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a b s t r a c t

We consider the Newton–Kleinmanmethod for strongly stabilizable infinite-dimensional systems. Under
certain assumptions, themaximal self-adjoint solution to the associated control algebraic Riccati equation
is constructed. The constructed solution is also the maximal solution to the corresponding control
algebraic Riccati inequality.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

We consider the control algebraic Riccati equation (CARE)

A∗X + XA − XBB∗X + C∗C = 0,

which has been widely studied in the area of systems and control
for both finite-dimensional and infinite-dimensional systems,
together with the corresponding control algebraic inequality
(CARI)

A∗X + XA − XBB∗X + C∗C ≥ 0.

There are many approaches to the study of the CARE and we will
mention only some of them which are most related to this note.
One approach is in the line with Willems (1971), where com-
parison results and a classification of all solutions of the CARE
for finite-dimensional systems have been provided. Moreover, the
solvability of the CARI implies the solvability of the CARE for finite-
dimensional controllable systems (also in Willems, 1971). Nec-
essary and sufficient conditions for the existence of a maximal/
minimal solution of the CARE or CARI for sign-controllable sys-
tems can be found in Scherer (1991). A comparison of the solu-
tions of two CARE associated to different systems was provided for
the first time in Wimmer (1985). A second approach is in terms
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of the Hamiltonian (see e.g. Martensson, 1971). A third approach
is based on Kleinman (1968), and provides iterative procedures
for constructing hermitian solutions of the CARE as proposed in
Gohberg, Lancaster, and Rodman (1986) and Ran and Vreugdenhil
(1988). Moreover, it has been shown in Gohberg et al. (1986) and
Ran and Vreugdenhil (1988) that solvability of the CARI implies the
existence of a maximal solution of the CARI provided that (A, B) is
stabilizable. Furthermore, the maximal solution of the CARI also
satisfies the CARE.

Some of the results mentioned above for finite-dimensional
systems have been extended to infinite-dimensional systems
Σ(A, B, C). Following the approach in Willems (1971), a clas-
sification of all non-negative self-adjoint solution of the CARE
for exponentially stabilizable systems has been proposed in Cal-
lier, Dumortier, and Winkin (1995) and for discrete-time infinite-
dimensional systems in Malinen (2000). In Iftime, Curtain, and
Zwart (2005) a representation of all self-adjoint solutions to the
CAREhas been obtainedunder the following assumptions:A gener-
ates a strongly continuous semigroup, output stabilizability, strong
detectability and the invertibility of the minimal self-adjoint so-
lution of the filter algebraic Riccati equation. Following the ap-
proach in Martensson (1971), the relation between the CARE and
the eigenvectors of the Hamiltonian for Riesz spectral systems has
been studied in Kuiper and Zwart (1993).

In this note the third approach is followed, known in the lit-
erature as the Newton–Kleinman method. The finite-dimensional
case has been initiated in Kleinman (1968). Since then, this prob-
lem has been widely studied for finite-dimensional case (see for
example Ran & Vreugdenhil, 1988 and the references therein) and
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also for infinite-dimensional systems which are exponentially sta-
bilizable (see for example Burns, Sachs, & Zietsman, 2008; Curtain
& Rodman, 1990). However, there are many infinite-dimensional
systemswhich are not exponentially stabilizable but have nice sta-
bility properties (see for example Oostveen, 2000). We provide
a Newton–Kleinman type result for strongly stabilizable infinite-
dimensional systems. More precisely, provided that Σ(A, B, C) is
strongly stabilizable and additional assumptions are satisfied, an
iterative procedure for constructing themaximal self-adjoint solu-
tion to the CARE as the strong limit of Newton–Kleinman iterates.
Moreover, it is shown that the maximal solution of the CARI also
satisfies CARE.

This note is structured as follows. In Section 2 the necessary
concepts are introduced and two preliminary results (Theorem 2.2
and Lemma 2.5) are stated. The main result is Theorem 3.4 and it
is presented in Section 3.
Notation: L(U, Z) denotes the set of bounded operators from the
Hilbert spaceU to theHilbert space Z . Let B∗ be the adjoint operator
of B ∈ L(U, Z). For self-adjoint operators X1, X2 ∈ L(Z), by
X1 ≥ X2 we understand X1 − X2 ≥ 0.

2. Preliminaries

Let Z , Y and U be separable Hilbert spaces. Consider a state
linear system Σ(A, B, C) given by
ż(t) = Az(t) + Bu(t), z(0) = z0 ∈ Z
y(t) = Cz(t), (1)

where B ∈ L(U, Z), C ∈ L(Z, Y ), z ∈ Z , y ∈ Y and u ∈ U .
The unbounded operator A : D(A) ⊂ Z → Z generates a
strongly continuous semigroup T (t). If T (t)z → 0 as t → ∞

(i.e. limt→∞ ∥T (t)z∥Z = 0) for all z ∈ Z , then T (t) is called a
strongly stable semigroup.

Recall now the notions of output stability, output stabilizability
and strong stabilizability.

Definition 2.1. The system Σ(A, B, C) is output stable if there
exists a constant γ > 0 such that

∞

0
∥CT (s)z∥2

Yds ≤ γ ∥z∥2
Z , for all z ∈ Z .

It is known that (see e.g. Grabowski, 1991) output stability of the
system Σ(A, B, C) is equivalent to the existence of a nonnegative
self-adjoint solution Π ∈ L(Z) of the Lyapunov operator equation

⟨Az1, Πz2⟩ + ⟨Πz1, Az2⟩ = −⟨Cz1, Cz2⟩, (2)

where z1, z2 ∈ D(A) ⊂ Z . The following result is a dual version
of Hansen and Weiss (1997, Theorem 3.1). Note that the notion
of output stability for the infinite dimensional systems Σ(A, B, C)
is the same as requiring (in Hansen & Weiss, 1997) that C is an
infinite-time admissible operator for T (t).

Theorem 2.2 (Hansen & Weiss, 1997). Consider the system
Σ(A, B, C). The following statements are equivalent:

• (i) The system Σ(A, B, C) is output stable.
• (ii) There exists an operator Q ∈ L(Z) such that, for every z ∈ Z

Qz :=


∞

0
T ∗(t)C∗CT (t)zdt. (3)

• (iii) There exist operators Π ∈ L(Z), Π ≥ 0 which satisfy the
Lyapunov operator equation (2).

Moreover, if any of the above statements holds, then the following
statements are true:
• (I) Q defined in (3) satisfies (2) and it is the smallest nonnegative
solution of (2).

• (II) For any z ∈ Z, limt→∞ Q
1
2 T (t)z = 0. In particular, if Q > 0

then T (t) is strongly stable.
• (III) If T (t) is strongly stable, then Q is the unique self-adjoint

solution of (2).

Definition 2.3. The systemΣ(A, B, C) is output stabilizable if there
exists an F ∈ L(Z,U) such that Σ


A + BF , B,


F
C


is output

stable.

Definition 2.4. The system Σ(A, B, C) is strongly stabilizable if the
following conditions are satisfied

• it is output stabilizable by some F ∈ L(Z,U), and
• AF := A + BF generates a strongly stable semigroup TF (t).

To the system (1) one associates the classical cost to be
minimized on infinite-time

J(z0, u) :=


∞

0
(⟨Cz(s), Cz(s)⟩ + ⟨u(s), Ru(s)⟩) ds

where R is a self-adjoint coercive operator in L(U). For the sake
of simplicity of the exposition we shall take R = I in the sequel.
The cost J(z0, u) is closely related to the (control) algebraic Riccati
equation (see e.g. Curtain & Zwart, 1995)

⟨Az1, Xz2⟩ + ⟨Xz1, Az2⟩ − ⟨B∗Xz1, B∗Xz2⟩ + ⟨Cz1, Cz2⟩ = 0 (4)

for z1, z2 ∈ D(A) ⊂ Z . Define R(X) weakly by ⟨z1, R(X)z2⟩ being
equal to the left hand side of (5). Then (4) can be written as

⟨z1, R(X)z2⟩ = 0, z1, z2 ∈ D(A) ⊂ Z . (5)

Consider also the control algebraic Riccati inequality (CARI)

⟨z, R(X)z⟩ ≥ 0, z ∈ D(A) ⊂ Z . (6)

Define the sets of self-adjoint solutions of the CARE (5) and the
CARI (6) as

SE :=

X | X = X∗, ⟨z1, R(X)z2⟩ = 0, z1, z2 ∈ D(A)


(7)

SI :=

X | X = X∗, ⟨z, R(X)z⟩ ≥ 0, z ∈ D(A)


. (8)

One would also need the following result.

Lemma 2.5. Consider the system Σ(A, B, C) such that A generates a
strongly stable continuous semigroup T (t). If L = L∗

∈ L(Z) satisfies

⟨Az, Lz⟩ + ⟨Lz, Az⟩ ≤ 0, z ∈ D(A) ⊂ Z, (9)

then L ≥ 0.

Proof. Let z ∈ D(A) ∈ Z , t ≥ 0 and define

f (t) := ⟨T (t)z, LT (t)z⟩,

which is continuous differentiable. By taking the derivative with
respect to t , then integrating on [0, τ ], letting τ → ∞ and using
strong stability of T (t) one has ⟨z, Lz⟩ ≥ 0 on D(A). Using the
density of D(A) in Z the proof is completed. �

3. Main results

Consider a strongly stabilizable system Σ(A, B, C). Let F ∈

L(Z,U) be such that AF := A+BF generates a strongly continuous
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semigroup TF (t). Then the system Σ


AF , B,


F
C


is output stable

(see Oostveen, 2000, Definition 2.1.7), and the Lyapunov equation

⟨AF z1, XF z2⟩ + ⟨XF z1, AF z2⟩ = −⟨Fz1, Fz2⟩ − ⟨Cz1, Cz2⟩, (10)

for z1, z2 ∈ D(A) ⊂ Z , has a unique self-adjoint solution XF ∈

L(Z) (see Theorem 2.2).
Since Σ(A, B, C) is strongly stabilizable, then there exists X+, a

minimal self-adjoint, nonnegative solution of the CARE (5), and the
minimizing control for the cost is given by u(t) = −B∗X+z(t) (see
Oostveen, 2000, Theorem 3.3.2). Obviously X+ also satisfies CARI
(6). Therefore the sets SE and SI are non-empty.

Theorem 3.1. Consider a strongly stabilizable systemΣ(A, B, C). Let
XF ∈ L(Z) be the unique self-adjoint solution of (10) and X ∈ SI a
self-adjoint solution of the CARI (6). Then

X ≤ XF .

Proof. Let z1, z2 ∈ D(A). One can write the following sequence of
equalities:

⟨AF z1, (XF − X)z2⟩ + ⟨(XF − X)z1, AF z2⟩
= ⟨AF z1, XF z2⟩ + ⟨XF z1, AF z2⟩

− ⟨(A + BF)z1, Xz2⟩ − ⟨Xz1, (A + BF)z2⟩
= −⟨Fz1, Fz2⟩ − ⟨Cz1, Cz2⟩

− (⟨Az1, Xz2⟩ + ⟨BFz1, Xz2⟩)
− (⟨Xz1, Az2⟩ + ⟨Xz1, BFz2⟩)

= −(⟨Az1, Xz2⟩ + ⟨Xz1, Az2⟩ − ⟨B∗Xz1, B∗Xz2⟩
+ ⟨Cz1, Cz2⟩) − ⟨B∗Xz1, B∗Xz2⟩
− ⟨Fz1, Fz2⟩ − ⟨FBz1, Xz2⟩ − ⟨Xz1, BFz2⟩

= −⟨z1, R(X)z2⟩ − ⟨(F + B∗X)z1, (F + B∗X)z2⟩.

If one denotes F̂ := F + B∗X and takes z1 = z2 = z then

⟨AF z, (XF − X)z⟩ + ⟨(XF − X)z, AF z⟩

= −⟨z, R(X)z⟩ − ⟨F̂ z, F̂ z⟩ ≤ 0.

Since AF is strongly stable, it follows from Lemma 2.5 that

XF − X ≥ 0

and the proof is completed. �

The next result is a consequence of Theorems 3.1 and 2.2.

Lemma 3.2. Consider a strongly stabilizable system Σ(A, B, C). Let
XF ∈ L(Z) be the unique self-adjoint solution of (10) and X ∈ SI

a self-adjoint solution of the CARI (6). Define A1 := A − BB∗XF with
D(A1) = D(A) and

Q :=


∞

0
T1(t)∗(R(X) + (XF − X)BB∗(XF − X)

+ (B∗XF − F)∗(B∗XF − F))T1(t)dt (11)

where T1(t) is the strongly continuous semigroup generated by A1.
Note that one must interpret the integral in (11) as a quadratic form
onD(A1)×D(A1). Let z1, z2 ∈ D(A). The following statements hold:

(1) XF − X satisfies

⟨A1z1, (XF − X)z2⟩ + ⟨(XF − X)z1, A1z2⟩
= −⟨z1, R(X)z2⟩ − ⟨B∗(XF − X), B∗(XF − X)⟩

− ⟨(B∗XF − F)z1, (B∗XF − F)z2⟩ (12)

(2) Q ∈ L(Z) is the smallest positive solution of (12). Moreover, if
Q > 0 then T1(t) is a strongly stable semigroup and Q = XF − X
is the unique self-adjoint solution of (12).
Proof. The fact that A1 generates a strongly continuous semigroup
T1(t) follows from Curtain and Zwart (1995, Theorem 3.2.1).

(1): Similar to the sequence of equalities in the proof of
Theorem 3.1, one obtains that XF − X ∈ L(Z) satisfies Eq. (12).

(2): Since X ∈ SI, then

⟨z1, R(X)z2⟩ + ⟨z1, (XF − X)BB∗(XF − X)z2⟩

+ ⟨z1, (B∗XF − F)∗(B∗XF − F)z2⟩ ≥ 0. (13)

From Theorem 3.1 one has XF − X ≥ 0. Then XF − X is
nonnegative and it satisfies Eq. (12). Let z1 = z2 = z and note
that ⟨z, R(X)z⟩ is defined on D(A) which is dense in Z . Since the
left-hand side of (12) is integrable, self-adjoint and nonnegative
(see (13)), one can extend it (and also the right-hand side of (12))
to a bounded (self-adjoint) operator on Z . But every nonnegative,
self-adjoint bounded operator has a unique self-adjoint square root
and the right-hand side can be factorized as C∗

1 C1. Consequently,
Eq. (12) can be extended to a Lyapunov equation of form (2).
Then the statement (iii) in Theorem 2.2 corresponding to (12) is
satisfied. One can now apply Theorem 2.2 part (II) and (III) to draw
the conclusion. To complete the proof, one can use a standard
technique to show that the operator Q is bounded (the quadratic
form in (11) is induced by a bounded operator). More precisely,
define the continuous differentiable function

Et(z) := ⟨(XF − X)T1(t)z, T1(t)z⟩.

Note that Et(z) is nonnegative. Taking the derivative with respect
to t one has
d
dt

Et(z) = ⟨(XF − X)A1T1(t)z, T1(t)z⟩

+ ⟨(XF − X)T1(t)z, A1T1(t)z⟩ ≤ 0, (14)

so Et(z) is nonincreasing. Since Et(z) is continuous in z and D(A)
is dense in Z , Et(z) is nonincreasing for any z ∈ Z . So for t ≥ s ≥ 0,

T ∗

1 (t)(XF − X)T1(t) ≤ T ∗

1 (s)(XF − X)T1(s).

So we have a nonincreasing sequence of positive operator valued
functions and consequently a strong limit exists as t → ∞.
Integrating (14) on [0, ∞) and using (12) it follows that Q is
bounded. �

Let A0 = A − BF and X0 = XF . Then

A1 = A − BB∗X0. (15)
Let also Q0 = Q from (11) and assume that Q0 > 0. From
Lemma 3.2(2), A1 generates a strongly stable semigroup T1(t),
and assume that the system Σ


A1, B,


B∗X0
C


is output stable.

Therefore (see Theorem 2.2)

X1 :=


∞

0
T ∗

1 (t)(X0BB∗X0 + C∗C)T1(t)dt (16)

is the unique self-adjoint solution of the Lyapunov equation
⟨A1z1, X1z2⟩ + ⟨X1z1, A1z2⟩ = −⟨BX0z1, BX0z2⟩

− ⟨Cz1, Cz2⟩ (17)
Define inductively the sequences of operators

Ai = A − BB∗Xi−1, i = 1, . . . , n (18)

Xi =


∞

0
Ti(t)∗(Xi−1BB∗Xi−1 + C∗C)Ti(t)dt

Qi =


∞

0
Ti(t)∗(R(X) + (Xi − X)BB∗(Xi − X)

+ (Xi − Xi−1)BB∗(Xi − Xi−1))Ti(t)dt

where D(Ai) = D(A) ⊂ Z . Note that one must interpret the inte-
gral from the definition ofQi as a quadratic formon the appropriate
domain, similarly to (11) as it was done in Lemma 3.2.
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Lemma 3.3. Consider the sequences of operators defined in (18) and
assume that Qi > 0 for i = 0, . . . , n − 1. The following statements
hold:

(1) Ai, i = 1, . . . , n, generates a strongly stable semigroup Ti(t);
(2) Xi, i = 1, . . . , n, is the unique self-adjoint solution of the

Lyapunov equation

⟨Aiz1, Xiz2⟩ + ⟨Xiz1, Aiz2⟩

= −⟨B∗Xi−1, B∗Xi−1⟩ − ⟨Cz1, Cz2⟩ (19)

(3) Let X ∈ SI be a self-adjoint solution of the CARI (6). Then

X ≤ Xi, i = 0, . . . , n.

Proof. (1): From Lemma 3.2, A1 generates a strongly stable
semigroup T1(t). For i = 2, . . . , n, Xi−1 −X, i = 2, . . . , n, satisfies
the equality

⟨Aiz1, (Xi−1 − X)z2⟩ + ⟨(Xi−1 − X)z1, A1z2⟩
= −⟨z1, R(X)z2⟩ − ⟨B∗(Xi − X), B∗(Xi − X)⟩

− ⟨B∗(Xi − Xi−1)z1, B∗(Xi − Xi−1)z2⟩. (20)

Then, using similar reasoning as in the proof of Lemma 3.2(2),
Qi−1 ∈ L(Z) is the smallest nonnegative solution of (20). Using
Qi−1 > 0, one obtains that Ti(t) is a strongly stable semigroup.

(2): Using that Ti(t) is a strongly stable semigroup and that
the system Σ


Ai, B,


−B∗Xi−1

C


is output stable, we can apply

Theorem 2.2 to obtain that Xi is the unique self-adjoint solution
of (19).

(3): Since X0 = XF , X ≤ X0 is stated in Theorem 3.1. The
inequality X ≤ Xi, i = 1, . . . , n, follows in the same way as in
Theorem 3.1 using the equality

⟨Aiz1, (Xi − X)z2⟩ + ⟨(Xi − X)z1, Aiz2⟩
= −⟨z1, R(X)z2⟩ − ⟨B∗(Xi − X)z1, B∗(Xi − X)z2⟩

and the fact that

−⟨z, R(X)z⟩ − ⟨B∗(Xi − X)z, B∗(Xi − X)z⟩ ≤ 0.

The above inequality is true because X ∈ SI. �

One can now state the main result.

Theorem 3.4. Consider a strongly stabilizable system Σ(A, B, C).
Consider the sequences of operators (Xi)

n
i=0 and (Qi)

n−1
i=0 defined

in (18), and assume that Qi > 0, i = 0, . . . , n − 1. Then the
sequence (Xi)

n
i=0 converges strongly to a bounded operator X+ ∈

L(Z). Moreover,

(1) For any X ∈ SI a self-adjoint solution of the CARI (6)

X ≤ X+.

(2) X+ ∈ SE , i.e. X+ is a self-adjoint solution of the CARE (4).

Proof. (1): From Lemma 3.3, Xi is the unique self-adjoint solution
of (19). Then the following equality holds for z1, z2 ∈ D(A)

⟨Aiz1, (Xi−1 − Xi)z2⟩ + ⟨(Xi−1 − Xi)z1, Aiz2⟩
= −⟨B∗(Xi−1 − Xi−2)z1, B∗(Xi−1 − Xi−2)z2⟩

and so,

⟨Aiz1, (Xi−1 − Xi)z2⟩ + ⟨(Xi−1 − Xi)z1, Aiz2⟩ ≤ 0.

Take z1 = z2 = z and use Lemma 2.5 to obtain

Xi−1 − Xi ≥ 0.

The sequence (Xi)
n
i=0 of bounded operators in L(Z) is decreasing

and has a lower bound therefore converges strongly. Define X+ ∈

L(Z) its limit as n → ∞. Let X ∈ SI be a self-adjoint solution of
the CARI (6). Since Xi are self-adjoint operators and Xi ≥ X , taking
the limit for n → ∞ it follows that X+ is also self-adjoint and

X+ ≥ X .

(2): Note that Xi satisfies

⟨(A − BB∗Xi−1)z1, Xiz2⟩ + ⟨Xiz1, (A − BB∗Xi−1)z2⟩
= −⟨B∗Xi−1, B∗Xi−1⟩ − ⟨Cz1, Cz2⟩.

The proof is completed by taking the strong limit for n → ∞ in the
above equality and using that (Xi)

n
i=0 converges strongly to X+. �

Remark 3.5. The sequence (Xi)
n
i=0 is known as Newton–Kleinman

iterates. Note that Theorem 3.4 is closely related to Burns
et al. (2008, Theorem 6.3) which deals with the exponentially
stabilizable and detectable case. As a consequence of the proof of
Theorem 3.4, the Newton iterates satisfy

0 ≤ X+ ≤ · · · ≤ Xk+1 ≤ Xk ≤ · · · ≤ X1.

Remark 3.6. If one considers a system Σ(A, B, C) which satisfies
also the strong detectability assumption, then X+ constructed in
Theorem 3.4 is the unique nonnegative self-adjoint solution of the
CARE (4) (see Iftime et al., 2005, Theorem 3.5). So the maximal
and theminimal nonnegative self-adjoint solutions of the CARE (4)
coincide.

Remark 3.7. Note that Qi, i = 0, . . . , n − 1, are computed
iteratively in the algorithm. Once Qi is computed, then the
condition Qi > 0 can be checked.

4. Conclusions

For strongly stabilizable systems it has been proved that,
under certain conditions, there exists a maximal solution of the
CARI. The maximal solution of the CARI also satisfies the CARE.
Furthermore, the solution of the CARE has been constructed using
Newton–Kleinman iterates. These results are obtained for strongly
stabilizable infinite-dimensional systems and are in line with
similar results presented for finite-dimensional systems in Ran
and Vreugdenhil (1988) and for exponentially stabilizable infinite-
dimensional systems in Curtain and Rodman (1990) or Burns
et al. (2008, Section 6). The main result proven in this paper
(Theorem 3.4) is closely related to Burns et al. (2008, Theorem
6.3) which deals with the exponentially stabilizable and detectable
case. Therefore, our new result makes a step forward to finite-
dimensional approximations andmesh-independence for strongly
stabilizable systems following the Kleinman–Newton approach
as presented in Burns et al. (2008) for exponentially stabilizable
systems.
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