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Abstract: In this paper, we propose a trajectory tracking controller for fully-actuated port-
Hamiltonian (pH) mechanical systems, which is based on recent advances in contraction analysis
and differential Lyapunov theory. The tracking problem is solved by defining a suitable invariant
sliding manifold which provides a desired steady state behavior. The manifold is then made
attractive via contraction techniques. Finally, we present numerical simulation results where a
SCARA robot is commanded by the proposed tracking control law.
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1. INTRODUCTION

The control of electro-mechanical (EM) systems is a well-
studied problem in control theory literature. Using Euler-
Lagrange (EL) formalism for describing the dynamics of
EM systems, many control design tools have been pro-
posed and studied to solve the stabilization/set-point reg-
ulation problem. Recent works exploit the physical struc-
ture of the system through passivity-based control meth-
ods which are expounded in Ortega et al. (2013) and refer-
ences therein. However, for motion control/output regula-
tion problem (which includes trajectory tracking and path-
following problems), the use of EL formalism in the control
design is relatively recent and the problem is solved based
on passivity/dissipativity theory for nonlinear systems. We
refer interested reader on the early work of tracking control
for EL systems in Slotine and Li (1987) and recent works
in Kelly et al. (2006); Jayawardhana and Weiss (2008).

As an alternative to the EL formalism for describing EM
systems, port-Hamiltonian (pH) framework has been pro-
posed and studied (see also the pioneering work in van der
Schaft and Maschke (1995)), which has a nice (Dirac)
structure, provides port-based modeling and has physi-
cal energy interpretation. For the latter part, the energy
function can directly be used to show the dissipativity and
stability property of the systems.

Using the pH framework, a number of control design tools
have been proposed and implemented for the past two
decades. For solving the stabilization and set-point reg-
ulation problem of pH systems, we can apply, for instance,

the standard proportional-integral (PI) control (Jayaward-
hana et al. (2007)), Interconnection and Damping As-
signment Passivity-Based Control (IDA-PBC) approach
(Ortega et al. (2002)) or Control by Interconnection (CbI)
method (Ortega et al. (2008)) (among many others).

However, for motion control problem, where the reference
signal can be time-varying, it is not straightforward to
design control laws for such pH systems that still provides
an insightful energy interpretation of the closed-loop sys-
tem. For example, it is not trivial to obtain an incremental
passive system 1 via a controller interconnected with the
pH system. One major difficulty is that the external ref-
erence signals can induce both the closed-loop system and
total energy function to be time-varying. In this case, the
closed-loop system may not be dissipative, or if it is a time-
varying dissipative system, the usual La-Salle invariance
principle argument can no longer be invoked for analyzing
the asymptotic behavior.

In order to overcome the loss of passivity in the trajectory
tracking control of pH systems, a pH structure preserving
error system was introduced in Fujimoto et al. (2003)
which is based on generalized canonical transformations.
In Fujimoto et al. (2003), necessary and sufficient con-
ditions for passivity preserving are given. Once in the
new canonical coordinates, the pH error system can be
stabilized with standard passivity-based control methods.
In Dirksz and Scherpen (2010), the previous approach

1 This concept generalizes the usual notion of passivity and is
suitable for output regulation problem of non-constant signals, see
Jayawardhana (2006), Pavlov and Marconi (2006)



is extended to an adaptive control. In Romero et al.
(2015), a generalized canonical transformation is used to
obtain a particular pH system which is partially linear in
the momentum with constant inertia matrix. The control
scheme is then proposed to give a pH structure for the
closed-loop error system. Although solving partial differ-
ential equations that correspond to the existence of such
transformation is not trivial, some characterizations of
this canonical transformation is presented in Venkatraman
et al. (2010) for a specific classes of systems. In Yaghmaei
and Yazdanpanah (2015), the so-called timed-IDA-PBC
was introduced, where the standard IDA-PBC method is
adapted in such a way that it can incorporate tracking
problem through a modification in the IDA-PBC matching
equations; albeit it may easily lead to a non-tractable prob-
lem in solving a set of complex PDE. Finally, in a recent
paper Zada and Belda (2016), a trajectory tracking control
for standard pH systems without dissipation is proposed,
using a similar change of coordinates as in Slotine and Li
(1987) where the the Coriolis term is defined explicitly in
the Hamiltonian domain.

As an alternative to the use of passivity-based con-
trol method for motion control problems, we propose a
contraction-based control for fully-actuated pH systems,
which still has an energy-like interpretation 2 . Contrac-
tion theory is about convergence among trajectories, and
then it is more natural and suitable approach for motion
control, rather than other methods.

Generally speaking, we first construct an error system
using backstepping method. Such an error system posses
a sliding manifold with the desired steady-state behavior.
Then, we define a composite control for the stabilization
of the sliding manifold in such a way that the closed-loop
error system has a pH-like structure. For the convergence
analysis, the state space is extended with the incorporation
of a virtual system where the latter system admits both
the error system’s trajectory, as well as, the origin as
its solution. By using partial contraction as in (Wang
and Slotine (2005)), the contraction of the virtual system
implies that state trajectory converges exponentially to
the desired one.

2. PRELIMINARIES

2.1 Control design using sliding manifolds

Let X be the state-space with tangent bundle TX of a
nonlinear system given by

ẋ = f(x, t) +G(x, t)u (1)

where G(x, t) = [g1(x, t), · · · , gn(x, t)] has full rank and
x ∈ X ⊂ RN the solution to (1), f, gk are smooth vector
fields on X ×R≥0 for k ∈ {1, . . . , n} and u = [u1, · · · , un]>

the control input. Recall the definitions of invariant and
sliding manifolds.

Definition 1. (Ghorbel and Spong (2000)). The set S ⊂
X is said to be an invariant manifold for system (1) if
whenever x(t0) ∈ S, implies that x(t) ∈ S, for all t > t0.

2 Other approaches have been developed in the past such as geo-
metric control. However, in many of those approaches, the physical
nature of the system is often not taken into account or lost.

Definition 2. (Sira-Ramrez (2015)). A sliding manifold for
system (1) is a subset of the state space, which is the
intersection of n smooth (N − 1)-dimensional manifolds,

Ω(t) = {x ∈ X : σ(x, t) = 0} (2)

where σ(x, t) = [σ1(x, t), . . . , σn(x, t)]> is the sliding vari-
able with σi a smooth function σi : X ×R≥0 → R.

It is assumed that Ω(t) is locally an (N − n)-dimensional,
sub-manifold of X . The smooth control vector ueq, known
as the equivalent control, renders the manifold Ω to
an invariant manifold S of (1) (Sira-Ramrez (2015)). If
rank{LGσ} = n, the equivalent control is the well defined
solution to the following invariance conditions

σ(x, t) = 0, σ̇(x, t) = 0, (3)

uniformly in t. The dynamical system ẋ = f(x, t) +
G(x, t)ueq(x, t) is said to describe the ideal sliding motion.

Using sliding manifolds in control design has as goal,
designing a suitable control scheme u = ueq+uat, such that
ueq renders Ω(t) to an invariant sliding manifold, under
invariance conditions (3), and uat makes to the invariant
manifold attractive.

2.2 Contraction analysis and differential Lyapunov theory

System (1) in closed-loop with u, denoted by

ẋ = F (x, t), (4)

is be called contracting, if initial any pair of solution x1 and
x2 converges to each other, with respect to a distance. In
this paper, for contraction analysis, we adopt the approach
given in Forni and Sepulchre (2014).

The prolonged system (Crouch and van der Schaft (1987))
of (4) corresponds to the original system together with its
variational system, that is the system{

ẋ = F (x, t)

˙δx =
∂F

∂x
(x, t)δx

(5)

with (x, δx, t) ∈ TX × R≥0. A differential Lyapunov
function V : TX ×R≥0 → R≥0 satisfies the bounds

c1‖δx‖px ≤ V (x, δx, t) ≤ c2‖δx‖px, (6)

where c1, c2 ∈ R>0, p is some positive integer and ‖ · ‖x
is a Finsler structure. The role of (6) is to measure the
distance of any tangent vector δx from 0. Thus, (6) can
be understood as a classical Lyapunov function for the
linearized dynamics with respect to the origin in TX .

Theorem 1. Consider the prolonged system (5), a con-
nected and forward invariant set D, and a strictly increas-
ing function α : R≥0 → R≥0. Let V be a differential
Lyapunov function satisfying

V̇ (x, δx, t) ≤ −α(V (x, δx, t)) (7)

for each (x, δx) ∈ TX and uniformly in t ∈ R≥0. Then,
(4) contracts V in D. V is called the contraction measure,
and D the contraction region.

Remark 1. Contraction of (4) is guaranteed by (6) and
(7), with respect to the distance induced by the Finsler
measure ‖ · ‖x, through integration. As direct consequence
(Forni and Sepulchre (2014)), system (4) is incrementally

• stable on D if α(s) = 0 for each s ≥ 0;
• asymptotically stable on D if α is a strictly increasing;



• exponentially stable on D if α(s) = βs,∀s > 0.

Remark 2. By taking as differential Lyapunov function to
V (x, δx) = 1

2δx
>Π(x, t)δx, with Π(x, t) a smooth Rieman-

nian metric and uniform in t, expression (7) results in the
so-called generalized contraction analysis in Lohmiller and
Slotine (1998), i.e.,

∂Π

∂x
F (x, t) +

∂F>

∂x
Π(x, t) + Π(x, t)

∂F

∂x
< −2βΠ. (8)

If the interest is convergence with respect to a specific
behavior 3 , the concept introduced by Wang and Slotine,
2005, with the name of partial contraction, gives a solution

Theorem 2. Consider a virtual system of the form

ẋv = h(xv, x, t), (9)

such that a trajectory xv = xd(t) is a particular solution.
Assume that the actual system (4) can be written as

ẋ = h(x, x, t). (10)

If the virtual system (9) is contracting, uniformly in x and
t, then x converges to xd(t) as t→∞. System (10) is said
to be partially contracting.

Remark 3. In case the interest is to prescribe a desired
system’s behavior, in Wang and Slotine (2005) and Jouf-
froy and Fossen (2010), Theorem 2 was reformulated for
control design purposes in the open system (1) as follows.

Consider now as virtual system to

ẋv = h(xv, x, u, t). (11)

Suppose the actual system (1) is rewritten as

ẋ = h(x, x, u, t), (12)

and assume that the control input u = u(x, xd, ẋd) can be
chosen such that

ẋd = h(xd, x, u, t), (13)

with xd a desired trajectory. If (11) is contracting uni-
formly in x, u and t, then conclusion of Theorem 2 holds.

2.3 Port-Hamiltonian mechanical systems

Consider the input-state port-Hamiltonian (van der Schaft
and Jeltsema (2014)) representation of a fully-actuated
mechanical system of the form[

q̇
ṗ

]
=

[
0n In
−In −D(q)

]
∂H

∂q
(q, p)

∂H

∂p
(q, p)

+

[
0n
In

]
u, (14)

where x = [q, p]> ∈ T ∗Q = X , and the generalized
momentum is p = M(q)q̇, with q̇ the generalized velocity;
m1In ≤ M(q) = M>(q) ≤ m2In is the bounded inertia
matrix, where m1,m2 ∈ R>0; D(q) = D>(q) ≥ 0n is the
damping matrix, the matrices identity In and zero 0n have
dimension n = dimQ; u ∈ Rn the control input and the
Hamiltonian function is given by the total energy

H(x) =
1

2
p>M−1(q)p+ V (q), (15)

with V (q) the potential energy. In Arimoto (1996) it was
proven that the matrix S(q, q̇) (which is skew-symmetric,
homogeneous and linear in q̇), defined by

Sij(q, q̇) :=
1

2

[
n∑
k=1

q̇k

(
∂Mik

∂qj
(q)− ∂Mjk

∂qi
(q)

)]
, (16)

3 For instance an equilibrium point or a steady state.

where Sij = −Sji, fulfills the property[
S(q, q̇)− 1

2
Ṁ(q)

]
q̇ = − ∂

∂q

[
1

2
q̇>M(q)q̇

]
. (17)

Such a property is for the Euler-Lagrange realization of
mechanical systems with state variables (q, q̇). However,
as was shown in Zada and Belda (2016), by applying the
Legendre transformation, property (17) can be expressed
in state x of the Hamiltonian realization (14) as[

S(q, p)− 1

2
Ṁ(q)

]
M−1(q)p =

∂

∂q

[
1

2
p>M−1(q)p

]
.

(18)

Using (18), system (14) can be rewritten as[
q̇
ṗ

]
=

[
0n In
−In −E(q, p)

]
∂V

∂q
(q)

∂H

∂p
(q, p)

+

[
0

G(q)

]
u (19)

with E(q, p) := S(q, p)− 1
2Ṁ(q) +D(q).

3. TRAJECTORY TRACKING CONTROLLER

Control objective: Design a control law for system (14)
such that x converges to a smooth desired trajectory xd(t).

To solve the control problem, we to construct a suit-
able error system for (14) as in Fujimoto et al. (2003).
Consider a twice differentiable desired trajectory xd(t) =
[qd(t), pd(t)]

>, with pd(t) = M(qd(t))q̇d(t) and the change
of coordinates

x̃ :=

[
q̃
σ

]
=

[
q − qd(t)
p− pr(t)

]
, (20)

where pr is an auxiliary momentum reference to be defined.
The dynamics of q̃ in (20) is

˙̃q = M−1(q̃ + qd)p−M−1(qd)pd. (21)

We define the following notation M(q̃ + qd) = Mt(q̃) to
indicate that the inertia depends on the exosignal qd(t).

Like in backstepping, assume p = σ + pr is a control input
to (21), with σ as new state and pr as a stabilizing term.
After substitution of p in (21), pr is defined as

pr = pdσ − Λq̃, (22)

where pdσ = Mt(q̃)q̇d and −Λ = −Λ> is a Hurwitz matrix.
It results in the position error dynamics

˙̃q = M−1
t (q̃) (σ − Λq̃) , (23)

with σ as input. When σ = 0 in (23), the origin q̃ = 0 is
asymptoticly stable, since −M−1

t (q̃)Λ is a Hurwitz matrix.
Above implies q → qd as t → ∞. Simultaneously, from
(22), pr → pd as t→∞.

The dynamics of σ is σ̇ = ṗ − ṗr evaluated in the change
of coordinates (20). Then, an error system for (14) is

˙̃q = M−1
t (q̃) (σ − Λq̃)

σ̇ = −
[
∂H

∂q
(x) +D(q)

∂H

∂p
(x)− u+ ṗr

]
q = q̃ + qd
p = σ + pr

. (24)

The following result gives a solution to the control prob-
lem. For sake of space, some arguments are left out.

Proposition 1. Consider a twice differentiable desired tra-
jectory xd ∈ T ∗Q, together with the change of coordinates



(20) and (22). Consider also the pH system (14) in closed-
loop with the composite control law 4 u = ueq + uat with

ueq = ṗr +
∂H

∂q
(q, pr) +D(q)

∂H

∂p
(q, pr)

uat = −Kd
∂H

∂p
(q, σ)−M−1(q)Λq̃ +

∂

∂q

(
p>r M

−1(q)σ
)
,

(25)

where Kd fulfills

D +Kd +
1

2
In −

1

4
(M−1 +M) > 0. (26)

Then,

(1) The closed-loop system in error coordinates (20) is

˙̃x =

[
−In In
−In −Et(q̃, σ)−Kd

] [
M−1
t (q̃)Λq̃

M−1
t (q̃)σ

]
. (27)

(2) The origin of (27) is exponentially stable with rate

β = λmin

(
P 1/2(x̃)Υ (x̃)P 1/2(x̃)

)
. (28)

where λmin(·) denotes the minimum eigenvalue of the
matrix in its argument and the matrices

P (x) =

[
Λ 0
0 M−1(q)

]
, (29)

Υ (x) =

[
2M−1 (M−1 − In)

(M−1 − In) 2(D +Kd)

]
. (30)

(3) The sliding manifold

Ω(t) = {x ∈ T ∗Q : σ(x, t) = p̃σ + Λq̃ = 0}, (31)

where p̃σ := Mt(q̃) ˙̃q, is invariant and attractive, for
system (27), with ideal sliding motion

q̇ =
∂H

∂p
(q, pr). (32)

Proof:

(1) Straight forward computations after substitution of
(25) in the error system (24) gives the closed-loop
system (27)

(2) To prove this item, we will use partial contraction 5

Theorem 2. Consider the following virtual system
with state x̃a = [q̃>a , σ

>
a ]>

˙̃xa =

[
−In In
−In −(E(t, σ) +Kd)

] [
M−1Λq̃a
M−1σa

]
. (33)

Notice x̃a = x̃ and x̃a = 0 are two particular
solutions of system (33). The variational dynamics
of the virtual system (33) is

δ ˙̃xa = −
[
M−1Λ −M−1

M−1Λ (E +Kd)M
−1

]
δx̃a. (34)

For the prolonged system (33)-(34), let the candidate
differential Lyapunov function be

V (x̃a, δx̃a, t) =
1

2
δx̃>a P (x̃)δx̃a. (35)

The time derivative of (35) is

4 With ∂
∂q

(
p>r M

−1(q)σ
)

= S(q, σ) ∂H
∂p

(q, pr) + S(q, pr)
∂H
∂p

(q, σ).
5 By defining e = x̃a and x = x̃, properties labeled as TULES-NL,
UES-TL and ULMTE in Andrieu et al. (2016), are also verified.

V̇ = −δx̃>a
[
ΛM−1Λ −ΛM−1

M−2Λ M−1(E +Kd)M
−1

]
δx̃a

+
1

2
δx̃>a

[
Λ̇ 0

0 Ṁ−1(q)

]
δx̃a,

= −δx̃>a
[
ΛM−1Λ −ΛM−1

M−2Λ M−1(D +Kd)M
−1

]
︸ ︷︷ ︸

Ξ(x̃)

δx̃a,

(36)

where the symmetric part of Ξ(x̃) is expressed as

Sym(Ξ(x̃)) =
1

2
Pt(x̃)Υt(x̃)PT (x̃) (37)

Thus, (36) will be negative definite if and only if
the Schur complement of matrix (30) with respect
to 2M−1 fulfills (26). Which is always possible by
choosing a big enough Kd. Therefore, the prolonged
system (33)-(34) contracts (35) with respect to the
metric (29) in TX . With (28), the time derivative
(36) satisfies

V̇ (x̃a, δx̃a, t) < −2βV (x̃a, δx̃a, t) (38)

uniformly in t and x̃a, or equivalently (8) for the
matrix (29). By Remark 1, the virtual system (33)
is incrementally exponentially stable with rate (28).
Therefore, x̃ converges to 0 exponentially as t→∞.

(3) The existence of ueq in (25), guarantees that the
sliding manifold (31) is rendered invariant. From the
previous item, σ → 0, which means the invariant
manifold is attractive. Finally, system (14) has regular
canonical form, and definitions of pr and σ imply that
the reduced-order ideal sliding motion

q̇ =
∂H

∂p
(q, pr). (39)

�

In Sanfelice and Praly (2015), an observer was designed
for shrinking a Riemannian distance, instead of designing
a contracting observer. The following proposition shows
that the controller (25) has the same property.

Proposition 2. Consider system (14). The control law (25)
shrinks the Riemannian distance d(x, xd) induced by

Π(x) =

[
Λ + ΛM−1(q)Λ ΛM−1(q)

M−1(q)Λ M−1(q)

]
. (40)

Proof: We will show that both, the actual system (14)
and the trajectory driven by controller (25), are partially
contracting to a virtual system with respect to the metric
(40), in the sense of Remark 3. This means, that in par-
ticular, the distance induced by the metric (40), between
the actual state x and the desired state xd shrinks.
To that end, fist we express the controller (25) in implicit
form for the state xdσ = [qd, pdσ]> in original coordinates
x. Using (22) and σ = p̃σ + Λã, we have

u =
∂V

∂q
(q) + [E(q, pdσ) + S(q, p̃σ)]M−1(q)pdσ

−A(q̃, p̃σ)M−1(q)Λq̃ −B(q̃, p̃σ)M−1(q)p̃σ + ṗdσ.

(41)

where
A(q̃, p̃σ) := E(q, p̃σ + Λq̃) +Kd + In,

B(q̃, p̃σ) := Λ +Kd − S(q, pdσ − Λq̃).
(42)

Considering the fact that q̇d = M−1(q)pdσ, we can rewrite
the controller implicitly as



ẋdσ =

[
0 In
−In −E(q, pdσ + p̃σ)

]∂V∂q (q)

M−1(q)pdσ

+

[
0
In

]
u

+

[
0 0

A(q̃, p̃σ) B(q̃, p̃σ)

] [
M−1(q)Λq̃
M−1(q)p̃σ

]
.

(43)

Let a virtual system with state xv = [qv, pv]
> be

ẋv =

[
0 In
−In −E(q, pdσ + p̃σ)

]∂V∂q (q)

M−1(q)pv

+

[
0
G

]
u

+

[
0 0

A(q̃, p̃σ) B(q̃, p̃σ)

] [
M−1(q)Λq̃v
M−1(q)p̃v

]
,

(44)

with q̃v = q−qv, p̃v = p−pv and x̃>v = [q̃v.p̃v]. Notice that
system (44) has as particular solutions to both, xv = xdσ
and xv = x. The variational system of (44) is

δẋv = −
[

0 −M−1

AM−1Λ (E +B)M−1

]
δxv. (45)

Now, consider the following change of coordinates

δx̃a = −
[
In 0
Λ In

]
δxv = −Θδxv. (46)

Then, system (45) in the new coordinates is

δ ˙̃xa = −Θ

[
0 −M−1

AM−1Λ (E +B)M−1

]
Θ−1δx̃a (47)

which is nothing but (34). Then, the virtual system (44)
is contracting with rate 2β, with respect to the differential
Lyapunov function or contraction measure

V (xv, δxv) =
1

2
δx>v Θ>P (x)Θδxv (48)

where Π(x) = Θ>P (x)Θ. Thus, V (xv, δxv) < e−2βt.

Now, as in Forni and Sepulchre (2014), consider the set
Γ(x, xdσ) of all normalized paths γ : [0, 1]→ X connecting
x with xd such that γ(0) = x and γ(1) = xd. Function (48)
defines a Finsler structure in TX , which by integration
induces the distance

d(x, xd) = inf
Γ(x,xd)

∫
γ

√
V (γ(s),

∂γ

∂s
(s))ds < e−βt. (49)

Therefore, d(x, xd)→ 0 as t→∞ with rate β. �

4. CASE OF STUDY: 3 DOF SCARA ROBOT

Consider a SCARA robot with position q> = [θ1, θ2, z],
generalized momentum p> = [pθ1 , pθ2 , pz] and input force
u> = [τ1, τ2, f ]. Such system can be represented in pH
form (14), with inertia matrix

M(q) =

M11 M12 0
M12 m3l

2
2 0

0 0 (m1 +m2 +m3)g

 , (50)

where M11 = (m2 + m3)l21 + m3l
2
2 + 2m3l1l2 cos θ2 and

M12 = m3l
2
2+m3l1l2 cos θ2. The potential energy is V (q) =

(m1+m2+m3)gz, and the dissipation matrix is D = 0.2In.

The goal is to track to qd = [sin(t) + 1, sin(t), sin(t)]>, by
closing the loop with the control scheme (25), with gain
matrices Λ = diag{15, 15, 15} and Kd = diag{30, 60, 90}.

In Figure 1, the time responses of the error variables are
shown. All converge to zero exponentially after transients.
Notice the zero steady-state value of time response of q̃ is
guaranteed hierarchically by σ = 0. Above is the reason
why q̃ and p̃ converge slower than the sliding variable.
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Fig. 1. Position and momentum error and sliding variable

The upper plot of Figure 2 shows the time response of the
contraction measure with respect to the desired trajectory
(assuming γ is a straight line), which after an overshoot
transient, in fact shrinks. This is reflected in the lower plot
where it is shown that the actual Hamiltonian converges
to the desired Hamiltonian function.
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Fig. 2. Contraction measure and Hamiltonian functions



The control effort is shown in Figure 3. It can be seen that
the control signals u2 and u3 have a big overshoot. This
because of the term (18) has a big (but fast) transient, and
the controller was designed to compensate it.
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Fig. 3. Control signal time response

5. CONCLUSIONS

In this paper we presented a trajectory tracking controller
for fully-actuated port-Hamiltonian mechanical systems.
The control law is composed by the equivalent control,
which renders the sliding surface to an invariant set; and
a feedback controller which ensures attractivity to the
invariant set by making the closed-loop error system to
be partially contracting. Moreover, the controller contracts
exponentially a Riemannian distance as result of incremen-
tal stability properties of the virtual system. Simulations
showed the good performance of the proposed controller.
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of robot manipulators in joint space. Springer Science &
Business Media.

Lohmiller, W. and Slotine, J.J.E. (1998). On contraction
analysis for non-linear systems. Automatica.

Ortega, R., Perez, J.A.L., Nicklasson, P.J., and Sira-
Ramirez, H. (2013). Passivity-based control of Euler-
Lagrange systems. Springer Science & Business Media.

Ortega, R., Van Der Schaft, A., Castaños, F., and As-
tolfi, A. (2008). Control by interconnection and stan-
dard passivity-based control of port-hamiltonian sys-
tems. IEEE Transactions on Automatic Control, 53.

Ortega, R., Van Der Schaft, A., Maschke, B., and Escobar,
G. (2002). Interconnection and damping assignment
passivity-based control of port-controlled hamiltonian
systems. Automatica, 38(4), 585–596.

Pavlov, A. and Marconi, L. (2006). Incremental passivity
and output regulation. In Proc. IEEE Conf. Dec. Contr.

Romero, J.G., Donaire, A., Navarro-Alarcon, D., and
Ramirez, V. (2015). Passivity-based tracking controllers
for mechanical systems with active disturbance rejec-
tion. IFAC-PapersOnLine, 48(13), 129–134.

Sanfelice, R.G. and Praly, L. (2015). Convergence of
nonlinear observers on Rn with a riemannian metric
(part i). IEEE Transactions on Automatic Control.

Sira-Ramrez, H. (2015). Sliding Mode Control. Birkhuser
Basel.

Slotine, J.J.E. and Li, W. (1987). On the adaptive control
of robot manipulators. The international journal of
robotics research, 6(3), 49–59.

van der Schaft, A. and Maschke, B. (1995). The hamilto-
nian formulation of energy conserving physical systems
with external ports. Archiv fr Elektronik und bertra-
gungstechnik, 49.

van der Schaft, A. and Jeltsema, D. (2014). Port-
hamiltonian systems theory: An introductory overview.
Foundations and Trends in Systems and Control, 1.

Venkatraman, A., Ortega, R., Sarras, I., and van der
Schaft, A. (2010). Speed observation and position feed-
back stabilization of partially linearizable mechanical
systems. IEEE Transactions on Automatic Control.

Wang, W. and Slotine, J.J.E. (2005). On partial contrac-
tion analysis for coupled nonlinear oscillators. Biological
cybernetics, 92(1).

Yaghmaei, A. and Yazdanpanah, M.J. (2015). Trajectory
tracking of a class of port hamiltonian systems using
timed ida-pbc technique. In CDC, 5037–5042. IEEE.

Zada, V. and Belda, K. (2016). Mathematical modeling
of industrial robots based on hamiltonian mechanics. In
17th International Carpathian Control Conference.


