 

method vs. 4,929 ms with flashcards) and a Bayesian paired t-test suggest that there is positive 

evidence for the equality of the response times between the two study methods (BFH0 = 5.0).

Figure 2.3D reveals the most extreme difference between the two conditions: When com-

paring the average number of repetitions per item that each participant did in both condi-

tions, only four participants show near-equal numbers in both conditions – all other partici-

pants have a higher average number of repetitions when using the adaptive method. On the 

group level, this results in an enormous Bayes factor for the paired t-test (BFH1 = 2.4 x 1010) and 

a mean number of repetitions that is 166% higher for the adaptive method than for flashcards 

(6.57 vs. 3.96, respectively).

Another factor that is directly related to the four measures shown in Figure 2.3 is the num-

ber of Swahili-English word pairs that participants were introduced to in the two methods. 

This number differs drastically: when studying with the adaptive method, participants saw, 

on average, 36.1 items (median = 35.5; SD = 11.2) but the average when studying with flash-

cards was 48.6 (median = 50; SD = 2.9). In the adaptive condition, only 32.7% participants saw 

45 or more items (of 50) while 92.3% of the participants saw 45 or more when studying with 

flashcards. In the light of this stark difference, the finding that the adaptive method produces 

higher absolute scores on the tests may seem surprising: Participants tend to perform better 

despite having seen fewer items. This effect becomes especially apparent if we create a varia-

tion of Figure 2.1 – which is based on absolute test scores – in which the proportion of correct 

responses on the test is shown only for words that participants were exposed to (see Figure 

2.4). 

One striking pattern that becomes apparent in the left panel of Figure 2.4 is that none of 

the participants remember fewer than 50% of the items studied with the adaptive method 

6 However, one could also argue that faster response times are better because they leave more time for additional 
trials and more retrieval practice. Since maximizing the number of trials is not the goal, however, we chose the 
retrieval effort-inspired color-coding.
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(after a 15 minute retention interval), whereas 23 out of 52 participants score below 50% 

when studying with flashcards. The size of the points in Figure 2.4 indicates the number of 

items that participants were exposed to when studying with the adaptive method7 and it is 

clear that (1) most participants with near-perfect performance have seen most items and 

(2) participants that saw fewer items have the largest relative benefit (i.e., are furthest from 

the diagonal line). The right panel of Figure 2.4 suggests that learners that see more items 

tend to show superior long-term retention. 

Taken together, these results imply that the adaptive method identifies participants capa-

ble of learning a larger number of word pairs and protects poorer learners by withholding 

some of the word pairs. Preventing relatively poor learners from being exposed to too many 

items ensures that fewer errors are made during learning (i.e., less time is spent on corrective 

feedback), leaving more time for additional repetitions of word pairs and more trials overall 

(see Figure 2.3).

7 Since almost everyone was exposed to all 50 items when studying with flashcards, it does not make much sense to 
discriminate along that dimension.
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Figure 2.4. Proportion correct on the tests considering only items actually studied. The size of each data point 

indicates the number of items studied with the adaptive method. Points are displayed in green if someone’s 

performance was higher after studying with the adaptive method and gray otherwise.
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diScuSSion
 

The current study was designed to contrast two study methods, addressing two specific 

questions: First, do the methods produce different learning outcomes? And second, do they 

result in a different number of errors during learning? The two contrasted methods were a 

digital flashcard system and an adaptive, computerize fact-learning system. The former was 

chosen as a benchmark because many students report using flashcards and the latter is a 

theory-based model that seeks to alleviate some of the short-comings of flashcards as typically 

used by students. With regards to the two questions, the analyses show a clear advantage of 

the adaptive method for both the proportion of correct responses during learning and the 

proportion of correct responses on subsequent tests at varying retention intervals. 

With regards to the test performance, there is an overall advantage of the adaptive meth-

od that is especially pronounced on the test at the end of the first session. Due to the mechanics 

of the adaptive method, not all participants have studied all items. On average, a participant 

has seen 12.5 fewer items when studying with the adaptive method. To keep the within-sub-

ject comparison fair, the logistic mixed-effects regression was conducted on all items a partici-

pant could have encountered and revealed that the estimated probability of answering any of 

the 50 items correctly on the test is higher if someone studied with the adaptive method (see 

Table 2.1). If only the subset of items is considered that participants studied – as illustrated in 

Figure 2.4 –, the contrast between the two conditions is amplified substantially.

Furthermore, Figure 2.3 and Figure 2.4 suggest that a contributing factor to the difference is 

the way the adaptive method introduces new items: By withholding new items until old items are 

estimated to be learned well, relatively low-performing learners can spend a larger proportion of 

the 20-minute study phase repeating a subset of items to ensure they are still remembered when 

the test is administered. Conversely, there is no indication that relatively high-performing learners 

are held back by the adaptive method. Someone scoring at or near ceiling when using flashcards 

is likely to score similarly when studying with the adaptive method. However, 50 Swahili-English 

word pairs for a 20-minute learning session might not be enough to reveal a possible disadvantage 

for very high-performing learners studying with the adaptive method and the number of items 

would have to be increased to test for it. Exploring potential differences between the two study 

methods in the high-performance range would be an interesting extension of the current work.

With regards to the proportion of correct responses during learning, the linear mixed-effects 

regression summarized in Table 2.2 corroborates the large overall benefit of studying with the 

adaptive method that is also visible in Figure 2.2. The significant interaction between study meth-

od and repetition is primarily an artifact of how the flashcard method was implemented. Incor-
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rect items were repeated until all in a stack of five were answered correctly once. This means that 

more repetitions of an item either indicate that more errors were made or that the participant 

made few errors and completed many trials. This contrast is illustrated by the two participants 

highlighted in Figure 2.3 and whose exact values are summarized in Table 2.3. Both participants 

make relatively few errors and subsequently spent little time receiving corrective feedback. They 

differ dramatically with regards to the rest of their performance profile, though.

table 2.3. Comparing the values of the two participants highlighted in Figure 2.3. Note that the retention intervals 

for the two participants were 7 (triangle) and 6 (square) days. The columns labeled Feedback, Trials, RT, and Reps 

correspond to panels A through D in Figure 2.3 and display the exact values that pinpoint the two participants’ 

position in the four plots. Additionally, the number of items each participant studied with each method are listed 

(column Items) as well as their proportion of correct responses on the tests (across all 50 possible items, not just 

those studied; columns Test 1 and Test 2).

Feedback trials Rt Reps items test 1 test 2

Adaptive method 24s 378 1.12s 7.6 50 1.00 0.62

Flashcards 12s 349 1.20s 7.0 50 1.00 0.42

Adaptive method 152s 189 2.28s 10.0 19 0.34 0.02

Flashcards 100s 127 2.78s 2.5 50 0.22 0.00

As can be seen in Figure 2.3, the high-performing participant (red triangle) has the greatest 

number of trials in the flashcard condition, has a very low median response time and their 

mean number of repetitions hardly differ between the two study methods. Furthermore, for 

both study methods, they have been exposed to all 50 word pairs and score perfectly on both 

tests in the first session (see Table 2.3). A week later, they still remember 62% and 42% of the 

Swahili words they studied with the adaptive method and flashcards, respectively. 

The low-performing participant (red square), on the other hand, was exposed to only 19 

of 50 items when studying with the adaptive method but correctly recalled 17 of them on the 

test in the first session (34% correct out of 50). When studying with flashcards, they saw all 50 

items – they did not make many errors but completed relatively few trials yielding, on aver-

age, only 2.5 repetitions of each of the 50 items – compared with an average of 10 repetitions of 

the 19 items studied with the adaptive method. On the test in the first session (i.e., 15 minutes 

after study), they only remembered 11 items (22% correct out of 50). The fact that they had 

forgotten virtually all studied items by the time the second test was taken six days later further 

indicates below-average memory performance for this participant. 

 In summary, the advantage of the adaptive method is twofold: Errors are avoided by repeating 
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items before they are forgotten and retrieval errors are made, resulting in less time spent receiving 

feedback (see Figure 2.3A) and the optimal time for additional repetitions can be determined for 

each individual participant. The consequence is that fewer items are studied by relatively low-per-

forming participants but the number of repetitions for each item is higher. The significant interac-

tion between study method and repetitions in the linear regression analysis confirms that the higher 

number of repetitions hardly increases the number of errors during learning. The results of the 

logistic regression indicate that participants generally have higher test scores when studying with 

the adaptive method and the descriptive analyses summarized in Figure 2.3 and Figure 2.4 suggests 

that the benefit largely stems from protecting low-performing participants. The comparisons be-

tween the two highlighted participants explicitly exemplify effects that hold on the group level and 

illustrate the large individual differences between participants.

The results and discussion so far have demonstrated and focused on the advantage of the 

adaptive method. However, the benefit hinges on the comparison with the flashcard method 

that was implemented to serve as a control. As mentioned in the introduction, flashcards were 

used as a control condition because many students report using flashcards to study (especially 

when learning vocabulary; Wissman et al., 2012), which provides a natural benchmark for 

an adaptive system to be pitched against. However, there are many possible ways to employ 

flashcards when studying (some more effective than other, e.g., Adragna, 2016; van Houten & 

Rolider, 1989). The choice of splitting the 50 Swahili-English word pairs into stacks of five was 

inspired by the fact that many students report creating relatively small stacks (e.g., Kornell, 

2009). While it might be possible to create a more effective way to utilize flashcards, the data 

presented here suggest that we did not create a “strawman control”: the spread on the x- and 

y-axes in Figure 2.1 are comparable, suggesting that both methods permitted individual dif-

ferences to emerge. In fact, learners’ test scores in the two conditions are highly correlated (r 

= 0.88 in the first session and r = 0.83 in the second session) but the statistical analyses indicate 

that most participants perform better on the majority of the outcome measures explored here.

Outside the laboratory, students have the option of dropping flashcards and they do (often 

too early, e.g., Kornell & Bjork, 2008b)– something that neither method tested here permitted. 

A possible extension of the current work would be a comparison between the adaptive meth-

od and a flashcard system that allowed participants more freedom. For example, at the end of 

each stack, participants could get the choice to either proceed to a new stack or pick a previous 

stack to return to. Also included could be the option to drop individual items or entire stacks 

by marking them as learned. Such a comparison would provide the ultimate test of whether 

an adaptive method can make more accurate and appropriate judgments of learning and stra-

tegic choices regarding the repetition of old and introduction of new material.
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Abstract
One of the goals of computerized tutoring systems is to optimize the learning of facts. Over 

a hundred years of declarative memory research have identified two robust effects that can 

improve such systems: the spacing and the testing. By making optimal use of both and adjust-

ing the system to the individual learner using cognitive models based on declarative memory 

theories, such systems consistently outperform traditional methods (Van Rijn, Van Maanen 

& Van Woudenberg, 2009). This adjustment process is driven by a continuously updated esti-

mate of the rate of forgetting for each item and learner on the basis of the learner’s accuracy 

and response time. In this study, we investigated to what extent these estimates of individ-

ual rates of forgetting are stable over time and across different materials, and demonstrate 

that they are stable over time but not across materials. Even though most theories of human 

declarative memory assume a single underlying rate of forgetting, we show that, in practice, it 

makes sense to assume different materials are forgotten at different rates. If a computerized, 

adaptive fact-learning systems would allow for different rates of forgetting for different mate-

rials, it could adapt to individual learners more readily. 
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In many school curricula, students are partly evaluated based on how well they learn 

sets of facts. With the advance of computers into classrooms and workplaces, tutoring sys-

tems have been developed to help learners master the required declarative fact material. 

Over a hundred years of declarative memory research have singled out two robust effects 

that developers of such systems can use to enhance them: the spacing effect and the testing 

effect (Delaney, Verkoeijen, & Spirgel, 2010). By making optimal use of both of them and ad-

justing the system to the individual learner, such tutoring systems can make learning a lot 

more efficient. As of now, however, each learning session is treated in isolation in the system 

that we have been developing (van Rijn, van Maanen, & van Woudenberg, 2009): user-spe-

cific characteristics are estimated during a session to optimize learning in that session but 

are not preserved between learning sessions, something which this system shares with most 

other adaptive learning systems. A potential improvement for these adaptive systems could 

be found in retaining the estimated characteristics over sessions. However, this requires that 

these characteristics do not fluctuate too much between different learning sessions. In this 

study, we investigated to which extent user-specific characteristics relevant to such a tutoring 

system are stable over time and across different materials. 

The optimization of fact learning is often based on balancing the benefits of the spacing 

and the testing effect. The spacing effect describes the finding that performance on tests of re-

call is improved when study time is distributed over multiple occasions (Cepeda, Pashler, Vul, 

Wixted, & Rohrer, 2006; Dempster, 1988; Donovan & Radosevich, 1999; Jastrzembski, Gluck, & 

Gunzelmann, 2006), a benefit that persists even after a delay (Godbole, Delaney, & Verkoeijen, 

2014). However, the same spacing principle can also be used within a single learning ses-

sion as it has been shown convincingly, based on both behavioral (Lindsey, Shroyer, Pashler, 

& Mozer, 2014; Nijboer, 2011; van Rijn et al., 2009) and psychophysiological data (van Rijn, 

Dalenberg, Borst, & Sprenger, 2012), that retention can be increased by spacing items within a 

single learning session. The optimal spacing schedule ultimately depends on how much time 

is available and when the material is tested (Cepeda et al., 2008). However, the vast majority 

of students do not space their studying at all: they mass-study just before an exam (Taraban 

et al., 1999). 

The testing effect describes the finding that active memory retrieval during practice is 

more beneficial for long-term retention than passive study (Karpicke & Roediger, 2008; Roed-

iger & Butler, 2011). That is, being forced to retrieve the answer from declarative memory 

leads to better learning than simple re-studying (i.e., looking at) the cue-answer pair (Carrier 

& Pashler, 1992). This effect has been studied extensively in the laboratory (de Jonge et al., 

2012; Kornell & Bjork, 2008a; Verkoeijen & Bouwmeester, 2014) but also holds in more realistic 

classroom settings (Agarwal, Karpicke, Kang, Roediger, & McDermott, 2008; Butler & Roediger, 
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2007; Goossens, Camp, Verkoeijen, Tabbers, & Zwaan, 2014; McDaniel, Anderson, Derbish, & 

Morrisette, 2007). Importantly, the testing effect is strongest if the item can be successfully 

retrieved (Carrier & Pashler, 1992) and practically disappears for non-retrievable items (Jang 

et al., 2012).

The goal of learning systems is to devise a learning schedule that makes optimal use of 

each effect’s benefits. This requires balancing two seemingly opposing goals: (1) maximizing 

time between repetitions of an item to get the biggest spacing effect, and (2) minimizing time 

between repetitions of an item to make sure it can still be retrieved from declarative memory 

(to take advantage of the testing effect). Such computer adaptive practice models have been 

developed and implemented with great success (Lindsey, Mozer, Cepeda, & Pashler, 2009) and 

have been shown to outperform flashcard control conditions (Atkinson, 1972; Nijboer, 2011; 

van Rijn et al., 2009). A simple flashcard procedure (Pavlik & Anderson, 2008) is an excellent 

control condition because many students report using similar procedures to study for exams 

(Hartwig & Dunlosky, 2012; Kornell & Bjork, 2008b; Kornell & Son, 2009; Wissman et al., 2012).

As a starting point for the development of such models, Anderson and Schooler (1991) 

showed that data on declarative memory performance (i.e., practice and retention) across 

time courses ranging from seconds to years can be fit by power functions (also see Rubin & 

Wenzel, 1996). Pavlik and Anderson (2003, 2005) argued that the practice and retention of 

facts can be approximated using the same equations that can be used to describe the behav-

ioral effects in the data. They developed a model that formalizes this process and showed how 

it can be used to compute the optimal schedule of practice, taking into account the effects of 

practice, retention, and spacing (Pavlik & Anderson, 2008; Pavlik, Bolster, Wu, Koedinger, & 

MacWhinney, 2008). Like most other models of human declarative memory (e.g., Raaijmakers 

& Shiffrin, 1980), their model assumes that there is some stable effect based on each individu-

al’s rate of forgetting and additional effects based on item difficulty. Someone’s rate of forgetting 

is (implicitly) assumed to be a property of their memory and therefore assumed to be a trait-

like, stable property, regardless of whether they study vocabulary, topographical information, 

or glossary definitions. 

The learning outcomes after studying declarative fact materials using the models based 

on Pavlik and Anderson’s approach (Nijboer, 2011; Pavlik & Anderson, 2008; van Rijn et al., 

2009) are promising. However, the models have only been tested within a single session in one 

domain at a time. The stability of participants’ rates of forgetting across time and knowledge 

domains is assumed but has not been demonstrated empirically. The goal of the present study 

was to investigate to which extent participants’ rates of forgetting vary over the course of three 

weeks as well as across four different types of declarative fact material. 
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MethodS

Participants were tested in three separate sessions, each spaced one week apart. In each 

session, participants learned Swahili-English vocabulary during the first block, whereas in the 

second block one of three other types of declarative fact material was presented (see Figure 

3.1 for an overview). Participants’ rates of forgetting were estimated for each block. This way, 

participants’ estimated rate of forgetting for each of the three Swahili-English blocks can be 

determined to assess the stability of the rate of forgetting over time. By comparing the rates 

of forgetting between the different types of declarative fact material, we can investigate their 

stability across knowledge domains.

Figure 3.1. Overview of the experimental design of the study. The sessions are spaced one week apart. A different 

type of declarative fact material is studied in each (color-coded) block. Six unique sets of items were used, one per 

block.

In the following, we describe in more detail how the rates of forgetting were estimated for 

each participant, what types of material were used, and which analyses were conducted to 

address the research question.
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the model
The model used in this experiment is based on ACT-R’s declarative memory equations (J. 

R. Anderson, 2007). In the ACT-R framework, each item that is learned is assigned an activa-

tion value. Activation is highest at the moment an item is encountered and then decays as a 

function of time. The activation of an item at any point in time can be computed using the 

following equation:

According to this equation, the activation of item i at time point t depends on all n previous 

time points at which item i has been encountered. The activation of each previous encounter 

j decays over time with dj, which, as d values are always positive, translates to a smaller con-

tribution to the current activation if encounter j has occurred long before time point t. The 

rate with which the activation of an encounter decays is determined at the presentation of 

that encounter:

In this equation, which is evaluated at the time of the more recent encounter, but without 

taking that encounter into account for calculating the activation, c is the decay scale parameter 

that determines the relative contribution of the activation component (Ai(t)). The activation is 

calculated using the earlier discussed equation over all previous encounters, excluding the cur-

rent encounter for which the decay is calculated. Alpha (α) represents the decay intercept that 

is used as the decay value for the first encounter and is subsequently adjusted for each item I 

individually. This α parameter will be the main focus of the adaptive algorithm discussed later.

An activation value can be converted to an estimated response time by scaling the activa-

tion and adding a fixed time that accounts for non-memory related processes. The following 

equation is used to convert the scaled (F) activation of item i at time point t (Ai(t)) to an esti-

mated reaction time:

Pavlik and Anderson (2003, 2005, 2008) have shown that the three equations outlined here 

can be used to fit a wide range of data from learning-related experiments and can account for 

additional benefits gained through the spacing effect (however, see Lindsey et al., 2009 for 

some limitations). 

The system has not only been used to describe collected data but also to devise a system 

that predicts, in real-time, the order in which items should be repeated to yield optimal re-

tention. To account for individual variability, the system designed by Pavlik and Anderson 

adjusted the decay parameter based on accuracy scores. When an incorrect response was giv-

Ai(t,n)  =
n

j=1

(t - tj )S( )-dj

d j  = ce        + ai
Ait

RTi (t)  = Fe             + fixed time-Ai (t)
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en to an item of which the model assumed that it had an activation that should have resulted 

in a successful retrieval, the decay rate for that item was increased, and vice versa when an 

unexpected correct response was given. However, more information can be gathered from 

the answers, as the deviation with the predicted reaction time can also be used for updating 

of decay parameters. 

More recently, Van Rijn and colleagues (van Rijn et al., 2009) and Nijboer (2011) have pro-

posed an algorithm, based on the original Pavlik and Anderson work, that also takes into ac-

count the response times. In a series of laboratory and classroom studies, they showed that 

this refined algorithm leads to improved performance compared to both the Pavlik and An-

derson (2008) model and to flashcard procedures. This updating algorithm adjusts an item’s 

alpha (α) parameter by comparing the estimated reaction time with the observed reaction 

time. If the estimated reaction time was longer than the observed reaction time, the activation 

estimated by the model was too low, and thus a better fit to the empirical data would have 

been observed if the decay had been higher. To compensate for this discrepancy, the α pa-

rameter for the given item is adjusted using a binary search algorithm to improve the model’s 

estimate on the following trial (see Nijboer (2011) for details). Using this adaptation procedure, 

the α parameter is modified per item per learner to best capture the behavioral variation ob-

served during learning. This decay parameter is an operationalization of the rate of forgetting, 

which is the term we will use in the remainder of this manuscript. 

The sequence in which the items are presented is based on the activation values calculated 

using these rate of forgetting parameters using a procedure graphically depicted in Figure 3.2.

The procedure is relatively straightforward: When an item needs to be presented, the 

model calculates the estimated activation n seconds from the current time for all items that 

have been encountered earlier. If, n seconds from now, the activation of any item has dropped 

below the retrieval threshold, that item is presented next. If no item has dropped below the 

threshold, a new, not-yet-presented item is scheduled for presentation as long as novel items 

are still available. Otherwise, the item with the lowest activation n seconds from now is pre-

sented. Based on the answer on this presentation, the rate of forgetting of this item is updated, 

and the model checks whether a next repetition needs to be scheduled. 
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Figure 3.2. A graphical representation of how the model determines the order in which to repeat old and present 

new items.

exclusion criteria
Before starting data collection, we defined three exclusion criteria meant to ensure that 

participants contributed complete data sets and actively engaged with the task. First, partici-

pants must have completed all three sessions. Second, participants must have performed well 

enough to encounter at least 10 unique items in each block. As the model only introduces new 

items when the activation of the previous items is high enough (see above for details), we 

used this as a proxy to determine which participants actively engaged in learning. Third, par-

ticipants must have answered at least 25% of the items they studied correctly on the delayed 

recall test. Participants who did not meet these criteria were unlikely to have been actively 

engaged in the task, potentially distorting the data.

Participants
Participants were 76 first-year psychology students from the University of Groningen, 

71 completed all three sessions and 70 fulfilled the minimum requirement of having seen at 

least 10 unique items in each study block. Another three participants were removed because 

they performed at less than 25% on the final test. Of the remaining 67 participants (88%), 50 

were female (75%) and the median age was 20 (SDage = 1.73; rangeage = [17; 26]). No participant 
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indicated familiarity with Swahili, 35.8% were Dutch, and 52.2% were German. The remain-

ing students were from the English-language Bachelor program with other nationalities. All 

participants indicated to be fluent in English and gave informed consent as approved by the 

Ethical Committee Psychology (ID: 14017-NE).

Materials
For each block, a list of 25 items was compiled. The lists of items were identical for all par-

ticipants but during each study block, the model randomized the order in which items were 

presented based on participants’ identification numbers. There were four types of declarative 

fact material that were studied by each participant:

Vocabulary. 75 Swahili-English word pairs were selected from the list compiled by Van den 

Broek, Segers, Takashima, and Verhoeven (2014) and are available on the Open Science Frame-

work1. Swahili-English word pairs are common stimuli in vocabulary learning (e.g. Carpenter, 

Pashler, Wixted, & Vul, 2008; Kang & Pashler, 2014; Pyc & Rawson, 2010; van den Broek et al., 2014) 

because participants from countries in which a Germanic language is the majority language are 

typically not familiar with it but it uses familiar letters and phonemes. The written Swahili word 

was the cue to which the participants had to respond by typing the correct English word.

Flags. A list of 25 countries and their flags was compiled from Wikipedia’s list of sovereign 

states. We strived to pick flag/country combinations that were not likely to be known by the 

participants, using the experimenters’ familiarity with the countries’ flags and a pilot study as 

a benchmark. A full list of all countries can be found online1. The country’s flag was the cue to 

which the participants had to respond by typing in the country’s name.

Maps with U.S. cities. A list of 25 items was compiled by searching for small cities on 

Google Maps, making sure the cities were more or less evenly spaced across the United States 

of America. Cities were picked so that their names were unique, not too difficult to spell, and 

did not contain information about their geographical location. A full list can be found online9. 

Participants always saw a map of the U.S. with state borders on which all cities from the set 

were marked with gray dots. The cue for a city was the same map with the city in question 

highlighted in bright right. The participants had to respond by typing in the city’s name.

Bio-Psychology Facts. A list of 25 bio-psychology facts was compiled from the Glossary in 

Kalat (2012), a text book used in a mandatory Biopsychology course scheduled for the follow-

ing semester for all students participating in this experiment. The facts were chosen so that 

the answer would always be a single word and that there was some variation in how difficult 

the words are to spell. A full list can be found online1. The description of the term was the cue 

to which the participants had to respond by typing in the described term.

1 All materials and the data are available at: www.osf.io/hm3ma/ 
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Procedure
Each person participated in the study for three sessions on three days, each session spaced 

one week apart. Within each session, there were two blocks. Each block consisted of a 20-min-

ute study session, a five-minute distraction task, followed by a test of the studied declarative 

fact material that took about five more minutes (see Figure 3.1). At the beginning of the first 

session, each participant also completed a short questionnaire regarding demographic infor-

mation (age, gender, nationality, and language skills). The five-minute distraction was a sim-

ple variation of the puzzle game Tetris which participants played until they were automatical-

ly re-directed to the test that concluded the block.

While learning the material of each block, novel items were presented on study trials and 

subsequent repetitions were presented on test trials. On a study trial, participants saw both 

the cue and the correct response and had to type in the correct response to proceed. On a test 

trial, participants only saw the cue and had to type in the correct response. Feedback (“cor-

rect”/”incorrect”) was provided in both trial types and lasted 0.6 and 4 seconds for correct and 

incorrect responses, respectively. The feedback on incorrect trials always resembled a study 

trial and displayed both the cue and the correct response. Jang, Wixted, Pecher, Zeelenberg, 

& Huber (2012) have shown that for non-retrievable items, an additional study trial is very 

effective because participants do not benefit from the testing effect and De Jonge, Tabbers, 

Pecher, and Zeelenberg (de Jonge et al., 2012) showed that the optimal duration of a study trial 

is four seconds.

During the test at the end of each block, participants were provided with a list of all cues 

and were asked to provide their responses (in any order they preferred). There was no explicit 

time limit for completing the test.

Analysis
The main analysis is based on two regression analyses. The first analysis addressed the 

main research question and focused on whether the estimated rates of forgetting were stable 

over time and materials. An additional backwards regression was conducted to corroborate 

the findings and to investigate which rates of forgetting from the first two sessions (i.e., days) 

best predicted the rates of forgetting in the last session (i.e., on the last day).
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ReSultS

First, we present participants’ performance on the final test to verify that they actively 

learned the declarative fact material. Then correlations between the operationalized rates of 

forgetting are presented to show the coherence between blocks. Lastly, two regression anal-

yses are presented to show in more detail how the rates of forgetting differ between types of 

material but not over time. Note that all data and associated analysis scripts can be download-

ed from: www.github.com/fsense/parameter-stability-paper.

Performance on the final test for the six different blocks was plotted to verify that partic-

ipants were exposed to and learned the material sufficiently. Figure 3.3 depicts violin plots 

(Hintze & Nelson, 1998) that show local density estimates added to each side of a traditional 

boxplot. Specifically, the white dots represent medians and the black portions correspond to 

the traditional “box and whiskers” of a box. The plot demonstrates that overall performance 

was very high, suggesting that the participants were exposed to the material sufficiently to 

learn it well. The material in the maps condition was more difficult to learn than the material 

from the other conditions. Furthermore, many people perform at ceiling in the Swahili vocab-

ulary and flags conditions. 
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Figure 3.3. Performance on the final test that was taken at the end of each block as a violin plot to show the density 

estimates as well as classic box plots (in white). . Note that each violin is scaled so that its maximum density is one.
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As described the in the sub-section The Model above, the rate of forgetting was operation-

alized as the model’s α parameter. Each item started with a rate of forgetting of 0.3 (Nijboer, 

2011; van Rijn et al., 2009) and then the value was adjusted on each repetition of the item. The 

adjustment depended on how the participant responded to the item (correct/incorrect) and 

how well the observed response latency corresponded with the model’s prediction. For the fol-

lowing analyses, the final rates of forgetting of items that were presented at least three times 

were included. That is, each participant contributed multiple rates of forgetting and the ex-

act number depended on how many items each participant encountered at least three times 

within each block. By averaging the rates of forgetting observed in one block, a mean rate of 

forgetting for a participant was computed that indicates how quickly information learned in 

that block was forgotten.

It is expected that participants with a low rate of forgetting have a higher chance to per-

form well on the final test - and vice versa. This assumed relationship is depicted graphically 

in Figure 3.4. For this plot, each participant contributed one mean rate of forgetting per block 

and their performance in that block. For each block, participants were binned with respect to 

their mean rate of forgetting. The mean rate of forgetting and mean performance were calcu-

lated in each bin and plotted against each other.
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Figure 3.4. Participants’ mean rate of forgetting is plotted against their performance on the final test for each block. 

The data is binned to make the plot more readable. Bins were created by ordering the 67 individual data points in 

each condition on the x-axis, dividing them into five bins and then computing the mean values for each bin.
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The three vocabulary blocks (in shades of orange) form one cluster and the performance 

on the test is near or at ceiling regardless of the rate of forgetting. For the other three condi-

tions, however, a higher rate of forgetting implies slightly lower performance on the final test. 

Additionally, one can see that for the most difficult condition (maps, also see Figure 3.3), the 

rates of forgetting are generally higher (i.e., shifted to the right on the x-axis) than in the other 

conditions. This indicates the material was forgotten more quickly. Overall, the relationship 

between the rate of forgetting and performance on the test suggests that the model’s α param-

eter is a useful and informative operationalization.

Correlations between the rates of forgetting in each block are shown in Table 3.1. The rel-

atively high correlations indicate coherence between the conditions. They do not, however, 

tell us whether the variation in mean rate of forgetting is greater between domains than it is 

within a domain or how stable the values are over time (even though the high correlations 

between the vocabulary blocks are promising).

table 3.1. Correlations of mean rates of forgetting between all blocks. All correlations differ significantly from 0 with p < .001. 

 

vocab1 vocab2 vocab3 flags maps

vocab1 -

vocab2 .758 -

vocab3 .771 .863 -

flags .603 .630 .549 -

maps .499 .556 .495 .604 -

biopsych .630 .572 .534 .511 .384

To directly address the research question, we looked at the variation in rates of forgetting 

across time and materials using linear mixed-effects model regression. Two dummy-coded 

variables were included in the model: The first variable coded the session in which a block was 

completed. This tests whether there is any significant variation over time across all blocks. The 

second variable was coded 0 for blocks in which participants studied Swahili vocabulary and 

1 for those in which non-Swahili material was studied. This directly compares the differences 

between multiple blocks of learning Swahili to non-Swahili blocks. For this analysis the rates 

of forgetting were log-transformed to prevent violations of homoscedasticity and normality. 

Table 3.2 summarizes the estimated regression coefficients of the log-transformed rates of 

forgetting, the standard error of the estimate, the degrees of freedom, the absolute t-value, 

and the p-value.
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table 3.2. Results from the linear mixed-effects regression with dummy coding. The columns show the estimated 

regression coefficients of the log-transformed rates of forgetting values, the standard error of the estimate, the 

degrees of freedom, the absolute t-value, and the p-value, respectively.

 

betaln(RoF) Se df | t | p

intercept -1.394 0.040 112 34.38 <0.001

session -0.036 0.028 73 1.30 0.198

SW vs. non-SW 0.182 0.011 9506 16.50 <0.001

session * (SW vs. non-SW) -0.051 0.028 82 1.81 0.074

The rates of forgetting do not significantly differ between sessions (t(73)=1.3, p=0.198). 

However, the contrast between the Swahili and non-Swahili blocks significantly influences 

the rates of forgetting (t(9506)=16.5, p<0.001) indicating that the rates of forgetting in Swa-

hili blocks are significantly different from non-Swahili blocks. The interaction between the 

session and the contrast Swahili vs. non-Swahili is not significant (t(82)=1.81, p=0.074). This 

means the difference in the rate of forgetting when performing a non-Swahili task compared 

to the Swahili task does not differ as a function of the session in which the task is performed in. 

Figure 3.5 gives a visual overview of the mean rate of forgetting in each block and suggests that 

the significant difference of the Swahili vs. non-Swahili comparison is driven by the higher 

rate of forgetting in the maps condition. This was confirmed by Bonferroni-corrected post-hoc 

paired t-tests, which revealed differences between the maps and the flags conditions (t(66) = 

12, p < .001) and the maps and the biopsych conditions (t(66) = 10.7, p < .001) but no significant 

differences between the flags and the biopsych conditions (t(66) = .27, p = .785.2

2 Bayes factor t-tests (Rouder, Speckman, Sun, Morey, & Iverson, 2009) were performed with the default settings 
of the BayesFactor package (R. D. Morey & Rouder, 2015a) and corroborate the findings: When tested against the 
default null model, the alternative model indicating inequality between both groups is favored when comparing the 
maps and flags conditions (Bayes factor = 1.8*1015) and the maps and biopsych conditions (Bayes factor = 1.2*1013). 
However, the data provides support for the null model when compared with the alternative model when comparing 
the flags and biopsych conditions (Bayes factor = 7.2). 
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as well as classic box plots (in white). Note that each violin is scaled so that its maximum density is one.

An additional analysis investigated to which extent the rate of forgetting in one session can 

predict the rate of forgetting in a subsequent session. Specifically, the rate of forgetting in the 

third session was predicted based on the values from previous sessions. The Swahili block in 

the third session was the dependent variable and data from the four blocks that were com-

pleted in the two previous session were entered as independent predictors in a backwards 

regression analysis. The rates of forgetting from the biopsych block were not included in the 

analysis because these are possibly confounded due to being completed in the same session as 

the predicted values (see Figure 3.1).

We expected that (1) the same and (2) more recent tasks would have more predictive 

power than another and earlier tasks. Both expectations are confirmed by the backward re-

gression analysis. The first expectation was supported by the fact that the best-fitting model 

includes only the rates of forgetting of the second and first Swahili blocks (in that order). The 

blocks with declarative fact material from other domains (flags and maps) do not significantly 

improve goodness of fit when added to the model. The second expectation is supported by the 

finding that the rate of forgetting of the more recent Swahili task is a stronger predictor (beta 

= .64, t(64) = 7.3, p < .001) than the performance during the first (and therefore earlier) session 

(beta = .24, t(64) = 3.0, p = .004). Given that the estimate of the more recent task is almost three 

times higher than the earlier task, the prediction of the third session is closer to the rate of 

forgetting of the second session. The final model, including the rates of forgetting from the 

second and the first session as predictors, has an adjusted R2 of .77 (F(2, 64) = 111.4, p < .001). 

●

●

●

●

●

●

●
●

0.2

0.3

0.4

Vocabulary 1 Vocabulary 2 Vocabulary 3 Flags Maps Biopsych

Es
tim

at
ed

 R
at

e 
of

 F
or

ge
tti

ng



C h a p t e r  3

54

diScuSSion

In this study, we investigated the stability of individual rate of forgetting parameters in a 

model of optimal fact learning. The emphasis was on scrutinizing the stability of the parame-

ter values across time and across different materials. Knowing more about the circumstances 

under which a learner’s estimated rate of forgetting is stable in time and across declarative 

fact materials enables us to further develop the model by carrying over what we learned 

about the participant in one learning session to the next.

The results of the analyses show that the estimated rates of forgetting do not differ signifi-

cantly over time. There is a difference in estimated rates of forgetting, however, when differ-

ent types of declarative fact material are studied. When looking at the data of the performance 

on the final test depicted in Figure 3.3, one can see that there was a clear ceiling effect. The 

effect is especially pronounced in the three Swahili blocks and the block in which participants 

learned flags. This might be considered to be an issue because it would facilitate the stability 

of results within those Swahili-learning blocks. It should be noted, however, that by using the 

parameter values that were estimated throughout the learning session instead of the results of 

the learning session (test performance), one gets a much more fine-grained view of the differ-

ences between conditions. There is much more variation in estimated rates of forgetting than 

the corresponding results on the test suggest (i.e., more variation on the x-axis of Figure 3.4 

than on the y-axis). This conclusion is further supported by the fact that there was no signif-

icant difference across the three sessions (see both main effect of session and the interaction 

between session and type of materials shown in Table 3.2), even though the comparison did in-

clude the blocks for which final performance was not at ceiling. Therefore, analyses based on 

the estimated rates of forgetting are more informative than those based on the performance 

on the final test.

The data presented here suggest that participants’ rates of forgetting are stable over time 

within one type of material (Swahili vocabulary), but less stable between materials. We de-

liberately picked the types of declarative fact material to be different from each other (i.e., 

vocabulary, visual, topographical, and factual) so perhaps it is not surprising that a difference 

was found. What is surprising to us, however, is that the flags and the bio-psychology condi-

tions were similar to each other while the two conditions that used visual information (flags 

and maps) were as different as the maps and bio-psychology conditions, indicating that simple 

surface features are unlikely to provide good predictors for the similarity of the estimates of 

the rate of forgetting.

According to the framework outlined by Pavlik and Anderson (2008), based on an idea 

that is also present in many other theories of human declarative memory (Raaijmakers & 
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Shiffrin, 1992), participants’ rate of forgetting is considered to be a stable property of their 

memory system. If this was the case, an adaptive learning system could estimate a learner’s 

rate of forgetting while studying one type of material and then re-use that parameter when the 

learner starts learning a different type of material. However, the data presented here do not 

support the idea that someone’s rate of forgetting is stable regardless of the type of material 

and thus preserving estimated rates of forgetting between study sessions of different types 

of material is more complicated. The data presented here do, however, support the idea that 

someone’s rate of forgetting is stable over time for the same type of declarative fact material, 

which means that we can preserve estimated parameter values and re-use them when the 

learner returns to the same type of material. How similar materials have to be to yield suf-

ficiently similar rates of forgetting is an empirical question that has not yet been answered.

Besides such practical implications, there is also something to be said about models of 

human declarative memory in general. Most models that assume memories are encoded as 

traces assume that all traces are treated equally when it comes to learning and forgetting. The 

models propose certain rules under which traces are encoded, retrieved, and maintained but 

those rules usually apply regardless of the type of declarative fact material or the context. One 

exception might be the Search of Associative Memory model (SAM; Raaijmakers & Shiffrin, 

1980), in which context information is encoded along with the trace itself. The experiment pre-

sented here is neither designed nor intended to falsify any of those theories. It is self-evident, 

however, that not all types of material are equally difficult for a single person. As long as it 

is not clear how a single underlying process that treats all types of material equally results in 

varying learning and forgetting in different tasks/materials, it makes sense - from a practical 

point of view - to use varying rates of forgetting.
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Abstract
Adaptive, personalized fact-learning systems can help learners make the most of time 

spent studying. Ideally, such systems should not only tailor towards each learner but should 

also be able to identify strengths and weaknesses of learners. One benchmark would be trying 

to predict delayed recall of studied material. One important predictor is probably the rate at 

which encoded material is forgotten, but additional cognitive processes related to attention-

al control might influence delayed recall. Here we show that the rate of forgetting estimat-

ed during learning alone is the best predictor of delayed recall. Two additional constructs 

– working memory capacity and general cognitive ability – were assessed and did not explain 

a significant amount of variance in delayed recall and were not correlated with the rate of for-

getting. These findings suggest that, at least in the current small and relatively homogeneous 

sample, executive functioning and attentional control did not play important roles in pre-

dicting delayed recall of items studied using the adaptive fact-learning system developed in 

our lab. More generally, this might indicate that computerized learning environments should 

focus primarily on exploiting memory-related individual differences to optimize learning.
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Few findings in psychology are as reliably reproduced as the spacing effect (Donovan & 

Radosevich, 1999), the finding that learning yields better long-term results if repetitions are 

spaced over time rather than crammed together. The spacing effect holds over various time 

scales (e.g., Cepeda et al., 2008), indicating that it reflects a fundamental property of human 

memory. Therefore, the spacing effect should be exploited when we want to optimize fact 

learning (J. R. Anderson & Schooler, 1991; Dempster, 1988; Rohrer, 2015). Pavlik and Ander-

son (2003) extended ACT-R’s declarative memory module – a computational model of human 

memory – to account for spacing effects and subsequently made first steps in using the de-

cay-based memory model to enhance the learning of facts (Pavlik & Anderson, 2005, 2008)1. 

Their model combines spacing with retrieval practice (Roediger & Butler, 2011; van den Broek 

et al., 2016). Making most trials a test event has two advantages. Firstly, long-term retention 

is improved by exploiting the testing effect and, secondly, trial-by-trial information about the 

state of the learner’s memory can be obtained during learning. Van Rijn and colleagues (2009) 

showed that the estimation can be further improved by taking both accuracy and response la-

tencies into account. This allows for continuous estimation of the strength of a memory trace 

while minimizing the number of errors during study. This way, items that are likely to be for-

gotten soon can be identified and scheduled for repetition accordingly, allowing personalized 

learning schedules to be devised on the fly. 

As explained in detail in Chapter 2, the adaptive learning system developed in our lab esti-

mates the speed with which each encoded item becomes less available in memory. The model 

has one parameter per item per learner that is continuously adjusted based on the learner’s 

response accuracy and latency to each test event. By averaging across the item-specific pa-

rameters obtained at the end of the study session, we can compute a value that indicates how 

quickly, on average, each learner forgets the items in a particular set. We will refer to this 

value as the rate of forgetting (Sense, Behrens, Meijer, & van Rijn, 2016; van Rijn et al., 2009). 

1  Note that this is not the first and only adaptive learning model of this kind. It is merely the first version of the 
current model discussed here. 
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Figure 4.1. A: Each participant’s estimated rate of forgetting (x-axis) plotted against their proportion of correct 

responses on a test (y-axis) of the studied material taken 15 minutes later. B: Each participant’s estimated rate 

of forgetting (x-axis) plotted against their random intercept extracted from the best-fitting logistic mixed-effects 

regression reported in Chapter 2. The data for both plots were taken from the experiment reported in Chapter 2. 

In both plots, the yellow line shows linear regression model fit and the corresponding correlation coefficients are 

displayed in the lower left corner.

Recently, we have shown that estimated rates of forgetting are stable over time within 

a participant (Sense, Behrens, et al., 2016). Interestingly, the same data revealed that even 

though many participants performed at ceiling on the delayed recall test (see Figure 3.3 in this 

thesis), there was considerable variation in participants’ rates of forgetting, even in a relatively 

homogenous group of learners. In datasets that were not plagued by ceiling effects in delayed 

recall performance, we have observed that the estimated rate of forgetting is very strongly 

correlated with subsequent test performance. Using the data from the experiment reported in 

Chapter 2, for example, we can compute the rate of forgetting for each of the 52 participant by 

averaging the final a value for each item they studied. Plotting the estimated rate of forgetting 

against the proportion of correct responses on the test taken 15 minutes later (Figure 4.1A) 

reveals a strong negative relationship (r = -0.89). This pattern is exactly what we would expect 

intuitively: A higher rate of forgetting (i.e., faster forgetting) results in lower scores on the test. 

In this case, the rate of forgetting is the aggregate end product of updating a model parameter 

during a 20-minute learning session and it might not be too surprising that this measure is 

strongly related to performance on the same items after only 15 minutes.
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A

0.00

0.25

0.50

0.75

1.00

0.2 0.3 0.4

Estimated Rate of Forgetting

Pr
op

or
tio

n 
co

rre
ct 

on
 te

st 
15

 m
in 

lat
er

r = -0.86

B

-2

0

2

4

0.2 0.3 0.4

Estimated Rate of Forgetting

Es
tim

at
ed

 ra
nd

om
 in

te
rc

ep
t p

er
 su

bje
ct 

fro
m

 g
lm

er



T h e  R a T e  o f  f o R g e T T i n g 
a s  a  U s e f U l  i n d i v i d U a l  d i f f e R e n c e s  M e a s U R e

61

In the experiment this data was taken from (see Chapter 2 for details), participants studied 

both with the adaptive method and with digital flashcards and were tested twice on all items 

they studied (up to 100 in total). A logistic mixed-effects regression model was fit to predict 

whether individual items (not just those studied with the adaptive method) were answered 

correctly on two subsequent tests with varying retention intervals. Interestingly, we found a 

strong negative relationship of similar magnitude between the estimated rate of forgetting 

and the random intercepts from this mixed-effects regression model as well (r = -0.86; Figure 

4.1B).

The random intercepts were added to the logistic mixed-effects model specifically to cap-

ture between-subject variance in ability2. The strong relationship apparent in Figure 4.1B sug-

gests that the estimated rate of forgetting captures many of the individual differences encap-

sulated by the participant-specific random effects term in the logistic mixed-effects regression 

reported in Chapter 2. What is not clear, however, is which individual differences are reflect-

ed in the measures shown in Figure 4.1. Are they purely memory related processes or do 

they reflect more general aspects of the learners such as cognitive functioning and resources? 

The goal of this chapter is to explore the relationship between the rate of forgetting estimated 

during learning and established measures of individual cognitive differences. Specifically, we 

want to know whether the rate of forgetting simply captures well-known individual differ-

ences in general cognitive ability (GCA; i.e., fluid intelligence) and working memory capacity 

(WMC) or whether it could be a useful indicator of individual differences in the context of rote 

learning in and of itself.

The reason we chose to test a possible link between the rate of forgetting and GCA and 

WMC is that both have been used extensively as predictors of individual differences in the 

ability to learn. For example, Gathercole and Baddeley report that children with lower WMC 

were slower at learning unfamiliar names of toys (Gathercole & Baddeley, 1990) and demon-

strated that WMC can predict the development of vocabulary in young children beyond what 

chronological age and GCA can predict (Gathercole & Baddeley, 1989). Unsworth, Brewer, and 

Spillers (2009) suggest that both individual differences in WMC and the ability to retrieve in-

formation from long-term memory account for the link between GCA and WMC (Unsworth, 

2016; Unsworth & Engle, 2007). Both of these examples indicate that GCA and WMC are relat-

ed but not identical constructs (Ackerman, Beier, & Boyle, 2005; Kane, Hambrick, & Conway, 

2005) and that they can explain individual differences in learners’ ability. Therefore, the rate 

of forgetting estimated by our adaptive learning system might simply reflect individual differ-

ences in GCA and/or WMC. 

2  The random intercepts are very highly correlated with the test performance displayed on the y-axis of Figure 4.1A 
as well: r = 0.92.
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If between-subject variance in executive functioning and attentional control played an 

important role in fact-learning using computerized learning environments, we would expect 

those processes to exert their influence on two outcome measures: First, the estimated rate of 

forgetting might be correlated with GCA and/or WMC and second, delayed recall performance 

could be predicted by both the estimated rate of forgetting and WMC and GCA (or an interac-

tion between these measures). For example, a higher GCA might lead to better recall indepen-

dent of the rate of forgetting but WMC only modulates recall when the rate of forgetting is low. 

If, on the other hand, the rate of forgetting did not correlate with either GCA or WMC and is 

the only significant predictor of delayed recall performance in the experiment reported here, 

we would conclude that the model’s parameter captures useful individual differences that are 

not expressed by individual differences in GCA and WMC.

Furthermore, given the work cited above, we have directional hypotheses about possible 

relationships that should be tested as such (Cho & Abe, 2013). GCA and WMC should be posi-

tively correlated with each other while their correlation with the estimated rate of forgetting 

should be negative: Higher cognitive functioning is expected to be an indicator of a lower 

rate of forgetting in a vocabulary task. With regards to the scores on a delayed recall test, the 

correlation coefficients are expected to be negative again with the estimated rate of forgetting 

(cf. Figure 4.1A) but positive for GCA and WMC.

MethodS

Procedure

All participants were invited for two sessions that were spaced three days apart. 

Session 1. In the first session participants spent 20 minutes learning 35 Swahili-Dutch 

word-pairs. Participants were randomly assigned to study with one of two methods: Either 

they used digital flashcards or the adaptive learning method used and explained in detail in 

Chapters 2 and 3. As we will focus here on the results of the adaptive learning method, used 

by 66 participants, we will refrain from further discussion of the digital flashcard method. 

During learning, words were introduced on study trials, which showed both the cue (Swahili 

word) and the correct response (Dutch word) alongside an input field. Study trials were self-

paced and participants proceeded by typing in the Dutch word. All subsequent repetitions of 

an item were test trials, which only displayed the cue and the input field. Test trials were fol-

lowed by feedback: either a 600 ms display saying “correct” or a four second display of a study 

trial without the input field (as recommended by Zeelenberg et al., 2015).
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After the study session, participants completed a personality questionnaire which took an 

average of 11.3 minutes to complete (range = [7; 32]). The results from the questionnaire will 

not be discussed here as they were part of an unrelated study. 

Next, participants completed the three complex span tasks used by Foster and colleagues 

(2015). In these tasks, participants were shown items that needed to be recalled in the correct 

order at the end of each trial. Each to-be-remembered item is followed by a distractor, which 

requires the participant to engage executive attentional processes. This is to reduce the ability 

to rehearse to-be-remembered items. In the Operation Span task, for example, to-be-remem-

bered items are letters and distractors are simple true/false equations (e.g., (2 x 2) - 1 = 3). The 

order of the tasks was identical across participants (Foster et al., 2015): first Operation Span, 

followed by Rotation Span, and then Symmetry Span. The computation of a participant’s WMC 

based on performance in these tasks is explained in detail in the Materials sub-section below.

Finally, a test of the word-pairs that were studied at the beginning of the session was ad-

ministered. All 35 Swahili cues were shown on screen as a list and the participant had to pro-

vide the correct Dutch translation. The test was self-paced and because all words were visible 

at the same time, participants were able to provide answers in any order they preferred. No 

feedback was provided. 

The time it took to complete the personality questionnaire and the complex span tasks 

varied between participants. To ensure that the retention interval between the word-learning 

task and the test was identical across participants, a simple lexical decision task was admin-

istered as a filler task before the test. The task was setup in a way that it would terminate as 

soon as the retention interval was 80 minutes, irrespective of the number of trials completed. 

For the task, five-letter strings were presented on screen and participants had to press one of 

two buttons to indicate whether the string was a Dutch word or not. By using high frequen-

cy words, the task was made relatively easy to avoid fatigue. Although accuracy levels were 

below 75% for three participants, visual inspection of the response time distributions did not 

indicate failure to respond to the instructions3. Thus, no participant was excluded based on 

their performance in the lexical decision filler task. The data from this filler task will not be 

analyzed or discussed further. 

Session 2. Three days later, participants came back for the second session which started 

with a second test of the Swahili-Dutch word-pairs learned at the beginning of the first session. 

The test was identical to the one completed at the end of Session 1. 

Subsequently, we assessed the participant’s general cognitive abilities (GCA) by adminis-

3  One participant started responding randomly after about 500 trials. This participant performed very well in all 
other tasks and finished them very quickly, which meant the participant had to complete a large number of lexical 
decision task trials.
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tering the Q1000 High Capacity test (Van Bebber, Lem, & Van Zoelen, 2010), which took par-

ticipants between 32 and 87 minutes to complete. Mean completion time was 56 minutes. In 

contrast to more traditional tests of GCA, this test can be administered online at multiple com-

puters simultaneously and upon completion, the website provided participants with feedback 

indicating how their performance compared to that of a norm group. For our analyses, we uti-

lized raw scores on the test rather than the normed scores communicated to the participants.

Materials
Swahili-Dutch Word-Pairs. The 35 items were randomly sampled from the list of 100 

Swahili-English word-pairs provided by Nelson and Dunlosky (1994). The English responses 

were translated to Dutch and all participants studied the same subset of 35 word-pairs. The 

order in which words were introduced was randomized. 

Complex Span Tasks. The code for the three complex span task was obtained from the 

Engle lab’s website4 and used with permission. It is the same code used by Foster and col-

leagues (Foster et al., 2015) but all instructions were translated to Dutch. Scores reported in 

Table 4.1 are partial-credit unit scores (Conway et al., 2005). To express a single measure of 

working memory capacity (WMC), the scores on the three complex span tasks are summa-

rized into a single composite score. This is done by calculating a participant’s z-score for each 

task and then computing a z-score average for each participant (Foster et al., 2015). For brevi-

ty’s sake, the composite score will be referred to as a participant’s WMC (Conway et al., 2005).

General Cognitive Ability. As a measure of general cognitive ability, we used Q1000 Ca-

paciteiten Hoog (“High Capacity”; normed for university-educated individuals) developed by 

Meurs HRM5. The test has been developed as a selection tool to determine whether a can-

didate has the necessary intellectual ability to perform well in cognitively demanding jobs. 

There are seven sub-scales that are ordered hierarchically with the goal of measuring general 

intelligence. The seven sub-scales can be reduced to reflect three scores for verbal, numerical, 

and figural capacity, respectively. Those three scores are then averaged to yield a participant’s 

general cognitive ability (GCA). The Committee on Test Affairs Netherlands (Dutch abbrevia-

tion: COTAN) has evaluated the test and concluded that it is a valid and reliable measure of 

GCA (see also Van Bebber, Lem, & Van Zoelen, 2010). The ability score reported here was the 

mean across the proportions of correct items on each sub-scale. The resulting scores were 

subsequently multiplied by ten to create an easy to interpret 0-to-10 scale. 

4  www.englelab.gatech.edu/tasks.html 
5 www.meurshrm.nl/
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Participants 
A total of 126 participants were recruited from the Dutch first-year participant pool at the 

University of Groningen and participated for course credit. Of those, 89 were female (71%) 

and the median age was 20 (SDage = 1.55; rangeage = [18, 26]). All participants spoke Dutch and 

no one indicated any familiarity with Swahili. All participants gave informed consent and the 

Ethics Committee Psychology approved the study (ID: 15006-N). 

Due to technical issues, data in the Rotation Span task was lost for one participant and in the 

Symmetry Span task for another. The composite scores (i.e., WMC) for these two individuals are 

based on the z-score average of the two remaining tasks. A total of 15 participants did not show up 

for the second session6, which meant that data from the second session (that is, scores on the sec-

ond vocabulary test and the GCA scores) were missing. Another three participants entered invalid 

participant IDs on the GCA test so their data could not be recovered and five participants finished 

the test very quickly (in less than 30 minutes) with poor scores so their data were disregarded. Ad-

ditionally, technical difficulties resulted in the loss of scores on the first test for three participants. 

Data on all measures were available for 103 participants (82%) but even if a participant’s data were 

partially missing, the available subset of data were included in the analyses reported below. The 

number of data points contributing to each measure are summarized on the diagonal of Figure 4.2.

Analysis
Our first question – whether the rate of forgetting is related to GCA and/or WMC – was 

addressed by computing correlations among the measured constructs. More specifically, we 

computed Pearson’s product-moment correlations and employed one-sided tests because we 

have clear, directional expectations about the relationships among all obtained measures 

(Cho & Abe, 2013). For the one-sided tests, we reported both traditional p-values correspond-

ing to the one-sided tests as well as Bayes factors (Wagenmakers, Verhagen, & Ly, 2016). The 

Bayes factors’ ability to express the likelihood of observing the data under the null hypothesis 

has several theoretical and practical advantages over a “null finding” in the traditional null 

hypothesis testing framework (Gallistel, 2009; Mulder & Wagenmakers, 2016; Wagenmakers, 

Morey, et al., 2016). The Bayes factors quantify the evidence the data provide for the null hy-

pothesis relative to the alternative hypothesis such that a Bayes factor of, say, 7 can be inter-

preted as the data being 7 times more likely under the null model than the alternative model 

(Kass & Raftery, 1995). We will use the subscript “H0” for Bayes factors expressing evidence in 

favor of the null model and the subscript “H1” for Bayes factors expressing evidence in favor 

of the alternative model. A graphical summary of the results is provided in Figure 4.2.

6  Four of which could not attend the second session because the university building was closed due to extreme 
weather conditions.
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The second question – whether GCA and/or WMC can make significant contributions to 

predicting delayed recall – was addressed by fitting multiple linear regression models and 

comparing them using Bayesian model comparison (Rouder & Morey, 2012) to determine 

which (combination of) variables can best predict variance in delayed recall performance. 

This was done using the BayesFactor package (R. D. Morey & Rouder, 2015b) in R (R Devel-

opment Core Team, 2016). Again, Bayes factors were used to express the evidence the data 

provided for each model relative to a reference model. As a reference model, we chose the full 

model that contains as predictors all three measures – the rate of forgetting, WMC, and GCA – 

and all interactions. A graphical summary of the results is provided in Figure 4.3.

ReSultS

A participant’s working memory capacity (WMC) and their general cognitive ability (GCA) 

were computed as outlined in Materials above. Table 4.1 and Table 4.2 provide descriptive sta-

tistics and summarize the correlations among the components that make up someone’s WMC 

and their GCA, respectively. For WMC, the correlations among scores on the three complex 

span tasks and their composite scores are positive. The two correlation coefficients between 

the scores on the Operation Span task and the other two complex span task are somewhat low-

er (.16 and .19), most likely due to the participants’ relatively high scores which imposes a bit 

of a limit on observable correlations. For GCA, the correlations among scores on the three com-

ponents and their combined score are also all positive and the data provide strong evidence 

that all coefficients differ from 0: the Bayes factors for the lowest coefficient is 205 in favor of 

the alternative model and the Bayes factors for all other coefficients are greater than 100,000.

table 4.1. Descriptive statistics for the complex span tasks and their composite score (WMC) as well as the 

correlations between all measures.

 

Mean S.d. Range oSpan RotSpan SymSpan

Operation Span 58.9 9.6 [21, 75]

Rotation Span 28.8 5.9 [10, 40] .19a

Symmetry Span 31.4 6.1 [14, 42] .16b .37

WMC 0.0 0.7 [-1.8, 1.4] .64 .74 .72

Note – a The one-sided p-value is < .05 and the corresponding BFH0 is 1.8; b The one-sided p-value is < .05 and the 

corresponding BFH0 is 0.9; The one-sided p-values for all other coefficients are < .001 and the corresponding BFs in 

favor of the null hypothesis are well over 1,000.
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The relationships among all measures are summarized in Figure 4.2. The plot depicts the 

distribution of each measure – along with the number of available observations – on the di-

agonal. On the off-diagonal, scatterplots with fitted linear regression lines are shown (Ans-

combe, 1973). The corresponding Pearson correlations are shown on the other off-diagonal, 

along with one-sided p-values expressing the probability of observing the data assuming the 

coefficient is 0. The one-sided alternative hypothesis is that the coefficient is greater than 0 

(except for the correlations with the rate of forgetting for which we would assume a negative 

correlation, if any). Also shown are the Bayes factor equivalents of the directional null-hypoth-

esis significance tests (Wagenmakers, Verhagen, et al., 2016). 

table 4.2. Descriptive statistics for the Q1000 Capacity Test for the three components and the combined general 

cognitive ability (GCA) score. Also shown are the correlations between all measures.

Mean S.d. Range numeric Figural Verbal

Numeric 6.1 1.6 [2.0, 9.7]

Figural 6.7 1.5 [2.5, 9.6] .50

Verbal 6.5 1.1 [3.3, 8.4] .48 .36

GCA 6.4 1.1 [3.6, 9.0] .83 .77 .78

Note – All correlation coefficients differ significantly from 0 with p < .001 (one-sided). The corresponding BFH0 is 205 
for the lowest coefficient and well over one hundred thousand for all others.

For each of the 66 participants that studied with the adaptive method, the rate of forgetting 

was computed by averaging the final a values of all items with at least three test trials. The 

mean rate of forgetting is .295 with a standard deviation of 0.045 (range = [0.186; 0.442]). Since 

a higher rate of forgetting indicates faster forgetting, we would expect all correlations in the 

leftmost column of Figure 4.2 to be negative. This is confirmed for both the first and second 

test scores reported in the second and third row/column. The correlations are very high sug-

gesting that the estimated rate of forgetting is a good predictor of test performance both 80 

minutes and three days later. 

This replicates earlier, unpublished findings from our lab such as those shown in Figure 

4.1A. The correlation between someone’s rate of forgetting and their WMC is also negative, but 

the data does not provide strong evidence for either the null or alternative hypothesis (BFH1 

= 1.4) even though the traditional one-sided frequentist test suggests a significant difference 

from 0 (t(64) = -1.81; p = 0.038). With regards to the correlations between rates of forgetting and 

GCA, the Bayes factors provide positive evidence that the null model is more likely given the 

data (BFH0 = 3.5) and the p-values corroborate that the coefficient does not differ significantly 
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from zero (t(51) = -.59; p = 0.281). The scores from the two Swahili-Dutch tests are highly and 

positively correlated with each other, which is not surprising. We would expect test scores to 

correlate positively with WMC and GCA and all coefficients are indeed positive (see Figure 

4.2). The data provide weak evidence that the score on the first test might be related to WMC 

(r = 0.21; BFH1 = 3.1) but this relationship breaks down for the test score obtained three days 

later (r = 0.11; BFH0 = 2.5). 

For the relationship between GCA and the two test scores, the null hypothesis that there 

is no correlation cannot be rejected and the Bayes factors favor the null model as well but 

evidence is weak (r = 0.10 with BFH0 = 3.1 and r = 0.13 with BFH0 = 2.0 for the first and second 

test, respectively). Visual inspection of the corresponding scatter plots in Figure 4.2 confirms 

the absence of a clear linear (or any) relationship with any other measure. The weak positive 

correlation between the first test score and WMC might be partially driven by at ceiling per-

formance on the test by some participants, which might explain why the correlation is not 

significant anymore when the performance decreases from the first to the second test.
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Figure 4.2. Depicted are the measures of interest: the estimated rate of forgetting, the scores on the first and 

second test, working memory capacity (WMC), and general cognitive ability (GCA). Note that p-values and Bayes 

factors correspond to the directional hypothesis that correlation coefficients are positive (except for the correlations 

with the rate of forgetting in the leftmost column: those are expected to be negative).

Given the large body of previous research on the relationship between WMC and GCA 

(Conway, Kane, & Engle, 2003; Kane et al., 2005), we would expect WMC and GCA to be posi-

tively correlated. This directional hypothesis is confirmed in our data: The p-value indicates a 

significant, positive deviation from 0 and the Bayes factor confirms that there is very strong 

evidence for a positive correlation (i.e., BFH1 = 21.2). The magnitude of the correlation coeffi-

cient (i.e., .29) is also roughly in the range we would expect (Conway et al., 2005).
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and all their interactions. In the model names on the y-axis, a “+” denotes that only main effects for the listed 

variables are included and an “*” denotes that both main and interaction effects are included. The variables 

abbreviations are ROF = rate of forgetting, WMC = working memory capacity, and GCA = general cognitive ability. 

The dependent variable in all models is the delayed recall performance three days later.

To test to which extent the three measures of interest – rate of forgetting, GCA, and WMC – 

can predict delayed recall, we fit a series of (multiple) linear regression models and compared 

them using Bayes factor model selection procedures (Rouder & Morey, 2012). The outcomes 

are summarized in Figure 4.3 and show that the best-fitting model includes only the estimated 

rate of forgetting as a main effect. The worst model, on the other hand, includes both main and 

interaction effects of WMC and GCA but not the rate of forgetting. Since all models are com-

pared with the full model, that particular model has a Bayes factor of 1. A striking pattern in 

Figure 4.3 is that the full model demarcates two clusters of models: The first cluster has Bayes 

factors much greater than 1 (i.e., provide better fits relative to the full model) and all models 

in that cluster contain the rate of forgetting as a predictor. Furthermore, the models in that 

cluster decrease in complexity as the Bayes factors increase. The simplest model includes only 

the rate of forgetting as a predictor and fits the data 5.4 and 6.4 times better than the second 

and third models, respectively. The second cluster of models has Bayes factors much smaller 

than 1 and does not include the estimated rate of forgetting. The same pattern is apparent: the 

more complex the model, the worse it does.

To summarize, the results of comparing the models provide clear evidence that the esti-

mated rate of forgetting alone is the best predictor of delayed recall. Adding either WMC or 
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GCA (and any interaction) increases the model complexity without explaining more variance 

in recall performance. This finding is substantiated by the correlations reported in Figure 

4.3. The correlation coefficients can be squared to obtain the amount of explained variance 

in delayed recall for the three models that only contain a single predictor. This, again, clearly 

demonstrates that the rate of forgetting can explain a lot more variance in recall three days 

later than WMC or GCA: 62.4% compared to 1.2% and 1.7%, respectively. 

diScuSSion

Here, we explored whether two commonly used measures of individual cognitive differ-

ences – working memory capacity (WMC) and general cognitive ability (GCA) – are related 

to the rate of forgetting estimated while studying with the adaptive fact-learning system de-

veloped in our lab. We also tested whether those measures can predict delayed recall perfor-

mance independent of or in conjunction with the rate of forgetting. The data presented here 

suggest that the rate of forgetting is neither correlated with GCA nor WMC and that only the 

rate of forgetting can explain significant amounts of variance in delayed recall performance.

The very high correlations between the rate of forgetting and subsequent test performance 

on the studied material reported here (see Figure 4.3) directly replicate earlier, unpublished 

findings (see Figure 4.2 but also section 3.2.2.4 in Nijboer’s (2011) Master thesis). Estimating 

how well a learner has mastered the studied material is crucial to adaptive learning environ-

ments because this estimate will directly influence which items are selected for repetition 

(see Settles & Meeder, 2016 for a good example). Therefore, the ability to capture individual 

differences in the mastery of studied material is a crucial benchmark of any adaptive learning 

system. Based on the data presented here, we can conclude that the model developed in our 

lab passes this test.

In the setup used here, the learner has considerable control over certain aspects of the 

task. The adaptive system determines the order in which items are repeated but the learners 

can respond as they please and employ any additional rehearsal strategies or mnemonic de-

vices they deem useful. This, presumably, leaves room for variation in executive functioning 

and attentional control between learners to exert their influence on the testable end product 

of the learning session: delayed recall performance. Thus, we would expect that the setup of 

the current experiment provides ample opportunity for individual differences in cognitive 

functioning to exercise their influence; both during learning and on subsequent test perfor-

mance. Surprisingly, we find no relationship between the two measured constructs of exec-

utive functioning and attentional control – GCA and WMC – and delayed recall performance 
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in the homogenous sample tested here. The estimated rate of forgetting, on the other hand, 

does make substantial contributions to explaining variance in delayed recall performance. In 

fact, Figure 4.3 makes clear that any model that includes the estimated rate of forgetting as a 

predictor vastly outperforms any model that does not. The preferred model is the one includ-

ing only the estimated rate of forgetting, which indicates that adding either WMC or GCA (and 

any interaction between the two) increases the complexity of the model without explaining a 

sufficient amount of additional variance in delayed recall performance. 

These findings suggest that – at least in the current sample – executive functioning and 

attentional control do not play important roles in predicting delayed recall of items studied 

using the adaptive fact-learning system developed in our lab. The results of the analysis sum-

marized in Figure 4.3 demonstrate that the rate of forgetting is the single best predictor of 

delayed recall performance. This means that the adaptive method is able to utilize a learner’s 

responses during learning to dynamically adjust its internal parameters in a way that reflects 

the learner’s current ability. Figure 4.3 also shows that the estimated rate of forgetting is not 

only the best predictor but any model that does not include it is at least a million times less 

likely given the data than even the most complex model that does include it.

It should be noted that GCA and WMC are both constructs that are validated as indica-

tors of cognitive performance that are domain-general (e.g., WMC: Conway et al., 2005; GCA: 

Deary, 2012). The same cannot be said about the parameter extracted from the ACT-R-based 

model employed here. The model is based on a theoretical framework specifically designed to 

trace the temporal dynamics of declarative memory processes (see, e.g., J. R. Anderson, Both-

ell, Lebiere, & Matessa, 1998). As such, it is reassuring that the model’s parameter can capture 

relevant memory processes that allow the design of effective, personalized learning schedules 

(see Chapter 2) and allows predicting learners’ delayed recall of the studied material. As out-

lined in the Introduction, both WMC and GCA have been reported to be implicated in memo-

ry-related processes. However, the findings reported here suggest that such domain-general 

measures do not capture individual differences relevant to constructing adaptive learning 

environments of the kind studied here. The domain-specific rate of forgetting, on the other 

hand, does. More generally, this suggests that it is not necessary for computerized learning en-

vironments to gather information regarding learners’ GCA and/or WMC to predict fact-learn-

ing ability.

There are many other adaptive models specialized in fact-learning (e.g., Lindsey et al., 

2014; Papoušek, Pelánek, & Stanislav, 2014; Settles & Meeder, 2016; Woźniak & Gorzelańczyk, 

1994). The exact mechanism employed by these models differ but the approach is the same: A 

new learner starts using the system and the underlying model assumes the learner’s behavior 

can be described by a set of equations. These equations have free parameters to accommo-



T h e  R a T e  o f  f o R g e T T i n g 
a s  a  U s e f U l  i n d i v i d U a l  d i f f e R e n c e s  M e a s U R e

73

date between-learner variation. However, the optimal parameters for that particular learner 

are unknown and models differ with regards to the techniques they use to approximate a 

learner’s optimal parameters based on information gathered through responses. Before such 

responses can be collected, however, nothing is known about the new learner and the models 

use default parameters as starting values. Here, we explored the possibility of using additional 

information about participants obtained outside the learning session. Specifically, we chose to 

test two commonly used measures of cognitive functioning (WMC and GCA), hypothesizing 

that they might exert an influence alongside purely memory-based processes. We explored 

whether such measures are related to relevant aspects of fact-learning – in this case, the pa-

rameter estimated by our model and the delayed recall performance on the studied material. 

Because if they were, one could maybe use such additional information to pick personalized 

starting parameters. Unfortunately, we could neither find evidence that WMC or GCA were 

correlated significantly with the estimated rate of forgetting nor that they contributed to pre-

dicting delayed recall.

A certain degree of caution is appropriate when interpreting our results and generalizing 

them to other samples and contexts. Our sample was relatively small and very homogeneous. 

We only recruited participants who spoke Dutch because the test of GCA was only available in 

Dutch. This means that prior academic achievement played a big role in the pre-selection of 

participants, who will have to have completed their pre-university education to be admitted 

to the program. The participants in our sample are also around the same age with 80% of the 

participants between the age of 18 and 21. We think it is reasonable to assume that variations 

in WMC and GCA would have been related to delayed recall performance if a broader sample 

of the population had been tested. 

For the given sample, it is interesting to note that neither WMC nor GCA can distinguish 

between participants on the outcome measure. Delayed recall on a set of studied word pairs is 

an outcome measure with high face-validity – for example, it is often used in school to assess 

students’ progress. Therefore, the strong relationship between estimated rates of forgetting 

and delayed recall performance reported here is both of theoretical interest and practical rel-

evance and an attempt to replicate it in a more heterogeneous sample would be an interesting 

extension of the current work.

To summarize, we present data from a correlational study in which we measured some-

one’s rate of forgetting during a fact-learning session alongside their working memory capac-

ity and general cognitive ability. Neither of the two common individual differences measures 

are related to someone’s rate of forgetting. Moreover, we replicate previous findings show-

ing a very high negative correlation between the estimated rate of forgetting and subsequent 

recall. Additionally, we show that neither working memory capacity nor general cognitive 
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ability are related to delayed recall. Keeping the limitations of the sample in mind, this implies 

that someone’s rate of forgetting is the only individual differences measure tested here that 

can predict delayed recall. Furthermore, these findings suggest that even in the relatively ho-

mogenous sample tested here, between-subject variation in rates of forgetting capture useful 

individual differences that are independent of both working memory capacity and general 

cognitive ability. This implies that the model’s parameter is not just an artifact of differences 

in higher cognitive functioning but encapsulates information about a learner that is useful in 

the context of a personalized fact-learning system.  
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Abstract
Evidence suggests that there is a tendency to verbally recode visually-presented informa-

tion, and that in some cases verbal recoding can boost memory performance. According to 

multi-component models of working memory, memory performance is increased because 

task-relevant information is simultaneously maintained in two codes. The possibility of dual 

encoding is problematic if the goal is to measure capacity for visual information exclusively. 

To counteract this possibility, articulatory suppression is frequently used with visual change 

detection tasks specifically to prevent verbalization of visual stimuli. But is this precaution 

always necessary? There is little reason to believe that concurrent articulation affects perfor-

mance in typical visual change detection tasks, suggesting that verbal recoding might not be 

likely to occur in this paradigm, and if not, precautionary articulatory suppression would not 

always be necessary. We present evidence confirming that articulatory suppression has no 

discernible effect on performance in a typical visual change-detection task in which abstract 

patterns are briefly presented. A comprehensive analysis using both descriptive statistics and 

Bayesian state-trace analysis revealed no evidence for any complex relationship between 

articulatory suppression and performance that would be consistent with a verbal recoding 

explanation. Instead, the evidence favors the simpler explanation that verbal strategies were 

either not deployed in the task or, if they were, were not effective in improving performance, 

and thus have no influence on visual working memory as measured during visual change 

detection. We conclude that in visual change detection experiments in which abstract visual 

stimuli are briefly presented, pre-cautionary articulatory suppression is unnecessary.
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During his seminal experiments on human memory, Sperling noticed that many of his 

participants verbalized and repeated to-be-remembered material during retention, even if 

the studied material was not aurally presented. Sperling (1967) pointed out that visual in-

formation can be verbalized and many people reported doing so. This reflection confirmed 

intuitions that regardless of presentation modality, information may be encoded with some 

flexibility of representation: visual materials might be maintained in a verbal code, and imag-

ery corresponding to verbal input may likewise become active.

However, demonstrating that recoding can occur does not imply that it always occurs, 

nor that it is beneficial. Murray (1965) showed that saying visually-presented verbal stimuli 

out loud improves recall performance relative to mouthing them silently. However, this rela-

tionship only seems to persist if the visually-presented material can be verbalized effectively 

(e.g., verbal stimuli, nameable visual images). The idea that it is the opportunity to rehearse 

these verbal codes that improves performance also remains a matter for debate, even for se-

rially-ordered verbal stimuli (Lewandowsky & Oberauer, 2015). Attempts to verbalize stimuli 

that are difficult to describe succinctly and accurately (e.g., faces) might actually harm perfor-

mance (Schooler & Engstler-Schooler, 1990). Brandimonte et al. (1992) showed that verbal re-

coding can be detrimental to a subsequent mental rotation task when the remembered verbal 

label is not relevant or helpful. What such experiments suggest is that there is a strong tenden-

cy to verbally recode visually-presented information, and that in some cases verbal recoding 

may boost memory performance. This logic is consistent with multi-component models of 

working memory, which propose that separate short-term memory stores for phonological 

and visual information can be applied to a short-term memory task (Baddeley, 1986). Natu-

rally, if task-relevant information can be maintained simultaneously in two useful codes, one 

would expect memory performance to improve.

The possibility of dual encoding is problematic though if the goal is to measure capacity 

for visual information exclusively. Levy (1971) suggested a method of preventing such recod-

ing via meaningless concurrent articulation. By repeating irrelevant syllables out loud during 

presentation and retention of visual information, participants’ ability to verbally recode visu-

ally-presented stimuli is restricted. This procedure is known as articulatory suppression and 

is commonly used alongside visual change detection tasks with the specifically-stated inten-

tion that it is meant to prevent verbalization of visual stimuli (Allen, Baddeley, & Hitch, 2006; 

Brockmole, Parra, Sala, & Logie, 2008; Delvenne & Bruyer, 2004; Hollingworth & Rasmussen, 

2010; Logie, Brockmole, & Vandenbroucke, 2009; Makovski & Jiang, 2008; Makovski, Sussman, 

& Jiang, 2008; Matsukura & Hollingworth, 2011; Treisman & Zhang, 2006; van Lamsweerde & 

Beck, 2012; Woodman & Vogel, 2005, 2008). This precaution is undertaken to ensure that task 

performance reflects visual memory, rather than some combination of memory for visual 
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images and verbal codes.

The use of precautionary articulatory suppression is common practice despite evidence 

that articulatory suppression has not been shown to have a measurable effect on some vi-

sual change detection tasks (Luria, Sessa, Gotler, Jolicœur, & Dell’Acqua, 2010; Mate, Allen, & 

Baqués, 2012; C. C. Morey & Cowan, 2004, 2005), nor have small verbal memory loads (Vogel, 

Woodman, & Luck, 2001). These studies imply that the precaution of employing articulato-

ry suppression may be unnecessary: participants performed no better without articulatory 

suppression than with it, suggesting that verbal recoding is not the default strategy for visual 

change detection tasks as typically administered. However, these findings simply report null 

effects of meaningless articulatory suppression on visual memory tasks, and therefore cannot 

be taken as strong evidence of the absence of some effect, given sufficient power to detect it. 

Until a stronger case against verbal recoding during visual change detection can be made, en-

forcing articulatory suppression to prevent verbalization of visual images is a reasonable way 

for researchers to better ensure that their measure of visual memory performance is pure. 

However, enforcing articulation adds a substantial burden to an experiment from both the 

participant’s and the experimenter’s point of view. If a strong case could be made that possible 

verbal recoding of visual memoranda does not affect visual memory performance, research-

ers would be free to forgo including articulatory suppression from some designs.

We report evidence suggesting that articulatory suppression has no discernible effect on per-

formance in a typical visual change-detection task. The experiment was designed so that some 

change-detection conditions encouraged verbalization by presenting memoranda one at a time. 

In all cases, the stimuli were arrays of distinctly-colored squares, and the object was to remem-

ber the location of each color. We manipulated the number of items in each array, whether the 

squares were presented simultaneously or sequentially, and whether participants performed 

articulatory suppression or not. If participants tend to verbally label the stimuli, and if verbal 

labeling assists the recognition decision, we would expect to observe at least a small benefit of 

silence over articulation in all conditions. It may also be the case that participants strategically 

choose when to verbally recode stimuli. If so, we would expect to see selective impairments with 

articulation for sequentially-presented items, perhaps most strongly for small set sizes where 

naming all the items might have occurred. In order to discern between small effects of articula-

tion and the null hypothesis of no effect at all, we employ two modes of analysis: first, we provide 

a straightforward analysis based on descriptive statistics that shows that the effects tend to go 

in the reverse direction to what is predicted, ruling out evidence for the predicted effect; and 

second, we employed Bayesian state-trace analysis to show that participants show data patterns 

more consistent with a single-parameter explanation (visual short term memory) than a more 

complicated explanation (visual short term memory plus verbal short term memory).
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MethodS

Participants performed a visual array change detection task under four conditions formed 

by the cross of two presentation conditions (sequential and simultaneous) and two articula-

tion conditions (silent and articulatory suppression). The simultaneous presentation condition 

was the same as a standard visual array change detection task; in the sequential condition, 

the stimuli were presented one after another. We assumed that presenting visual stimuli se-

quentially would afford a better opportunity to engage in verbalization, if such verbalization 

occurs (Woodman, Vogel, & Luck, 2012). Articulatory suppression is supposed to prevent par-

ticipants from employing subvocal verbalization. The combination of simultaneous/sequen-

tial and silent/articulate conditions creates combinations of conditions that discourage par-

ticipants from recruiting verbal resources (i.e. articulate, simultaneous trials) as well as those 

that make it more likely they could benefit from verbalization (i.e. silent, sequential trials).

Participants
Fifteen participants (8 female) between the age of 21 and 31 (M = 25.4, SD = 2.67) were re-

cruited from the population of Groningen. Participants were paid 10€ per 90-minute session 

and recruited through a local online social media group.

All participants were pre-screened for colorblindness and medication use that might affect 

their cognitive abilities, and all participants reported normal or corrected-to-normal vision 

and normal hearing. Furthermore, participants were only invited for subsequent sessions if 

they scored at least 85% correct on set-size-two trials (across all conditions) in the first session. 

This cut-off value was chosen based on an unpublished pilot study in which 14 out of the 15 pi-

lot participants performed above 85%, and the remaining low-performing participant scored 

near chance (50%) and was assumed to have ignored the instructions. All fifteen participants 

in our final sample met this criterion. One of these participants completed only four sessions 

due to scheduling difficulties, while the remainder of the final sample completed five sessions.

Apparatus and Stimuli
The experiment was conducted using MATLAB (2011) using the Psychophysics Toolbox ex-

tensions (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997). The stimuli were colored 

squares approximately 0.65° x 0.65° presented within a 7.3°x 9.8° area around the screen’s 

center. On each trial, the colors were randomly sampled without replacement from a set of 

nine easily-discriminable colors and presented on a gray background. The set of possible col-

ors was identical to the one used by Rouder et al. (2008) with the exception that black was 
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excluded, since Morey (2011) showed that black exhibited markedly different effects in a sim-

ilar change detection task. Stimuli were shown against a neutral gray background. The items 

within a single array were always arranged with a minimum distance of 2° from one another 

and participants sat approximately 50 cm from the monitors. This setup allowed them to see 

the entire display without moving their heads.

Feedback was given via one of three clearly-discriminable sounds signaling a correct, in-

correct, or invalid response (i.e., a key that was not assigned to either of the two valid respons-

es). The sounds were played through headphones worn throughout the entire experiment.

Procedure
Within each session, participants completed one block of trials in which subvocal articula-

tion was suppressed by requiring them to repeat aloud the syllables “ta’’ and “da’’ (articulation 

block) and one block in which no such articulatory suppression was enforced (silent block). 

Both the articulation and the silent blocks were further sub-divided in two blocks: one in 

which stimuli were presented simultaneously and one in which they were presented sequen-

tially. The order in which blocks were completed was determined based on the participants’ 

IDs and identical in each session. There were 504 trials in each session, yielding a total of 2,520 

trials per participant (except for participant 10 who came in for four sessions, contributing 

2,016 instead of 2,520 trials).

+

time

Fixation cross: 2,000 ms

Study array: [set size] x 100 ms

Blank screen: 250 ms

Mask: 500 ms

Probe: until response

Retention interval: 2,250 ms

Figure 5.1. A schematic representation of a set size two trial in the simultaneous presentation condition. Note that 

the image is not to scale.

The overall structure of the task is depicted in Figure 5.1. The trial started with a fixation 

cross that was on screen for 2,000 ms. The study time in the simultaneous block was a lin-

ear function of the set size (study time = set size x 100 ms) and the set sizes were 2, 4, and 8. 
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We adopted this deviation from the more typical visual change detection task in which the 

timing of the stimulus display is constant in order to ensure that exposure time to the ob-

jects was constant across the simultaneous/sequential manipulation. In the sequential block, 

the stimuli appeared one after another. Each stimulus was shown with a thin, black outline 

and remained on the screen for 100 ms. The stimulus color was then replaced with the back-

ground gray color and the black outline remained. After an inter-stimulus interval of 200 ms 

the following stimulus appeared on screen. The outlines of all stimuli remained on screen 

until a mask appeared. There was a 250 ms blank screen between the study array (or the final 

stimulus color in the sequential presentation) and the mask. The mask was displayed for 500 

ms. Each individual stimulus mask was made up of a 4-by-4 grid of colored rectangles and the 

colors were randomly chosen from the same color set as the whole array. After the mask dis-

appeared, a 2,250 ms retention interval (blank screen) delayed the onset of a single probe. The 

probe remained on screen until the participant made a response. Alongside the probe were 

thin, black outlines of the other stimuli from the study array, which were displayed to prevent 

the participant from being unsure about which of the studied stimuli was probed.

ReSultS 

Prior to data analysis, all trials containing invalid responses (0.1% of trials) were removed, 

and trials with unusually long or short response times (<200 ms or >3 s; 2% of trials) were 

excluded. The overwhelming majority of these were too slow, possibly because participants 

took unscheduled breaks by deliberately delaying their response. Overall, 36,495 trials across 

the 15 participants remained for analysis. Descriptive statistics for task performance across 

conditions are summarized in Figure 5.2. Overall accuracy is high in the set size 2 condition, 

as expected, and decreases as set size increases. In addition, Table 5.1 shows the mean hit and 

false alarm rates across all participants.
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table 5.1. Mean hit and false alarm rates for all conditions across all participants. Numbers in parentheses are 

standard deviations of the corresponding means.

hits

Simultaneous Sequential

Set size Articulate Silent Articulate silent

2 0.95 (0.022) 0.95 (0.036) 0.94 (0.026) 0.94 (0.032) 

4 0.84 (0.065) 0.88 (0.063) 0.82 (0.076) 0.82 (0.097) 

8 0.72 (0.079) 0.70 (0.100) 0.70 (0.101) 0.70 (0.174) 

False alarms

2 0.08 (0.040) 0.06 (0.035) 0.11 (0.066) 0.07 (0.039) 

4 0.25 (0.131) 0.22 (0.132) 0.31 (0.166) 0.26 (0.154) 

8 0.41 (0.120) 0.39 (0.138) 0.41 (0.142) 0.42 (0.159)

In order to assess the performance while controlling for response bias, for each condi-

tion-participant-set size combination we subtracted the false alarm rate from the hit rate to 

form an overall performance measure d (Cowan et al., 2005; Rouder, Morey, Morey, & Cow-

an, 2011). Of particular interest is how the performance advantage for the silent condition 

is affected by the type of presentation. If participants verbalize when the presentation is se-

quential, we would predict that articulation would hurt performance more with sequential 

presentation, and thus the advantage for the silent condition would be larger with sequential 

presentation.
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Figure 5.2. Descriptive statistics for the relevant performance measure d across the different conditions of the 

experiment. Semi-transparent black circles show the mean performance in each condition per participant and lines 

connect individual participants’ means. Larger, colored symbols are group means for each condition, connected by 

thicker, black lines.

Figure 5.3A plots the silent advantage in the simultaneous condition as a function of the 

same for the sequential condition for all participant by set size combinations. If participants 

were verbalizing, then being silent should aid performance. Moreover, being silent should 

aid performance more in the sequential-presentation condition than in the simultaneous-pre-

sentation condition. This prediction would appear in Figure 5.3A as points falling below the 

diagonal. However, 28 out of the 45 points actually fall above the diagonal, inconsistent with 

the verbalization hypothesis. 

It is plausible to suppose that participants only sometimes engage in verbal recoding, per-

haps when it is most natural, or when they believe it will be most helpful (Larsen & Baddeley, 

2003). Larsen and Baddeley surmised that participants abandon articulatory rehearsal with 

long or otherwise difficult-to-rehearse verbal lists. Building on this assumption, one might 

imagine that participants engage in strategic verbal recoding for small set sizes where helpful, 

distinct labels may be generated for each item, but abandon this strategy for larger set sizes. 

However, for all set sizes, the number of points above the diagonal in Figure 5.3A is greater 

than one-half: 8/15, 10/15, and 10/15 points lie above the diagonal for set sizes 2, 4, and 8, re-

spectively. There is no evidence of the predicted effect in these data; instead, the effect appears 

to go in the wrong direction.

We also examined whether the apparent lack of an effect may be due to differences in 

strategy over the experimental sessions; however, a similar picture emerges when the effect 

is examined across time, as in Figure 5.3B. The verbalization hypothesis would predict that 
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points would fall above the horizontal line at 0 on average; however, if anything, the points 

tend to fall below the line.

Given the descriptive analysis above, we eschew typical ANOVA analyses in favor of reli-

ance on a state-trace analysis1. We have the luxury of avoiding the assumption-laden ANOVA 

because we have directional predictions that are violated in the data. Thus, there cannot be 

evidence for the prediction of interest. Furthermore, we are interested in the dimensionality 

of the latent system that has produced the observed data – a question that an ANOVA, unlike 

state-trace analysis (Prince, Brown, & Heathcote, 2012), cannot provide a reliable answer to. 

The state-trace analysis complements the descriptive analysis by showing that the data are 

highly consistent with a simple explanation: that performance is governed by a single latent 

variable (interpreted as visual short term memory capacity) and no more complicated expla-

nation involving verbalization is needed.

Figure 5.3. A: Advantage for silent condition (i.e., d in silent condition minus d in articulate condition) with 

simultaneous presentation as a function of the same for sequential presentation. Each point represents a single 

participant and set size. Error bars are approximate standard errors. B: The difference between the advantage for 

the silent condition in the sequential and simultaneous presentation conditions as a function of experimental block. 

In both plots, the number for each point represents the set size.

State-trace analysis
Another way to examine whether there is any evidence for verbalization is a state-trace 

analysis. State-trace analysis, outlined in its original form by Bamber (1979), is a data analysis 

technique intended to reveal how many latent dimensions a system requires to produce ob-

served empirical results (see Prince et al., 2012 for an overview and the application of Bayes-

1 For those interested, a traditional repeated measures ANOVA has been included in the online supplement available 
at www.osf.io/wzdvq/.
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ian analysis). A simple system may have only one latent dimension (e.g., working memory 

capacity in general, or visual working memory capacity specifically), and all experimental 

manipulations affect performance along that latent dimension. More complex systems may 

show relationships that are impossible to explain by a single dimension, and therefore require 

positing more latent constructs (see section Diagnosing Dimensionality in Prince et al., 2012 for 

a detailed explanation based on hypothetical examples).

Considering visual change detection performance, one might imagine that only one latent 

memory dimension contributes to recognition accuracy or alternatively that separate visual 

and verbal memory systems jointly contribute to recognition accuracy. The multi-component 

model of working memory (Baddeley, 1986) proposes sub-systems for verbal and visual short-

term memory, and would be consistent with the suggestion that both verbal and visual codes 

are stored during visual array memory, with both codes contributing to recognition accuracy.  

This assumption is the reason why precautionary articulatory suppression is so often em-

ployed during visual memory tasks. One reasonable prediction of the multi-component model 

is thus that at least two latent factors, verbal and visual memory, contribute to visual change 

recognition accuracy. Another reasonable expectation is that whether or not verbal encoding 

occurs, it is insufficient to affect recognition accuracy in this task, and in that case, a single 

dimension would better explain recognition accuracy in visual change detection.  If visual 

change detection performance in our study, which was explicitly designed to allow verbaliza-

tion to exert effects in specific conditions, can be explained by a single latent dimension then 

we would conclude that articulatory suppression is not needed to prevent verbalization in 

tasks with similar designs. 

In the logic of state-trace analysis, performance in the sequential and simultaneous pre-

sentation conditions arise from either one or more latent constructs. If they both arise from 

a single latent variable, such as (visual) working memory capacity --- and if performance in 

both is a monotone function of the latent variable -- then performance in the sequential pre-

sentation must be a monotone function of performance in the simultaneous condition. To the 

extent that no monotone function can describe the relationship between simultaneous and se-

quential task performance, two latent constructs – perhaps distinct visual and verbal working 

memory capacities – are assumed to be needed to describe the performance.

For the state-trace analysis, we again used d, the hit rate minus the false alarm rate, as a 

measure of performance in our simulations. To reduce possibly spurious deviations in our 

simulations, we computed Bayesian estimates of d applying three reasonable constraints: 

first, we assumed that the true hit rate was greater than the true false alarm rate, and thus 

performance was truly above chance. Second, for both the sequential and the simultaneous 

condition, d must decrease with increasing array set size; for instance, true d to a set size of 
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8 cannot be better than performance to set size 4, all other things being equal. Third, it was 

assumed that suppression cannot benefit performance; for each set size and presentation 

condition, the true d in the articulate condition must be less than in the silent condition. This 

restriction was applied because a small dual-task cost appearing in all conditions would be 

consistent within any working memory theory, and with our distinctly-colored stimuli and 

meaningless articulation instructions, no benefit of articulation was reasonably expected. 

When a simulation produced one of these patterns, we excluded it and replaced it. Estimating 

the true discrimination under these restrictions yields a less error-prone measure of perfor-

mance due to the exclusion of simulations with implausible data patterns.

Figure 5.4 shows the state-trace plots for each participant, formed by plotting estimated 

performance in the simultaneous presentation condition against the performance in the se-

quential condition. State-trace logic says that more than one latent construct is needed to ex-

plain the data when these points cannot be joined by a single, monotone curve; however, as 

can be seen from the state-trace plots for all participants, the state-trace plots are strikingly 

monotone. There does not appear to be any evidence that more than a single latent construct 

– (visual) working memory capacity – is needed, and thus no evidence that verbalization plays 

a role in performance in this task.

Figure 5.4. Individual state-trace plots for all 15 participants. The dependent variables are hit rate minus false alarm 

rate d for the three set sizes (2, 4, and 8) and are plotted with standard errors. In the top left corner, each plot also 

features the Bayes factor in favor of a monotone ordering of the points over a non-monotone ordering.
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To quantify the support for monotonicity in the state-trace plots, we computed Bayes fac-

tors comparing the evidence for two hypotheses: first, that the true performance underlying 

the state-trace plots are ordered the same on both axes (that is, they can be described by a 

monotone curve), and second, that they are not ordered the same on both axes (Prince et al., 

2012).  We refer the reader to Prince et al. (2012) for technical details, and to the supplement to 

this article for details of how these Bayes factors were computed (Davis-Stober, Morey, Gret-

ton, & Heathcote, 2016).

In addition to the state-trace plots for each participant, Figure 5.4 also contains the Bayes 

factor favoring a monotone ordering of the points over a non-monotone one. The Bayes fac-

tors uniformly favored the monotone ordering of the points. The Bayes factors ranged from 

about 7 to almost 5000. These data do not appear to provide any evidence for a deviation from 

monotonicity. Because our manipulations were designed to introduce effects of articulation 

consistent with the notion that verbal labeling can occur during visual memory tasks and can 

sometimes aid performance, this persistent monotonicity suggests that, at least for paradigms 

like this one, verbal labeling does not contribute to visual change detection performance.

diScuSSion

The main question motivating the experiment we report was whether verbalization assists 

with other processes to influence visual memory performance. In that case, the application of 

articulatory suppression would be required to disengage a verbal memory dimension so that 

a pure measure of visual memory performance could be obtained. Neither a straightforward 

descriptive analysis nor a state-trace analysis revealed evidence that participants engaged in 

verbalization or that verbalization helped visual recognition memory, despite the fact that 

the experimental design favored the use of verbalization even more than the typical design 

of visual change detection tasks. The absence of a complex relationship between suppression, 

presentation type, and performance provides evidence that verbal recoding was not a strate-

gy adopted by the participants in this task. Unlike previous studies which did not show effects 

of articulation on visual change detection performance, we were able to quantify evidence in 

favor of the null hypothesis for each individual participant using Bayesian state-trace analysis, 

providing novel positive evidence for the absence of this effect.

These results do not rule out any particular model of working memory. One interpre-

tation of the multi-component working memory model (Baddeley, 1986), namely that both 

verbal and visual codes would be generated and maintained during visual change detection 

tasks, was unsupported by our analysis. The assumption that verbal codes could be generat-
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ed during visual change detection is not a proposal of the model, but merely an assumption 

made by researchers that is consistent with the model. Verbal encoding of visual materials is 

not necessarily obligatory. However, our results do have important practical implications for 

researchers interested in measuring visual working memory capacity. Our analyses confirm 

that for briefly-presented, abstract visual materials whose to-be-remembered elements are 

not readily encompassed by a verbal label, verbal labeling either does not occur at all, or if 

it does occur, does not contribute to recognition accuracy. These results are not inconsistent 

with the multi-component working memory model, but suggest that it is not reasonable to 

invoke this influential model to support arguments that verbal encoding of visual materials 

necessarily contaminates estimates of visual working memory capacity.

Another possible interpretation of the multi-component model of working memory is that 

the central executive component, which directs attention within the system, may only be ap-

plied to a single sub-system at once. This supposition might lead to predictions that individuals 

strategically choose to encode visual materials in verbal code or alternatively in visual code. 

Though it would be difficult to eliminate such a flexible account of the encoding of visual 

materials entirely, we think that our data tend to rule out this idea as applied to visual change 

detection. If this strategic choice of coding occurred, then it might reasonably have occurred 

only in the sequential condition, or only for small set sizes, or might have been especially 

prevalent in the sequential conditions for small set sizes. Evidence against the interactions 

that would support these predictions are provided by descriptive analysis: for all set sizes, 

more participants showed a greater silent advantage in the simultaneous condition, contrary 

to predictions. Note that the multi-component working memory model generates no explicit 

prediction that participants must strategically switch between encoding materials in verbal 

or visual code; indeed, it has been shown that encoding verbal and visual-spatial stimuli can 

proceed with little if any dual-task cost (Cowan & Morey, 2007; C. C. Morey, Morey, van der 

Reijden, & Holweg, 2013), which rather suggests that adopting a switching strategy would be 

unnecessary if one assumes that separate verbal and visual short-term memory sub-systems 

are available.

One caveat for the interpretation of these results is that state-trace analysis, like all meth-

ods, is limited by the resolution of the data. Detecting deviations from monotonicity in a curve 

depends on how finely points on the curve are measured. It is possible that with finer grada-

tions of set size, we might be able to detect non-monotonicities that are not apparent in these 

data. However, visual inspection of the state-trace plots in Figure 5.4 suggests that any effect of 

articulatory suppression is small; detecting such a small deviation from monotonicity would 

require finer gradations of sets size and more trials per set size. Our design already included 

thousands of trials per participant, and detected no positive effect of articulation condition 
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while providing robust positive evidence for monotonicity. Even if a small deviation from 

monotonicity existed, it would be unlikely to have any substantial effect on measurements of 

visual working memory capacity.

In some instances, verbalization clearly effects visual memory performance (Brandi-

monte et al., 1992), but features of the stimuli and the task likely limit the potential effects of 

verbalization. Stimulus presentation duration is likely a crucial factor determining whether 

verbalization strategies are employed in visual memory tasks. The abstractness of the stim-

uli employed likely also influences the extent to which verbalization occurs. In instances in 

which verbalization appeared to assist visual memory, abstract visual patterns were shown 

for 3 seconds, with retention intervals of 10 seconds, allowing plenty of time for both the gen-

eration and rehearsal of verbal labels (Brown, Forbes, & McConnell, 2006; Brown & Wesley, 

2013). Moreover, in each of these studies demonstrating effects of verbalization, stimuli that 

were amenable to verbalization (determined by pilot testing) were chosen. In an investigation 

of effects of articulation on color-shape memory in which only articulation of visually imag-

inable phrases harmed visual recognition, participants were given 4 seconds, one second per 

visual object, to study the objects for a later memory test (Mate et al., 2012). In contrast, the 

stimulus presentation timings we employed (100-300 ms per item, depending on whether in-

ter-stimulus intervals are considered) were substantially faster than those used in paradigms 

meant to encourage verbalization, and our stimuli were random patterns of colors. Recog-

nition of the color and its spatial location was required to respond correctly. These design 

features are representative of visual change detection paradigms generally. The timings we 

chose are within the range of the visual change detection papers cited in our Introduction, 

which range from 8 ms per item (Woodman & Vogel, 2005) to as much as 500 ms per item 

(Brockmole et al., 2008). We conclude that for presentations as fast or faster than the 100 ms 

per item rate that we measured, it appears safe to assume that verbalization does not augment 

visual change detection performance.

Researchers employing nameable visual stimuli at paces enabling verbalization should 

still consider employing precautionary articulatory suppression if their goal is to isolate visual 

memory specifically. However, based on our data, we conclude that for many typical visual 

memory paradigms, such as those using brief presentations of randomly-generated abstract 

images, this precaution is unnecessary. Enforcing precautionary articulatory suppression 

does not seem to be necessary to get interpretable data from visual change detection tasks.
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The work in the first part of this thesis has focused on a computerized fact-learning mod-

el1. The model incorporating the accuracy and latency of responses during retrieval practice 

is outlined in detail in Chapter 2, in which we show that it outperforms a traditional flashcard 

system on a range of performance measures. The work in Chapter 3 scrutinizes the stability 

of the model’s parameters over time and materials and the data show that the model’s esti-

mate of a participant’s rate of forgetting is stable within the same material. This indicates two 

important features of the underlying process captured by the parameter: it is stable over time 

and it can be estimated reliably by tracking a learner’s performance during study. The com-

bination of these two features suggests that the estimated rate of forgetting could be a useful 

indicator of individual differences between participants. In Chapter 4, we explored wheth-

er the parameter estimated by the model is merely an artifact of high-level, domain-general 

variation between participants captured by two widely used individual differences measures: 

working memory capacity and general cognitive ability. The analyses revealed no relation-

ship between the estimated rate of forgetting and either of the two domain-general constructs 

in the tested sample, indicating that the individual differences captured by the model’s param-

eter are likely not confounded by variation in cognitive functioning and attentional control.

In the remainder of this chapter, I will explore a number of aspects related to the estimat-

ed rate of forgetting in more detail. First, I will discuss the usefulness of the estimated rate of 

forgetting as an individual differences measure. Next, I will review how the model’s parame-

ter compares to other performance measures recorded during study in their ability to predict 

delayed recall. Finally, I will look beyond the current implementation of the model and con-

sider conceivable future developments for the adaptive fact-learning system. This chapter will 

end with an overview of the discussed issues and how they relate to other relevant models.

the estimated rate of forgetting as an individual differences measure
Individual differences measures are useful to the extent that they capture differences be-

tween individuals that are predictive of (or related to) other relevant outcome measures. The 

experiment presented in Chapter 4 was designed to reveal a possible relationship between 

two established, widely used measures of individual differences in cognitive functioning – 

working memory capacity (WMC) and general cognitive ability (GCA) – and the estimated rate 

of forgetting extracted from the adaptive fact-learning system at the center of this thesis. No 

such relationship could be established in the tested sample, which suggests that estimated rate 

of forgetting captures differences between individuals that are not equivalent to differences 

in cognitive functioning. 

1  The work presented in Chapter 5 is self-contained and thematically different from the other chapters and will not 
be discussed further here.
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Here, I will discuss in more detail how individual differences are captured by the mod-

el’s parameters. Through a series of visualizations and descriptive analyses, I will show that 

there are substantial individual differences between participants in the studies reported in 

this thesis. It should be noted that the sample is relatively small and reported findings might 

not generalize entirely to the general population. However, being able to quantify substantial 

differences even within a rather homogeneous sample suggests that (presumably even larger) 

differences in the general population should be quantifiable in a similar fashion.

In the current implementation of the model, each item that is introduced to a learner is 

assigned an initial α value of 0.3. The accuracy and response times on subsequent repetitions 

of the item are then used to adjust the α value to best capture the model’s estimation of how 

quickly an item is forgotten (see the Methods section of Chapter 2 for details). This gradual 

development of a participant’s item-level parameters over the course of a 20-minute study 

session is presented graphically in Figure 6.1.

Figure 6.1. Development of each item’s α parameter over time for one participant. Each data point indicates a 

trial; green circles signal correct responses and red triangles signal incorrect responses. Gray lines are used to 

visually group repetitions of one item together, they do not indicate a gradual change in the α values. The mean 

and standard deviation of the final α value across all items are summarized in the error bar on the right-hand side 

of the figure.
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In Figure 6.1, time is plotted on the x-axis and the estimated α on the y-axis. Each response 

of the participant is shown as a symbol (157 in total) such that green circles indicate correct 

responses (106) and red triangles incorrect responses (51)2. The gray lines connecting symbols 

are used to group responses to the same item together. It is important to note that the lines 

only signal grouping and do not indicate a gradual change in α: Adjustment of the α value hap-

pens step-wise at the moment the response is collected. The participant in Figure 6.1 studied 

a total of 20 items (out of 35) and the development of each item as a function of the accuracy 

of responses can be traced in the plot. As discussed in earlier chapters, the response time is 

also used to adjust α on each trial but omitted from the graphical representation for the sake 

of clarity. 

Figure 6.1 illustrates that all items have an α value of 0.3 when they are introduced but that 

subsequent responses shift the α values up or down. The items that get adjusted downwards 

are exclusively associated with correct responses and, as visible in the plot, lower α values re-

sult in wider spacing for subsequent repetitions of these items. The opposite pattern emerges 

for items that get adjusted upwards: a series of incorrect (or relatively slow) responses will 

yield higher α values and result in shorter spacing for repetitions. 

The estimated rate of forgetting that is used as an outcome measure in Chapter 2 through 

Chapter 4 is the mean across the α values associated with the final repetition of each of the 

items in the study session. For the participant in Figure 6.1, this value is is 0.34, based on 20 

α values (because they studied 20 of the 35 items). The rate of forgetting and the associated 

standard deviation are presented graphically on the right-hand side of Figure 6.1.

Visualizing the data from a single participant’s study session is a good way to gain insight 

into how the model adjusts its internal parameters based on the incoming trial-by-trial data 

provided by their responses. It is also clear that differences between items affect the schedul-

ing of repetitions and that these differences emerge very soon after an item has been intro-

duced. Here, however, we are not interested in the differences between items within a single 

participant but rather in difference between participants independent of the studied material. 

To make an analogous comparison between individual learners, we can compute the es-

timated rate of forgetting not only at the end of the 20-minute learning session but at any mo-

ment during the session (by considering only data collected up until that point in time). That 

way, the data shown in Figure 6.1 can be condensed into a single trace that summarize the 

development of a participant’s estimated rate of forgetting throughout the learning session. 

An overview of all participants included in the experiments presented this thesis is shown in 

2 Please note that I have picked a participant that made a relatively large number of errors to better illustrate the 
influence of errors on a trial-by-trial basis.
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Figure 6.2, in which each line represents a participant’s rate of forgetting trace.

In Figure 6.2, each panel corresponds to an experiment. In all experiments, participants 

completed 20-minute learning sessions (x-axis) with different materials.  Each line in the plot 

represents one participant’s rate of forgetting trace (N = 183 across all experiments). The par-

ticipants in Chapter 3 completed six sessions each (see Figure 3.1) and the data have been 

pooled across those sessions to produce a single trace for each participant.

The average trace across the participants in each panel is drawn as a black line and is 

strikingly similar across the experiments using different participants and materials. The esti-

mated rate of forgetting for a participant that was used as an outcome measure in many of the 

analyses throughout this thesis is the last value in each trace at 1,200 seconds (i.e., 20 minutes). 

The distribution of these final values are shown in the violin plots (Hintze & Nelson, 1998) in 

the right margin of each panel. The black dot in each violin indicates the mean across the final 

values and – as suggested by the mean traces – is almost identical across the four panels: 0.318, 

0.315, and 0.321 for the three panels, respectively (left to right). 

Figure 6.2 suggests that individual differences emerge early in all three experiments. This 

suggests the study session could be shortened without losing accuracy in determining indi-

vidual differences. To investigate whether and when a stable pattern in the individual dif-

ferences emerges, we can estimate the rate of forgetting at earlier time points in the study 

session and correlate those earlier estimates with the final estimate. In the most extreme case, 

participants’ earlier rates of forgetting are identical to their final rates of forgetting and the 

correlation would be 1 before the end of the study session. If they differed, the correlation 

would be less. The larger the difference between the rate of forgetting estimated at an earlier 

time and the final rate of forgetting, the smaller the correlation coefficient. The results from 

this analysis are presented in Figure 6.3.
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Figure 6.2. Development of each participant’s rate of forgetting over time. Each “trace” in the plot represents 

one participant and they are split up into panels based on experiments. In all experiments, the total study duration 

was 20 minutes (i.e., 1,200 seconds). The rate of forgetting at each point in time is based on the data collected up 

until that time. For participants in the experiments from Chapter 3, the data have been pooled across all sessions 

they completed. The black line in each panel represents the mean across the individual traces and the violin plots on 

the right-hand side of each panel show the distribution of the rates of forgetting at the end of the 20-minute study 

session (with the black dot inside each violin representing the mean).

As in the previous two figures, the time in the study session is shown on the x-axis. On the 

y-axis, the correlation coefficients between the rate of forgetting estimated after every minute 

and the final rate of forgetting are shown. Consequently, the correlation in all three exper-

iments at time point 20 is 1: the final values are correlated perfectly with themselves. The 

colored lines indicating the three experiments are surrounded by areas demarcating the 95% 

confidence interval around the estimated correlation coefficient. From this information, we 

can gather that all correlation coefficient differ significantly from zero by the second minute 

into the study session. However, to determine a reasonable level of stability, the correlation 

should be very high, rather than merely non-zero. Figure 6.3 suggests that all coefficients are 

greater than 0.75 after 9 minutes of studying and close to 0.9 after 15 or 16 minutes. 
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Figure 6.3. Correlations with final rates of forgetting as a function of time and experiment. For each participant in 

each experiment, the rate of forgetting at each minute during the study session were correlated with their rates 

of forgetting after 20 minutes. The shaded area around each line indicates the 95% confidence interval for the 

correlation coefficients. 

Taken together, this exploration of participants’ estimated rates of forgetting suggests that 

not much new information about a person’s rate of forgetting is acquired during the last third 

of the study session. This indicates that the captured individual differences stabilize before 

the end of the session, which implies that the duration of the study session could be shortened 

without sacrificing information that distinguishes individual learners from each other. Pre-

sumably, the duration could be made even shorter in more heterogeneous samples or if less 

precision is required. It should be noted, however, that the traces of participants with the very 

low rates of forgetting in Figure 6.2 indicate that shortening the duration of the study session 

has a possible disadvantage: Not enough time might be left for differences between high-per-

forming participants to emerge.

In summary, this investigation of the individual differences captured by the α parameter 

has demonstrated that information about participants can be used on different levels3. For a 

3  Theoretically, all descriptive analyses performed in this section could also be conducted for items. That is, instead 
of aggregating the α values across items to get a performance measure for a participant, information could be 
aggregated across participants to indicate which items are forgotten more quickly than others and how differences 
between items emerge and stabilize over time. 
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single participant, we can track the trial-by-trial fluctuations in the parameter as a function of 

their responses (Figure 6.1). By compressing these high-resolution data into a single trace for 

each participant, we can see individual differences emerge and stabilize over the time course 

of a study session (Figure 6.2 and Figure 6.3). On the highest level, we have the option to com-

pare the performance of groups of participants with each other. For example, the violin plots 

in Figure 6.2 summarize the distributions of three groups. In this specific situation, comparing 

the groups might not be particularly interesting because they all come from the same student 

population. However, this might be an interesting approach to explore differences between 

groups from distinct populations.

This exploration has shown that the estimated rate of forgetting captures differences be-

tween individuals. To constitute a useful individual differences measure, however, the rate 

of forgetting must be related to relevant outcome measures. In the following section, I will 

explore how the estimated rate of forgetting relates to performance on delayed recall tests of 

the studied material.

Predicting delayed recall
In Chapter 4, we tested which of the three obtained measures – the estimated rate of for-

getting, working memory capacity (WMC), and general cognitive ability (GCA) – could best 

predict delayed recall. The Bayes factors summarized in Figure 4.3 demonstrate that the esti-

mated rate of forgetting is the single best predictor, while neither WMC nor GCA explain addi-

tional variance in delayed recall scores. One reason for the lack of a relationship could be that 

both WMC and GCA are constructs intended to capture domain-general cognitive processing 

abilities of participants. The estimated rate of forgetting, on the other hand, is the aggregate 

of memory-specific model parameters. Furthermore, the rate of forgetting is estimated while 

studying the material that is later tested, whereas both WMC and GCA are combined scores 

from independent tasks. If the goal is solely to determine the best predictor of delayed recall 

performance (which it was not in Chapter 4), measures directly based on the studied material 

might fare better.

During a computerized learning session, it is possible to keep track of various perfor-

mance-related measures. Such measures are potentially useful predictors of delayed recall 

performance. Here, I will explore which performance measure extracted from the data col-

lected during study can best predict delayed recall. Specifically, I will focus on three straight-

forward measures: the proportion of correct responses, the average response times on test 

trials, and the number of trials completed. These can be extracted regardless of the method 

that participants studied with. For participants studying with the adaptive method, however, 

we have one additional performance measure: the rate of forgetting. It is estimated by incor-
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porating both accuracy and response times information on a trial-by-trial basis. Moreover, 

it also directly influences these measures because subsequent trials are scheduled based on 

its value. Thus, comparing the predictive power of the three universal measures extracted 

from an adaptively scheduled study session against the estimated rate of forgetting from that 

session would be subject to various confounds. Luckily, performance measures from flash-

card learners can serve as a convenient benchmark against which the rate of forgetting can 

be evaluated. The amount of adaptivity while studying with flashcards is considerably less, 

thus reducing such confounds. The data presented in Chapter 2 and Chapter 4 allow us to do 

exactly that.

Participants in the experiment reported in Chapter 2 studied with both the adaptive meth-

od and flashcards and took a delayed recall test 15 minutes after completing each study ses-

sion. Therefore, we can extract both the rate of forgetting (from the adaptive method session) 

and the additional learning measures (from the flashcard session) and correlate them with 

the scores on the delayed recall performance. The scores on the second test will not be includ-

ed because the time between the two tests was not identical for all participants. There are 

data on all measures from 52 participants. In the experiment reported in Chapter 4, partici-

pants were randomly assigned to study with either the adaptive method or flashcards. Each 

participant was tested twice: after approximately 80 minutes and again 3 days later. Data 

from the adaptive method is available from 64 participants on the first and 56 on the second 

test, respectively. From the flashcards session, performance measures were extracted for all 

participants and can be correlated with scores from 59 participants on the first test and 55 on 

the second.

Consequently, a single performance measure is extracted from the learning session in 

which participants studied with the adaptive method: the estimated rate of forgetting. As in 

the other chapters in this thesis, the rate of forgetting is the average across the item-level final 

α values for each participant. From the flashcard data, on the other hand, three performance 

measures were extracted. First, the total number of trials – including both the initial study 

trials and all subsequent test trials – was computed for each participant. Second, study trials 

were removed and the proportion of correct responses across all test trials was computed 

for each participant. Third, trials with response times longer than ten seconds were removed 

(3.45% and 3.33% in Chapter 2 and Chapter 4, respectively) and the median response time 

across the remaining trials was computed. 

The extracted performance measures from the two sources were correlated with the 

available test scores and the resulting Pearson’s product-moment correlation coefficients 

are reported in Table 6.1. The three coefficients associated with each measure are of similar 

magnitude and retain their signs consistently. The rate of forgetting and the median response 
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times are negatively correlated with subsequent test performance, indicating that smaller val-

ues – that is, slower estimated forgetting and faster responses during learning – are related 

to better delayed recall performance. For the other two measures, the relationship with test 

scores is positive. The right-most column in Table 6.1 indicates the proportion of variance in 

test scores that can be explained by each measure and was computed by averaging the three 

coefficients in each row and squaring the resulting mean coefficient.

table 6.1. An overview of correlation coefficients between performance measures extracted from the two study 

methods (adaptive method and flashcard method). Each of the measures is an aggregate of information recorded 

during the learning session: the estimated rate of forgetting is the mean across the final α values for all items a 

participant has studied. The proportion of correct responses is based only on test trials. All response times longer 

than ten seconds were removed before calculating the median response time. The total number of trials includes 

study and test trials The average amount of explained variance reported in the right-most column is the square of 

the mean of the three coefficients in each row. All correlation coefficients differ significantly from 0 at the 0.05 level. 

chapter 2 chapter 4

Measure test 1 test 1 test 2 Avg. R2

Adaptive method Estimated rate of forgetting -0.84 -0.79 -0.89 0.71

Proportion correct responses 0.77 0.80 0.70 0.59

Flashcard method Median response time -0.32 -0.36 -0.50 0.10

Total number of trials 0.42 0.39 0.59 0.18

On average, the estimated rate of forgetting based on the data from the adaptive method 

has the highest absolute coefficients and can thus explain the largest amount of variance in test 

scores (71%). Of the three measures extracted from the data based on the flashcard method, none 

can explain as much variance in test scores as the estimated rate of forgetting (see last column 

in Table 6.1). The proportion of correct responses on test trials during study would be the single 

best predictor of delayed recall for data from the flashcard conditions in the two experiments. 

Alternatively, one could combine the information from the three measures extracted from 

the flashcard condition to explain more of the variance in test scores after studying with the 

flashcard method. Given that the estimated rate of forgetting integrates information regarding 

the accuracy and response times of individual responses, such a comparison should at least put 

the combined information from the flashcard condition on par with the estimated rate of forget-

ting. This was tested by fitting multiple linear regression models to the test data using the three 

measures extracted from the flashcard data as predictors. The adjusted R2 statistics are 0.70, 0.72, 

and 0.74 for test scores from Chapter 2, Chapter 4 Test 1, and Chapter 4 Test 2, respectively. This 
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suggests that together, the three performance measures from the flashcard condition can explain 

about the same amount of variance in test scores as the estimated rate of forgetting.

Taken together, the estimated rate of forgetting emerged as the single best predictor of de-

layed recall after comparing a number of performance measures from the two study methods. 

If the three performance measures based on the flashcard condition are combined, however, 

they can explain similar amounts of variance in test scores. Nevertheless, I would argue that 

using the estimated rate of forgetting has a number of distinct advantages over the combina-

tion of performance measures from the flashcard method. First, estimating the rate of forget-

ting requires learners to study with the adaptive method. The data and analyses presented 

in Chapter 2 demonstrate that many – but especially low-performing – learners benefit from 

using the adaptive method rather than traditional flashcards (also see van Rijn et al., 2009). Sec-

ond, the ability to summarize the relevant aspects of performance during learning in a single 

measure (rather than three) is parsimonious and convenient. Third, and most importantly, the 

rate of forgetting is conceptually easier to grasp and interpret than a collection of regression 

model coefficients. Furthermore, the functional role the parameter plays in the larger underly-

ing theoretical framework means that it could potentially be used to make “out of sample” (or: 

material) personalized predictions, an idea discussed in more detail in the next section. 

Future directions
The work presented in this thesis has largely focused on an adaptive fact learning system. 

The system is introduced in detail in Chapter 2 and Chapter 3, in which we show that learners 

generally benefit from using the system (relative to a traditional flashcard system) and that 

a learner’s parameters extracted from the system are stable over time. The long-term goal of 

developing this adaptive fact-learning system is twofold: (1) to learn more about the proper-

ties of human declarative memory and how to use its regularities to make personalized pre-

dictions about when studied material will be forgotten, and (2) to deploy the system at large 

to help people use their study time more effectively. Thus far, we have focused on (1). In this 

section, I want to discuss possible future steps that pertain to (2). The long-term goal in this 

context is using (1) to achieve (2).

The biggest limitation of the system as it is currently implemented is that each study ses-

sion is treated in complete isolation. We used this to our advantage in Chapter 3, where we 

estimated the rate of forgetting for each participant in six distinct learning sessions to test 

their stability over time and materials. In the current implementation, the α parameter was 

set to 0.3 for everyone at the beginning of each 20-minute learning session and the model 

used the learner’s input to fine-tune the parameter for each learner during the session. Given 

that the average final α values at the end of the session were found to be highly stable (within 
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the same type of material). This suggests that it does not make sense to treat each session in 

isolation: the parameters extracted during the first study session clearly capture information 

that is relevant in subsequent sessions. One possible way to integrate what has been learned 

about a learner in a previous session would be to set all starting values of α for that learner 

to the mean of the final α values from the previous session (instead of 0.3). Theoretically, this 

should reduce the number of trials the system needs to adapt to the appropriate α values for 

that particular learner, especially for relatively low- and high-performing participants. 

An analogous approach could be taken even in a learner’s first session. Since the α values are 

estimated and adjusted on an item-level, they could also be aggregated across participants. If the 

mean is computed across the participants, the aggregate would indicate how quickly each item 

in the set is estimated to be forgotten. Thus, assuming there are data from other participants that 

have studied the same set of items, a new learner’s α values could be assigned starting values 

based on the average α values extracted from other learners’ data. In this case, instead of setting 

all starting values to 0.3 or setting them all to a different value based on past performance, each 

item would have a unique starting value based on the performance of other learners. 

If there are data from a previous session for a learner and other learners that have stud-

ied the same material, the starting values could be set taking both sources of information 

into account. If the number of previous learners is large enough, those similar to the current 

learner could be identified and the starting value for the current learner could be based on 

their item-level α values.

These ideas are conceptually straightforward. However, they do require data from study 

sessions to be stored in a way that the program could easily access each learner’s previous re-

cords and aggregate across the stored data of other learners. This is almost entirely a software 

development problem that is beyond the scope of this thesis. However, it is important to be 

mindful of the crucial role software development will play in all future developments.

Adjusting the model’s α values is the most obvious avenue towards making the model 

adapt to the learner more quickly, mainly because that is the parameter that is currently ad-

justed based on the trial-by-trial information the participant provides. However, looking at the 

model specifications detailed in Chapter 2 and Chapter 3 reveals that the equations depend on 

a range of other parameters, all of which are currently fixed. For example, the equation used 

to convert the estimated activation of an item to an expected response time consists of two 

parts: the scaled activation of the item and the fixed time costs: 

The scaling factor (F) is currently set to 1, effectively eliminating its effect on the estimated 

activation, and the fixed time costs are set to 300 ms as long as the cue is a single word. In the 

context of its ACT-R roots, the fixed time costs represent the time it takes to execute basic per-

Li (t)  = Fe             + fixed time cost-Ai (t)
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ceptual and motor functions (Byrne & Anderson, 1998). In ACT-R models, the fixed time costs 

are kept constant unless those functions are part of the behavior that is modelled.

However, in the context of our adaptive fact-learning model, the fixed time costs could con-

ceivably be repurposed to capture individual differences in reading and typing speed. Both of 

which are factors that will influence the response time but are not memory-related processes. 

In the bio-psychology material participants studied in the third session of the experiment re-

ported in Chapter 4, for example, the cue consisted of definitions (e.g., “A tiny area of the retina 

specialized in acute, detailed vision”) to which participants had to respond by typing in the 

corresponding concept (e.g., “fovea”). We would assume that there are individual differences 

in typing speed but that, for a given participant, they are not item dependent4. For the reading 

speed, on the other hand, one would expect both participant-level effects as well as item-lev-

el effects; some item’s definitions are longer than others (or linguistically more complex) and 

some people read faster than others. Currently, this idea is reflected in the model by adjusting 

the fixed time costs based on the number of characters for cues that have more than two words5.

Similar arguments and considerations could be made for other parameters that are cur-

rently fixed (e.g., the retrieval threshold). However, the more general questions are how to 

pick parameters to vary and how to evaluate whether varying them improves the model.

Parameters could be chosen based on their implication in the theoretical framework. As 

indicated above, it could be argued that the fixed time costs should not be fixed given the 

parameter’s functional role in the model. Alternatively, all parameters could be varied (se-

quentially or in any conceivable combination simultaneously) regardless of their theoretical 

function. This would either require a massive amount of recorded learning sessions that can 

be data-mined or an absurd number of experiments to test empirically. Since the latter is not 

feasible, we will focus on the practicality of using existing data to retrospectively determine 

candidate parameters.

If one had data of thousands of learners using the current system, parameter optimization 

procedures could be deployed across the trial-by-trial response data to test whether varying a 

candidate parameter results in better performance. Given that this would be “historical” data, 

however, participants’ responses are fixed. Thus, the only tenable way of quantifying “error”, 

is by considering the mismatch between the predicted response time and the observed re-

sponse time. (Because the method for making predictions can be changed after the fact but 

4  Even for the same participant, however, typing speed will most likely be platform-dependent, assuming they type 
faster on a laptop/desktop computer than on their mobile devices. These platform-dependent differences are also 
relevant if the system is implemented on a mobile platform or accessed on other devices.
5  Specifically, the adjustment is max(300, (-157.9 + 19.5x)), where x is the number of characters in the cue. For the 
example “A tiny area of the retina specialized in acute, detailed vision”, the reading time would be 1,071 ms because 
the cue has 63 characters. The max() function ensures that the fixed time costs cannot be less than 300 ms.
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the recorded responses cannot.) Consequently, the optimization procedure should minimize 

an error term based on this mismatch6. The added benefit could then be evaluated based on 

the difference between the cumulative errors of the current model and the model that allows 

the candidate parameter(s) to vary, or the distribution of the errors more generally.

Such a data-driven approach could be used to identify candidate parameters that could 

potentially make the model adapt to individual learners more efficiently. Whether this would 

have a discernable effect in practice, however, would have to be determined empirically. Ex-

periments in controlled lab conditions could provide data to evaluate the “new” model against 

the current model by looking at various performance measures. Next to the mismatch in pre-

dicted and observed response times, other – potentially more relevant – measures can be ex-

tract: the proportion of retrieval errors, the number of trials completed, the number of items 

studied, and, of course, performance on delayed recall tests. In other words, this comparison 

could be comparable to the one between the current model and a traditional flashcard meth-

od presented in Chapter 2 but would also allow the comparison of estimated model parame-

ters that were not available in the flashcard condition. Importantly, testing any alteration of 

the current model is also necessary to verify that a theoretical, data-mining-based benefit ac-

tually emerges in practice (and is not simply the result of overfitting, for example) and yields 

an improvement whose magnitude is of practical relevance7.

For this approach to be feasible, however, large datasets are needed. Ideally, the data should 

come from a heterogeneous group of people and be based on studying a wide range of materi-

als. Recently, the implementation of the current model has been adopted by Noordhoff8, a Dutch 

publisher of text books used in schools across the country. As a result, approximately 250,000 high 

school students have access to the adaptive system that allows them to study English, French, and 

German vocabulary. Additionally, the development of a mobile application has been sponsored 

by an internal e-learning grant at the University of Groningen. This application is called Rugged 

6 This mismatch could be expressed in different ways, of course. Most straightforward would be the absolute 
difference between the predicted and recorded response times. Alternatively, the difference could be raised to the 
power of n, where n could be set depending on how harshly large deviations should be penalized. 
7 In the context of this discussion, it is also worth thinking about reasons for avoiding excessive adaptation and 
personalization. This might seem counter-intuitive but there are arguments for keeping the model in its current 
form – not assuming anything about the learner (or items). Currently, the model is entirely agnostic with regards to 
the source of variation captured by the estimated parameters. If the parameter value associated with an item gets 
adjusted downwards (i.e., is estimated to be forgotten more quickly than previously assumed), this could imply any 
number of things: the item is difficult, the item is easy but it is studied by a low-performing learner, the learner was 
distracted and the recorded response time is not a “pure” measure of retrieval time, or many other. Keeping the 
model agnostic with regards to the source of these differences could serve a protective function.
8  www.noordhoffuitgevers.nl/wps/portal 



C h a p t e r  6

110

Learning9 and will allow any course instructor to specify a set of materials that students enrolled in 

the course can study on their smartphones at their own convenience. Rugged Learning is currently 

in the last testing phase and will go “live” in the next academic year. Furthermore, a collaboration 

has recently been initiated with HoeGekIsNL?10, which is an online research platform offering the 

general (Dutch-speaking) population the opportunity to complete a variety of questionnaires and 

tests; both to contribute to scientific research and as a self-measurement tool (primarily for mental 

health). Both Rugged Learning and the collaboration with HoeGekIsNL? will provide useful data as 

soon as they go live and more data will be collected continuously as long as it is live.

The goals of these collaborations differ: for Noordhoff and Rugged Learning students, the 

goal is primarily to make the most optimal use of their study time and to increase long-term 

retention relative to the study method they would have used otherwise. For the HoeGekIsNL? 

users, on the other hand, the adaptive system is used primarily to have fun while learning some-

thing interesting (psychological disorders of famous people, in this case) and receiving feedback 

regarding their estimated rate of forgetting and how it compares to the rest of the population.

Either way, these collaborations are an excellent opportunity to obtain large amounts of 

data from different populations. These data can be used as a testbed for the current model as 

well as an opportunity to apply the “historical data-mining approach” outlined above. Ideally, 

the data-mining will uncover options to improve the model further, which can then be tested 

empirically. If verified in the lab, improved versions of the model can be deployed at large to 

start a new iteration of improvement.

Access to data on this scale would also enable our group to further explore an issue that 

was briefly mentioned in the discussion of Chapter 2: is there any benefit for high-performing 

participants in using the adaptive method? Or even: might there be a disadvantage? The adap-

tive model will not introduce new items unless old items are estimated to have been learned 

well enough. Achieving an α value low enough for an item to not be repeated for a while will 

take a couple of fast and accurate responses to that item. This is because the binary search 

used to determine the best-fitting α value across the last five trials has limits of α ± 0.05 (see 

Methods of Chapter 2 for details). As a result, the α value cannot change by more than 0.05 in 

either direction. This limitation has been put in place to avoid overfitting extreme response 

times, which are common in noisy data and are expected to be even more prevalent if people 

use the system outside controlled lab settings. For very high-performing learners, however, 

the system might be too slow to adapt. And in the current implementation, each item starts 

with an α of 0.3, which, for them, will be too low every time. This could make the learning ex-

9 Note: The Dutch name of the University of Groningen is Rijksuniversiteit Groningen, abbreviated as RUG. Hence 
“Rugged”.
10 www.hoegekis.nl/; the English name of the project is “how nuts are the Dutch?”.
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perience frustrating and repetitive11. Given that we already see sizable individual differences 

in the first-year psychology population tested in the experiments presented here (see Figure 

6.2 specifically), it will be interesting to see the individual differences that emerge in a much 

more heterogeneous population and how well the current model can adapt to them. 

Another future development that is partially dependent on access to enough data is pre-

dicting future test performance (see previous section). It is important to realize, however, that 

these are retrospective predictions based on simple linear regression models (since a correla-

tion is a linear regression with a single predictor). In terms of the user experience and the 

usefulness of the system, it would be interesting to fit a more complex model – regression or 

other – on a large dataset that includes test scores after a range of retention intervals. Such 

a model’s fit could be used to make true predictors of a learner’s future performance in re-

al-time. That is, the user interface could display a message such as “Given your performance, 

you are expected to still remember 60-70% of the studied items 3 days from now”. 

Furthermore, the fit of a truly predictive model could be used to provide the learner with an 

alternative stopping rule. In the current implementation of Rugged Learning, for example, the 

learner picks the set of materials from a list and then picks the time they want to spend studying. 

Alternatively, they could be given the option to study until the model estimates their performance 

to be at a certain level for a given retention interval. This would be an excellent way to counteract 

prevalent biases in our own judgments of learning – assuming the model is sufficiently accurate.

In summary, the work in our group has demonstrated that the current implementation 

of the adaptive fact-learning model works well. The results are promising but largely limited 

to single session learning in a relatively homogeneous sample. The priority of future work 

should be to extend the model so it can be used across multiple sessions and with larger sets 

of items. Simultaneously, the current implementation should be tested “in the wild” under 

realistic conditions by a more heterogeneous group of users. Collaborations with Noordhoff 

and HoeGekIsNL?, as well as the Rugged Learning implementation for smartphones, offer a 

chance to deploy the model at scale. The data collected through these channels has the poten-

tial to identify possible extensions and improvements of the model. Specifically, data-mining 

approaches could be exploited to pinpoint possible enhancements that can then be tested in 

controlled experiments. Ideally, this approach will single out weaknesses of the current model 

and point towards ways to refine it. Ultimately, the goal of this line of research should be to 

bridge the gap between our theoretical understanding of human memory and apply this un-

derstanding in practice. That way, we can make the most of human memory. 

11 Note that the same holds for learners at the other end of the spectrum: very low-performing learners could find 
the system frustrating to use because they have already forgotten an item on the first couple of repetitions because 
the model needs too long to adjust the parameters accordingly.
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thesis Summary “Making the most of human memory”

Memory is absolutely essential to the survival of almost all living organisms. Without 

memory, we would be helpless and confused because we could not access what we had pre-

viously learned and would not be able to make sense of the world around us. In the broadest 

sense, memory encompasses everything we have stored about our experiences throughout 

our lives. Many of these stored memories can be accessed and reported verbally and others 

are apparent in the effortless performance of skills we have learned: You can tell me the name 

of your best childhood friend while tying your shoelaces, and both would be highly dependent 

on memory.

Memory research focusses on how we encode, store, and retrieve memories in/from the 

brain. Contrary to what we might assume intuitively, most meaningful learning is highly de-

pendent on forgetting. For most of us, however, forgetting is annoying at best and frustrating, 

embarrassing, or dangerous at worst. What we would therefore like to know is how not to 

forget.

The last 150 years of research in psychology have indicated a number of techniques and 

conditions that help us learn more quickly and forget more slowly (i.e., better retention). Such 

techniques – and the knowledge gathered in this field of research in general – are particularly 

useful if we make a deliberate effort to learn and want to remember what we have learned. 

The most common situation is probably the preparation for an exam in an educational setting. 

Two reliable and powerful techniques are known as testing and spacing. Testing is usually 

used as assess memory (like on an exam) but is actually one of the most powerful study strat-

egies we can use: Forcing ourselves to make active memory retrievals to questions (rather 

than re-reading the answer, for example) results in much better performance on subsequent 

tests because we have practiced the action that we will need to perform. Consequently, this 

technique is also known as retrieval practice. Spacing refers to the way in which we arrange 

repetitions of study events over time: We can learn a lot by studying for 10 hours the day be-

fore an exam but will forget it very quickly after the exam. If we space out the same amount of 

study time over five days, on the other hand, we will retain the information much longer. And 

even longer if we spread those five days over multiple weeks.

What is important to understand is that forgetting over time is not random, even if it often 

seems like it to us. In fact, the time course of forgetting can be described by relatively simple 

mathematical functions (known as the power law of forgetting) and those allow us to make 

predictions. If we know when a student has repeated, say, a set of French vocabulary and how 

well they performed on each repetition, we can use the regularity of forgetting expressed 

through mathematical functions to predict whether they will still know the word when we 
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test them. The predictions of such a model are not perfect, of course. But they can be tested 

and corrected. 

If a student is studying a set of French vocabulary for 20 minutes, we can present indi-

vidual words one by one in a random order. On each repetition, we can let the model make 

a prediction. Specifically, the model will predict the probability that the answer is still known 

and how quickly a response will be given. This prediction will probably not be perfect but by 

testing the student on each repetition, we immediately get information about whether they 

still knew the answer and how long it took them to give it. With this new information, we can 

update our mathematical model and our predictions will get better and better the longer we 

can observe the student’s behavior. Therefore, we can use continuous testing not only as an 

effective learning technique but as a source of information that tells us something about the 

student.

Given the information we gather during learning in this way, we can do a lot better than 

repeating words randomly. Since we can predict which words are learned well and which will 

be forgotten soon, we can decide at each moment during the study session which word should 

be repeated. Here, we rely on the benefits of spacing and wait as long as possible before we 

repeat a word such that it is only tested again just before it is forgotten. This way, time is used 

efficiently and both testing and spacing are incorporated in the study session.  One conse-

quence of this is that the actual events during a study session are completely different for 

different students because the model uses the information from their responses to construct 

the optimal order of repetitions. This is referred to as adaptive or personalized learning. 

The work in this thesis focuses on one such adaptive learning model that focuses on per-

sonalizing the schedule of repetitions within a single study session. In Chapter 2, we explain 

the background and mechanics of the model in detail and discuss how trial-by-trial accuracy 

and response time data can be used to adapt to individual students. We report the results 

from an experiment in which we contrast the adaptive system with a simple flashcard system. 

The data suggest that most students learn more material with the adaptive method and the 

chapter ends on a detailed discussion of how this benefit emerges from the mechanics of the 

model.

During the study session, the model keeps track of its own predictions and updates its 

parameters to reflect what it learns about each student. In Chapter 3, we focus on these pa-

rameters to test how stable they are over time and different study materials. This is relevant 

because we want to make sure that the model learns something about the student and does 

not just pick up on random fluctuations that have no meaning outside each study session. The 

data from the experiment reported in Chapter 3 suggest that parameters are very stable over 

time and less stable over materials. That is, if a student is estimated to forget a set of French 
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words slowly this week, they are very likely to also forget another set of French words slowly 

two weeks later. How quickly they forget French words, however, will tell us less about how 

quickly they forget the flags of different countries around the world.

The work reported in Chapter 3 suggests that the model’s parameters capture something 

about the student that is relevant to how quickly they learn and forget. It is not clear, however, 

what exactly these parameters reflect: Are they a true measure of memory or could they sim-

ply capture something more general such as differences in cognitive functioning? The work 

presented in Chapter 4 addresses this question by estimating two prominent measures of cog-

nitive functioning (general cognitive ability (i.e., IQ) and working memory capacity) and test-

ing whether they are related to the parameters estimated by the model. In the data presented 

in Chapter 4, we could not find any evidence for such a relationship. This suggests that the 

model’s parameters are not simply an artifact of higher-order cognitive processes but could 

be a true measure of memory performance.

In the final chapter of the thesis, I discuss the usefulness of the model’s parameters more 

generally. Specifically, I show that if we know someone’s parameter values estimated during 

study, we can predict how well they will perform on a test of the studied material. Further-

more, I discuss in more detail how the parameters can be used to distinguish the ability of 

different learners from each other. This is interesting because it can be done based on the data 

that is collected while students are learning rather than, for example, based on a grade on an 

exam. This implies that a lot of useful information (both for the students themselves but also 

for educators) can be extracted from study sessions. Together with the ability to predict future 

test performance, this might eliminate the need to administer tests for assessment purposes. 

Finally, future directions for the development and extension of the model are discussed in the 

last section of the Discussion chapter.

We all have to live with our own version of a limited memory that is prone to forget-

ting. The work in this thesis illustrates that we can use our theoretical understanding of reg-

ularities in forgetting to build computerized learning systems that identify the strengths and 

weaknesses of each student. Understanding how forgetting happens over time allows us to 

construct computerized, adaptive learning systems that personalize the repetitions of to-be-

learned material such that we can all make the most of human memory.
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Samenvatting proefschrfit “Making the most of human memory”

Geheugen is een essentieel onderdeel voor de overleving van bijna alle levende organ-

ismen. Zonder geheugen zouden we hulpeloos en verward zijn omdat we zonder geheugen 

niet kunnen leren. Als gevolg daarvan zouden we geen zin kunnen geven aan de wereld om 

ons heen. In brede zin omvat het geheugen alles dat we opslaan over onze ervaringen in het 

leven. Veel van deze opgeslagen herinneringen kunnen worden teruggehaald en mondeling 

worden gerapporteerd of zijn terug te zien in moeiteloze uitvoeringen van vaardigheden die 

we geleerd hebben: Men kan tegelijkertijd de naam van een jeugdvriend noemen en veters 

strikken, beide zijn sterk afhankelijk van geheugen.

Onderzoek over geheugen focust op hoe we herinneringen encoderen, opslaan, en teru-

ghalen uit het brein. In tegenstelling tot wat we intuïtief denken, is vergeten essentieel voor 

het correct functioneren van het geheugen. Voor de meeste van ons is vergeten echter hinder-

lijk, maar vaak ook frustrerend, beschamend, en in het ergste geval zelfs gevaarlijk. Daarom 

is het begrijpen van hoe vergeten werkt cruciaal om een volledig beeld te krijgen over hoe het 

geheugen werkt. En wat we vervolgens eigenlijk willen weten is; hoe zorgen we ervoor dat we 

niet vergeten.

Psychologisch onderzoek van de laatste 150 jaar wijst uit dat er een aantal technieken zijn 

waarmee we sneller leren en langzamer vergeten. Deze technieken zijn met name zinvol als 

we een bewuste inspanning maken om te leren en willen herinneren wat we leren. De meest 

voorkomende situatie waarin dit soort leren vereist is, is waarschijnlijk in het onderwijs (denk 

bijvoorbeeld aan het studeren voor een examen). Twee betrouwbare en krachtige technieken 

zijn testing en spacing. Testing is een methode waarbij men zichzelf test tijdens een studie-

sessie (zoals ook tijdens een examen wordt gedaan) en is een van de meest krachtige studi-

estrategieën die we kunnen gebruiken. Bij testing dwingen we onszelf om actief antwoorden 

op vragen te herinneren (in plaats van bijvoorbeeld het herlezen van antwoorden). Wanneer 

men bijvoorbeeld Franse vocabulaire leert, is het proberen te herinneren van de vertaling 

van een woord (d.w.z. onszelf testen) in plaat van het te herlezen, een goede strategie om te 

leren. Dit resulteert in een betere prestatie op een toets naderhand omdat we precies de actie 

hebben geoefend die noodzakelijk is voor het goed presteren tijdens de toets. Deze techniek 

wordt daarom ook wel retrieval practice genoemd. Spacing gaat over de manier waarop we 

herhalingen van studeermomenten over tijd indelen. We kunnen veel leren als we de dag 

vóór een examen tien uur studeren, maar zullen deze informatie snel vergeten na het exam-

en. Echter, als we de studietijd verdelen over bijvoorbeeld vijf dagen zullen we de informatie 

langer vasthouden. De retentie van informatie wordt langer naarmate de studietijd over een 

langere periode wordt verspreid. 

Belangrijk om te weten is dat vergeten gedurende de loop van de tijd niet willekeurig is, 
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zelfs al lijkt het soms wel zo. Sterker nog, het verloop van vergeten kan worden omschreven 

met een relatief simpele wiskundige functie (bekend als the power law of forgetting). Dit biedt 

ons de mogelijkheid om het proces van vergeten te voorspellen. Als we weten wanneer een 

student haar Franse vocabulaire heeft geoefend en herhaald, en we weten hoe deze student 

op elke herhaling heeft gepresteerd, kunnen we de wiskundige functie gebruiken om te voor-

spellen of de student een bepaald woord zal herinneren als we haar testen. Voorspellingen 

als deze zijn niet volledig perfect. Maar door de voorspellingen continu te testen, kunnen ze 

worden verbeterd. 

Als een student 20 minuten Franse vocabulaire studeert, kunnen we individuele woorden 

een-voor-een aan deze student presenteren. Voor elke herhaling van een woord kunnen we 

het model een voorspelling laten maken. Dat wil zeggen, het model schat de kans dat de stu-

dent het antwoord herinnert en hoe snel het antwoord zal worden gegeven. De voorspelling 

zal in eerste instantie niet erg correct zijn, maar hoe meer informatie we verzamelen over de 

retentie en responstijd van de student, hoe accurater de voorspellingen worden. Het model 

wordt continu bijgewerkt met de input van de student. Hoe langer we het studiegedrag van 

de student volgen, hoe beter het model zal kunnen voorspellen wat de kans is dat de student 

een woord herinnert en wat de responstijd zal zijn. Herhaaldelijk testen is dus niet alleen een 

goede techniek om te leren, maar ook een bron van informatie over de leercapaciteiten van 

de student. 

Gegeven de informatie die we op deze manier verzamelen, kunnen we, in plaats van het 

willekeurig aanbieden van woorden, het leerprogramma aanpassen voor de individuele stu-

dent. Omdat we weten welke woorden al bekend zijn en welke woorden makkelijk vergeten 

worden, kunnen we elke moment tijdens de studiesessie bepalen welk woord herhaald moet 

worden. Hier vertrouwen we op de voordelen van spacing; we wachten met het herhalen 

van een woord net tot het moment vóórdat een woord waarschijnlijk zal worden vergeten. 

Op deze manier wordt tijd efficiënt gebruikt en worden zowel testing als spacing opgenomen 

in de studiesessie. Omdat het model informatie van de individuele student gebruikt om de 

studiesessie vorm te geven, betekent dit dat iedere student een unieke en op maat afgestemde 

studiesessie krijgt. Dit wordt ook wel adaptief of gepersonaliseerd leren genoemd. 

Het werk in dit proefschrift gaat over één van deze adaptieve leermodellen. Dit adapti-

eve leermodel focust zich op het personaliseren van herhalingsschema’s binnen één enkele 

studiesessie. In Hoofdstuk 2 beschrijven we in detail de achtergrond en mechanismes van het 

model. Daarnaast bespreken we hoe data van de trail-by-trail accuraatheid en de responstijd 

worden gebruikt om de studiesessie op het individu aan te passen. In dit hoofdstuk rapport-

eren we de resultaten van een experiment waarin we het adaptieve systeem vergelijken met 

een simpel flashcard systeem. De uitkomsten suggereren dat de meeste studenten meer mate-
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riaal kunnen leren met het adaptieve systeem dan met het flashcard systeem. In de discussie 

bespreken we uitgebreid hoe dit voordeel voorkomt uit de mechanismes van het model.

Gedurende de studiesessie houdt het model zijn eigen voorspellingen bij een werkt zijn 

parameters bij op basis van het leertraject van elke student. In Hoofdstuk 3 focussen we op 

de parameters om te testen hoe robuust deze zijn in de loop van de tijd en voor verschillend 

studiemateriaal. Dit is belangrijk omdat we er zeker van willen zijn dat het model iets unieks 

meet over de individuele student en niet willekeurige fluctuaties oppikt die geen betekenis 

hebben buiten de studiesessie. De data van het experiment in Hoofdstuk 3 laten zien dat de 

parameters erg stabiel zijn in de loop van de tijd maar minder stabiel voor verschillend stud-

iemateriaal. Dat wil zeggen, als het model schat dat een student een aantal Franse woorden 

deze week erg snel zal vergeten, zal deze student een aantal andere Franse woorden over 

twee weken ook snel vergeten. Echter, hoe snel deze student Franse woorden vergeet vertelt 

ons minder over hoe snel deze student vlaggen van verschillende landen zal vergeten.

Het onderzoek dat in Hoofdstuk 3 wordt gerapporteerd suggereert dat de parameters van 

het model informatie bevatten over de student die relevant zijn voor hoe snel deze zal leren 

en vergeten. Het is echter onduidelijk wat deze parameters betekenen: Zijn het ware metin-

gen van geheugen, of meten ze simpelweg iets algemeens zoals verschil in cognitief function-

eren? Het werk in Hoofdstuk 4 besteed aandacht aan deze vraag door twee prominente mat-

en van cognitief functioneren (algemene cognitieve vaardigheden (d.w.z. IQ) en de capaciteit 

van het werkgeheugen) te schatten en te testen of deze een relatie hebben met de parameters 

die door het model worden geschat. De uitkomsten van Hoofdstuk 4 boden geen bewijs voor 

de aanwezigheid van een relatie. Dit suggereert dat de parameters van het model niet slechts 

het resultaat zijn van algemene cognitieve processen, maar een ware meting van geheugen-

prestatie.

In het laatste hoofdstuk van dit proefschrift bespreek ik de bruikbaarheid van de param-

eters van het model in algemene zin. In het bijzonder laat ik zien dat als we iemands pa-

rameters schatten, we kunnen voorspellen hoe goed ze zullen presteren op een test van het 

studiemateriaal. Verder beargumenteer ik dat de parameters kunnen worden gebruikt om de 

vaardigheden van verschillende studenten te kunnen onderscheiden. Dit is interessant omdat 

men daarmee de vaardigheden van een student kan beoordelen terwijl men leert in plaats 

van slechts ná een toetsing. Dit betekent dat er veel bruikbare informatie (zowel voor student-

en als onderwijzers) kan worden verzameld uit een studiesessie. Gegeven de rijke bron aan 

informatie en de mogelijkheid om toekomstig presteren te kunnen voorspellen, elimineert dit 

mogelijkerwijs de noodzaak voor toetsing ter beoordeling. Tot slot worden in dit hoofdstuk 

toekomstige richtingen voor ontwikkeling en uitbreiding van het model besproken.

We moeten allemaal leven met een beperkt geheugen dat vatbaar is voor vergeten. Het 
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werk in dit proefschrift illustreert dat we onze theoretische kennis over wetmatigheden van 

het vergeten kunnen gebruiken om geautomatiseerde leersystemen te ontwikkelen die de 

sterktes en zwaktes van elke student kunnen identificeren. Door deze adaptieve leersystemen 

die herhaling van de te leren stof personaliseren, kunnen we allemaal het beste halen uit ons 

geheugen. 
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Zusammenfassung der dissertation 
“die bestmögliche nutzung des menschlichen Gedächtnisses“ 

Das Gedächtnis ist für das Überleben fast aller lebenden Organismen absolut notwendig. 

Ohne unser Gedächtnis wären wir hilflos und verwirrt. Wir wären nicht in der Lage auf Gel-

erntes zurückzugreifen und die Welt um uns herum zu verstehen. Im weitesten Sinne umfasst 

das Gedächtnis alle Erinnerungen an gemachte Erfahrungen. Auf viele dieser abgespeicher-

ten Erinnerungen können wir jederzeit bewusst zurückgreifen und sie verbal kommuni-

zieren. Andere finden ihren Ausdruck hingegen in der problemlosen Ausführung gelernter 

Fähigkeiten: es wäre kein Problem sich die Schuhe zu binden und dabei die Namen der Kind-

heitsfreunde aufzuzählen – beide Aktivitäten sind im hohen Maße abhängig von unserem 

Gedächtnis.

Die Gedächtnisforschung untersucht, wie wir Erinnerungen speichern und später wieder 

abrufen. Entgegen unserer Intuition ist die Grundlage für die meisten wichtigen Lernprozesse 

tatsächlich das Vergessen. Für die meisten von uns ist das Vergessen jedoch frustrierend, pein-

lich oder gar gefährlich. Was wir deshalb oft lieber wissen wollen, ist wie wir das Vergessen 

vermeiden können. Die letzten 150 Jahre psychologischer Forschung haben eine Vielzahl von 

Techniken und Bedingungen hervorgebracht, die uns dabei helfen können, schneller zu ler-

nen und langsamer zu vergessen (Erhöhung der sogenannten „Retention“ (retention)). Diese 

Techniken – und generell das in diesem Feld der Forschung gesammelte Wissen – sind beson-

ders hilfreich, wenn wir bewusst versuchen, etwas zu lernen und dieses später zu erinnern. 

Die wohl häufigste Situation dieser Art ist die Vorbereitung auf eine Prüfung im schulischen 

oder universitären Kontext. Zwei zuverlässige und effektive Techniken sind das „Testen“ 

(testing) und das „Strecken“ (spacing). Meistens wird das Testen genutzt um unsere Gedächt-

nisleistung zu messen – zum Beispiel bei einem Vokabeltest. Tatsächlich ist es jedoch auch 

eine der wirkungsvollsten Lernstrategien: die aktive Gedächtnisabfrage durch das wieder-

holte Beantworten von Fragen – im Gegensatz zum wiederholten Lesen der vorformulierten 

Antworten – führt zu wesentlich besseren Ergebnissen, da so die konkrete Tätigkeit trainiert 

wird, die in der Prüfungssituation ausgeübt werden muss. Folglich wird diese Technik auch 

als „Wiederabruf-Übung“ (retrieval practice) bezeichnet. Das Strecken hingegen beschreibt 

die Art und Weise, in der wir die Wiederholungen von Lerneinheiten über einen bestimmten 

Zeitraum gestalten: Zwar können wir eine Menge lernen, wenn wir am Tag vor einer Prüfung 

für 10 Stunden lernen, doch werden wir das Gelernte auch sehr schnell wieder vergessen. 

Wenn wir diese 10 Stunden jedoch über fünf Tage strecken, können wir das Gelernte wesent-

lich länger behalten; dieser Effekt ist noch größer, wenn wir diese fünf Tage auf mehrere 

Wochen verteilen. 
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Was in diesem Zusammenhang wichtig zu verstehen ist, ist die Tatsache, dass das Ver-

gessen über einen bestimmten Zeitraum kein willkürlicher Prozess ist, auch wenn dem oft 

so scheint. Tatsächlich lässt sich dieser Vergessensprozess durch vergleichsweise einfache 

mathematische Formeln beschreiben (man spricht auch vom „Potenzgesetz des Vergessens“ 

(power law of forgetting)). Diese Formeln erlauben es uns, Vorhersagen zu formulieren. Ange-

nommen wir wissen, wann eine Person beispielsweise eine Reihe von Französischvokabeln 

gelernt hat und wie erfolgreich diese Person bei jeder Wiederholung war, so erlaubt uns die 

Regelmäßigkeit des Vergessens – ausgedrückt in Form von mathematischen Funktionen – vor-

herzusagen, ob sie die Vokabeln immer noch weiß wenn wir sie testen. Natürlich sind die 

Vorhersagen eines solchen Modells nicht perfekt, aber sie können bei jeder Wiederholung 

geprüft, angepasst und somit verbessert werden.

Wenn eine Person also 20 Minuten lang eine Reihe von Französischvokabeln lernt, kön-

nen wir dieser die einzelnen Wörter in willkürlicher Reihenfolge einzeln vorlegen. Wir kön-

nen dann das Modell nutzen, um für jede Wiederholung eine Vorhersage zu treffen. Genauer 

gesagt trifft das Modell eine Vorhersage nicht nur darüber, mit welcher Wahrscheinlichkeit 

die Vokabel noch abrufbar ist, sondern auch, wie schnell eine Antwort gegeben wird. Diese 

Vorhersage ist selbstverständlich nicht perfekt, aber da jede Wiederholung auch ein Test ist, 

erhalten wir sofort Informationen darüber, ob und wie schnell die Person die Antwort geben 

konnte. Anhand der neu gewonnenen Informationen kann das mathematische Modell stets 

verbessert werden. Somit werden unsere Vorhersagen umso besser je länger wir das Verhal-

ten der Versuchsperson beobachten können. Das wiederholte Testen kann somit nicht nur als 

effektive Lernstrategie genutzt werden, sondern liefert darüber hinaus nützliche Informatio-

nen über das Verhalten der untersuchten Person.

Durch die Nutzung der Informationen, die wir durch diese Lernstrategie erhalten, sind 

die Lernergebnisse wesentlich besser als es bei willkürlicher Wiederholung der Wörter der 

Fall wäre. Da wir vorhersagen können, welche Wörter schnell gelernt und welche schnell 

vergessen werden, kann zu jedem Zeitpunkt der Lerneinheit entschieden werden, welches 

Wort wiederholt wird. Dabei können wir auf die Vorteile des Streckens zurückgreifen und 

ein Wort erst kurz vor dem geschätzten Zeitpunkt des Vergessens wiederholen. Somit wird 

der Zeitfaktor bestmöglich genutzt und beide Lerntechniken (Testen und Strecken) sinnvoll 

in einer Lerneinheit verknüpft. Da das Modell die individuellen Informationen der einzelnen 

Versuchsperson nutzt, um eine optimale Reihenfolge der Wiederholungen festzulegen, vari-

ieren die konkreten Schritte im Lernprozess von Person zu Person (adaptives oder persona-

lisiertes Lernen).

Ein solches adaptives Lernmodell, basierend auf dem personalisierten Wiederholungs-

plan innerhalb einer einzelnen Lerneinheit, ist der Kern der in dieser Dissertation enthal-
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tenen Arbeiten. Das zweite Kapitel gibt einen detaillierten Überblick über die theoretischen 

Grundlagen und praktischen Mechanismen dieses Modells. Darüber hinaus wird diskutiert, 

inwiefern die gewonnenen Informationen – sowohl über die Genauigkeit der Vorhersagen 

als auch über die Reaktionszeit – genutzt werden können, um das Modell individuellen Ver-

suchspersonen anzupassen. Zudem wird unser Experiment präsentiert, in welchem das ad-

aptive Modell mit einen einfachen Lernkarten-Modell verglichen wurde und dessen Ergebnis 

verdeutlicht, dass das adaptive Modell eine effektivere Lerntechnik darstellt. Abschließend 

wird ausführlich diskutiert, wie diese Vorteile auf die konkrete Arbeitsweise des Modells zu-

rückzuführen sind.

Während der Lerneinheit verfolgt das Modell seine eigenen Vorhersagen und aktualisiert 

die Parameter anhand der neugewonnen Informationen kontinuierlich. Im dritten Kapitel 

prüfen wir, wie beständig diese Parameter im Laufe der Zeit und bezüglich unterschiedli-

cher Lernstoffe sind. Dieser Schritt ist wichtig, um sicherzustellen, dass das Modell tatsächlich 

etwas über die Versuchsperson lernt und nicht einfach willkürliche und außerhalb der Ler-

neinheit bedeutungslose Veränderungen misst. Die Daten des im dritten Kapitel vorgestellten 

Experiments zeigen, dass die Parameter zwar im Laufe der Zeit stabil bleiben, jedoch nicht be-

züglich unterschiedlicher Lernstoffe. Wenn eine Versuchsperson laut dem Modell eine Reihe 

von Französischvokabeln in dieser Woche relativ langsam vergisst, ist die Wahrscheinlichkeit 

hoch, dass diese eine Reihe anderer Französischvokabeln in zwei Wochen ebenfalls langsam 

vergisst. Wie langsam die Versuchsperson Französischvokabeln vergisst, sagt jedoch weniger 

darüber aus, wie schnell die gleiche Versuchsperson beispielsweise die Flaggen von Staaten 

vergessen wird. 

Die im dritten Kapitel vorgestellte Arbeit lässt den Schluss zu, dass die Parameter des Mo-

dells etwas über die Versuchsperson abbildet, das Einfluss darauf hat wie schnell diese etwas 

lernt und vergisst. Jedoch wird nicht deutlich, was genau diese Parameter abbilden: Messen 

sie tatsächlich konkrete Gedächtnisprozesse oder könnte es sein, dass sie eher etwas Allgemei-

neres abbilden, wie beispielsweise Unterschiede bezüglich der kognitiven Funktionen? Diese 

Frage wird im vierten Kapitel behandelt: zum einen werden zwei typische Maßeinheiten für 

die kognitive Funktion geschätzt (die generelle kognitive Fähigkeit (der IQ) und die Kapazität 

des Arbeitsgedächtnisses) und zum anderen wird geprüft, ob diese Maßeinheiten mit den 

geschätzten Parametern des Modells zusammenhängen. Die im vierten Kapitel präsentierten 

Daten suggerieren, dass eine solche Beziehung nicht besteht. Dies legt den Schluss nahe, dass 

die Parameter des Modells keine übergeordneten kognitiven Prozesse abbilden, sondern tat-

sächlich die Gedächtnisleistung messen. 

Das abschließende Kapitel bietet eine allgemeinere Diskussion über die Nützlichkeit die-

ser Parameter. Zum einen wird aufgezeigt, dass das Wissen über die während einer Lernein-
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heit geschätzten Parameterwerte einer Versuchsperson es ermöglichen, treffende Vorhersa-

gen über die Leistung dieser Person bei einer Abfrage über das Gelernte zu machen. Zum 

anderen wird ausführlicher diskutiert, inwiefern die Parameter genutzt werden können, um 

zwischen den Fähigkeiten der individuellen Lernenden zu unterscheiden. Dies ist besonders 

interessant, weil somit Aussagen über die individuellen Fähigkeiten gemacht werden können, 

die während des Lernens ermittelt werden und nicht auf Grundlage von Prüfungsnoten. Aus 

den Lerneinheiten lassen sich also wichtige Information ziehen – sowohl für die Lernenden 

als auch für die Lehrenden. Dies, zusammen mit der Fähigkeit zukünftige Testergebnisse vor-

herzusagen, könnte dazu beitragen, dass Prüfungen zum Zweck der Bewertung nicht länger 

nötig sind. Der letzte Abschnitt der Diskussion widmet sich abschließend dem zukünftigen 

Entwicklungs- und Erweiterungspotential des Modells. 

Wir alle müssen damit leben, dass unser Gedächtnis individuell eingeschränkt ist und 

stets zum Vergessen neigt. Die hier vorgestellte Arbeit zeigt jedoch, dass wir unser theoreti-

sches Wissen über die Regelmäßigkeit des Vergessens sinnvoll nutzen können, um compu-

terbasierte und adaptive Lernprogramme zu entwickeln, die den Wiederholungzirkel des zu 

lernenden Materials personalisieren. Diese Lernprogramme beziehen die individuellen Stär-

ken und Schwächen der Lernenden mit ein und erlauben somit die bestmögliche Nutzung des 

menschlichen Gedächtnisses. 
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