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• We discuss the general philosophical concept of evidence, connecting it to statistics.
• We outline how statistical evidence can be quantified using the Bayes factor.
• We discuss the philosophical details and difficulties in using the Bayes factor.
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a b s t r a c t

A core aspect of science is using data to assess the degree to which data provide evidence for competing
claims, hypotheses, or theories. Evidence is by definition something that should change the credibility
of a claim in a reasonable person’s mind. However, common statistics, such as significance testing and
confidence intervals have no interface with concepts of belief, and thus it is unclear how they relate to
statistical evidence.We explore the concept of statistical evidence, and how it can be quantified using the
Bayes factor. We also discuss the philosophical issues inherent in the use of the Bayes factor.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
A core element of science is that data are used to argue for or
against hypotheses or theories. Researchers assume that data – if
properly analyzed – provide evidence, whether this evidence is
used to understand global climate change (Lawrimore et al., 2011),
examine whether the Higgs Boson exists (Low, Lykken, & Shaugh-
nessy, 2012), explore the evolution of bacteria (Barrick et al., 2009),
or to describe human reasoning (Kahneman & Tversky, 1972). Sci-
entists using statistics oftenwrite as if evidence is quantifiable: one
can have no evidence, weaker evidence, stronger evidence—but
importantly, statistics in commonuse do not readily admit such in-
terpretations. The use of significance tests and confidence intervals
are cases in point (Berger & Sellke, 1987; Berger & Wolpert, 1988;
Jeffreys, 1961; Wagenmakers, Lee, Lodewyckx, & Iverson, 2008).
Instead, these statistics are designed to make decisions, such as
rejecting a hypothesis, rather than providing for a measure of ev-
idence. Consequently, statistical practice is beset by a difference
between what statistics provide and what is desired from them.
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In this paper, we explore a statistical notion that does allow
for the desired interpretation as a measure of evidence: the Bayes
factor (Good, 1979, 1985; Jeffreys, 1961; Kass & Raftery, 1995).
Our central claim is that the computation of Bayes factors is an
appropriate, appealing method for assessing the impact of data on
the evaluation of hypotheses. Bayes factors present a useful and
meaningful measure of evidence.

To arrive at the Bayes factor, we explore the concept of evidence
more generally in Section 1. We make a number of reasoned
choices for an account of evidence, identify certain properties that
should be reflected in our account, and then show that an account
using Bayes factors fits the bill. In Section 2.1 we give a detailed
introduction into Bayesian statistics and the use of Bayes factors,
giving particular attention to certain conceptual issues. In Section 3
we offer some examples of the use of Bayes factors as measure of
evidence, and in Section 4we consider critiques of this use of Bayes
factors and difficulties inherent in their application.

1. Evidence

What is evidence? Our answer is that the evidence presented by
data is given by the impact that the data have on our evaluation of
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a theory (e.g., Fox, 2011).1 In what follows we develop an account
that ties together three central notions in this answer (theory,
evaluation, and the impact of data) and then motivate the use of
Bayes factors in statistics. One important caveat: our exposition
falls far short of a fully worked out theory of evidence, and we do
not offer a defense of Bayes factors as the only statisticalmeasure of
it.We cannot treat evidence or Bayes factors in sufficient generality
and detail to warrant such wide-scope conclusions; there may
well be other suitable measures, e.g., model selection tools. We
argue that Bayes factors reflect the key properties of a particular
conception of evidence but we do not assess the competition.

1.1. Theory: empirical hypotheses

One possible goal of scientific inquiry is instrumental: it is
enough to predict and control the world by means of some sci-
entific system, e.g., a theory or a prediction device. The format of
such a system is secondary to the goal. In particular, there is no
reason to expect that system will employ general hypotheses on
how the world works, or that it will involve evaluations of those
hypotheses. But another important goal of science is epistemic: sci-
ence offers us an adequate representation of the world, or at least
one that lends itself for generating explanation as well as predic-
tion and control. For such purposes, the evaluation of hypotheses
seems indispensable. Of course, a system used for prediction and
control might include evaluations of hypotheses as well. Our point
is that in an instrumentalist view of science an evaluative mode
(e.g., an interface with beliefs) is not mandatory while in an epis-
temic view it is.

The idea that scientific inquiry has epistemic implications is
common among scientists. One important example of recent im-
port is the debate over global climate change. The epistemic nature
of this debate is hard to miss. Much attention has been given, for
instance, to the consensus of climate scientists; that is, that nearly
all climate scientists believe that global climate change is caused by
humans. The available data is assumed to drive climate scientists
opinions; the fact of consensus then drives public opinion and pol-
icy on the topic. Those not believing with the consensus are called,
pejoratively, ‘‘deniers’’ (Dunlap, 2013). It seems safe to say that we
cannot altogether do away with epistemic goals in science.

An epistemic goal puts particular constraints on the format
of scientific theory: it will have to allow for evaluations of
how believable or plausible the theory is, and it must contain
components that represent nature, or the world, in some manner.
We call those components hypotheses.2 There is a large variety of
structures that may all be classified as hypotheses in virtue of their
role in representing the world. A hypothesis might be a distinct
mechanism, the specification of a type of process, a particular
class of solutions to some system of equations, and so on. For
all hypotheses, however, an important requirement is that they
entail predictions of data. Scientistswould regard a hypothesis that
has no empirical consequences as problematic. Moreover, it is a
deeply seated conviction amongmany scientists that the success of
a theory should be determined on the basis of its ability to predict
the data. In short, the hypotheses must have empirical content.

1 Although there is a large debate within the philosophy of science about the
relation between data, facts, phenomena, and the like (e.g., Bogen & Woodward,
1988), we will align ourselves with scientific practice here and simply employ the
term ‘‘data’’ without making further discriminations. It will lead us too far afield to
add further considerations.
2 In the philosophy of science literature, those structures are often referred to as

models. But in a statistical context models have a specific meaning: they are sets
of distributions over the sample space that serve as input to a statistical analysis.
To avoid confusion when we introduce statistical models later, we use the term
‘‘hypotheses’’.
The foregoing claimsmay seemcompletely trivial to our current
readers. However, they are all subject to controversy in the philos-
ophy of science. There are long-standing debates on the nature, the
use and the status of scientific theory. It is far from clear that sci-
entific hypotheses are intended to represent something, and that
they always have empirical content.3 And a closer look at science
also gives us a more nuanced view. Consider a statistical tool like
principal component analysis, in which the variation among data
points is used to identify salient linear combinations of manifest
variables. Importantly, this is a data-driven technique that does
not rely on any explicitly formulated hypothesis. The use of neu-
ral networks and other data-mining tools for identifying empiri-
cal patterns are also cases in point, certainly when these tools are
seen merely as pattern-seeking devices. The message here is that
scientific theory need not always have components that do repre-
sentational work. However, the account of evidence thatmotivates
Bayes factors does rely on hypotheses as representational items,
and does assume that these hypotheses have empirical content.4

1.2. Evaluations: belief and probability

As we have argued, the epistemic goals of science lead to a par-
ticular understanding of scientific theory: it consists of empirical
hypotheses that somehow represent the world. Within statistical
analysis, we indeed find that theory has this character: statisti-
cal hypotheses are distributions that represent a population, and
they entail probability assignments over a sample space.5 A fur-
ther consequence of taking science as an epistemic enterprise was
already briefly mentioned: scientific theory must allow for evalu-
ations, and hence interface with our epistemic attitudes. These at-
titudes include expectations, convictions, opinions, commitments,
assumptions, and more. But for ease of reference we will simply
speak of beliefs in what follows. Now that we have identified the
representational components of scientific theory as hypotheses,
the requirement is that these hypotheses must feature in our be-
liefs. And our account of evidence must accommodate such a role.

The exact implications of the involvement of belief depend on
what we take to be the nature of beliefs, and on the specifics of
the items featuring in it. There aremanyways of representing both
the beliefs and the targets of beliefs. For example, when expressing
the strength of our adherence to a belief we might take them
as categorical, e.g., dichotomous between accepted and rejected,
or graded in some way or other. Moreover, the beliefs need not
concern the hypothesis in isolation. In an account of evidence, the
beliefs might just as well pertain to relations between hypotheses
and data. Consequently, the involvement of beliefs does not, by
itself, impose that we assign probabilities to hypotheses. And it
does not entail the use of Bayesian methods to the exclusion
of others either. Numerous interpretations of, and add-ons to,
classical statistics have been developed to accommodate the
need for an epistemic interpretation of results (for an overview
see Romeijn, 2014).

3 See, e.g., Bird (1998) and Psillos (1999) for introductions into the so-called
realism debate.
4 Clearly this leaves open other motivations for using Bayes factors to evaluate

neural networks and the like. Moreover, data-driven techniques are often used for
informal hypothesis generation. While the formal evidence evaluation techniques
discussed here may not be appropriate for such exploratory techniques, they may
be appropriate for later products of such techniques.
5 Notice that the theoretical structure fromwhich the statistical hypotheses arise

may be far richer than the hypotheses themselves, involving exemplars, stories, bits
of metaphysics, and so on. In the philosophy of statistics, there is ongoing debate
about the exact use of this theoretical superstructure, and the extent to which it
can be detached from the empirical substructure. Romeijn (2013) offers a recent
discussion of this point, placing hierarchical Bayesian models in the context of
explanatory reasoning in science.
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Be that as it may, in our account we choose for a distinct way
of involving beliefs. First consider the representation of the items
about which we have beliefs, e.g., whether we frame our beliefs
as pertaining to sentences or events. A fully general framework,
which we will adopt here, presents beliefs as pertaining to
elements from an algebra that represents events in, or facts about,
a target system. Next consider the beliefs themselves—predictions,
expectations, convictions, commitments. They can be formalized
in terms of a function over the algebra, like truth values or
more fine-grained formalizations, e.g., degrees of belief, imprecise
probabilities, plausibility orderings and so on (see Halpern,
2003, for an overview). It seems inevitable that any such function
will impose its own constraints on what can be captured.
Fortunately there are very convincing arguments for capturing
beliefs about hypotheses in terms of probability assignments over
an algebra (Cox, 1946; de Finetti, 1995; Joyce, 1998; Ramsey, 1931).
In our account we follow this dominant practice.

Our choice for probability assignments suggests a particular
way of formalizing the empirical evaluation of hypotheses. We
express beliefs by a probability over an algebra, so items that obtain
a probability, like data and possibly also hypotheses, are elements
of this algebra. The relation between a hypothesis, denoted h, and
data, denoted y, will thus be captured by certain valuations of the
probability function. As will become apparent below, a key role
is reserved for the probability of the data on the assumption of a
hypothesis, written ph(y), or p(y | h) depending on the exact role
given to hypotheses.6

Notice that the use of probability assignments puts further
constraints on the nature of the empirical hypotheses: they must
specify a distinct probability assignment over possible data, i.e., the
hypothesis must be statistical. This means that if the hypothesis
under consideration is composite – meaning that it consists of a
number of different distributions over the sample space –wemust
suppose a probability assignment over these distributions them-
selves in order to arrive at a single-valued probability assignment
over the sample space. This is simply a requirement for building up
a probabilistic account of evidence.7

Let us take stock. We have argued that our account of evidence
involves beliefs concerning hypotheses. These beliefs are deter-
mined by the relations that obtain between hypotheses and data,
and probability assignments offer a natural means for expressing
these beliefs. Against this background, we will now investigate the
role of data, and thereby identify two key properties for our notion
of evidence.

1.3. Impact of data: relative and relational

The evaluation of empirical hypotheses goes by a confrontation
with the data. But how precisely do the data engage in our beliefs
towards hypotheses, and so function as evidence? The data – in the
context of statistics, dry database entries – do not present evidence

6 Classical statisticians might object to the appearance of h within the scope of
the probability function p. If viewed as a function of the hypothesis, this expression
is referred to as the (marginal) likelihood of the hypothesis h for the (known and
fixed) data y.
7 For instance, if we are interested in the probability θ that an unfair coin

lands with heads showing, then the hypothesis θ > 1/2, which specifies that
the coin is biased towards heads, is such a composite hypothesis. Each possible
value for θ implies a different sampling distribution over the number of heads.
In addition to these sampling distributions we must have a weighting over all
possible θ values. Without such a weighting, typically a probability assignment,
over these component distributions the aggregated or so-calledmarginal likelihood
of the hypothesis cannot be computed, thereby leaving the empirical content of the
composite hypothesis underspecified. Of course this invites further questions over
the status of these marginal likelihoods but we cannot delve into these questions
here.
all by themselves. They only do so because, as we said, they impact
on our beliefs about hypotheses. We turn to this idea of impact,
to single out two properties that are central to our account of
evidence: it is relational and relative. By relational, we mean that
evidence is fundamentally about the relation between data and
hypotheses, and not data alone; by relative, wemean that evidence
for or against a hypothesis can only be assessed relative to another
hypothesis.

First consider the relational nature of evidence.Wemight assess
the evidence by offering an account of the evidential value of data
taken in isolation. By contrast, we might also assess the evidence
as a relation between hypothesis and data, e.g., by forming a
belief regarding the support that the data give to the hypothesis.
The notion of support clearly pertains to the relation between
hypothesis and data, and this is different from an assessment that
only pertains to the data as such. We prefer a relational notion
of evidence in our account, namely one that is based on support
relations.

In general, the support relation will be determined by how
well hypotheses and data are aligned. We like to think about
this alignment, and hence support relation, in terms of predictive
accuracy. That is, hypotheses may be scored and compared
according to how well they predict the data. In statistics, this is
often done simply by the probability that the hypothesis assigns
to the data, the so-called likelihood, written p(y | h). As will
become apparent in the next section, precisely this particular use
of predictive accuracy drops out of the choices for the account of
evidence that we have made in the previous sections.8

As an aside, notice that predictions based on a hypothesis
have an epistemic nature – they are expectations – but that their
standard formalization in terms of probability is often motivated
by the probabilistic nature of something non-epistemic: statistical
hypotheses pertain to frequencies or chances, and the latter
can be represented by probability theory as well. The use of
predictions for evaluating hypotheses thus involves two subtle
conceptual steps. The probability p(y | h) refers to a chance or a
frequency, which is then turned into an epistemic expectation, i.e.,
a prediction, and subsequently taken as a score that expresses the
support for the hypothesis by the data.

Next consider the relative, or comparative, nature of evidence.
Note that support can be considered in absolute or in relative
terms. We might conceive of the support as something indepen-
dent of the theoretical context inwhich the support is determined:
we base the support solely on how well the hypothesis under
scrutiny aligns with the data, where this predictive performance is
judged independently of how well other hypotheses – which may
or may not be under consideration – predict those data. By con-
trast, we might also conceive of support as an essentially compar-
ative affair.Wemight say one hypothesis is better supported by the
data than another because it predicts the data better, without say-
ing anything about the absolute support that either receives from
the data.

We think the comparative reading fits better with our intuitive
understanding of support, namely as something context-sensitive,
sowe take this as another desideratum for our account of evidence.
The data do not offer support in absolute terms: they only do so
relative to rival hypotheses. Imagine that the hypothesis h predicts
the empirical data y with very high probability. We will only say
that the data y support the hypothesis h if other hypotheses h′

do not predict the same data equally well. If the other hypotheses
also predict the data, perhaps because it is rather easy to predict

8 Following the recent interest in what is termed accuracy-first epistemology
(e.g. Joyce, 1998; Pettigrew, 2013), it also aligns well with the epistemic goals of
science.
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them, then it seems that those data do not offer support either
way. Conversely, if the data are surprising in the sense that they
have a low probability according to all the other hypotheses under
consideration, then still, they are only surprising relative to those
other hypotheses. Hence, although we admit that more absolute
notions of evidence can be conceived, our notion of support, and
thereby of evidence, depends on what candidate hypotheses are
being considered.

Summing up, we have now argued that data present evidence
insofar as they impact on our beliefs about hypotheses, that this
impact is best understood as relative support, and that it can be
measured by a comparison among hypotheses of their predictive
success. In what follows we will integrate these insights into an
account of evidence and argue that Bayes factors offer a natural
expression of this kind of evidence.

1.4. Bayes factors

Let us return to the conception of evidence that was sketched at
the start of this section: the evidence presented by the data is the
impact that these data have on our evaluation of theory.9 In the
foregoing we have put in place conceptions of theory, evaluation,
and the impact of data. In this section we assemble the pieces.

As indicated, we look at the way in which data impact on the
evaluation of hypotheses, denoted hi. The evidence presented by
the datum y can thus be formalized in terms of the change in
the probability that we assign to the hypotheses, i.e., the change
in the probability prior and posterior to receiving the datum. To
signal that these probabilities may be considered separate from
the probability assignments p(y) over the sample space, we denote
priors and posteriors as π(hi) and π(hi | y) respectively. A natural
expression of the change between them is the ratio of prior and
posterior.

The use of probability assignments over hypotheses means that
we opt for a Bayesian notion of evidence. As is well known, Bayes’
rule relates priors and posteriors as follows:

π(hi | y) =
p(y | hi)

p(y)
π(hi),

where we often write π(hi | y) = πy(hi) to express that the pos-
terior probability over the hypotheses is a separate function. In the
above expression, the notion of evidence hinges entirely on the
likelihoods p(y | hi) for the range of hypotheses hi that are cur-
rently under consideration. In order to assess the relative evidence
for two hypotheses hi and hj, we may focus on the ratio of priors
and posteriors for two distinct hypotheses:

πy(hi)

πy(hj)
=

p(y | hi)

p(y | hj)
×

π(hi)

π(hj)
.

The crucial term – the one thatmeasures the evidence – is the ratio
of the probabilities of the data y, conditional on the twohypotheses
that are being compared. This ratio is known as the Bayes factor.

We can quickly see that the Bayes factor has the properties
discussed in the foregoing, and that this reinforces our view that
Bayes factors are a suitable expression of evidence. Obviously, the
ratio
p(y | hi)

p(y | hj)

9 See Kelly (2014) for a quick presentation and some references to a discussion on
the merits of this approach to evidence. Interestingly, others have argued that we
can identify the meaning of a linguistic expression with the impact on our beliefs
(cf. Veltman, 1996). This is suggestive of particular parallels between the concepts
of evidence and meaning, but we will not delve into these here.
involves our beliefs concerning empirical hypotheses. More specif-
ically, it directly involves an expression for the empirical support
for the hypotheses, and so the notion of evidence is relational. Sup-
port is expressed by predictive accuracy, in particular by the prob-
ability of the observed data under the various hypotheses under
consideration. The evaluation is thus relative, in the sense that we
only look at the ratios: we express evidence as the factor between
the ratio of priors andposteriors of twodistinct hypotheses. In sum,
the Bayes factor comes out of the reasoned choices that we made
for our account of evidence, and it exhibits the two properties that
we deemed suitable for our account.

Note that we opted for an account of evidence that is explicitly
Bayesian. After all it hinges on beliefs regarding hypotheses, rather
than on beliefs regarding the support relation or on something else
entirely. However, the eventual expression of evidential strength
only involves probability assignments over data. Although we will
not argue this in any detail, it therefore seems that a similar
account of evidence can also be adopted as part of other statistical
methodologies, certainly likelihoodism, which is concerned on our
beliefs regarding support itself (e.g., Royall, 1997).

1.5. The subjectivity of evidence

Our notion of evidence depends on the theory that we con-
sider. If we consider different hypotheses, our evidence changes as
well, both because we pick up on different things in the data if we
consider different hypotheses, and because we might have differ-
ent hypotheses to compare evidential supports. All of this points
to a subjective element in evidence that affects statistical analy-
ses in general: the idea that the data speak for themselves cannot
be maintained. In this final subsection we briefly elaborate on this
aspect of evidence, addressing in particular those methodologists
and scientists who find the alleged subjectivity a cause for worry.

It is easy to see that evidence must be subjective when we re-
alize that referring to data as ‘‘evidence’’ is a choice. A psycholo-
gist studying mechanisms of decision-making would ignore data
from the exoplanet-hunting Kepler probe as being non-evidential
for the particular questions that they ask. There is nothing about
the data, by itself, that tells a researcher whether it counts as evi-
dence; researchers must combine their theoretical viewpoint with
the questions at hand to evaluate whether a particular data set is,
in fact, evidential. This is by necessity a subjective evaluation.

Another illustration from statistics may help to further clarify
the subjectivity of evidence. It is well-known that statistical proce-
dures depend onmodeling assumptionsmade at the outset. There-
fore every statistical procedure is liable to model misspecification
(Box, 1979). For instance, if we obtain observations that have a
particular order structure, like 010101010101, but analyze those
observations using a model of Bernoulli hypotheses, the order
structure will simply go unnoticed. We will say that the data
present evidence for the Bernoulli hypothesis that gives a chance
of 1/2 to each observation. But we do not say that they provide evi-
dence for an order structure, because there was no statistical con-
text for identifying this structure.

It may be thought that the context-sensitivity of evidence
is more pronounced in Bayesian statistics, because a Bayesian
inference is closed-minded about which hypotheses can be true:
after the prior has been chosen, hypotheses with zero probability
cannot enter the theory (cf. Dawid, 1982). As recently argued in
Gelman and Shalizi (2013), classical statistical procedures aremore
open-minded in this respect: the theoretical context is not as fixed.
For this reason, the context-sensitivity of evidence may seem a
more pressing issue for Bayesians. However, as argued in Berger
and Wolpert (1988), Good (1988), and Hacking (1965) among
others, classical statistical procedures have a context-sensitivity of
their own. It is well known that some classical procedures violate
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the likelihoodprinciple. Roughly speaking, these procedures donot
only depend on the actual data but also on data that, according to
the hypotheses, could have been collected, but was not. The nature
of this context sensitivity is different from the one that applies
to Bayesian statistics, but it amounts to context sensitivity all the
same.

The contextual and hence subjective character of evidence may
raise some eyebrows. It might seem that the evidence that is
presented by the data should not be in the eye of the beholder. We
believe, however, that dependence on context is natural. To our
mind, the context-sensitivity of evidence is an apt expression of
the widely held view that empirical facts do not come wrapped in
their appropriate interpretation. The sameempirical factswill have
different interpretations and different evidential value in different
situations. We ourselves play a crucial part in this interpretation,
by framing the empirical facts in a theoretical context or more
concretely, in a statistical model.10

2. Bayesian statistics: formalized statistical evidence

The previous section laid out a general way of approaching
the relationship between evidence and rational belief change
which are broadly applicable in economic, legal, medical, and
scientific reasoning. In some applications the primary concern is
drawing inferences from quantitative data. Bayesian statistics is the
application of the concepts of evidence and rational belief change
to statistical scenarios.

Bayesian statistics is built atop two ideas: first, that the
plausibility we assign to a hypothesis can be represented as a
number between 0 and 1; and second, that Bayesian conditioning
provides the rule by which we use the data to update beliefs. Let
y be the data, θ be a vector of parameters that characterizes the
hypothesis, or the statistical model, h of the foregoing, and let
p(y | θ) be the sampling distribution of the data given θ: that is,
the statistical model for the data. Then Bayes conditioning implies
that

πy(θ) = p(θ | y) =
p(y | θ)

p(y)
π(θ).

This is Bayes’ rule. A simple algebraic step yields a:

πy(θ)

π(θ)
=

p(y | θ)

p(y)
. (1)

The left-hand side is a ratio indicating the change in belief for a
specific value of θ due to seeing the data y: that is, the weight
of evidence. The right-hand side is the ratio of two predictions:
the numerator is the predicted probability of the data y for θ, and
the denominator is the average predicted probability of the data
over all θ. Examination of Eq. (1) the important link with statistical
evidence. The evidence favors an explanation – in this case, amodel
with specific θ – in proportion to how successfully it has predicted
the observed data.

For convenience we denote the evidence ratio

Ev(θ, π, y) =
p(y | θ)

p(y)
as a function of θ, the prior beliefs π , and the data y that
determines how beliefs should change across the values of θ, for
any observed y. As above, we use bold notation to indicate that
the data, parameters, or both could be vectors. We should note
that the evidence ratio Ev is not what is commonly referred to as

10 This formative role for theory echoes ideas from the philosophy of science that
trace back to Popper (1959) and Kuhn (1962).
a Bayes factor because it is a function of parameter values, θ. The
connection between Ev and Bayes factors is straightforward and
will become apparent below.

To make our discussion more concrete, suppose we were
interested in the probability of buttered toast falling butter-side
down. Murphy’s Law – which states that ‘‘anything that can go
wrong will go wrong’’ – has been taken to imply that the buttered
toast will tend to land buttered-side down (Matthews, 1995),
rendering it inedible and soiling the floor.11 We begin by assuming
that toast flips have the same probability of landing butter-side
down, and that the flips are independent, and thus the number
of butter-down flips y has a binomial distribution. There is some
probability θ that represents the probability that the toast lands
butter down. Fig. 1 shows a possible distribution of beliefs, π(θ),
about θ ; the distribution is unimodal and symmetric around 1/2.
Beliefs about θ are concentrated in the middle of the range,
discounting the extreme probabilities. The choice of prior is a
critical issue in Bayesian statistics; we use this prior for the sake
of demonstration and defer discussion of choosing a prior.

In Bayesian statistics, most attention is centered on distribu-
tions of parameters, either before observing data (prior) or after
observing data (posterior). We often speak loosely of these distri-
butions as containing the knowledgewehave gained from the data.
However, it is important to remember that the parameter is insep-
arable from the underlying statistical model that links the param-
eter with the observable data, p(y | θ). Jointly, the parameter and
the data make predictions about future data. The parameters spec-
ify particular chances, or else they specify our expectations about
future observations, and thereby theymake precise a statistical hy-
pothesis, i.e., a particular representation. As we argued above, an
inference regarding a hypothesis should center on the degree to
which a proposed constraint is successful in its predictions. With
this in mind, we examine the ratio Ev – a ratio of predictions for
data – in detail.

The function Ev is a ratio of two probability functions. In the
numerator is the probability of data y given some specific value of
θ : that is, the numerator is a set of predictions for a specific model
of the data.We can understand this as a proposal: what predictions
does this particular constraint make, and how successful are these
predictions? For demonstration, we focus on the specific θ = 0.5.
The light colored histogram in Fig. 1(B), labeled p(y | θ = 0.5),
shows the predictions for the outcomes y given θ = 0.5 and
N = 50, as derived from the binomial(50, 0.5) probability mass
function:

p(y | θ = 0.5) =


50
y


0.5y(1 − 0.5)50−y.

These predictions are centered around 25 butter-side down flips,
as would be expected given that θ = 0.5 and N = 50.

The denominator of the ratio Ev is another set of predictions for
the data: not for a specific θ , but averaged over all θ .

p(y) =

 1

0
p(y | θ)π(θ) dθ.

The predictions p(y) are called the marginal predictions under
the prior π(θ), shown as the dark histogram in Fig. 1(B). These
marginal predictions are necessarilymore spread out than those of
θ = 0.5, because they do not commit to a specific θ . Instead, they
use the uncertainty in θ along with the binomial model to arrive
at these marginal predictions. The spread of the predictions thus
reflects all of the uncertainty about θ contained in the prior π(θ).

11 There is ongoing debate overwhether the toast could be eaten if left on the floor
for less than five seconds (Dawson, Han, Cox, Black, & Simmons, 2007). We assume
none of the readers of this article would consider such a thing.
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Fig. 1. A: A prior distribution over the possible values θ , the probability that toast lands butter-side down. B, C: Probability of outcomes under twomodels. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Themarginal probability of the observed data – that is, when y and
p(y) have a specific values – is called the marginal likelihood.

The ratio Ev is thus the ratio of two competing models’
predictions for the data. The numerator contains the predictions
of the model where the parameter θ is constrained to a specific
value, and the denominator contains the predictions of the full
model, with all uncertainty from π(θ) included. For notational
convenience, we call the restricted numerator model M0 and the
full, denominator model M1. In statistics, models play the role of
the hypotheses hi discussed in the previous section.

Suppose we assign a research assistant to review hundreds of
hours of security camera footage at a popular breakfast restaurant,
she finds N = 50 instances where the toast fell onto the floor; in
y = 30 of these instances, the toast landed butter down. We wish
to assess the evidence in the data; or, put another way, we wish to
assess how the data should transform π(θ) into a new belief based
on y, πy(θ). Eq. (1) tells us that the weight of evidence favoring the
model M0 is precisely the degree to which it predicted y = 30
better than the full model, M1. Fig. 1(C) (inside the rectangle)
shows the probability of y = 30 under M0 and M1. Thus,

Ev =
p(y = 30 | θ = 0.5)

p(y = 30)
=

0.042
0.037

= 1.145.

The plausibility of θ = 0.5 has grown by about 15%, because the
observation y = 30 was 15% more probable under M0 than M1.12

We can compute the factor Ev for every value of θ . The curve
in Fig. 2(A) shows the probability that y = 30 under every point
restriction of θ ; the horizontal line shows the marginal probability
p(y = 30). For each θ , the height of the curve relative to the
constant p(y) gives the factor by which beliefs are updated in favor
of that value of θ . Where the curve is above the horizontal line
(the shaded region), the value of the particular θ is more plausible,
after observing the data; outside the shaded region, plausibility

12 We loosely speak of the plausibility of θ here but strictly speaking, because
θ is continuous and π(θ) is a density function, we are referring to the collective
plausibility of values in an arbitrarily small region around θ .
decreases. Fig. 2(B) shows how all of these factors stretch the
beliefs to form the posterior from the prior, making some regions
higher and some regions lower. The effect is to transform the prior
belief function π(θ) into a new belief function πy(θ) which has
been updated to reflect the observation y.

The prior and posterior are both shown in Fig. 2(C). Instead of
being centered around θ = 0.5, the new updated beliefs have
been shifted consistent with the data proportion y/N = 0.6, and
have smaller variance, showing the gain in knowledge from the
sample size N = 50. Although simplistic, the example shows that
the core feature of Bayesian statistics is that beliefs – modeled
using probability – are driven by evidence weighed proportional
to predictive success, as required by Bayes’ theorem.

2.1. The Bayes factor

Suppose that while your research assistant was collecting
the data, you and several colleagues were brainstorming about
possible outcomes. You assert that if Murphy’s law is true, then
θ > 0.5; that is, anytime the toast falls, odds are that it will land
butter-side down.13 A colleague points out, however, that the goal
of the data collection is to assessMurphy’s law.Murphy’s law itself
suggests that ifMurphy’s law is true, your attempt to testMurphy’s
lawwill fail. She claims that for the trials assessed by your research
assistant, Murphy’s law entails that θ < 0.5. A second colleague
thinks that the toast is probably biased, does not specify a direction
of bias: that is, θ could be any probability between 0 and 1. A third
colleague believes that θ = 0.5: that is, the butter does not bias
the toast at all.

You would like to assess the evidence for each of these
hypotheses when your research assistant sends you the data.
Because evidence is directly proportional to degree to which the

13 Murphy’s law might be understood to imply that the toast will always land
butter-side down. We could instead refer to this hypothesis as the ‘‘weak Murphy’s
law’’: anything that can go wrong will tend to go wrong.
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Fig. 2. A: Likelihood function of θ given the observed data. Horizontal line shows the average, or marginal, likelihood. B: The transformation of the prior into the posterior
through weighting by the likelihood. C: The prior and posterior. The shaded region in A and B shows the values of θ for which the evidence is positive.
observed outcomes were predicted, we need to posit predictions
for each of the hypotheses. The predictions for θ = 0.5 are the
exactly those ofM0, shown in Fig. 1(B), while the predictions of the
unconstrainedmodel are the same as those ofM1. For θ < 0.5 and
θ > 0.5, we must define plausible prior distributions over these
ranges. For simplicity of demonstration,we assume that these prior
distributions arise from restriction of the π(θ) in Fig. 1(A) to the
corresponding range (they each represent half of π(θ)). We now
have threemodels:M0, inwhich θ = 0.5;M+, the ‘‘Murphy’s law’’
hypothesis inwhich θ > 0.5; andM−, the hypothesis inwhich our
test of Murphy’s law fails because θ < 0.5.

Having defined each of the models in such a way that they
have predictions for the outcomes, we can now outline how the
evidence for each can be assessed. For any twomodels Ma and Mb
we can define prior odds as the ratio of prior probabilities:

π(Ma)

π(Mb)
.

The prior odds are the degree to which one’s beliefs favor the
numerator model over the denominator model. If our beliefs are
equivocal, the odds are 1; to the degree that the odds diverge
from 1, the odds favor one model or the other. We can also define
posterior odds; these are the degree to which beliefs will favor the
numerator model over the denominator model after observing the
data:

πy(Ma)

πy(Mb)
.

If we are interested in the evidence, thenwewant to knowhow the
prior odds must be changed by the data to become the posterior
odds. We call this ratio B, and an application of Bayes’ rule yields

B(Ma, Mb, y) =
πy(Ma)

πy(Mb)


π(Ma)

π(Mb)
=

p(y | Ma)

p(y | Mb)
. (2)
Here, B – the relative evidence yielded by the data for Ma against
Mb – is called the Bayes factor. Importantly, Eq. (2) has the
same form as Eq. (1), which showed how a posterior distribution
is formed from the combination of a prior distribution and the
evidence. The ratio Ev in Eq. (1) was formed from the rival
predictions of a specific value of θ against a generalmodel inwhich
all possible values of θ wereweighted by a prior. Eq. (2) generalizes
this to any two models which predict data.

We can now consider the evidence for each of our four models,
M0, M1, M−, and M+. In fact, we have already computed the
evidence for M0 against M1. The Bayes factor in this case is
precisely the factor by which the density of θ = 0.5 increased
against M1 in the previous section: 1.145. This is not an accident,
of course; a posterior distribution is simply a prior distribution
that has been transformed through comparison against the
‘‘background’’ model M1.14 This correspondence is not surprising:
Bayes’ theorem provides a general account of belief change. These
changes in belief (in this case, odds)must be the same regardless of
whether we consider a particular value of θ as part of an ensemble
of possible values (as in parameter estimation) or by itself (as in
hypothesis testing). If the Bayesian account of evidence is to be
consistent, the evidence for M0 must be the same whether we are
considering it as part of a posterior distribution or not.

Fig. 3(A) shows the marginal predictions of three models, M0,
M−, and M+. The predictions for M0 are the same as they were
previously. ForM− andM+, we average the probability of the data
over the

p(y | M+) =

 1

0.5
p(y | θ)π(θ | θ > 0.5) dθ

14 In simple cases this is referred to as the Savage–Dickey representation of
the Bayes factor. For example, see Dickey and Lientz (1970) and Wagenmakers,
Lodewyckx, Kuriyal, and Grasman (2010).



R.D. Morey et al. / Journal of Mathematical Psychology 72 (2016) 6–18 13
A

B

Fig. 3. A: Probabilities of various outcomes under three hypotheses (see text). B: Same as A but showing only a subset of outcomes. From left to right inside the rectangle,
the bars are p(y | θ > 0.5), p(y | θ = 0.5), and p(y | θ < 0.5).
and likewise for M−. As shown in Fig. 3(A), these marginal predic-
tions are substantially more spread out than those of M0 because
they are formed from ranges of possible θ values. To assess the ev-
idence provided by y = 30 we need only restrict our attention to
the probability that each model assigned to the outcome that was
observed. These probabilities are shown in Fig. 3(B).

The Bayes factor of M+ to M0 is

B(M+, M0, y) =
p(y = 30 | M+)

p(y = 30 | M0)
=

0.066
0.042

= 1.585.

The evidence favors M+ by a factor of 1.585 because y = 30 is
1.585 times as probable as M+ than under M0. Visually, this can
be seen in Fig. 1(B) by the fact that the height of the bar for M+

is 58% higher than the one for M0. This Bayes factor means that to
adjust for the evidence in y = 30, we would have to multiply our
prior odds – whatever they are – by a factor of 1.585.

The Bayes factor favoring M+ to M− is much larger:

B(M+, M−, y) =
p(y = 30 | M+)

p(y = 30 | M−)
=

0.066
0.007

= 9.82,

indicating that the evidence favoring the ‘‘Murphy’s law’’ hypoth-
esis θ > 0.5 over its complement θ < 0.5 is much stronger than
that favoring the ‘‘Murphy’s law’’ hypothesis over the ‘‘unbiased
toast’’ hypothesis θ = 0.5.

Conceptually, the Bayes factor is simple: it is the ratio of the
probabilities – or densities if the data are continuous – of the ob-
served data under two models. It makes use of the same evidence
that is used by Bayesian parameter estimation; in fact, Bayesian
parameter estimation can be seen as a special case of Bayesian hy-
pothesis testing,wheremany point alternatives are each compared
to an assumed fullmodel. Comparison of Eqs. (1) and (2)makes this
clear. We also prefer this interpretation of parameter estimation
because it makes clear that the ‘‘background’’ full model is always
a part of the evaluation.

Having defined the Bayes factor and its role in Bayesian
statistics, we now move to an example that is closer to what
one might encounter in research. We use this example to show
how context dependence arises in the use of the Bayes factor in
practice.

3. Examples

In this section, we illustrate how researchersmay profitably use
Bayes factors to assess the evidence for models from data using
a realistic example. Consider the question of whether working
memory abilities are the same, on average, for men and women;
that is that working memory is invariant to gender (e.g., Shibley
Hyde, 2005). Although this research hypothesis can be stated
in a straightforward manner, by itself this statement has no
implications for the data. In order to test the hypothesis, we must
instantiate the hypothesis as a statistical model. To show how the
statistical evidence for various theoretical positions, in the form of
Bayes factors, may be compared, we first specify a general model
framework.We then instantiate competing theoretical positions as
constraints within the framework.

To specify the general model framework, let xi and yi, i =

1, . . . , I , be the scores for the ith woman and man, respectively.
The modeling framework is:

xi ∼ N(µ + σδ/2, σ 2) and yi ∼ N(µ − σδ/2, σ 2), (3)

where µ is a grand mean, δ is the standardized effect size (µx −

µy)/σ , and σ 2 is the error variance.
The focus in this framework is δ, the effect-size parameter. The

theoretical position that working memory ability is invariant to
gender can be instantiated within the framework by setting δ = 0,
shown in Fig. 4(A) as the arrow.We denote themodel asM0, where
the e is for equal abilities. With this setting, the Model M0 makes
predictions about the data, which are best seen by considering δ̂,
the observed effect size, δ̂ = (x̄− ȳ)/s, where x̄, ȳ, and s are sample
means and a pooled sample standard deviation, respectively. As
is well known, under the null hypothesis, the t statistic has a
Student’s T distribution:

t =
x̄ − ȳ

s


I/2 ∼ T (ν),
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Fig. 4. Models and predictions. (A) Competing models on true effect size (δ) used by Team A. (B) Corresponding predictions for observed effect size. The filled and open
points show the density values for observed effect sizes of δ̂ = 0.2 and δ̂ = 0.5, respectively. The ratio of these densities at an observed value is the Bayes factors, the
evidence for one model relative to another. (C)–(D) The models and corresponding predictions used by Team B, respectively.
where T is a t-distribution and ν = 2(I − 1) are the appropriate
degrees-of-freedom for this example. The predictions for the effect
size δ̂ thus follow a scaled Student’s t distribution15:

δ̂


I
2

∼ T (ν). (4)

Predictions for sample effect size for Model M0 for I = 40 are
shown in Fig. 4(B) as the solid line. As can be seen, under the
gender-invariant model of working memory performance, rela-
tively small sample effect sizes are predicted.

Thus far, we have only specified a single model. In order to
assess the evidence for M0, we must determine a model against
which to compare. Because we have specified a general model
framework, we can compare to alternative models in the same
framework that do not encode the equality constraint.We consider
the case of two teams of researchers, TeamA and TeamBwho, after
considerable thought, instantiate different alternatives.

Team A follows Jeffreys (1961) and Rouder, Speckman, Sun,
Morey, and Iverson (2009) who recommend using a Cauchy
distribution to represent uncertainty about δ:

Mc
1 : δ ∼ Cauchy(r),

15 Prior distributions must be placed on (µ, σ 2). These two parameters are
common across all models, and consequently the priors may be set quite broadly.
We use the Jeffreys priors, π(µ, σ 2) ∝ 1/σ 2 , and the predictions in (4) are derived
under this choice. We note, however, that the distribution of the t statistic depends
only on the effect size, δ, so by focusing on the t statistic we make the prior
assumptions for σ 2 and µ moot.
where the Cauchy has a scale parameter, r , which describes the
spread of effect sizes under the alternative.16The scale parameter r
must be set a priori and the team follows the recent advice ofMorey
and Rouder (Morey & Rouder, 2015) to set r =

√
2/2. With this

setting for the model on δ, denoted Mc
1, is shown in Fig. 4(A) as the

dashed line. As can be seen this model is a flexible alternative that
hasmass spread across small and large effects, but very large effect
sizes are substantially less likely than smaller ones. The symmetry
of the distribution encodes an a priori belief that it is as likely
that women outperform men as that men outperform women.
The corresponding prediction on sample effect size is shown in
Fig. 4(B) as the dashed line, and the model predicts a greater range
of observed effect sizes than Model M0.

Team B considers a different alternative formed by represent-
ing their uncertainty about the effect size with a symmetric, but
bimodal, distribution. This bimodal distribution is formed by join-
ing gamma distributions in a back-to-back configuration as shown
in Fig. 4(C) as the dashed line. Similar bimodal priors were rec-
ommended by Johnson and Rossell (2010) and Morey and Rouder
(2011). We denote this alternative as M

g
1 , and this alternative

makes a commitment that if there are effects, they are moderate

16 The scaled Cauchy distribution has density

f (δ) =
1

rπ

1 +


δ
r

2
for r > 0.
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in value.17Compared to Team A’s alternative, Team B’s alternative
has lessmass for very large and very smallmagnitudes of effect size
while retaining the symmetry constraint. A defense of such a prior
could be that where gender effects are observed, say in mental ro-
tation (see Matlin, 2003), they tend to be moderate in value. The
corresponding prediction on sample effect size is shown in Fig. 4(B)
as the dashed line.

It is critical to realize that neither Team A’s nor Team B’s
choice needs to be consideredmore ‘‘correct’’ in their specification.
Each team is interpreting the theoretical statement that men and
women have different working memory capacities on average in
good faith and their priors add value. In order to compute statistical
evidence, choices such as these must be made. Hence, variation
among priors is the reasonable and expected among analysts
and should be viewed as part of the everyday variation across
researchers and research labs, much as variations in experimental
methods across laboratories are viewed as reasonable and
expected. Aswith variations in experimental designs, so long as the
choices made are transparent the answers will be interpretable.

Suppose the experiment resulted in an observed effect size of
δ̂ = 0.2, indicating that women somewhat outperformedmen. For
Team A, the predicted densities of observing δ̂ of 0.2 are shown
as filled points in Fig. 4(B). The Bayes factor is the ratio of the
predicted densities underM0 andMc

1. Because the density is 3.041
times higher under M0 than under Mc

1, the evidence yielded by
δ̂ = 0.2 is a Bayes factor of 3.041. Team A can then state the
evidence for the equality of working-memory performance by this
same factor. Team B computes their Bayes factor analogously.
Because the density is 4.018 times higher under M0 than under
M

g
1 , the relative evidence yielded by δ̂ = 0.2 is a Bayes factor of

4.018. Team B states evidence for the equality of working-memory
performance by this factor. Although TeamA and Team B reach the
same conclusions, their evidence differs by a factor of 32%.

The open circles in Fig. 4(B) show the same two analyses for a
different hypothetical observed effect size, in this case δ̂ = 0.5.
The Bayes factors reached by Team A and Team B are about 2-to-1
and 3-to-1 in favor of a performance effect, and once again, these
values differ.

Although it may appear problematic that two teams assessed
the evidence in the same data differently, it is important to note
that the two teams asked slightly different statistical questions;
that is, the teams used different instantiations of the theoretically
relevant statement into statistical models. Team A compared the
null hypothesis δ = 0 to their unimodal Cauchy prior, and
Team B compared the null hypotheses to their bimodal prior. As
we have argued, however, this dependence on context is a natural
property of statistical evidence.Whereas the variation inmodeling
is expected and reasonable, so is the variation in evidence values.
Data cannot impact different researchers in the same way across
all contexts. We discuss this further in the next section.

4. Discussion

In this paper, we defined evidence in a straightforward way:
the evidence presented by data is given by the change in belief
that it affects. We formalized this definition and showed how
it can be put to use in statistics. A Bayesian notion of evidence

17 The density of the model on δ is

f (δ) =


g(δ, 3, 4)/2, δ ≥ 0,
g(−δ, 3, 4)/2, δ < 0,

where g(δ, ν, λ) is the density function of a gamma distribution with shape ν and
rate λ evaluated at the value δ.
arises when it is assumed that ‘‘beliefs’’ are represented by
probabilities, and that belief change is manifested by conditioning
the probability of various hypotheses on the data. These choices
can be questioned, of course. If one wants to quantify statistical
evidence in another manner, it would be necessary to flesh out
other models that tie together hypothesis, data, and evaluation
(e.g., fiducial statistics; Fisher, 1930).

Given the importance to scientists of quantifying statistical
evidence, why have researchers not moved from frequentist
techniques to other techniques more suited to their goals? There
are several reasons for this. First, researchers believe, falsely,
that currently popular methods serve their purposes (Gigerenzer,
Krauss, & Vitouch, 2004; Haller & Krauss, 2002; Hoekstra, Morey,
Rouder, & Wagenmakers, 2014; Oakes, 1986). Second, there are
several major critiques of Bayes factors that, thus far, have
kept them from widespread usage. Here we outline some major
critiques of Bayes factors that prevent them from being used as
measures of evidence by working scientists: that Bayes factors are
overly-sensitive to prior distributions, that prior distributions are
too difficult to choose, and that Bayes factors depend on the true
model being considered.

4.1. Sensitivity to prior distributions

A number of authors have critiqued the use of Bayes factors
for inference on the grounds that they are sensitive to the prior
distribution chosen to represent the hypothesis (e.g., Aitkin, 1991;
Grünwald, 2000; Liu & Aitkin, 2008; O’Hagan, 1995). In the
example in Section 3, this was apparent: Team A and Team B chose
different prior distributions over the effect size δ. Each team had
to decide what prior distribution best represented the alternative
that women and men do have the same working memory ability
on average. Although the two teams were nominally testing the
same hypothesis, the Bayes factors computed by the two teams
differed. This leads to the appearance that the Bayes factors are
overly-dependent on the priors, which in turn causes the evidence
to be arbitrary.

To some extent we defer this criticism to Bayesian statistics
in general. As our development of the Bayes factor in Section 2
should make clear, the Bayes factor is neither less nor more
dependent on the prior than any other Bayesian method. In fact,
the transformation from prior to posterior is a special case of a
Bayes factor analysis, where every point-restriction in a full model
is compared to the full model itself. Any general critique of Bayes
factors as a method is a critique of the foundations of Bayesian
analysis itself. To avoid already well-trod ground, we refer the
reader to other proponents of Bayesianism (Edwards, Lindman, &
Savage, 1963; Jeffreys, 1961). In our account of evidence,we simply
assume the Bayesian perspective.

It is important, however, to emphasize that the Bayes factor
is not sensitive to prior distributions in all cases; the use of
Bayes factors does not always require the specification of a prior
distribution. Inspection of Eq. (2) reveals that the Bayes factor
is solely a function of the probability of the data under the two
hypotheses in question. Whenever the hypotheses are composite,
these probabilities will be obtained through marginalizing over
priors. But this is not the only way of obtaining predictions. It may
so happen that the hypothesis, or model, under consideration does
not involve any further parameters, and hence does not require any
priors over the parameters (e.g., Jefferys & Berger, 1991).18

18 It may be thought that all modeling is accompanied by some degree of freedom
but this need not be. A good example is given by statistical predictions about
measurements of radioactive decay and subatomic particle spin. Predictions for
these quantities can be derived from quantum mechanics, and they have unique
distributions under the theory.
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Even if the Bayes factors depend on the choice of a prior, a case
can be made that this is as it should be. We obtain the marginal
likelihoods of a model by taking an average of the likelihoods of
the component hypotheses, weighted by the prior distribution.
The prior distribution thus ensures that the model has a definite
marginal likelihood, and thus establishes a bridge between the
hypothesis and the data. Importantly, the Bayes factor is not de-
pendent on the priors in any other way than through this marginal
likelihood. Moreover, it is sensitive to the priors only insofar as the
priors impact on the predictions of a model or a hypothesis. Ar-
guably, this sensitivity of the Bayes factor to the priors is precisely
what one would expect: the priors are included in the evaluation
insofar as they have empirical content (see also Vanpaemel, 2010).

For users of classical significance testing, the above idea can
at first be counter-intuitive. Consider a pair of standard classical
hypotheses assuming known σ :

z ∼ Normal(δ
√
N, 1) (5)

H0 : δ = 0 (6)
Ha : δ ≠ 0. (7)

No Bayes factor analysis is possible on this pair of hypotheses: one
can never determine the support of this particular instantiation of
Ha, because itmakes no predictions at all. In a classical significance
test, by contrast, there are two possible outcomes: either we retain
H0, or we reject it. One cannot make any positive claims about the
evidence in favor of H0, and so the test is asymmetric, allowing
only an argument for Ha. A classical account of the evidence, in
other words, is incomplete.

The use of Bayes factors requires that one instantiate hypothe-
ses in such a way that they have constrained predictions for the
data. One cannot test empty hypotheses such as ‘‘the population
mean is not 100’’, because the predictions of such hypotheses are
left indeterminate. But in order to arrive at a definite likelihood,
we need a prior probability. And we believe that this is as it should
be; any valid inference will hinge on the marginal data predic-
tions, and hence on the choice of a prior. Even stronger, we be-
lieve that this prior dependence signals an important property of
inference in general: evidence for or against a hypothesis should al-
ways be based on that hypothesis’ empirical content—in our case:
its predictions. However, because the choice of prior distributions
is sometimes critical, we are required to put careful thought into
this when we construct hypotheses.

4.2. Choosing prior distributions

As we said, the use of Bayes factors forces the analyst to specify
what the empirical content of a hypothesis is. But specifying the
empirical content of a hypothesis may require substantial work.
If used well, the Bayes factor rewards the analyst with an easily-
interpretable measure of statistical evidence. If used badly – that
is, without consideration of whether the instantiations of the
hypotheses are meaningful – the Bayes factor is useless. Careless,
automatic application of Bayes factors will lead to meaningless
evidence measures that compare hypotheses not of interest to
anyone. Solving the problem of careless, automatic application
of Bayes factors is not trivial. For some relatively simple classes
of models – e.g., linear models – it is possible to define flexible
families of alternative models to compare (Liang, Paulo, Molina,
Clyde, &Berger, 2008; Rouder,Morey, Speckman, & Province, 2012;
Zellner & Siow, 1980).

However, for testing complex, non-nested models, the chal-
lenge of placing priors over unknown parameters is a serious im-
pediment to the use of Bayes factors. There are several ways we
might meet the challenge. One seemingly attractive way to instan-
tiate the assumption that the values of the unknown parameters
are irrelevant is to assume a so-called ‘‘non-informative’’ (possibly
improper) prior over the parameter space. This sort of prior can
be specially chosen to reflect indifference across possible values
of the parameters (Berger & Bernardo, 1992; Bernardo, 1979; Jef-
freys, 1946, 1961, e.g.,). However, given the development above,
such a prior would be unwise. Bayes factors with improper priors
have many issues stemming from the fact that the priors are not
true probability distributions, and the marginal likelihood is not
uniquely defined (Atkinson, 1978; Bartlett, 1957; Jeffreys, 1961;
Spiegelhalter & Smith, 1982). Even relatively uninformative proper
priors are open to the critique that practically, these hypotheses are
unlike those that any researchermight consider, due to their heavy
weighting of large effect sizes (DeGroot, 1982).

Another approach to avoiding the arbitrariness of noninforma-
tive priors is to always specify ‘‘reasonable’’ priors. Lindley was
a strong advocate of this approach. In his critique of O’Hagan’s
(1995), he wrote: ‘‘It is better to think about [the parameter] and
what it means to the scientist. It is his prior that is needed, not the
statistician’s. No one who does this has an improper distribution’’.
Although this approach is attractive in principle, in practice it can
be daunting for a scientist to think of prior distributions. Some pa-
rameters can be difficult to interpret, andwhen there are hundreds
or thousands of parameters in a statistical model, a scientist may
not be able to generate meaningful priors (c.f. Berger, 2006; Gold-
stein, 2006, and discussion) in practice.

Another possible solution is to build a ‘‘default’’ prior for the
parameters using the data itself. Because improper priors can yield
proper posteriors given a minimal sample size, one could use a
small part of the sample to compute the priors needed for the
marginal likelihood to be defined for each model, then compute
the Bayes factor as the ratio of the marginal likelihoods for the
remaining data, given the priors built from the training data.
Variations on this basic approach, called ‘‘partial Bayes factors’’,
have been suggested by multiple authors, including Aitkin (1991);
Atkinson (1978); Berger and Pericchi (1996, 1998); Spiegelhalter
and Smith (1982). O’Hagan (1995) has suggested using a fraction
of the likelihood itself as a prior. These approaches all attempt to
circumvent, in some way, the problem of generating a reasonable
prior for model comparison. They can all be critiqued on the basis
that the hypothesis to be tested was derived from the data itself,
and so interpreting the results of the hypothesis test may be
difficult.

Discussion of the details of each of these statistics is outside
the scope of this paper. However, we agree with the principle put
forward by Berger and Pericchi (1996): ‘‘Methods that correspond
to use of plausible default (proper) priors are preferable to
those that do not correspond to any possible actual Bayesian
analysis’’. Not all of the above defaultmethods correspond to actual
Bayesian analyses (see Berger & Pericchi, 1998, for discussion). The
methods that correspond to a plausible default priors will have
an interpretation in terms of statistical evidence for some pair
of hypotheses; methods that do not correspond to any possible
Bayesian analysis will not. Of course, even if a default method
corresponds to a possible actual Bayesian analysis, onemust always
ask whether the comparison offered by a default method is
interesting.

4.3. Selection versus comparison, truth versus representation

Bayes factors are often described as a model selection method;
that is, one may compute the Bayes factors across a number of
models, and select the model that has the highest Bayes factor
as the ‘‘best’’ model. We have deliberately avoided discussion of
model selection. In our minds, the most useful feature of the Bayes
factor is its interpretation as a measure of evidence. Our view is
that the concept of evidence is of paramount value. How one uses
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the evidence is a separate issue from the weighing of the evidence
itself (see Fisher, 1955, for a similar point).

The distinction between model comparison and model selec-
tion is critically important. Selecting amodel on the basis of a Bayes
factor implies that one believes that themodel is ‘‘good enough’’ in
some way. However, as Gelman and Rubin (1995) point out, this
cannot be argued on the basis of the Bayes factor alone. A model
with the highest Bayes factor in a set of models may nonetheless
fit badly. A model having the highest Bayes factor means nothing
more than that the model had the highest amount of evidence in
favor of it out of the models currently under consideration. How-
ever, a newmodel that could be considered may perform substan-
tially better. We have stressed here and elsewhere that a model
comparison perspective – as opposed to amodel selection perspec-
tive – respects the fact that the evidence is always relative (Morey,
Romeijn, & Rouder, 2013). This will not be so surprising to scien-
tists, who are used to the tentative nature of scientific conclusions.

Finally, it has been argued that the use of Bayes factors requires
an implicit belief that one of the models under consideration is
true (Gelman & Shalizi, 2013; Sanborn & Hills, 2014; Yu, Sprenger,
Thomas, & Dougherty, 2014). Some statistical properties of Bayes
factors – for instance, their convergence to the true model under
regularity conditions – do depend on the ‘‘true’’ model being in the
set of considered models (Schervish, 1995). We believe, however,
that in scientific practice the notion of true or false models is
misguided. Statistical models are impoverished representations
that attempt to capture an important aspect of a phenomenon.
Although they may be used to generate propositions that can be
true or false, by themselves they are not true or false. Or at least,
put more carefully, their truth conditions are far from clear.

Thismay appear to threaten the entire enterprise of quantifying
statistical evidence. After all, if models are not necessarily true
or false, what does it mean to accumulate evidence for a model?
We suggest that just as statistical models are proxies for real-
world phenomena, statistical evidence is a proxy for real-world
evidence. The applicability of the computed statistical evidence
to the scientific question at hand will depend on a number of
factors, including the degree to which the models compared
correspond to the scientific question at hand (Morey et al., 2013).
The rarefied property of statistics applies as much to statistical
evidence as it does to other aspects of statistics. For instance, often
statistical inferences are described as being about populations.
However, the idea of a population is abstract, and a single, unique
population – in the statistical sense – may not meaningfully exist.
This, of course, does not prevent the population from being a
useful concept; likewise, that a model may not be true does not
mean that statistical evidence for the model is not interesting.
Careful consideration is required to know whether a statement of
statistical evidence is useful in understanding the phenomenon of
interest to the researcher.
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