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Abstract 
 
 
Cytosine methylation is a chemical modification which involves the addition of a 
methyl group to a cytosine base. Cytosine methylation plays an important role in the 
regulation of genes and the silencing of transposable elements (TEs) and other 
repeat sequences. Previous studies have shown that in plants cytosine methylation 
patterns can be transmitted across cell divisions and even across generations in some 
instances and contribute to phenotypic variation. DNA methylation is therefore an 
important epigenetic mark because it contributes to heritable variation in 
phenotypes that may be of agricultural or evolutionary interest. 

With the advent of next generation technologies (e.g. MeDIP-chip; 
methylated DNA immunoprecipitation followed by hybridization to a tiling array, 
WGBS-seq; whole-genome bisulfite sequencing) it has become possible to map DNA 
methylation genome-wide up to a resolution of one base pair. With these new 
technologies it is now possible to assess the extent to which genome-wide DNA 
methylation differences can be stably inherited across generations and contribute to 
phenotypic diversity. However, addressing this question using natural populations is 
challenging because in natural populations one is confronted with a substantial 
amount of DNA sequence variation as well. It is difficult to disentangle these two 
components (sequence variation and variation in DNA methylation) and quantify the 
contributions of both to phenotypic diversity. 

In order to minimize sequence differences, we constructed in Arabidopsis 
thaliana a population of so-called epigenetic recombinant inbred lines (epiRILs; N > 
500) that were derived from a cross between two parental lines that were near 
isogenic but have highly divergent methylation patterns (methylomes). One wild-
type Col-0 parental line and one mutant Col-0 parental line. The mutant line has lost 
approximately 70% of its DNA methylation due to a mutation in DDM1, which is a 
gene that is involved in chromatin remodeling. 

With the use of the MeDIP-chip technology we reconstructed the 
methylomes of a subset of the epiRILs (N = 123) and the two parental lines. 
Differentially methylated regions (DMRs) were subsequently detected between the 
two parental lines and with the use of stably inherited DMRs (Mendelian 
segregation; N = 126) we were able to construct a recombination map for this 
population. Afterwards we used interval mapping for the detection of epigenetic 
quantitative trait loci (QTLepi) for two different traits in this population; flowering 
time and primary root length. Interestingly, the QTLepi explained a high proportion of 
the broad-sense heritability (~60 - 90 %) of both traits. 
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Besides studying the contribution of DNA methylation to phenotypic diversity, the 
epiRILs also provide a good framework to study phenomena that seem to have an 
epigenetic basis like heterosis. Heterosis describes an F1 phenotype that is superior 
to its parental varieties (e.g. F1 has more yield). By crossing a subset of the epiRILs 
(N = 19) with wild-type Col-0 we constructed epigenetic F1 hybrids (epiHybrids) 
which allowed us to study the contribution of epigenetics to heterosis. Several strong 
heterotic phenotypes were observed among the epiHybrids. Interestingly, heterosis 
detected for flowering time, leaf area and height could be associated with several 
heritable parental DMRs. All together our results indicate that epigenetic divergence 
can also be sufficient to cause heterosis. 

Finally, besides induced changes in DNA methylation, stochastic changes in 
DNA methylation can also be a source of heritable epigenetic and phenotypic 
diversity in plants. In order to study the dynamics of these stochastic changes we 
derived robust estimates of the rate at which methylation is spontaneously gained 
(forward epimutation) or lost (backward epimutation). For this purpose, we used 
WGBS-seq data from multiple independent Arabidopsis thaliana mutation 
accumulation (MA) lines, which are inbred lines that were propagated for at least 32 
generations. The divergence in methylation among these MA lines was compared 
with those of a large number of Arabidopsis thaliana natural accessions, which have 
diverged from one another for thousands of generations. Our results show that that 
the dynamic interplay between forward and backward epimutations is modulated by 
genomic context and show that subtle contextual differences have profoundly 
shaped patterns of methylation diversity in Arabidopsis thaliana natural populations 
over evolutionary timescales. Besides, theoretical models indicate that the derived 
epimutation rates are high enough to rapidly uncouple genetic from epigenetic 
variation, but low enough for new epialleles to sustain long-term selection 
responses. Altogether these results shed new light on the molecular mechanisms 
that drive the coevolution of genomes and epigenomes. 
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Outline of the thesis 
 
 
In Chapter 1 an application of the methyl DNA immunoprecipitation (MeDIP)-chip 
method is described that can be used for the reconstruction of DNA methylomes in 
Arabidopsis thaliana. The chapter presented here describes in detail the MeDIP-chip 
protocol (wet lab) as well as the subsequent analysis of the hybridization data with 
the use of a Hidden Markov Model (HMM; bioinformatics). The data analysis steps 
are separated into four parts involving the preparation of the data, quality 
assessment and control, implementation of a HMM for the reconstruction of the 
methylomes and the graphical and biological assessment of the HMM results. Each 
data analysis step is described and illustrated with the use of an example data set 
(wild-type Col-0 Arabidopsis plant). Several recommendations are made regarding 
the implementation of the MeDIP-chip protocol and the analysis of the data. The 
methylomes of the epigenetic recombinant inbred lines (epiRILs) and parental lines 
were reconstructed with the approach described in this chapter. 
 
In Chapter 2 the MeDIP-chip data of two epiRILs are evaluated in the context of 
whole-genome bisulfite sequencing (WGBS-seq) data. The chapter presented here 
demonstrates and illustrates that when a large number of methylomes need to be 
reconstructed (e.g. epiRIL study) and high resolution measurements are not needed, 
the lower resolution and easier implementable (and currently also cheaper) array-
based MeDIP-chip technology might be favorable over the single base pair resolution 
WGBS-seq technology. Three different implementations of the MeDIP-chip 
technology (differential labeling and dye-swap) were benchmarked against WGBS-
seq and compared among each other. Results showed that MeDIP-chip performed 
reasonable well when appropriate data preparations steps were taken and the 
appropriate analysis tools were applied. Based on the results, several 
recommendations are made regarding the implementation of the MeDIP-chip 
technology for the analysis of DNA methylation in Arabidopsis. 
 
In Chapter 3 the combined effect of removing sequence variation and DNA 
methylation on the meiotic recombination landscape of an Arabidopsis mapping 
population is tested. With the use of the reconstructed methylomes (Chapter 1) 
several differentially methylated regions (DMRs) could be detected between the 
parental lines (wild-type and ddm1-2 mutant parent). A recombination map was 
constructed with the use of an informative subset of these DMRs that segregated in 
a Mendelian fashion in the epiRIL population (stable DMRs). Estimated genetic 
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lengths of each chromosome indicated that the recombination rates are, on a global 
scale, comparable with those of classical Arabidopsis crosses. However on the local 
scale we demonstrate that the recombination rate is decreased at the boundaries of 
pericentromeric regions and increased in chromosomal arms. Despite the fact that 
recombination barriers have been forced to a minimum, it becomes clear that the 
differences in recombination are not strong enough to place the epiRILs outside of 
the natural range. 
  
In Chapter 4 the recombination map described in Chapter 3 is used in combination 
with classical linkage analysis to search for epigenetic quantitative trait loci (QTLepi) 
underlying complex traits in the epiRIL population. Using interval mapping highly 
significant QTL were detected for flowering time and primary root length. The results 
could be confirmed with data from replicate phenotyping experiments. The 
combined additive effects of the QTLs of both traits explained a substantial 
proportion of the broad-sense heritability. Furthermore analysis of more than 
hundred natural accessions showed that a high proportion of the experimentally 
induced DMRs were also variable in nature. This observation indicates that these 
DMRs could also function as QTLepi in nature and thus constitute a measurable 
component of the so-called “missing heritability”. 
 
In Chapter 5 we explore whether epigenetic divergence is sufficient to trigger 
heterosis in Arabidopsis thaliana. To do so we created epigenetic F1 hybrids 
(epiHybrids) by crossing Col-0 wild-type as a maternal parent to 19 near-isogenic 
ddm1-2-derived epigenetic recombinant inbred lines as paternal parents (epiRILs; 
Chapter 3). We monitored several traits such as leaf area, flowering time, final plant 
height, rosette branching, main stem branching and growth rate, and observed that 
the majority of the epiHybrids exhibited heterotic phenotypes for at least one of 
these traits. Furthermore by treating mid-parent divergence (the divergence from 
the mid-parent value; mean phenotypic value of both parents) as a phenotype we 
were able to detect significant QTL for leaf area, flowering time and plant height. The 
variation in mid-parent divergence could not be explained by the presence of TE-
associated structural variants which indicates the QTL most likely have an epigenetic 
basis. Altogether these results indicate that epigenetic variation, like variation in 
DNA methylation, can contribute to heterosis independently from DNA sequence 
variation. Our findings might therefore have implications for future crop breeding. 
 
In Chapter 6 robust estimates are derived for the rate at which methylation of 
individual CG cytosines is stochastically gained (forward epimutation) or lost 
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(backward epimutation) in the model plant Arabidopsis thaliana. CG methylation 
divergence was calculated as the proportion of differentially methylated CG 
cytosines between individuals of independent mutation accumulation (MA) lines. A 
model was developed to quantify the CG methylation divergence as a function of the 
divergence time between the individuals and the forward and backward epimutation 
rates. By analyzing different annotations (e.g. genes, transposable elements, etc.) we 
demonstrate that the dynamic interplay between forward and backward 
epimutations is context specific and that this specificity has shaped the patterns of 
methylation divergence in Arabidopsis. Furthermore, theoretical models indicate 
that the epimutations rates are high enough to uncouple genetic variation from 
epigenetic variation but that the rates are low enough, for new epialleles to sustain 
long term selection responses.  
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Abstract 
 
DNA methylation is an epigenetic mark that is essential for preserving genome 
integrity and normal development in plants and mammals. Although this 
modification may serve a variety of purposes, it is best known for its role in stable 
transcriptional silencing of transposable elements and epigenetic regulation of some 
genes. In addition, it is increasingly recognized that alterations in DNA methylation 
patterns can sometimes be inherited across multiple generations and thus are a 
source of heritable phenotypic variation that is independent of any DNA sequence 
changes. With the advent of genomics, it is now possible to analyze DNA methylation 
genome-wide with high precision, which is a prerequisite for understanding fully the 
various functions and phenotypic impact of this modification. Indeed, several so-
called epigenomic mapping methods have been developed for the analysis of DNA 
methylation. Among these, immunoprecipitation of methylated DNA followed by 
hybridization to genome tiling arrays (MeDIP-chip) arguably offers a reasonable 
compromise between cost, ease of implementation and sensitivity to date. Here we 
describe the application of this method, from DNA extraction to data analysis, to the 
study of DNA methylation genome-wide in Arabidopsis. 
 

1.1 Introduction 
 
In eukaryotes, DNA methylation almost exclusively affects cytosines (5-
methylcytosines). Once established, this modification can be maintained over 
numerous cell divisions and even across generations in some instances. However, it 
remains unclear to what extent differences in DNA methylation can be stably 
inherited and this question is the subject of intense studies. This is especially true in 
Arabidopsis, where epigenetic recombinant inbred lines (epiRILs) have been derived 
from parents with few differences in DNA sequence but contrasted DNA methylation 
profiles [1, 2]. One such population of epiRILs has been epigenotyped [3] in order to 
assess the stability of parental DNA methylation differences and their impact on 
several complex traits. Here, we describe the methyl DNA immunoprecipitation 
(MeDIP)-chip protocol used to reconstruct the DNA methylome maps, starting from 
the extraction of DNA to analysis of the hybridization data using Hidden Markov 
Models (HMM; see flow chart in Fig. 1). Subheading 1.2 lists the materials needed 
for the “wet” part as well as the software and data used for analysis. Subheading 1.3 
describes step by step the MeDIP-chip experiment (Subheadings 1.3.1 and 1.3.2) and 
the analysis of hybridization data, starting from data preparation (Subheading 1.3.3), 
then quality assessment and control (Subheading 1.3.4), implementation of a HMM 
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for reconstructing DNA methylome maps (Subheading 1.3.5) and graphical and 
biological assessment of HMM results (Subheading 1.3.6). 
 

 
 

Figure 1. Flowchart for the reconstruction of methylome maps (Subheading 1.3). 
 
 
 

1.2 Materials 
 

1.2.1 DNA extraction and methyl DNA immunoprecipitation 
 

1. DNA extraction with DNeasy plant Maxi kit (Qiagen, Catalogue N° 68163). 
2. 1.5 mL Siliconized tubes: Clear-view™ Snap-Cap microtubes, siliconized 

(Sigma, Catalogue N° T4816-250EA). 
3. Sonicator: Bioruptor (Diagenode, Catalogue N° UCD-200). 
4. Buffer 1: 13.3 mM Tris HCl pH 7.5, 667 mM NaCl, 1.3 mM EDTA. 
5. Monoclonal antibody against 5mC (Diagenode, Catalogue N° MAb-006-500). 
6. Rotating wheel. 
7. Magnetic beads: M280 Dynabeads (Invitrogen, Catalogue N° 112-01D). 
8. Buffer 2: 10 mM Tris HCl pH 7.5, 500 mM NaCl, 1 mM EDTA. 
9. Buffer 3: 30 mM Tris HCl pH 8.0. 
10. Proteinase K: 20 μg/μL (NEB, Catalogue N° P8102S). 
11. Phenol/chloroform/IAA (25:24:1, pH 8.0) and Chloroform/IAA: (24:1). 

MeDIP-chip data

Implementation of a HMM for 
reconstructing the DNA methylome

Methylome maps

1.3.5

1.3.6

Wet lab Bioinformatics

DNA extraction and MeDIP           
(Methyl DNA Immunoprecipitation)

Plant material

DNA amplification, labeling and 
hybridization on tiling array

MeDIP-chip data

Scanning of tiling array

1.3.1

1.3.2

Data preparation                       
Quality assessment and control

Graphical and biological assessment      
of HMM results

Probe annotation
data

1.3.3         
1.3.4
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12. Glycogen azure: 20 μg/μL, resuspended in water (Sigma,  
Catalogue N° G5510-1G). 

13. NaOAc: 3 M pH 5.2. 
14. MinElute Reaction Cleanup Kit (Qiagen, Catalogue N° 28204). 
15. PicoGreen: Quant-it PicoGreen dsDNA reagent (Invitrogen,  

Catalogue N° P7581) diluted to 0.5 % in TE pH 8.0. 
 

1.2.2 DNA amplification, labeling and hybridization on tiling array 
 

1. WGA2 kit (Sigma, Catalogue N° WGA2-50RXN).  
2. QIAquick PCR Purification Kit (Qiagen, Catalogue N° 28104). 
3. Dual Color DNA labeling kit (NimbleGen, Catalogue N° 06370250001). 
4. Hybridization and wash buffer kits (NimbleGen,  

Catalogue N° 05583683001 and 05584507001). 
5. Scanner: High-Resolution (2 μm) Microarray Scanner (Agilent, 

Catalogue N° G2565CA). 
6. NimbleScan software (NimbleGen). 
 
1.2.3 Software requirements 

 
This protocol requires R for the analysis of the MeDIP-chip data. R is a command line-
based software environment for statistical computing and graphics. It can be freely 
downloaded at http://www.r-project.org and installed on all three main operating 
systems (Windows, Unix/Linux and Mac). Instructions about installation and tutorials 
can be obtained from the same website. R is extensively used among biostaticians 
due to the availability of statistical packages for the analysis of a broad spectrum of 
biological data. In addition to R, we also recommend downloading a text editor with 
syntax highlighting (e.g. Notepad++). Programming mistakes are more easily 
detected when using a text editor. All the code lines and functions are highlighted 
throughout the chapter in courier font. The HMM is implemented in C++. An 
electronic version of the R code presented in this chapter and the HMM software are 
freely available at the following URL: http://www.johanneslab.org/publications. This 
chapter does not show the code for generating the figures. This code can, however, 
be downloaded from the same URL. 
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1.2.4 Dataset 
 
The protocol was implemented for the efficient and cost-effective genome-wide 
study of DNA methylation of a large number of Arabidopsis lines. The dataset used 
to illustrate this protocol can be downloaded from the above URL and consists of six 
files that contain the measured signal intensities (IP and INPUT) for one wild-type 
line (Columbia accession, Col-0), probe annotation, conservation scores for probes 
and an example of an array with a hybridization artefact. 
 

1.2.4.1 Methylation data 
 
The methylation data should be tab-delimited and have the format shown in Table 
1. The first column of the file should contain the probe identifier and the remaining 
column (or columns when replicates are available) should contain the measured 
probe intensities. The IP and INPUT files should have the same tab-delimited format. 
 
Table 1. Format methylation data. 

 
 

1.2.4.2 Hybridization artefact data 
 
For illustrative purposes we also show an example of a hybridization artefact (Fig. 
2a). This file should also be tab-delimited and have the format shown in Table 2. The 
first column should again contain the probe identifier, the second and third column 
should contain the location of the probe on the array (x and y position on the array) 
and the fourth column (PM) should contain the measured probe intensity (IP or 
INPUT signal). 
  

PROBE_ID REP1_INPUT_RED REP2_INPUT_RED REP3_INPUT_RED

CHR01FS000000061 778.53 2534.67 1033.31
CHR01FS000000212 2366.51 2756.02 1333.69
CHR01FS000000382 4028.27 7776.75 3201.88
CHR01FS000000507 13685.61 15014.29 8556.37
CHR01FS000000707 1565.45 2626.51 1187.04
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Table 2. Format hybridization artefact data. 

 
 

1.2.4.3 Conservation score data 
 
The conservation score of a probe indicates the uniqueness of the probe sequence 
(not all probe sequences are unique). This score was obtained by performing a BLAST 
search. Scores are percentage of identity with the second best hit (the first hit is the 
location in the genome for which the probe was designed). Probes can be visualized 
at http://epigara.biologie.ens.fr/index.html. The conservation score data should 
have the tab-delimited format shown in Table 3. 
 
Table 3. Format conservation score data. 

  
 

1.2.4.4 Annotation data 
 
The annotation files contain the probe identifiers of probes that are located within 
introns of protein coding genes or transposons. The annotation data should only 
contain one column with probe identifiers as shown in Table 4.  

PROBE_ID X Y PM

CHR01FS000000061 327 1335 3219.96
CHR01FS000000212 191 1257 4840.31
CHR01FS000000382 826 34 8668.02
CHR01FS000000507 731 529 19781.76
CHR01FS000000707 624 562 1195.29

PROBE_ID SCORE

CHR01FS000000061 73
CHR01FS000000212 56
CHR01FS000000382 64
CHR01FS000000507 62
CHR01FS000000707 74
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Table 4. Format annotation data. 

 
 

1.3 Methods 
 

1.3.1 DNA extraction and MeDIP 
 

1. Extract DNA from plant material (1–2 g fresh weight, we use aerial parts of 
three-week-old plants grown under long day conditions) with Qiagen 
DNeasy plant Maxi kit. 1.8 μg of DNA is needed for this protocol (includes 
sonication test and INPUT and IP fractions). 

2. Quantify DNA and place 1.8 μg in a final volume of 180 μL (complete with 
water if necessary) in 1.5 mL siliconized Eppendorf tubes. Set aside 2 μL 
(corresponding to 20 ng of DNA) for sonication control. Sonicate the 
remaining 178 μL using seven cycles of 30 s ON/30 s OFF. Note that all six 
positions within the sonicator need to be filled with an equal volume of 
water (178 μL) put in each tube. Place all six tubes in an ice bucket and add 
ice to the sonicator bath to cool it off. Repeat sonication once (14 cycles in 
total). Keep 13 μL to test sonication (sonicated fraction). 

3. Run non-sonicated (2 μL) and sonicated (13 μL) samples side by side in 1.5 % 
1 × TAE gel. A smear should be visible between 100 and 600 bp (with 
maximum intensity around 300 bp) after sonication. 

4. Keep 15 μL to serve as INPUT (150 ng). Use the remaining 150 μL of sonicated 
DNA (1.5 μg) for IP. 

5. Add 450 μL of buffer 1 to IP fraction (total volume of 600 μL). Incubate 10 
min at 95 °C to denature DNA (this is critical as the antibody only recognizes 
5mC on single-stranded DNA!) and let sit on ice for 2 min. Add 5 μL of 1 μg/μL 
anti-5mC antibody to denatured IP fraction. Close tubes, wrap with parafilm 

PROBE_ID

CHR01FS000004351
CHR01FS000005311
CHR01FS000007129
CHR01FS000007479
CHR01FS000007814
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(siliconized tubes tend to leak) and incubate overnight at 4 °C with gentle 
agitation (we use a rotating wheel, with a 45° inclination, 8 rpm).  

6. Use 40 μL of magnetic beads per MeDIP. Prepare a tube with the total 
amount of beads required for the number of MeDIP performed. Wash the 
beads three times with 1 mL of buffer 2 (see Note 1) and resuspend one last 
time with buffer 2 in the starting volume. Put 40 μL of washed beads (make 
sure that they are well resuspended by pipetting up and down the slurry 
several times) into each MeDIP tube. Put on rotating wheel for 4 h at 4 °C 
with gentle agitation (45° inclination, 8 rpm). 

7. Put IP samples on the Dynabeads rack (magnetic rack). Collect supernatant 
in a new 2 mL Eppendorf tube (supernatant fraction). Add 300 μL of buffer 2 
to IP tube. Agitate briefly by hand and place for 10 min at room temperature 
on the rotating wheel with gentle agitation (45° inclination, 8 rpm). Put back 
on the Dynabeads rack and add first wash to supernatant fraction. Perform 
three more washes, each time with 600 μL of buffer 2. Discard washes. 

8. Add 300 μL of buffer 3 to the IP pellet after last wash and transfer IP and 
supernatant fractions to 1.5 mL and 2 mL tubes, respectively (see Note 2). 
Add 7 μL of Proteinase K to elute. Incubate 1 h at 42 °C, with occasional 
shaking. 

9. Add one volume of phenol/chloroform/IAA to the IP and supernatant 
fractions (300 and 900 μL, respectively). Vortex and centrifuge 5 min at 
14,000 × g at room temperature. Place aqueous phase (top phase) in a new 
tube. Add one volume of chloroform/IAA to aqueous phase. Vortex and 
centrifuge 5 min at 14,000 × g at room temperature. Place aqueous phase in 
a new tube. 

10. To precipitate DNA, add 1 μL of glycogen azure, 1:10 volume of NaOAc and 
one volume of isopropanol to the IP and supernatant fractions (30 and 90 μL 
for NaOAc and 300 and 900 μL for isopropanol in IP and supernatant fraction, 
respectively). Vortex between additions of each component. Keep at −20°C 
for at least 1 h or overnight. Centrifuge 30 min at room temperature at max 
speed (>13,000 × g). Discard supernatant and add 500 μL of ethanol 70 %. 
Mix and centrifuge for 20 min at room temperature at max speed (>13,000 
× g). Discard the supernatant and dry DNA pellets by leaving the tubes open 
on the bench for ~30 min. Resuspend all DNA pellets in 40 μL of TE pH 8.0 
and add 25 μL to INPUT fraction. 

11. Perform quantitative PCR on the three fractions (IP, supernatant and INPUT) 
with known positive and negative controls before proceeding with 
purification, labeling and hybridization to tiling array. Note that for wild-type 
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Arabidopsis (Columbia accession) approximately 10–20 % of the genome 
should be immunoprecipitated with the anti-5mC antibody for DNA 
extracted from aerial or root parts. 

12. DNA should be cleaned one last time using the MinElute kit (see Note 3). 
Expect 30 % loss of DNA. 

13. DNA concentration is checked with NanoDrop 3300. Add 2 μL of diluted 
PicoGreen at 0.5 % to 2 μL of DNA and quantify this mix using function 
“dsDNA PicoGreen® dye” in “Nucleic Acid Quantitation” (see Note 4). 

 
1.3.2 DNA amplification, labeling and hybridization on tiling array 

 
1. Use 10 ng of IP and 50 ng of INPUT fractions for amplification with the WGA2 

kit. Start from the “Library preparation” step of the protocol, as there is no 
need for the DNA fragmentation step. 

2. Purification of the amplification products is carried out using QIAquick PCR 
Purification Kit. Quantify and run in a 1.5 % agarose 1 × TAE gel. This should 
produce a smear corresponding to the sonication smear (between 100 and 
600 bp). Final yield fluctuates between 3 and 6 μg. 

3. DNA labeling is carried out using the Dual Color DNA labeling kit, using 1 μg 
of amplified IP and INPUT DNA. Resuspend labeled DNA in 20 μL of water 
and quantify it, together with Cy3 and Cy5 using the “microarray function” 
of the NanoDrop 2000. One should expect 10–20 μg of DNA after labeling 
and 200–400 pmol of incorporated dye. Repeat labeling if DNA yield or 
incorporation levels are less than 5 μg or 100 pmol, respectively (see Note 
5). 

4. Differential hybridization is carried out using a NimbleGen 3x720K tiling 
array design (three identical chambers, design available on request) and 
following the manufacturer’s instructions. Use 4 μg of each of the two 
labeled DNA samples (IP and INPUT) per chamber. Hybridization is in dye-
swap (IP in red and INPUT in green for the first chamber and vice versa for 
the second chamber). 

5. After washing, the NimbleGen 3x720K tiling array is scanned using a High-
Resolution (2 μm) Microarray Scanner (Agilent). It is preferable to scan each 
chamber independently. 

6. Grid alignment and pair files extraction are made using the NimbleScan 
software and following the manufacturer’s instructions. 
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1.3.3 Data preparation 
 
Following the “wet lab” part one is confronted with a substantial amount of data 
ready to be analyzed. Before we show how this can be achieved, we detail several 
data preparation steps. The following commands are used to import the data in the 
R workspace. The command setwd() sets the working directory, such that there is 
no need to define the complete pathname of your files. The command head() 
shows the first lines of the file. 
 
> setwd("D:\\reconstruction_methylome_maps") 
> input_wt <- read.table(file="input_wild_type.txt", 
+ header=TRUE,sep="\t") 
> ip_wt <- read.table(file="ip_wild_type.txt", 
+ header=TRUE,sep="\t") 
> 
> head(input_wt) 
          PROBE_ID REP1_INPUT_RED REP2_INPUT_RED REP3_INPUT_RED 
1 CHR01FS000000061         778.53        2534.67        1033.31 
2 CHR01FS000000212        2366.51        2756.02        1333.69 
3 CHR01FS000000382        4028.27        7776.75        3201.88 
4 CHR01FS000000507       13685.61       15014.29        8556.37 
5 CHR01FS000000707        1565.45        2626.51        1187.04 
6 CHR01FS000000827        5939.94        7285.02        3212.73 
  REP1_INPUT_GREEN REP2_INPUT_GREEN REP3_INPUT_GREEN 
1           408.61          2038.57           818.98 
2           712.76          2019.65           649.84 
3          1350.67          5406.18          2090.43 
4          2980.53          9570.41          5614.20 
5           611.33          2405.53           460.63 
6          1162.24          4555.31          2311.96 
 
The IP and INPUT data have the same format; hence, there is no need to show the 
first lines of both files. We convert the data to a logarithmic scale using the following 
commands: 
 
> log2_ip_wt              <- log2(ip_wt[,2:7]) 
> log2_ip_wt              <- data.frame(ip_wt[,1],log2_ip_wt) 
> names(log2_ip_wt)[1]    <- "PROBE_ID" 
> 
> log2_input_wt           <- log2(input_wt[,2:7]) 
> log2_input_wt           <- data.frame(input_wt[,1],log2_input_wt) 
> names(log2_input_wt)[1] <- "PROBE_ID" 
 
After log transformation the datasets will have the same format only the signal 
intensities will be log transformed. In order to determine enrichment for DNA 
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methylation one has to calculate the intensity ratio of the IP and INPUT signal (log2 
ratios). The following commands are used to calculate the intensity ratios. The dye-
swapped replicates have been treated separately in this case (i.e., IPgreen and INPUTred 
and vice versa). The IP and INPUT signals have also been averaged. 
 
> wt_ip_green    <- (log2_ip_wt[,5]+log2_ip_wt[,6]+log2_ip_wt[,7])/3 
> wt_input_red   <- (log2_input_wt[,2]+log2_input_wt[,3]+ 
+ log2_input_wt[,4])/3 
> wt_green_red   <- wt_ip_green-wt_input_red 
> wt_green_red   <- data.frame(log2_ip_wt[,1],wt_green_red) 
> names(wt_green_red) <- c("PROBE_ID","GREEN_RED") 
> 
> wt_ip_red      <- (log2_ip_wt[,2]+log2_ip_wt[,3]+log2_ip_wt[,4])/3 
> wt_input_green <- (log2_input_wt[,5]+log2_input_wt[,6]+ 
+ log2_input_wt[,7])/3 
> wt_red_green   <- wt_ip_red-wt_input_green 
> wt_red_green   <- data.frame(log2_ip_wt[,1],wt_red_green) 
> names(wt_red_green) <- c("PROBE_ID","RED_GREEN") 
 
After the calculation of the intensity ratios the dye-swap signals can be calculated 
using the following code: 
 
> wt_dye_swap <- (wt_green_red[,2]+wt_red_green[,2])/2 
> wt_dye_swap <- data.frame(wt_green_red[,1],wt_dye_swap) 
> names(wt_dye_swap) <- c("PROBE_ID","DYE_SWAP") 
 
The dye-swap should account for possible dye bias in experiments. The data is now 
ready for subsequent analysis steps. 
 

1.3.4 Quality assessment and control 
 
Prior to array data analysis, we conduct detailed quality checks of each tiling array 
experiment. This quality assessment is necessary to ensure biologically meaningful 
results later on. If the data contains systematic hybridization artefacts or technical 
variation beyond a certain acceptable level it is advisable to remove or to repeat the 
bad sample. We distinguish between two levels of quality assessment. The first level 
relates to the quality of the overall hybridization experiment and the second level to 
the quality of the individual probes. 
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1.3.4.1 Quality of the overall hybridization experiment 
 
We start by evaluating the distribution (or spreading) of the DNA fragments over the 
tiling array. This can be achieved by visual inspection of the array image within each 
separate channel (Fig. 2a). By design, the signals should be randomly distributed and 
show no systematic spatial patterns. Artefacts such as scratches and bright spots can 
be easily detected in this way. The following commands are used to import the data 
in the R workspace: 
 
> hybr_artefact <- read.table(file="hybridization_artefact.txt", 
+ header=TRUE,sep="\t") 
> head(hybr_artefact) 
          PROBE_ID   X    Y       PM 
1 CHR01FS000000061 327 1335  3219.96 
2 CHR01FS000000212 191 1257  4840.31 
3 CHR01FS000000382 826   34  8668.02 
4 CHR01FS000000507 731  529 19781.76 
5 CHR01FS000000707 624  562  1195.29 
6 CHR01FS000000827 927  485  7460.27 
 
Plotting the reconstructed array image involves log transformation of the measured 
signals (PM) and rescaling of the log transformed signal between 0 and 1 in order to 
convert the signal into RGB colors. The code for plotting the array image (Fig. 2a) can 
be found at the above URL (see end of Subheading 1.2.3). 

We also evaluate whether a sufficient amount of DNA was hybridized to the 
array. This can be done by plotting the density of the signal of each separate channel 
(Fig. 2b). The detection range of the signal has a lower and upper bound. In the case 
of insufficient DNA, there will be a rapid increase of probe signals in the lower 
detection range. Conversely, in the case of too much DNA the signal distribution will 
become saturated in the upper detection range. Both scenarios can seriously 
compromise the sensitivity of the technology to capture biologically meaningful 
variation. To illustrate this, we plot the density of the input signal of two different 
arrays (Fig. 2b) using the plotting code that is provided as a text file (see end of 
Subheading 1.2.3). 
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Figure 2. Quality of the overall hybridization experiment. (a) The arrow points to an 
unwanted spatial artefact on the tiling array. One could consider excluding the relevant 
probes or discarding the tiling array entirely. (b) Shown is the signal density distribution of 
the Cy3 INPUT channel for two replicates. One of the individuals (solid line) shows a steep 
increase in the lower signal range suggesting that an insufficient amount of DNA was 
hybridized to the tiling array. The signal distribution of the other replicate (dashed line) is 
normal. The bulk of the data is located in the center of the detection range indicating that 
the right amount of DNA was hybridized to the tiling array. 
 
 

1.3.4.2 Quality of individual probes 
 
The second quality assessment level is the quality of the probes. NimbleGen arrays 
are designed to minimize cross-hybridization as much as possible. However, given 
the large number of probes and near full genome coverage, it is difficult to exclude 
possible cross-hybridization events. Such events occur when non-target sequences 
hybridize with probes on the array, leading to exaggerated signal intensities. It may 
therefore be desirable to identify probes, a priori, that have multiple similar or exact 
matches in the genome. We assess this by calculating the so-called conservation 
score. This score is obtained by performing a BLAST search. Scores are percentage of 
identity with the second best hit (the best hit is the location on the genome for which 
the probe was designed). We decided to flag probes that have a conservation score 
higher than 85 (Fig. 3a). For simplicity we here provide a complete dataset with 
conservation scores already assigned to each probe. This data can be inputted as 
follows: 
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> cons_score_probes <- read.table(file="conservation_score.txt", 
+ header=TRUE,sep="\t") 
> head(cons_score_probes) 
          PROBE_ID SCORE 
1 CHR01FS000000061    73 
2 CHR01FS000000212    56 
3 CHR01FS000000382    64 
4 CHR01FS000000507    62 
5 CHR01FS000000707    74 
6 CHR01FS000000827    66 
 
One can use the plotting code which is provided as a text file to plot the density 
histogram of the conservation scores of the probes as shown in Figure 3a. 

In addition to the above a priori screening of potential cross-hybridizing 
probes we utilize another quality criterion, which involves assessing the consistency 
of probe signals for the INPUT across biological or technical replicates (provided they 
are available). To do this, we identify a probe’s signal rank in the overall array signal 
distribution of one replicate array and compare it to its rank in the distribution of the 
other arrays. Inconsistent probe signals will show large variation in ranks and should 
be treated with caution. If we consider the three dye-swapped biological replicates 
(3 × 2 arrays) of the Col-0 accessions, there are six rank values for each probe and we 
can calculate its rank variance. Doing this for each probe on the array yields a rank 
variance distribution, which can be used to spot outlying probes (Fig. 3b). For 
example, we may want to consider excluding or flagging probes with a rank variance 
of more than 3 standard deviations from the mean (Fig. 3b). We use the following 
code to determine the rank and the rank variance of the probes as well as the three 
standard deviation cutoff: 
 
> probe_rank <- apply(log2_input_wt[,2:7],MARGIN=2,rank) 
> determine_rank_var <- function(x){ 
+    mean_val   <- mean(x) 
+    mean_dif   <- abs(x-mean_val) 
+    extreme    <- which(mean_dif == max(mean_dif)) 
+    sd_ext     <- sd(x[-extreme]) 
+    return(sd_ext) 
+ } 
> rank_var   <- apply(probe_rank,MARGIN=1,determine_rank_var) 
> rank_var   <- data.frame(log2_input_wt[,1],rank_var) 
> names(rank_var) <- c("PROBE_ID","SD") 
> mean_var   <- mean(rank_var[,2]) 
> sd_var     <- sd(rank_var[,2]) 
> sd_cutoff  <- mean_var+(3*sd_var) 
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The plot of the rank variances (Fig. 3b) can be generated using the plotting code that 
is provided as a text file (see end of Subheading 1.2.3). 
 

 
Figure 3. Quality of individual probes. (a) Density histogram of the conservation score of the 
probes. Probes with a conservation score higher than 85 have a high probability to cross-
hybridize and are flagged (probes on the right of the dashed line). (b) The rank variance 
distribution of the probes. The rank variance is expressed as a standard deviation. Probes 
with an abnormal high rank variance are flagged (probes on the right of the dashed line). (c) 
Density histogram of the conservation score of the rank variance probes that were flagged 
(gray) on top of the conservation score of all probes (transparent). This picture indicates that 
the probes with a high rank variance also tend to have a high conservation score. The Venn 
diagram shows however that there is a poor overlap between probes that are flagged with 
the two methods.  
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We find that the use of conservation scores and probe rank variance provides a fairly 
comprehensive assessment of probe quality. That these two criteria are not 
redundant is reflected in the limited overlap of identified low quality probes (Fig. 3c).  
We determine this overlap using the following code: 
 
> lowq_pr_rank <- rank_var[which(rank_var[,2] > sd_cutoff),1] 
> lowq_pr_cons <- cons_score_probes[which(cons_score_probes[,2] > 
+ 85),1] 
> lowq_probes  <- union(lowq_pr_rank,lowq_pr_cons) 
> num_rank     <- length(setdiff(lowq_pr_rank,lowq_pr_cons)) #Only rank 
> num_cons     <- length(setdiff(lowq_pr_cons,lowq_pr_rank)) #Only cons 
> num_overlap  <- length(intersect(lowq_pr_rank,lowq_pr_cons)) 
> lowq_rows    <- which(wt_green_red[,1] %in% lowq_probes) 
 
Finally, we plot the overlap between the two methods (Fig. 3c) using the plotting 
code. 
 
 

 
 
 
 
 
Figure 4.        Effect of 
removing low quality 
probe signals from the 
overall log2(IP/INPUT) 
signal distribution. Most 
low quality signals fall in 
the upper range of the 
distribution, suggesting 
that true binding events 
are partially confounded 
with cross-hybridization 
events. 
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1.3.4.3 The effect of removing low quality probes 
 
The removal of low quality probes has a visible impact on the overall signal 
distribution. To see this we plot the relative (or ratio) signal of the IP and the INPUT 
channel in Figure 4 on a log2 scale (see file with plotting code). High signals are 
typically an indication of increased IP hybridization events relative to the total 
(INPUT) DNA, thus indexing methylated DNA sequences. We find that most low 
quality scores fall in the upper signal range, suggesting that true binding events are 
partially confounded with cross-hybridization events. This is consistent with the 
observation, in Arabidopsis, that DNA methylation primarily occurs in CG-rich repeat 
elements [4, 5], which have a high cross-hybridization potential. For all subsequent 
analysis we decided to keep (but flag) low quality probes in the dataset. However, 
one may also choose to exclude them at this stage. 
 

1.3.5 Implementation of a Hidden Markov Model for reconstructing the DNA 
methylome 

 
The above-mentioned log2 transformed IP/INPUT signal ratio is the typical starting 
point for data analysis. If data from several replicates is available, as in our case, the 
probe signals can simply be averaged across replicates. We view this distribution (see 
Fig. 4) as a mixture of three partially overlapping components [6]. The right 
component corresponds to enriched probes (i.e., indexing methylated sequences), 
the left component to non-enriched probes (i.e., indexing unmethylated sequences) 
and the middle component to intermediately enriched probes (i.e., indexing 
intermediately methylated sequences). To illustrate that this mixture view is 
consistent with the underlying biology, we highlight the probe signals corresponding 
to annotated transposable elements, which are usually methylated in Arabidopsis 
(Fig. 5a, solid line; [4, 5]). Similarly, as an example of usually unmethylated 
sequences, we highlight the signal of annotated introns of protein-coding genes (Fig. 
5a, dashed line; [4, 5]). The following commands are used to import the probe 
annotation data. These files simply contain the probe identifiers of probes that 
match with introns or transposons. 
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> p_id_intron <- read.table(file="intron_probes.txt", 
+ header=TRUE,sep="\t") 
> p_id_transp <- read.table(file="transposon_probes.txt", 
+ header=TRUE,sep="\t") 
> head(p_id_intron) 
          PROBE_ID 
1 CHR01FS000004351 
2 CHR01FS000005311 
3 CHR01FS000007129 
4 CHR01FS000007479 
5 CHR01FS000007814 
6 CHR01FS000008139 
 
For plotting purposes and further analysis steps it is also necessary to know the rows 
of the probes that correspond to transposons or introns. The following commands 
determine those rows: 
 
> rows_intron <- which(wt_green_red[,1] %in% p_id_intron[,1]) 
> rows_transp <- which(wt_green_red[,1] %in% p_id_transp[,1]) 
> rows_intron_highq <- setdiff(rows_intron,lowq_rows) #Without flagged 
> rows_transp_highq <- setdiff(rows_transp,lowq_rows) #probes 
 
The file with plotting code contains the code for plotting Figure 5. As can be seen in 
this figure, even within these two extreme annotation sets (i.e., transposons and 
introns) there is substantial signal variation (Fig. 5). This is probably due to some level 
of biological variation (i.e., not all transposable element sequences are methylated 
and not all introns are unmethylated), but it certainly also reflects the limitations of 
the measurement technology itself [7]. In addition, many probe signals belong to 
annotation sets that cannot be easily assigned to these extreme mixture 
components and their classification as methylated, unmethylated, or intermediate 
is inherently probabilistic.  

Our principle analytical approach for performing this probabilistic 
classification relies on the use of a HMM. A Markov chain is a list of random values 
{H1, H2, ..., Hn} that satisfy the so-called Markov property: the value at position i(Hi) 
is related solely to the values at positions i−1 and i+1 (Hi−1 and Hi+1), with given 
transition probabilities. In the case of a Hidden Markov chain, an output {O1,O2, ..., 
On} is observed that depends on the unobserved (hidden) states of the chain, {H1, H2, 
..., Hn} [8]. In the case under consideration, the output or observed chain is the log2 
transformed IP/INPUT signal ratio, while the hidden chain is the methylation state of 
the DNA sequence indexed by the array probe (Fig. 6). 
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Figure 5. Probe signal distributions of transposable elements and introns. (a) The 
log2(IP/INPUT) signal distribution of one dye combination (IP: green, INPUT: red) of the wild-
type Columbia plant with transposons (solid) and introns (dashed) highlighted. (b) Same as in 
(a) but shown for a ddm1 mutant plant which has lost 70 % of its DNA methylation. The intron 
distribution is not much affected by this loss. (c) Same as in (a) but with low quality probe 
signals removed. As can be seen, the intron distribution is robust to low quality probe signals. 
 
 
Hence, the HMM approach capitalizes on two key properties of MeDIP-chip data: (1) 
probe signals are noisy proxies of an unobserved (hidden) methylated, intermediate 
or unmethylated state, and (2) the probe signals are spatially correlated along the 
genome, so that neighboring probes provide similar information (Fig. 6). HMMs 
account for these two properties and provide a powerful statistical framework for 

log2(IP/INPUT) log2(IP/INPUT)

log2(IP/INPUT)

De
ns

ity

De
ns

ity

De
ns

ity

Location introns and transposons | wt Location introns and transposons | ddm1

Removing low quality probes | wt

ba

c



Chapter 1 

36 

classifying individual probe signals given the overall data structure. Our 
implementation goal is to provide a robust and fast model estimation procedure. We 
achieve this by implementing software code in C++ and by incorporating several 
useful biological constraints. In what follows we outline our version of a HMM that 
is specifically designed for Arabidopsis NimbleGen MeDIP-chip data. We start by 
detailing key data preparation steps before we move on to discuss the actual 
implementation strategy. 
 
 

 
Figure 6. Schematic of a HMM model in the context of genome-wide tiling array data. An 
explanation of the different components of the HMM is provided in the figure. 
 
 

1.3.5.1 Data rescaling using intron probes 
 
In the context of a single MeDIP-chip experiment within-array normalization is not 
required in our experience. Nonetheless, we find that rescaling the overall signal 
distribution is generally a good idea to permit more meaningful comparisons across 
different individuals (i.e., experimental conditions), should such additional data 
become available. To achieve this, we make use of the intron probe signal 
distribution (Fig. 7a). We standardize this distribution and express the overall signal 
distribution in terms of their standard deviation values. This has the effect of placing 
the mean of the intron probe signal at zero and rescaling the values as standard 
deviation values. This rescaling can be implemented with the following code: 
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> intron_mean    <- mean(wt_dye_swap[rows_intron,2]) 
> intron_sd      <- sd(wt_dye_swap[rows_intron,2]) 
> wt_dye_swap_rs <- (wt_dye_swap[,2]-intron_mean)/intron_sd 
> wt_dye_swap_rs <- data.frame(wt_dye_swap[,1],wt_dye_swap_rs) 
> names(wt_dye_swap_rs) <- c("PROBE_ID","DYE_SWAP_RS") 
 
One can use the plotting code that is provided as a text file to plot the density of the 
rescaled data (Fig. 7a). 

We find that the intron signal distribution can be safely used for this rescaling 
process, insofar that it is relatively invariant to high levels of experimental variation. 
To illustrate this in the context of an extreme case, we compare the signal 
distribution for wild-type to that for the ddm1 mutant, in which DNA methylation is 
reduced approximately 70 %. The MeDIP-chip experiment reflects this methylation 
loss nicely (Fig. 5b), with the signal distribution being clearly reduced in height over 
the enriched component. Clearly, the signal distribution for intronic sequences is not 
noticeably affected in ddm1, as expected. 
 

 
Figure 7. Data rescaling and density approximation probe signal distribution of introns. (a) 
Original signal distribution with intron density highlighted (dashed line). (b) Density of the 
signal distribution for introns approximated using a mixture of a large number of Gaussian 
distributions with fixed variance and equally spaced means. 
 
 

1.3.5.2 Implementation of the Hidden Markov Model 
 
We apply our HMM to the rescaled data following a two-step process. First, we use 
the Baum–Welch algorithm [8, 9] to estimate the best model parameters given the 
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observed probe signals (Fig. 6). Second, we find the most likely hidden sequence of 
probe states given these estimated parameters. A copy of the C++ code that we 
implement can be found at the above URL (see end of Subheading 1.2.3). A 
characteristic feature of our HMM implementation is the use of biologically 
meaningful constraints on the emission probability density functions, e(Oi|Hi), 
during the Baum–Welch estimation procedure (Fig. 6). In the following we outline 
these assumptions. A summary of them can be found in Table 5. Alternatively, all the 
parameters of the emission probabilities could be freely estimated by means of the 
Baum–Welch algorithm, but we find that a more biologically meaningful approach is 
preferable. 

Emission probability of unmethylated hidden state: We employ the signal 
distribution for introns to obtain an approximation of the emission probability of the 
unmethylated hidden state (Fig. 7a). In this way we incorporate biological knowledge 
of introns being mostly unmethylated directly into the estimation procedure. This 
bypasses the need to explicitly assume an emission density function and also speeds 
up computation. We approximate the signal distribution for introns to an arbitrary 
degree using mixtures of a large number of Gaussian random variables (Fig. 7b).  
 
 
Table 5. Summary of the constraints for the emission probability density functions used in 
the Baum–Welch algorithm. 

 
 
Estimation is carried with the EM algorithm [10], which can be implemented using 
the following code: 
 
> density_approx <- function(data,mu,var,lambda,eps,num_norm){ 
+   mu_diff         <- mu[2]-mu[1] 
+   min_val         <- mu[1]-5*mu_diff 
+   max_val         <- mu[num_norm]+5*mu_diff 
+   rows_extr       <- which(data < min_val | data > max_val) 

Hidden state Distribution Parameters

Unmethylated states intron signal distribution estimated as a mixture of 30 normals (EM algorithm) 
   with fixed variance.

Methylated states Gaussian Mean: fixed at the 99th quantile of the intron signal
   distribution. Variance: freely estimated.

Intermediate states Gaussian Mean: fixed at ½ (mean of the methylated
   distribution). Variance: equal to the variance of the
   methylated distribution.
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+   if(length(rows_extr) > 0){                 # Remove extreme 
+     data          <- data[-rows_extr]        # data points 
+   } 
+   loglik_diff     <- 100000                  # Initial loglik diff 
+   counter         <- 0                       # Iteration counter 
+   dnorm_tot       <- rep(0,length(data)) 
+   for(A in 1:num_norm){ 
+     dnorm_tot     <-  
+     dnorm_tot + lambda[A]*dnorm(data,mean=mu[A],sd=sqrt(var)) 
+   } 
+   loglik_pre      <- sum(log(dnorm_tot))     # Initial loglik 
+   while(loglik_diff > eps){                  # Estimate mixture 
+     counter      <- counter+1 
+     for(A in 1:num_norm){                    # Update lambda 
+       post       <-                          # Posterior prob 
+       lambda[A]*dnorm(data,mean=mu[A],sd=sqrt(var))/dnorm_tot 
+       lambda_new  <- sum(post)/length(data) 
+       lambda[A]  <- lambda_new 
+     } 
+     dnorm_tot     <- rep(0,length(data)) 
+     for(A in 1:num_norm){ 
+       dnorm_tot   <- 
+       dnorm_tot + lambda[A]*dnorm(data,mean=mu[A],sd=sqrt(var)) 
+     } 
+     loglik_new    <- sum(log(dnorm_tot))          # New loglik 
+     loglik_diff   <- abs(loglik_new - loglik_pre) # New loglik diff 
+     loglik_pre    <- loglik_new 
+     cat("Iteration = ",counter," Log-lik diff = ",loglik_diff,"\n") 
+    } 
+    output        <- list(mu,var,lambda)           # Return results 
+    names(output) <- c("mu","var","lambda") 
+    return(output) 
+ } 
>  
> mus <- round(seq(-2.75,4.5,0.25),2) 
> intron_data <- wt_dye_swap_rs[rows_intron,2] 
> den_appr <- density_approx(data=intron_data,mu=mus,var=0.03, 
+ lambda=rep((1/30),30),eps=0.1,num_norm=30) 
Iteration =  1  Log-lik diff =  64314.34  
Iteration =  2  Log-lik diff =  510.154  
Iteration =  3  Log-lik diff =  41.84451  
Iteration =  4  Log-lik diff =  6.50513  
Iteration =  5  Log-lik diff =  1.766472  
Iteration =  6  Log-lik diff =  0.7541914  
Iteration =  7  Log-lik diff =  0.421424  
Iteration =  8  Log-lik diff =  0.2723324  
Iteration =  9  Log-lik diff =  0.1922282  
Iteration =  10  Log-lik diff =  0.1442565  
Iteration =  11  Log-lik diff =  0.1132907  
Iteration =  12  Log-lik diff =  0.09209521  
> 
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The code for plotting the result (Fig. 7b) is provided as a text file. We generally find 
that a fit with 30 Gaussians with fixed variance provides a sufficient approximation 
(Fig. 7b). Parameter estimates are outputted to be used as input in the Baum–Welch 
algorithm. 

Emission probability of methylated hidden state: The second constraint 
relates to the emission probability for the methylated hidden state. We assume this 
distribution to be Gaussian, with mean fixed to the 99th quantile of the emission 
probability of the unmethylated state (i.e., the signal distribution for introns). The 
variance of the distribution is estimated freely by the Baum–Welch algorithm. 

Emission probability of intermediate hidden state: The last constraint relates 
to the emission probability for the intermediate hidden state. We assume again this 
distribution to be Gaussian, with a mean that is fixed between the mean of the 
emission probability of the unmethylated hidden state (i.e., the intron distribution) 
and the mean of the emission probability of the methylated hidden state. We take 
the variance of this distribution to be equal to the variance of the emission 
probability of the methylated hidden state. 

The following code generates files that are used as input for the Hidden 
Markov program written in C++: 
 
> values <- c(den_appr$mu,den_appr$var,den_appr$lambda) 
> parameters <- c(paste("mu",1:30,sep=""),"var_all", 
+ paste("lambda",1:30,sep="")) 
> para_est <- data.frame(parameters,values) 
> names(para_est) <- c("PARAMETER","VALUE") 
> write.table(para_est,"para_wild_type.txt",quote=FALSE,sep="\t", 
+ row.names=FALSE,col.names=TRUE) 
> write.table(wt_dye_swap_rs,"dye_swap_signal_wild_type.txt", 
+ quote=FALSE,sep="\t",row.names=FALSE,col.names=TRUE) 
 
Once all the free parameters of the HMM have been estimated, we proceed to infer 
the most likely hidden sequence of probe states given the parameters of the HMM 
and the observed probe signals. There are several possible strategies, depending on 
our optimality criterion. We consider two cases: (1) finding the single best hidden 
sequence of probe states, given the observed probe signals and the parameters of 
the HMM (the so-called Viterbi algorithm; [8, 11]), or (2) finding the single hidden 
probe state which is individually most likely at each position, given the observed 
probe signals and the parameters of the HMM [8]. A copy of the C++ code 
implemented for the identification of the optimal sequence according to these two 
definitions can be found at the above URL (see end of Subheading 1.2.3). 
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1.3.6 Graphical and biological assessment of HMM results 
 
The above algorithms probabilistically classify the original log2(IP/INPUT) signals to 
the three underlying methylation states (unmethylated, intermediate or 
methylated) (Fig. 8). This “hidden chain” of methylation states constitutes the 
methylome (Fig. 9). Annotation analysis of the probe classification (Fig. 10) shows 
that most gene probes are unmethylated and the majority of the transposable 
element probes are methylated, as expected. 
 
 

 
Figure 8. The log2(IP/INPUT) signal distribution for a wild-type Arabidopsis thaliana Col-0 
accession. Probes are classified into unmethylated probes (light gray), intermediate probes 
(gray), and methylated probes (dark gray). 
 
 

1.4 Conclusions 
 
We have described a comprehensive protocol for the analysis of DNA methylomes 
in Arabidopsis using MeDIP tiling arrays. Our protocol uniquely combines all 
necessary steps from “wet lab” to “dry lab” to begin to characterize the epigenetic 
landscape in this species. Owing to the relatively favorable cost of tiling array 
technology over more recent deep sequencing approaches, our protocol can be 
easily scaled up to population-level studies. Such large epigenetically informative 
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approaches will soon become an indispensable tool in the context of intra- or 
intergenerational functional studies [12]. We have applied the protocol outlined 
here to a large panel of epiRILs [3] in order to characterize the role of DNA 
methylation in complex trait inheritance. 
 
 

 
Figure 9. Example probe classification. (a) The probe signal (top) and the corresponding 
(hidden) DNA methylation state (bottom) of chromosome 4 in wild-type Columbia accession 
plotted against position (base pairs, x-axis); methylated (black), unmethylated (white), and 
intermediately methylated (gray). As expected, we find substantial methylation in the 
pericentromeric regions as well as in the heterochromatic knob present on the short arm of 
the chromosome. (b) Magnification of a small region on chromosome 4: we can see how the 
log2(IP/INPUT) signal of each probe (top) is assigned to methylated, intermediate, or 
unmethylated state, depending on its signal and on the signal of its surrounding probes. (c) 
Color code for the probe signal density plot, with the corresponding probe density 
distribution. 
 
 

1.5 Notes 
 

1. For more than 250 μL of beads, separate in two tubes for washes. 
2. Transfer to new tubes decreases noise. This is done in classical tubes because 

siliconized tubes tend to leak too much with phenol/chloroform and can 
cause loss of material. 
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3. MinElute cleaning is a critical step as the efficiency of WGA2 drops 
dramatically without it. 

4. PicoGreen quantification is very sensitive. Be careful to homogenize your 
samples well before quantification. Since PicoGreen is not stable in light, 
quantification must be done soon (less than 30 min) after addition of 
PicoGreen and samples should be maintained in the dark before use. 

5. It is important to verify incorporation of dye using the following formula: 
concentration in DNA (pmol/μL)/concentration in Dye (pmol/μL). Values are 
usually between 100 and 180. 

 

 
Figure 10. Probe classification of genes and transposable elements. 
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Abstract 
 
Studies of DNA methylation in Arabidopsis have rapidly advanced from the analysis 
of a single reference accession to investigations of large populations. The goal of 
emerging population studies is to detect differentially methylated regions (DMRs) at 
the genome-wide scale, and to relate this variation to gene expression and 
phenotypic diversity. Whole-genome bisulfite sequencing (WGBS-seq) has 
established itself as a gold standard in DNA methylation analysis due to its high 
accuracy and single cytosine measurement resolution. However, scaling up the use 
of this technology for large population studies is currently not only cost prohibitive 
but also poses nontrivial bioinformatic challenges. If the end-point of the study is to 
detect DMRs at the level of several hundred base pairs rather than at the level of 
single cytosines, low-resolution array-based methods, such as MeDIP-chip, may be 
entirely sufficient. However, the trade-off between measurement accuracy and 
experimental/analytical practicality needs to be weighted carefully. To help make 
such experimental choices, we conducted a side-by-side comparison between the 
popular dual-channel MeDIP-chip NimbleGen technology and Illumina WGBS-seq in 
two independent Arabidopsis lines. Our analysis shows that MeDIP-chip performs 
reasonably well in detecting DNA methylation at probe-level resolution, yielding a 
genome-wide combined false-positive and false-negative rate of about 0.21. 
However, detection can be susceptible to strong signal distortions resulting from a 
combination of dye bias and the CG content of effectively unmethylated genomic 
regions. We show that these issues can be easily bypassed by taking appropriate data 
preparation steps and applying suitable analysis tools. We conclude that MeDIP-chip 
is a reasonable alternative to WGBS-seq in emerging Arabidopsis population 
epigenetic studies. 
 

2.1 Introduction 
 
DNA methylation is an epigenetic modification that involves the addition of a methyl 
group to the five position of the cytosine pyrimidine ring. In most animals and plants, 
this modification has a central role in the regulation of gene expression and in the 
silencing of transposable elements [1]. Because of its important biological functions, 
there have been substantial efforts to characterize the complete DNA methylomes 
of various organisms [2]. 

In the model plant Arabidopsis, the first whole-genome DNA methylation 
analysis used single-channel Affymetrix and dual-channel NimbleGen tiling arrays [3, 
4]. These studies relied on methylation-dependent immunoprecipitation techniques 
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followed by hybridization to high-density microarray chips (MeDIP-chip), and 
achieved a resolution of 35 and 220 bp, respectively. This work was instrumental in 
providing the first picture of the distribution of DNA methylation and its relationship 
with known sequence annotation in this species. A more detailed view was later 
obtained by several studies employing Illumina whole-genome bisulfite sequencing 
(WGBS-seq [5, 6]). WGBS-seq combines bisulfite conversion of DNA with next-
generation sequencing (NGS) technologies and provides single cytosine resolution. 

While the above-mentioned studies focused on the DNA methylome of a 
single reference plant, more recent work has begun to document interindividual 
variation in DNA methylation in large populations. The ultimate aim is to relate this 
type of epigenetic variation to phenotypic diversity, and to ask broader questions 
about the role of epigenetics in adaptive evolution. A first step in this direction was 
recently taken by Schmitz et al. [7] and Becker et al. [8]. These authors performed 
WGBS-seq on 8–12 Arabidopsis lines and quantified the frequency and distribution 
of single methylation polymorphisms (SMPs) as well as differentially methylated 
regions (DMRs). These experiments generated roughly 200–500 GB of data and 
required construction of extensive data pipelines. Scaling up the use of WGBS-seq to 
even larger samples poses nontrivial bioinformatic challenges that range from data 
storage to downstream computation analysis. These challenges can hinder the 
routine application of this technology for future population epigenetic studies. 

A viable alternative is to restrict DNA methylation analysis to the detection 
of DMRs, which typically range between 10 and 1,000 bp in length. In Arabidopsis as 
in other species DMRs appear to be functionally more important than SMPs [7–10] 
and appear to be a suitable unit of analysis. Focusing on DMRs has the important 
advantage that array-based measurement technologies, such as MeDIP-chip, could 
be employed in place of WGBS-seq because they provide sufficient resolution. The 
use of array-based methods can substantially reduce the bioinformatic resources 
required to perform population epigenetic studies. Nonetheless, loss of 
measurement accuracy resulting from hybridization compared to sequencing may 
present a significant drawback which not all researchers are willing to accept. 
Furthermore, it should be noted that unlike WGBS-seq, MeDIP-chip does not allow 
distinguishing between CG, CHG, and CHH methylation, a point which may be 
important to consider in some instances. Hence, the trade-off between loss of 
measurement accuracy and experimental/analytical practicality needs to be 
weighted carefully. To help make such experimental choices we conducted a side-
by-side comparison between the popular dual-channel MeDIP-chip NimbleGen 
technology and Illumina WGBS-seq. The workflow shown in Figure 1 serves as an 
outline of this chapter. 
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Our analysis shows that the dual-channel MeDIP-chip technology performs 
reasonably well in detection of probe-level DNA methylation, which is approximately 
the minimum resolution required for DMR detection. We estimate that MeDIP-chip 
yields a combined false-positive and false-negative rate of 0.21 genome-wide. 
However, we also find that detection can be critically dependent on prior data 
preparation steps, signal distortions arising from dye biases, and the statistical 
method used for detection. Based on our results, we make several simple but 
important recommendations regarding the experimental implementation of MeDIP-
chip for population epigenetic studies (see Note 1–3). 
 
 
 

 
 
Figure 1. Workflow evaluation MeDIP-chip.  
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2.2 Data sets and data preparation 
 
In this chapter we consider DNA methylation data from two different epigenetic 
recombinant inbred lines (epiRILs; R60 and R202 [11]). The DNA methylomes of each 
epiRIL were measured using dual-channel NimbleGen MeDIP-chip and Illumina 
WGBS-seq [12]. This section provides a brief overview of these two measurement 
technologies as well as key data preparation steps. 
 

2.2.1 MeDIP-chip 
 
Methylated DNA immunoprecipitation (MeDIP) is a large-scale purification 
technique used for the enrichment of methylated DNA fragments. This technique 
uses antibodies specific to methylated cytosines in order to separate methylated 
DNA fragments from unmethylated DNA fragments. Following this separation 
procedure the methylated fragments can either be hybridized to a tilling array 
(MeDIP-chip [13]) or sequenced (MeDIP-seq [14]) in order to assess the methylation 
status of the genome under consideration. The application of MeDIP-chip to the two 
epiRILs under consideration involved several experimental steps which are discussed 
in short in this paragraph. A more extensive description of the protocol used to 
obtain MeDIP-chip data described in this chapter is given by Cortijo et al. [15]. 
 

1. Extraction and fragmentation — DNA was extracted from aerial parts of 
three-week-old Arabidopsis plants using a standard extraction kit (Qiagen 
DNeasy plant Maxi kit). Extracted DNA was fragmented using sonication. 
Sonication produced fragments with a size between 100 and 600 bp (verified 
with gel electrophoresis). 

2. Immunoprecipitation and amplification — After this fragmentation step, the 
DNA was denatured and anti-5mC antibody was added to the IP DNA pool, 
which recognizes specifically methylated cytosines in single-stranded DNA. 
Magnetic beads containing binding sites for this antibody were then added 
to pull down (i.e., immunoprecipitate) methylated fragments. Following 
release of the antibody, both IP and input DNA fractions were amplified by 
PCR. 

3. Labeling and hybridization — The IP and input fractions were differentially 
labeled with two fluorescent dyes (Cy3 and Cy5) and hybridized to 
NimbleGen whole-genome Arabidopsis tiling arrays (3×720K array) 
containing 711,320 isothermal probes. Depending on the CG content, these 
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probes range from 50 to 75 nucleotides in length and have an inter-probe 
spacing of about 110 base pairs on average. 

4. Scanning the tiling array — After hybridization, the intensities of both dyes 
were obtained by scanning the tiling array. The scanner outputs two files 
with the raw intensities for each probe on the tiling array: one file with the 
IP signals and the other file with the input signals. 

5. Signal calculation — The IP and input signals were log transformed and 
subtracted from each other (log2 (IP) − log2 (input)). Hence, probes with a 
low signal are from genomic regions that show low methylation levels, and 
those with a high signal are from genomic regions that show high 
methylation levels. 

 
2.2.2 Whole-genome bisulfite sequencing 

 
WGBS-seq is a NGS technology used to determine the DNA methylation status of 
single cytosines. In the case of WGBS-seq, unlike other NGS technologies, the DNA is 
treated with sodium bisulfite before sequencing. Sodium bisulfite is a chemical 
compound that converts unmethylated cytosines into uracil [16, 17]. Knowing which 
cytosines have converted it is possible to determine which cytosines are methylated 
(not converted) and which ones are unmethylated (converted into U). After 
sequencing, the unmethylated cytosines appear as thymines. There are several ways 
of producing sequence libraries for WGBS-seq (see Ref. 18). The WGBS-seq data in 
this chapter was produced with a technique developed by Cokus et al. [6]. Here we 
describe in short the procedure. 
 

1. Extraction and fragmentation — DNA was extracted from aerial parts of 
three-week-old Arabidopsis plants using standard extraction kit (Qiagen 
DNeasy plant Maxi kit). Extracted DNA was fragmented by sonication. 

2. Adapter ligation and size selection — A set of double-stranded adapter 
sequences was ligated to the fragmented DNA. These adapter sequences 
contained methylated adenine bases with DpnI restriction sites. The 
restriction sites are important for the removal of the first set of adapter 
sequences in one of the subsequent steps. Gel electrophoresis was used to 
obtain adapter-ligated fragments with an appropriate size. 

3. Bisulfite conversion and amplification — After the addition of the adapter 
sequences the sodium bisulfite conversion is performed. During this step, 
unmethylated cytosines are changed into uracil. PCR was subsequently 
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performed with the use of primers that were complementary to the 
converted adapter sequences. 

4. Removal of first adapter sequences and ligation sequencing adapters — 
After the first PCR amplification step the first set of adapters was removed 
using DpnI restriction enzymes. A new set of sequencing adapters was 
subsequently ligated to BS-converted DNA fragments. 

5. Size selection and amplification — Fragments with a size between 120 and 
170 bp were selected with the use of gel electrophoresis, and a second and 
final PCR step was performed using primers complementary to the 
sequencing adapters to yield a sequencing library. 

6. Sequencing — Illumina sequencing technology (Illumina 1G Genome 
Analyzer) was used to produce read sequences with a length of 76 or 101 nt. 

 
After sequencing, the reads need to be mapped (or aligned) to a reference 
genome in order to infer the methylation status of the cytosines of the 
genome under consideration. However, mapping these converted 
sequences is not straightforward since unmethylated cytosines will result in 
mismatches with the reference genome (i.e., they appear as thymines). To 
circumvent this issue several programs have been developed that first 
convert the reference genome into a three-letter genome (i.e., all cytosines 
are changed into thymines; in silico [19]). The remaining cytosines of the 
read sequences also need to be changed into thymines before mapping. The 
in silico-treated read sequences are subsequently mapped to this three-
letter reference genome. Once the mapping has been performed, 
methylation status can be inferred using the original sequence of the 
reference genome and the read. A thymine (read) mapped to a cytosine 
(reference) is an unmethylated cytosine. A cytosine mapped to a cytosine is 
a methylated cytosine. We utilized BS Seeker [20] for the mapping of the 
read sequences. BS Seeker is a python-based open-source mapping program 
for the alignment of bisulfite-treated sequences. The analysis includes 
preprocessing of the reads prior to alignment, the alignment itself, and 
quality analysis of the data. The steps are described further below. More 
details of the mapping of the reads can be found elsewhere [12]. 
 

7. Removal of adapter parts — When a DNA fragment is shorter than the read 
sequence a part of the adapter sequence will also be sequenced. The 
adapter sequence was added artificially and does not match with the 
reference genome. We therefore removed this part using a sliding window 
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approach. The part that overlapped with the known adapter sequence was 
removed. 

8. Removal of short reads — The removal of the adapter sequences resulted in 
some cases in reads with a length smaller than 30 nucleotides. These short 
reads are more difficult to map and were therefore removed. The proportion 
of short reads was in our case quite small and therefore the final read 
coverage was barely affected. 

9. Removal of duplicated reads — Duplicated reads were removed in the final 
preprocessing step because they were likely produced during PCR 
amplification and were therefore not informative. 

10. Alignment to reference genome — After these preprocessing steps the reads 
were mapped to a reference genome (TAIR 10) with the use of BS Seeker. 
After mapping the obtained average genome coverage was 29 and 27× for 
epiRIL 60 and 202, respectively (both strands combined). 

11. Determination conversion rate — One important step in the quality analysis 
of the data is to determine the (bisulfite) conversion rate. The conversion 
rate, which is the percentage of unmethylated cytosines that effectively 
changed into uracil, was determined for both epiRILs after mapping. The 
conversion rates were determined with the information of reads that were 
mapped to chloroplast DNA. The chloroplast DNA is known to be 
unmethylated and therefore any detected methylated cytosine is 
considered to be a non-converted unmethylated cytosine. Both epiRILs 
showed a conversion rate above 99 % which indicates that the data is of 
good quality. 

 
2.2.3 Data conversion and normalization 

 
One of the major differences between MeDIP-chip and WGBS-seq is mapping 
resolution. WGBS-seq can interrogate the methylation status of individual cytosines 
while MeDIP-chip achieves a resolution of about 165 bps. In order to facilitate a 
meaningful comparison between the two technologies, we converted the WGBS-seq 
data into a format that is comparable to that of MeDIP-chip. To achieve this we 
calculated the proportion of methylation calls in windows of 165 bps centered at the 
probe sequence (Fig. 2). By methylation calls we mean the individual methylation 
calls of each read sequence. This results in a signal ranging from zero to one. This 
signal is afterwards normalized for the number of cytosines in the probe window. Let 
𝐶𝑗𝑚 denote the number of cytosines that have been called methylated in the 𝑗th 
window, 𝐶𝑗𝑢 the number of cytosines that have been called unmethylated in the 𝑗th 
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window, 𝑅𝑗 the total number of cytosines in the jth window according to the 
reference genome, and 𝑅𝑚𝑎𝑥 the maximum number of cytosines across all windows. 
The converted and normalized WGBS-seq signal can be calculated as 
 

𝑊𝐺𝐵𝑆𝑠𝑖𝑔(𝑗) =
𝐶𝑗𝑚

𝐶𝑗𝑚 + 𝐶𝑗𝑢
×

𝑅𝑗
𝑅𝑚𝑎𝑥

 

 
We selected high-quality data for the analysis described in this chapter. In case of 
the WGBS-seq probe windows, we only selected windows with 35 or more cytosines, 
with at least half of the cytosines being covered by one or more read sequences. In 
case of the MeDIP-chip data we only selected probes with a conservation score 
smaller or equal to 85. The conservation score of a probe indicates the uniqueness 
of a probe sequence. These scores were obtained by performing a blast search. 
Scores are percentage of identity with the second best hit (score range 45–100). The 
best hit is with the genomic location for which the probe was designed. Probes with 
a high conservation score are more likely to cause cross-hybridization problems. As 
shown in Figure 3, removal of probes with a high conservation score has a drastic 
impact on the MeDIP signal distribution, as they typically show signal intensities 
similar to probes that correspond to genomic regions with high methylation levels. 
See Note 1 for recommendations concerning the quality of the data. 
 Analysis was performed on probes (i.e., probe windows) that were present 
in both data sets (MeDIP-chip and WGBS-seq signal data). This yielded 551,688 and 
550,676 high-quality probe windows in total, covering approximately 77.6 and 77.4 
% of the genomes of R60 and R202, respectively. In case of the MeDIP-chip data a 
total of two dye-swap experiments were performed for each epiRIL. The log-
transformed signals were also averaged over the two dye-swap experiments which 
resulted into three MeDIP-chip data sets: 
 

x G/R data: IP labeled green (Cy3, G) and input labeled red (Cy5, R). 
x R/G data: IP labeled red (Cy5, R) and input labeled green (Cy3, G). 
x DS data: Average of G/R and R/G data (dye-swap data). 

 
Finally, quantile normalization was applied to bring these three data sets to a 
common scale [21]. Figure 4 displays a density histogram of the WGBS-seq signal for 
the two epiRIL experiments (R60 and R202) and the MeDIP-chip signal (DS). 
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Figure 2. Calculation of whole-genome bisulfite sequencing signals. The methylation calls 
within the window (gray) are used to calculate a normalized whole-genome bisulfite 
sequencing signal (see formula). 
 

 
Figure 3. Impact of removing probes with a high conservation score on probe signal 
distribution. Probes with a high conservation score (dark gray) typically show signal 
intensities similar to probes that correspond to genomic regions with high methylation levels. 
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2.2.4 Software 
 
The analysis described in this chapter was performed using R [22]. R is a command-
line software environment for statistical computing and graphics. The Hidden 
Markov Model (HMM) for probe classification was programmed in C++ [15]. 
 
 

 
Figure 4. Density histogram of WGBS-seq signals and MeDIP-chip signals following data 
conversion and normalization. (a) WGBS-seq signal distribution. (b) MeDIP-chip signal 
distribution. 
 
 

2.3 Results 
 

2.3.1 Assessment of MeDIP-chip dynamic range 
 
Since the WGBS-seq signal provides a measure of the proportion of methylated 
cytosines in a given probe window, we were able to assess the dynamic range of the 
MeDIP-chip technology directly by empirical comparison. To achieve this we 
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calculated the median MeDIP-chip signal for sliding windows along the entire WGBS-
seq signal range (Window size: 0.05; step size: 0.01; Fig. 5a). We find that MeDIP-
chip exhibits good sensitivity for low-to-intermediate methylation levels (WGBS-seq 
range: 0.00 to ~0.13). In this low-to-intermediate range, there is a nearly linear 
relationship between the WGBS-seq signal and the MeDIP median signal, but the 
MeDIP-chip sensitivity falls off quickly and saturates at a WGBS-seq signal value of 
about 0.28. Above this point, MeDIP-chip is effectively unable to differentiate 
between methylation levels. However, in R60 and R202 this saturation effect affects 
only a relatively small number of probe windows, 0.19 % (N = 1,056) and 0.22 % (N = 
1,220) of all regions genome-wide, and 0.58 and 0.67 % of all methylated regions 
(see Table 1), respectively. Signal saturation should therefore not be a matter of 
great concern in the analysis of the Arabidopsis methylome. Similar conclusions can 
be reached when considering the MeDIP signal on its original scale (data not shown),  
 

 
Figure 5. Median and variance of the MeDIP signal along the entire WGBS-seq signal range. 
Median MeDIP signal (a) and variance MeDIP signal (b) for sliding window along the entire 
WGBS-seq signal range. The G/R data show less sensitivity for low-to-intermediate WGBS-
seq signals and also show a higher variance compared to the R/G data. 
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rather than on the log-transformed scale, which indicates that saturation is not 
caused by scaling issues. 

Our analysis also indicates that there are clear dye-related differences in the 
MeDIP median signal. The R/G data appears to respond more sensitively to changes 
in WGBS-seq methylation levels compared with the G/R and the DS data (Fig. 5a). 
While these dye differences disappear at the saturation point (WGBS-seq signal 
~0.28), they are most prominent in the optimal dynamic range. This divergence is 
even more severe when we consider the MeDIP signal variance across the complete 
WGBS-seq range using the same sliding window approach (Fig. 5b). Ideally, the signal 
variance should be low and constant across methylation levels. Figure 5b illustrates 
that this is clearly not the case: the MeDIP signal variance is largest within the 
optimal dynamic range but decreases rapidly with increasing methylation levels. 
Notably, the G/R data displays a 1.20 (R60)- and a 1.28 (R202)-fold increase in signal 
variance (on average) relative to the R/G data suggesting that it is substantially 
noisier, and the dye-swap (DS) fails to correct this bias. This latter observation is 
contrary to what is typically seen in expression microarrays where dye-swaps have 
proved to be an effective strategy [23, 24]. See Note 2 for recommendations 
concerning the labeling of the IP and input DNA. 
 
 
Table 1. Classification probe windows using WGBS-seq. 

 
Reported are the number of unmethylated and methylated windows using a genome-wide 
false-positive rate of 0.01. 
 
 

2.3.2 Classification of methylated regions using MeDIP-chip 
 
From a data analysis standpoint, the classification of individual probes according to 
their underlying methylation status (i.e., methylated or unmethylated) is critically 

R60 R202

Classification cutoff 5.09E-03 7.03E-03
# probe windows selected for analysis 551,688 (77.6) 550,676 (77.4)
# unmethylated probe windows 369,358 (67.0) 367,526 (66.7)
# methylated probe windows 182,330 (33.0) 183,150 (33.3)
Median signal, unmethylated windows 9.58E-4 (0.000 – 5.09E-3) 9.65E-4 (0.000 – 7.02E-3)
Median signal, methylated windows 3.32E-2 (5.09E-3 – 0.552) 3.33E-2 (7.03E-3 – 0.562) 
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dependent on the variance of the MeDIP signal. When signal variation is large, 
classification tends to be more difficult. Many statistical analysis methods have been 
proposed to minimize this problem and to facilitate accurate probe classification in 
the context of MeDIP-chip data (e.g., [15, 25–29]). The development of such 
methods continues to be an active area of research. Classification is particularly 
problematic in regions of the MeDIP signal distribution where signals from 
unmethylated probes overlap with those from methylated probes (Fig. 6). In this 
case, the task is to find an informative cutoff that would minimize both false-positive 
and false-negative methylation calls. 
 

 
Figure 6. Overlap unmethylated and methylated probe signal distributions. Shown are the 
MeDIP distributions that correspond to a certain WGBS-seq signal range. It becomes clear 
that there is a significant overlap between the MeDIP signal distributions with a low WGBS-
seq signal (unmethylated; black is WGBS-seq signal of zero) and those with a high WGBS-seq 
signal (methylated). The G/R data (a) tends to have a higher overlap compared to the R/G 
data (b). The DS data (dye-swap; c) shows an average overlap result. It also shows a higher 
overlap compared to the R/G data. 
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2.3.2.1 Defining the “Gold Standard" 
 
To illustrate this problem empirically we use the WGBS-seq signal to define high-
confidence methylated probe windows based on a measurement error distribution. 
To achieve this, let the measurement error, 𝑦, of the 𝑗th probe window be given by 
 

𝑦(𝑗) = (1 − 𝐶𝑅) ×
𝑅𝑗

𝑅𝑚𝑎𝑥
 

 
where 𝑅𝑗 is the number of cytosines in the 𝑗th probe window, 𝑅𝑚𝑎𝑥 the maximum 
number of cytosines across all windows, and CR is the overall conversion rate. 
Furthermore, let us define the empirical density distribution of the error as 𝑓(𝑦) (Fig. 
7). Using this distribution, the genome-wide false-positive (𝐺𝑊𝐹𝑃) rate can be 
calculated numerically using 
 

𝐺𝑊𝐹𝑃 = 1 −∫ 𝑓(𝑦)𝑑𝑦
𝑇

0
 

 
where  𝑇 is the WGBS-seq signal threshold that is needed to meet a given 𝐺𝑊𝐹𝑃 
level. We find that for 𝐺𝑊𝐹𝑃 = 0.01, the WGBS-seq threshold is approximately 
5.09E−3 and 7.03E−3 for R60 and R202, respectively. Hence, we define probe 
 

 
Figure 7. Measurement error distributions. Shown are the measurement error distributions 
of both epiRILs and the signal cutoffs that correspond to a genome-wide false-positive rate 
of 0.01. 
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window j as methylated if the WGBS-seq signal of that region is larger than the 
threshold 𝑇. At this threshold level, we find that 33.0 % (N = 182,330) and 33.3 % (N 
= 183,150) of all probe windows (genome-wide) can be confidently called 
methylated with this technology in R60 and R220, respectively (Table 1). 
 

2.3.2.2 MeDIP signal classification based on a naïve classifier 
 
We use the WGBS-seq-derived classification to assess the problem of determining 
the methylation status of probes in the context of MeDIP-chip data. We first consider 
a naïve classifier which consists of a single MeDIP cutoff. According to this classifier, 
a probe is considered methylated if its signal exceeds the cutoff and as unmethylated 
if its signal falls below it. Comparing the resulting calls to those obtained from the 
WGBS-seq classification (Subheading 2.3.2.1) allows us to define the MeDIP false-
positive and false-negative rates associated with the naïve classifier. Figure 8a, b 
shows the distribution of false-positive and false-negative rates for series of cutoffs 
across the entire MeDIP signal range (−4 till 3 with step size 0.2). This analysis shows 
that there is a considerable trade-off between minimizing false positives and false 
negatives while maximizing the total number of regions detected as methylated. We 
find that the optimal cutoff corresponds to a MeDIP signal of about –1.5 (Fig. 8), 
which yields a combined false-positive and false-negative rate of about 0.23. 
Consistent with the dye-effects illustrated in our assessment of the dynamic range 
(Subheading 2.3.1), the combined false-positive and false-negative rates show 
  
 
Table 2. Number of false-positive and false-negative probe classifications. 

 
Reported are the number of false-positive and false-negative probe classifications using 
either a naïve cutoff or a Hidden Markov Model. Numbers of the naïve cutoff are based on 
the most optimal cutoff in Figure 8c (smallest number of FP + FN). 

R60 R202
FP FN FP + FN FP FN FP + FN

G/R – naïve cutoff 17,973 120,335 138,308 (0.251) 25,945 111,320 137,265 (0.249)
G/R – HMM 12,796 114,197 126,993 (0.230) 12,385 110,766 123,151 (0.224)
R/G – naïve cutoff 16,763 97,826 114,589 (0.208) 24,932 83,325 108,257 (0.197)
R/G – HMM 11,564 108,238 119,802 (0.217) 13,985 101,413 115,398 (0.210)
DS – naïve cutoff 14,901 107,635 122,536 (0.222) 15,852 101,227 117,079 (0.213)
DS – HMM 12,905 107,769 120,674 (0.219) 15,179 100,496 115,675 (0.210)
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substantial dye-dependence, with genome-wide rates of about 0.25, 0.20, and 0.22 
for the G/R, R/G, and the DS data, respectively (Fig. 8; Table 2). Hence, the G/R data  
 
 

 
Figure 8. False-positive and false-negative rates using a naïve classifier. Shown are the 
proportions of false-positive and false-negative probe classifications for different 
classification cutoffs of the MeDIP data (a) and (b) and the sum of the two (c). The G/R data 
shows a substantial higher proportion of FP and FN compared to the R/G data. 

Pr
op

or
tio

n
Pr

op
or

tio
n

Pr
op

or
tio

n

Cutoff MeDIP

R60 R202

Cutoff MeDIP

a

b

c



Chapter 2 

64 

yields the highest misclassification rate which is likely caused by its high signal 
variance. Again, the dye-swap does not correct this problem (Fig. 8). See Note 2 for 
recommendations concerning the labeling of the IP and input DNA. 
 

2.3.2.3 MeDIP signal classification based on Hidden Markov Model 
 
This dye bias can be partially alleviated if one considers, instead of the above naïve 
classifier, a more sophisticated statistical classification approach based on HMMs 
(Fig. 9, Table 2). We have recently proposed an HMM for the analysis of MeDIP-chip 
[15]. This model has been shown to outperform alternative methods in terms of 
speed, sensitivity, and specificity [28]. An important aspect of this model is, as with 
HMMs in general, that it borrows signal information from immediately surrounding 
probes, and therefore significantly reduces measurement noise. This leads to a more 
robust inference of the underlying methylation status of a given probe window and 
makes methylation analysis less susceptible to dye effects. Figure 9 illustrates this 
point clearly; it shows that the HMM analysis of the R/G, G/R, and DS data results in 
much smaller misclassification differences between these data sets in terms of 
overall false-positive and false-negative rates (about 0.23, 0.21, and 0.21 for the G/R, 
R/G, and the DS data, respectively; Table 2). See Note 3 for recommendations 
concerning the analysis of the data. Nonetheless, despite this improvement, dye-
related differences, particularly in the G/R data, do persist and continue to affect our 
ability to infer the correct methylation status of a given genomic region (Fig. 9). It is  
 
 

 
 
Figure 9. Comparison performance of a naïve classifier and a Hidden Markov Model. Shown 
are the proportion of misclassified probes (FP + FN) obtained using the most optimal MeDIP 
classification cutoff (MeDIP-cut; smallest number in Fig. 8c) or the HMM classification (HMM-
class). The color of each bar corresponds to the three data sets (green: G/R data; red: R/G 
data; blue: DS data). 
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therefore of interest to identify and characterize the sources of this bias in the 
MeDIP-chip data. 
 

2.3.3 Dye bias in MeDIP-chip is associated with low methylation levels and 
CG content 

 
To explore the source of the observed dye bias, we start by plotting the two dye 
combinations (G/R and R/G) in a scatter plot (Fig. 10a). We find that there is a subset 
of the probes that shows a relatively higher signal for the G/R data compared to the 
R/G data. Inspection of the WGBS-seq signal corresponding to these probes indicates 
that the methylation level of these probe windows should be low (high density of 
probes around zero). This expectation is indeed reflected in the R/G signal (Fig. 10c), 
but not in the G/R signal which seems to be vastly exaggerated (Fig. 10b). Since the 
dye-swap signal yields only an average of the R/G and G/R data it cannot correct this 
bias (Fig. 10d). 
 Annotation analysis of this subset of probes shows that they contain a high 
proportion of transposon and intergenic sequences relative to genic sequences (Fig. 
11a). In Arabidopsis, it is well known that genes have a higher CG percentage 
compared to transposons (Fig. 12). This raises the question whether CG content may 
be a key contributor to the observed dye bias. In order to explore this possibility 
more generally, we calculated the CG content of the probe window for each probe 
on the tiling array and examined its relationship with signal intensity in the G/R, R/G, 
and DS data sets. For clarity we restricted our analysis to probes that were 
unmethylated according to WGBS-seq (see Table 1). In this way we could rule out 
any trends arising from differences in methylation levels. Our analysis shows that the 
signal intensity of unmethylated regions in the G/R data is subject to strong dye 
biases (Fig. 11b). We find a clear negative linear relationship between CG content 
and signal intensity; that is, signal intensity is highest for probes with low CG content 
and lowest for probes with high CG content. By contrast, CG content appears to have 
little influence on the signal intensity in the R/G data (Fig. 11c), and the DS displays 
intermediate levels of CG bias (Fig. 11d). See Note 2 for recommendations 
concerning the labeling of the IP and input DNA. 
 Royce et al. [30] considered normalizing tiling array signals for the CG 
content of probes. While this procedure may work for some applications, such as 
transcription factor binding data (ChIP-chip), its application to gene expression tiling 
arrays has been shown to lead to overnormalization and hence to a loss of signal 
information [31]. Overnormalization is expected to be even more drastic in MeDIP- 
 



Chapter 2 

66 

 
Figure 10. Inspection of non-correlating probes using WGBS-seq signal data. (a) Shown is a 
density plot of the difference of both dye combinations. The inset shows a scatter plot of 
both dye combinations. Probes with a signal difference higher than two are indicated with 
dark gray. (b)–(d) Scatter plots of WGBS-seq data (y-axis) and each of the three MeDIP data 
sets (x-axis). The non-correlating probes (dark gray in panel a) are highlighted according to 
the color assigned to each data set (green: G/R data; red: R/G data; blue: DS data). The black 
line shows the median WGBS-seq signal for sliding windows along the entire MeDIP signal 
range. 
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Figure 11. Annotation analysis and CG bias of unmethylated probes. (a) Shown is the 
proportion of genic, transposable element (TE) and intergenic probes along the entire MeDIP 
difference range (G/R–R/G). (b)–(d) Scatter plots of the CG percentage of each probe window 
(y-axis) and the MeDIP signal of each of the three MeDIP data sets (x-axis). The trend lines 
show a clear negative relationship between CG content and signal intensity. The color of each 
line corresponds to the three data sets (green: G/R data; red: R/G data; blue: DS data). 
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chip data where CG content is correlated with DNA methylation levels. Correcting 
for CG content, in this case, will reduce signal intensities arising from probes with 
true positive methylation measurements. A simple solution to bypass these issues is 
to work exclusively with R/G data where CG bias appears to be minimal (Fig. 11c, see 
Note 2). 
 

 
Figure 12. CG content of genes and transposons. Shown are the CG content distributions of 
genes and transposable elements (TEs). 
 
 

2.4 Concluding remark 
 
Although the mapping resolution of MeDIP-chip (~165 bps) is much lower than the 
single cytosine measurements that can be achieved with WGBS-seq, this array-based 
technology provides a level of resolution that should be sufficient for the detection 
of most functionally important differentially methylated regions. MeDIP-chip 
requires fewer bioinformatic resources and therefore scales more easily to large 
samples. Provided several experimental and data preparation steps are followed (see 
Note 1–3), MeDIP-chip presents a viable alternative to WGBS-seq in future 
population epigenetic studies. 
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2.5 Notes 
 

1. Recommendations for data preparation: Prior to MeDIP-chip analysis, 
potentially cross-hybridizing probes should be removed. They typically 
show signal intensities similar to probes that correspond to genomic 
regions with high methylation levels (Fig. 3). Failure to remove cross-
hybridizing probes can therefore result in the detection of a large 
number of false positives. However, removal of these probes will result 
in loss of measurement coverage; but this drawback is no different from 
sequencing-based approaches where short reads that do not map 
uniquely are usually excluded. 

2. Recommendations for dye-labeling: Dye-related biases can pose serious 
concerns in dual-channel MeDIP-chip. Labeling the immunoprecipitated 
(IP) DNA with Cy3 (green) and the control DNA (input) with Cy5 (red) 
(i.e., G/R data) introduces strong signal distortions that significantly 
compromise measurement accuracies. These biases are particularly 
pronounced in genomic regions with low methylation and low CG 
content. This signal bias disappears when the opposite labeling strategy 
is employed (labeling IP with Cy5 and input with Cy3, i.e., R/G data). As 
a result of the G/R dye bias, dye-swap experiments in MeDIP-chip always 
perform worse than the R/G data alone, despite the fact that DS consists 
of twice as much data. Hence, despite its routine use in expression 
micro-array studies, we do not recommend the use of dye-swaps in dual-
channel MeDIP-chip. This means that experimental costs can be reduced 
by a factor of two without loss of measurement information. 

3. Recommendations for data analysis: The classification of probes as 
methylated or unmethylated requires a sound statistical approach. The 
best methods for MeDIP-chip are variants of HMMs [28]. The 
assumptions of HMMs are fundamentally consistent with the data 
properties arising from MeDIP-chip experiments. These assumptions are 
the following: (1) A probe signal is a noisy proxy for an underlying 
(unobserved) methylation state and (2) methylation states are spatially 
correlated along the genome owing to the array design and the 
propensity of DNA methylation to occur in clusters. Our application of a 
recent HMM designed for Arabidopsis MeDIP-chip [15] resulted in a 
genome-wide false-positive rate of about 0.02 and false-negative rate of 
about 0.19 (a combined rate of 0.21) for the R/G data. This relatively high 
false-negative rate implies that the application of this HMM misses 
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regions with low methylation levels. Less customized methods may yield 
even higher misclassifications. In population studies, this limitation will 
restrict the calling of DMRs to clear methylation differences between 
individuals (e.g., no methylation versus high methylation) and will likely 
fail to detect more subtle DMRs (e.g., no methylation versus low 
methylation). One way to improve this situation is to consider at least 
one additional technical R/G replicate. 
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Abstract 
 
The rate of meiotic crossing over (CO) varies considerably along chromosomes, 
leading to marked distortions between physical and genetic distances. The causes 
underlying this variation are being unraveled, and DNA sequence and chromatin 
states have emerged as key factors. However, the extent to which the suppression 
of COs within the repeat-rich pericentromeric regions of plant and mammalian 
chromosomes results from their high level of DNA polymorphisms and from their 
heterochromatic state, notably their dense DNA methylation, remains unknown. 
Here, we test the combined effect of removing sequence polymorphisms and repeat-
associated DNA methylation on the meiotic recombination landscape of an 
Arabidopsis mapping population. To do so, we use genome-wide DNA methylation 
data from a large panel of isogenic epigenetic recombinant inbred lines (epiRILs) to 
derive a recombination map based on 126 meiotically stable, differentially 
methylated regions covering 81.9 % of the genome. We demonstrate that the 
suppression of COs within pericentromeric regions of chromosomes persists in this 
experimental setting. Moreover, suppression is reinforced within 3-Mb regions 
flanking pericentromeric boundaries, and this effect appears to be compensated by 
increased recombination activity in chromosome arms. A direct comparison with 17 
classical Arabidopsis crosses shows that these recombination changes place the 
epiRILs at the boundary of the range of natural variation but are not severe enough 
to transgress that boundary significantly. This level of robustness is remarkable, 
considering that this population represents an extreme with key recombination 
barriers having been forced to a minimum. 
 

3.1 Introduction 
 
Meiotic recombination is a fundamental process in genetics whereby maternally and 
paternally inherited homologous chromosomes exchange material, either 
nonreciprocally by gene conversion or reciprocally by crossing over (CO). COs are not 
distributed uniformly along the genome but occur more often in chromosome arms 
and are strongly suppressed in pericentromeric regions [1–3], partly as a result of 
sequence and chromatin determinants [1, 4–8]. It is commonly believed that in 
plants and mammals high levels of DNA sequence polymorphisms as well as 
heterochromatic features associated with repeats, notably dense DNA methylation 
and transcriptional silencing, play a central role in this suppression [1, 4]. 

Suppression of COs by dense DNA methylation has been demonstrated 
experimentally in the fungus Ascobolus [7]. Specifically, COs were reduced when the 
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recombination interval was methylated on one homolog and were abolished almost 
completely when methylated on both homologs. In Arabidopsis, two recent mapping 
studies analyzed F2 progeny derived from crosses between Columbia ddm1 and 
met1 [Col(ddm1), Col(met1)] DNA methylation mutants and wild-type Landsberg 
[Ler(WT)] accessions and showed that loss of DNA methylation could not alleviate 
the suppression of COs in pericentromeric regions of chromosomes [9, 10]. However, 
as pointed out by the authors, this experimental design could not rule out an 
inhibitory effect of sequence divergence between Col and Ler on COs. 

An ideal design would use crosses between isogenic individuals, with one of 
the crossing partners having decreased DNA methylation levels throughout the 
genome [9]. Melamed-Bessudo and Levy [9] implemented such an approach by 
crossing Col(ddm1) mutant to Col(WT). Using two fluorescent markers spanning a 
16-centimorgan (cM) interval on the arm of chromosome 3, they detected increased 
CO rates in F2 plants derived from these parents relative to plants derived from a 
Col(WT) ×  Col(WT) control cross and concluded that COs in euchromatic regions can 
be up-regulated by loss of DNA methylation. A similar approach at a genome-wide 
scale and with high mapping resolution, particularly in pericentromeric regions, has 
not been attempted because of a lack of appropriate molecular and genetic tools. 
Hence, the combined effect of DNA methylation and sequence variation on COs has 
not been tested comprehensively in Arabidopsis or in any other higher eukaryote. 

We previously reported the construction of a large population of epigenetic 
recombinant inbred lines (epiRILs) in Arabidopsis [11, 12], which provides a powerful 
experimental system to conduct such a test. These epiRILs were obtained by first 
crossing a fourth-generation plant homozygous for the recessive ddm1-2 mutation 
with a near-isogenic WT individual. The ddm1-2 mutation mostly affects 
transposable elements (TEs) and other repeats, which lose DNA methylation and 
become transcriptionally reactivated in a transmissible manner in many instances 
[11–14]. However, transposition events are relatively rare [15]. 

Thus, F1 individuals can be considered homozygous throughout the genome, 
except at the DDM1 locus and at the few loci affected by TE mobilization, but have 
chromosome pairs that differ markedly in their DNA methylation levels and 
transcriptional activity over TEs and other repeats [11, 16]. A single F1 DDM1/ddm1 
individual was backcrossed to the WT parental line, and after the progeny 
homozygous for the WT DDM1 allele were selected, the epiRILs were propagated 
through seven rounds of selfing. In this design, more than 85% of all informative 
recombination events occur in the first two inbreeding generations (F1 and 
backcross), with fewer informative events being contributed by each subsequent 
generation [17]. 
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Previous targeted analysis indicated that many of the parental differences in DNA 
methylation and transcriptional activity of repeats are inherited stably in the epiRILs 
[11, 12]. Regions with segregating DNA methylation states therefore can serve as 
physical markers to detect the frequency and distribution of recombination events 
along chromosomes even though the two homologs have nearly identical DNA 
sequences. 

In this study we report the construction of a recombination map using 
genome-wide DNA methylation data from 123 epiRILs. This map was derived from 
126 meiotically stable differentially methylated regions (DMRs) covering 81.9 % of 
the total genome. Estimates of the genetic length for each chromosome revealed 
that global recombination rates are comparable with those of classical Arabidopsis 
crosses. On a local scale, we demonstrate that suppressed recombination activity 
within repeat-rich, pericentromeric regions of chromosomes is maintained robustly 
even after the removal of sequence polymorphisms and repeat-associated DNA 
methylation. Furthermore, we were able to identify 3-Mb regions flanking 
pericentromeric boundaries that appear to be subject to additional suppression and 
show that this effect is accompanied by increased recombination activity in 
chromosome arms. A direct comparison with 17 classical Arabidopsis crosses reveals 
that these recombination changes place the epiRILs at the boundary of the range of 
natural variation but appear not to be severe enough to transgress that boundary 
significantly. 
 

3.2 Results 
 

3.2.1 Construction of a recombination map using transgenerationally stable 
DMRs 

 
To demonstrate that transgenerationally stable DMRs can be used for the 
construction of a recombination map in an isogenic population, we carried out 
methylated DNA immunoprecipitation followed by hybridization to a whole-genome 
DNA tiling array (MeDIP-chip) on 123 epiRILs and on the two parental lines (256 array 
experiments including replicates). The 123 epiRILs originally were chosen using a 
selective (epi)genotyping strategy for two uncorrelated complex traits, flowering 
time and root length. We used a three-state Hidden Markov Model (HMM) to classify 
tiling array signals into three underlying DNA methylation states [18]: unmethylated 
(U), intermediate methylation (I), or methylated (M). Benchmarking of these HMM 
calls against whole-genome bisulfite sequencing data (~30×) for six epiRILs 
confirmed that both the MeDIP protocol and the analysis method performed well (SI 
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Appendix, Fig. S1 and Table S1). Comparison of the two parental DNA methylomes 
revealed 2,611 DMRs representing clear instances of methylation loss in ddm1 
(transitions from M to U). These DMRs (median length: 1,211 bp; range: 318–24,624 
bp) were distributed throughout the genome but, as expected, were more abundant 
in pericentromeric regions (Fig. 1A and SI Appendix, Table S2) [19]. 
 

 
 
 
 
 
 

Figure 1. Recombination map construction. (A) Genome-wide distribution of the 2,611 
parental DMRs (Top) and the 126 DMRs (i.e., markers; Middle) retained for construction of 
the recombination map (purple, Bottom) for each of the five Arabidopsis chromosomes. The 
mapping between physical and genetic positions of markers is shown. (B) Inference of 
inherited WT (green) and ddm1 (red) haplotypes along the genome (x-axis) as inferred from 
the recombination map for each of the 123 epiRILs (y-axis) (SI Appendix, Table S5). 
Chromosome extremities not covered by the genetic map are indicated in gray. The genome 
of epiRIL 344 is indicated by an arrow. A schematic representation of each chromosome is 
plotted above the map with the physical location of the DDM1 gene shown at the end of 
chromosome 5. (C) Transgenerational methylation data for epiRIL 344. Shown are the 
average methylation signals for the 126 markers, with regions that are predicted to become 
fixed for the ddm1 haplotypes (thin red lines) and the WT haplotypes (thin green lines) after 
seven selfing generations. The average signals (red and green thick solid lines) are in 
agreement with Mendelian inbreeding theory (black solid lines). 
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We examined the DNA methylation state at all parental DMRs in each of the 123 
epiRILs and inferred their parent of origin (i.e., epigenotypes). Segregation was not 
compatible with stable inheritance of ddm1-induced DNA hypomethylation for 1,744 
(66.8 %) of the parental DMRs, and in most of these cases our data pointed to fully 
or partially penetrant reversion to WT DNA methylation. In contrast, 867 (33.2%) of 
the parental DMRs segregated in the expected 3:1 Mendelian ratio (SI Appendix, Fig. 
S2 and Table S3). Stable DMRs were associated with a comparatively lower 
abundance of siRNAs in the WT and ddm1 parental lines (SI Appendix, Fig. S3). These 
findings are in agreement with previous analyses [11, 12] and indicated that the 867 
stable DMRs are not efficient targets of siRNA-mediated DNA remethylation, even 
after eight rounds of meiosis. These stable DMRs therefore could serve as physical 
markers in an extension of the Lander–Green algorithm [20] to derive a genetic map. 
After application of the algorithm and removal of mainly genetically redundant 
markers (i.e., markers located less than 0.0001 cM apart), 126 of the original 867 
markers were retained (Fig. 1A and B and SI Appendix, Fig. S2 and Table S4). These 
126 markers covered ~81.9 % of the total genome (74.7, 77.0, 98.4, 91.1, and 73.0 % 
of chromosomes 1, 2, 3, 4, and 5, respectively). 

Many of the 126 markers contained TE sequences, consistent with the 
targeted effect of ddm1 on these and other repeats (SI Appendix, Fig. S4). However, 
in a vast majority of cases, markers included only TE relics, which likely have lost their 
capacity to be mobilized (SI Appendix, Table S6). Indeed, both comparative genomic 
hybridization (SI Appendix, Fig. S5) and preliminary whole-genome resequencing 
suggested that none of the 126 DMRs contain sequences that were mobilized in the 
parental ddm1 line or the epiRILs (SI Appendix, Table S6). Consistent with this finding, 
pair-wise recombination fractions between the 126 markers indicated a well-
behaved and robust genetic map, reminiscent of those typically seen in classical 
crosses involving DNA sequence markers, with high correlation among linked loci and 
virtually no correlations among loci in different chromosomes (SI Appendix, Fig. S6). 
Moreover, all inferred ddm1-inherited non-recombinant pericentromeric 
haplotypes contained significantly less DNA methylation and were more actively 
transcribed than their WT counterparts (SI Appendix, Figs. S7 and S8). 

To test further the transgenerational stability of the 126 markers as well as 
our inference of the parental epigenotypes at these marker locations, we performed 
genome-wide DNA methylation analysis for one selected line (epiRIL 344) for each 
of its seven selfing generations (7 × 2 replicates = 14 array experiments). Fixation 
occurred for the predicted parental epigenotype in each case, and the rate of 
approach toward fixation was consistent with Mendelian inbreeding theory for a 
backcross-derived RIL [19] (Fig. 1C). Taken together, these results rule out any 
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ambiguity in the actual location or DNA methylation state of the stable DMRs used 
for constructing the genetic map. 
 

3.2.2 Total genetic length in the epiRILs does not diverge significantly from 
the natural range 

 
One approach for evaluating the epiRILs recombination map is by comparison with 
a Col(WT) × Col(WT)-derived reference cross. In this set-up, changes in 
recombination patterns can be attributed directly to DNA methylation loss. 
However, tracking recombination events in such a reference is experimentally 
challenging. It requires a system akin to the fluorescent marker reporters used by 
Melamed-Bessudo and Levy [9], which does not easily scale genome-wide. An 
alternative approach is to evaluate the epiRILs in the context of natural variation. In 
terms of DNA sequence and DNA methylome divergence of its founder parental 
lines, the epiRILs can be viewed as representing an extreme situation with key 
barriers to recombination having been forced to a minimum. An important question 
therefore is how genome-wide recombination patterns in this population compare 
with those seen in crosses derived from different pairs of natural accessions. 

We estimated the genetic length for each of the five epiRIL chromosomes 
using Haldane’s map function. The lengths were 106.3, 61.4, 101.4, 82.7, and 65.9 
cM for chromosomes 1–5, respectively, and correlated positively with physical 
chromosome length (SI Appendix, Fig. S9). The total length of the genetic map was 
417.7 cM, yielding an average marker spacing of ~0.804 Mb (3.45 cM). These 
estimates are similar to those previously reported for genetic maps based on 
classical Arabidopsis crosses [21–24]. The use of other map functions that account 
for CO interference, such as the Kosambi or Carter and Falconer functions, yielded 
very similar results (SI Appendix, Fig. S10). To perform a more direct comparison 
between the epiRIL map and those of classical Arabidopsis crosses, we reanalyzed 
recombination data obtained for 17 F2 populations [24] that were derived from pairs 
of 18 distinct natural accessions. In total, these populations consisted of 7,045 plants 
(~410 plants per cross; range: 235–462 plants), which were genotyped at 235 
markers on average (range: 215–257 markers) [24]. To facilitate a meaningful 
comparison, we constructed a consensus map using 83 markers that were shared 
across populations (SI Appendix, Fig. S11 and Table S7). Thorough testing showed 
that the reduction to 83 markers in the epiRIL and F2 maps led to no significant loss 
of information in capturing the linkage structure along chromosomes (SI Appendix, 
Figs. S12 and S13), and the 83 markers therefore were deemed appropriate for this 
comparative analysis. 
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Figure 2. Comparison of global and local recombination patterns in the epiRILs and the 17 F2 
populations [24]. (A) Chromosome-wide gene (light gray line) and transposon (dark line) 
density distribution. The 3-Mb windows bracketing the intersection points between 
transposon- and gene-dense regions are indicated in orange. (B) Cumulative cM lengths of 
the epiRILs (thick purple line) and each of the F2 populations (thin green lines) using the 
consensus map. Purple shading shows the ±95 % confidence interval (CI).The thick green line 
denotes the average F2 cumulative length (in cM). The dotted vertical lines define the 
pericentromeric regions of each chromosome. (C) The distribution of normalized 
recombination intensities (cM/Mb of a given marker interval divided by the cM/Mb 
chromosome average) shows suppression of recombination within pericentromeric regions 
and elevation at its boundaries. Color coding is as in B. 
 
 
Estimates of the genetic length of each of the five chromosomes revealed substantial 
natural variation among the F2 populations (Figs. 2B and 3A). However, the genetic 
lengths of the epiRIL chromosomes did not diverge significantly from the natural 
range (Figs. 2B and 3A). The exception was chromosome 1, where we observed a 
significant increase relative to five of the F2 crosses. Overall, therefore, our data 
indicate that the global recombination rate in the epiRILs is not altered drastically. 
Nonetheless, we noted a clear, but non-significant, trend toward longer genetic 
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lengths for chromosomes 1–4 as compared with the F2 populations (Fig. 3A); this 
trend is at least partly consistent with DNA methylation and DNA sequence 
polymorphisms acting as barriers to the global recombination rate in Arabidopsis. 
 
 

 
 

Figure 3. Estimated genetic lengths and fold-change recombination intensities. (A) Estimated 
genetic lengths (±95 % CI) of the epiRILs (purple) and each of the 17 F2 populations (green) 
[24]. (B–D) Fold-change in recombination intensity [(cM/Mb) region/(cM/Mb) chromosome 
average] ±95 % CI in pericentromeric regions (B), AT zones defined by a 3-Mb window 
bracketing the intersection point between transposon- and gene-dense regions at 
pericentromeric boundaries (C), and chromosome arms (D). Purple arrows indicate the 
location of the epiRILs when applicable. The values presented in each panel are ordered to 
highlight trends in the epiRILs recombination landscape. The identifiers of individual F2 
crosses corresponding to this ordering can be found in SI Appendix, Table S11.  
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3.2.3 Suppression of pericentromeric recombination persists in the epiRILs 
and shows a trend toward additional reinforcement 

 
To explore the relationship between the epiRILs map and those of the different F2 
crosses at a subchromosomal scale, we examined in more detail the distribution of 
recombination intensities, expressed as cM/Mb, for each marker interval along the 
genome (Fig. 2C). All populations, including the epiRILs, had clearly suppressed 
recombination activity across pericentromeric regions relative to the chromosome 
averages (Figs. 2C and 3B). The exception to this trend was chromosome 4, for which 
the epiRILs showed a slight increase of recombination intensity (Fig. 3B). However, 
the presence of the heterochromatic knob on chromosome 4 in the Columbia 
accession, but not in other accessions, makes this result difficult to interpret [10]. 

Specifically, recombination intensities in pericentromeric regions of epiRIL 
chromosomes 1, 2, 3, and 5 were, respectively, 2.50, 6.88, 2.53, and 2.01 times lower 
than the chromosome average, which compares to 1.27 (range: 0.97–2.15), 1.51 
(range: 0.95–3.68), 1.52 (range: 0.90–2.48), and 1.20 (range: 0.87–1.98) in the F2 
populations (Fig. 3B and SI Appendix, Table S8). This persistent suppression effect in 
the epiRIL agrees with the results of Melamed-Bessudo and Levy [9] and Mirouze et 
al. [10], who examined mapping populations derived from a Col(ddm1) × Ler(WT) 
and a Col(met1) × Ler(WT) cross, respectively. Hence, loss of DNA methylation 
appears to be insufficient to release pericentromeric suppression of recombination, 
even in the absence of DNA sequence polymorphisms. On the contrary, we found a 
clear trend toward enhanced suppression in the epiRILs: Recombination intensities 
in this population were consistently at the bottom of the natural range compared 
with the F2 populations, even though chromosome-wide recombination rates were 
comparatively large. Enhanced suppressive effects also were reported by Melamed-
Bessudo and Levy [9] and Mirouze et al. [10], thus highlighting an unexpected and 
complex relationship between DNA methylation and the suppression of 
recombination in pericentromeric regions of Arabidopsis chromosomes. 
 

3.2.4 Reinforced suppression of recombination extends to pericentromeric 
boundaries in the epiRILs and appears to be compensated by increased 
recombination in chromosome arms 

 
In contrast to core pericentromeric regions, recombination intensities in the F2 
populations increase rapidly at pericentromeric boundaries with chromosome arms 
(Figs. 2C and 3C). An important property of these regions is that they correspond to 
major transitions in genome content from TE-rich to gene-rich sequences (Fig. 2A) 
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and also have been described recently as hotspots of historical recombination 
activity at the species level (SI Appendix, Fig. S14) [25]. We found that nearly 40 % of 
all detected recombination breakpoints in the F2 populations mapped within a 3-Mb 
window bracketing the intersection point in these transition zones (henceforth 
referred to as “annotation transition zones”; AT zones), yielding local recombination 
intensities that were consistently above the chromosome averages (Fig. 3C and SI 
Appendix, Fig. S15 and Table S8). 

This finding differs strongly from the situation seen in the epiRILs: AT zones 
accounted for only 25.31% of all detected recombinants in this population, and 
recombination intensities were close to the chromosome average (in chromosomes 
3 and 4) or even below it (in chromosomes 1, 2, and 5) (Fig. 3C and SI Appendix, Table 
S8). These results suggest that the enhanced suppression of recombination seen in 
the epiRIL pericentromeric regions (see above) is driven at least in part by the more 
localized reduction of recombination within AT zones, which cover (on average) only 
63.4% of the pericentromeric regions on either side of the centromeres. The two 
previous studies using mapping populations derived from crosses between 
Col(ddm1) and Ler(WT) [9] and between Col(met1) and Ler(WT)  [10] were not able 
to delineate these local effects, most likely because of the sparsity of their genetic 
markers (two to three markers per pericentromeric region). Marker density in the 
epiRIL map, in contrast, was relatively high within AT zones and even permitted fine 
mapping of shared and nonshared recombination breakpoints to a resolution as low 
as 4 kb (SI Appendix, Figs. S16 and S17 and Tables S9 and S10). 

Furthermore, our data indicate that suppression of recombination within AT 
zones in the epiRILs is accompanied by increased recombination in chromosome 
arms (Fig. 3D and SI Appendix, Fig. S18). This apparent compensatory effect 
reconciles the enhanced local suppression seen in the epiRILs with the earlier 
observation that chromosome-wide recombination rates are relatively large 
compared with the F2 populations. This effect was most pronounced on epiRIL 
chromosomes 1, 2, and 5 (the chromosomes with the strongest suppression in the 
AT zone), with recombination intensities being 1.23, 1.6, and 1.3 times above the 
chromosomes’ average (SI Appendix, Table S8). We failed to identify a similar trend 
in the F2 populations (SI Appendix, Fig. S18 and Table S8), suggesting that this effect 
is a specific feature of the epiRIL recombination landscape. 
 

3.3 Discussion 
 
In this study we demonstrate that stable DNA methylation differences can be used 
as physical markers to derive genome-wide recombination patterns in a near 
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isogenic population of epiRILs. We find that recombination suppression is 
maintained robustly in pericentromeric regions of the epiRILs, despite the extensive 
loss of sequence variation and of DNA methylation and transcriptional silencing over 
repeats. This observation indicates that these factors do not play a major role in the 
suppression of pericentromeric COs. This finding is contrary to common belief and is 
particularly intriguing given the interplay between recombination and transcription 
observed in yeast and the mouse [26, 27]. Whether mechanisms exist in Arabidopsis 
that actively sequester the recombination machinery away from gene-promoter 
regions or other genomic elements, as in the mouse [27], remains to be determined. 

Nonetheless, our results indicate that loss of DNA methylation over repeat 
sequences can lead to a local reinforcement of recombination suppression in 
pericentromeric regions and to increased recombination activity along chromosome 
arms. Similar results were reported by Melamed-Bessudo and Levy [9] and Mirouze 
et al. [10] using genetically divergent populations. Therefore we conclude that the 
absence of sequence polymorphisms is insufficient to counteract the enhanced 
suppressive effects induced by the loss of DNA methylation in pericentromeric 
regions. On the other hand, the lack of sequence polymorphisms still may be partly 
responsible for the increased recombination rates observed in chromosome 
extremities [9]. 

Melamed-Bessudo and Levy [9] demonstrated that ddm1-induced 
demethylation of only one homolog produces the same recombination changes seen 
when both homologs are demethylated. Our results and conclusions therefore 
should be generalizable to the two-homolog situation. However, it has been shown 
in Ascobolus that DNA methylation of a known recombination hotspot inhibits COs 
more severely when both homologs are methylated [7]. Similar localized dosage 
effects may therefore also be present in Arabidopsis. 

Our study and those of Melamed-Bessudo and Levy [9] and Mirouze et al. 
[10] have used well-characterized ddm1 and met1 DNA methylation mutants as a 
tool to perturb genome-wide methylation levels experimentally. Both ddm1 and 
met1 experience a nearly 70 % reduction in DNA methylation levels genome-wide. 
This drastic loss probably sets an upper limit to the amount of demethylation that 
can be incurred in nature. Indeed, it is difficult to conceive of mechanisms that would 
elicit similar or more severe changes under natural settings, unless they involve 
spontaneous mutations in genes important for DNA methylation control, such as 
ddm1 or met1. Interestingly, a recent analysis of Arabidopsis mutation accumulation 
lines showed that drastic alterations in the methylome of one outlier line were likely 
caused by a spontaneous mutation in a methyltransferase gene [28, 29], which must 
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have arisen during just 30 generations of selfing. This observation suggests that 
similar events are certainly plausible under natural conditions. 

An assessment of whether strong methylation loss can elicit recombination 
changes at magnitudes that are sufficient to drive genome evolution in this species 
has been lacking. Our study is an initial step in providing such an assessment. Our 
analysis of the 17 F2 populations derived from 18 natural accessions [24] allowed us 
to quantify the magnitude of the recombination changes observed in the epiRILs in 
the context of natural variation. Although we find that the epiRILs nearly always are 
situated at the boundary of the natural range, there is no strong evidence that local 
and global recombination patterns in this population markedly transgress the natural 
range. Indeed, in many cases, several of the F2 populations displayed even more 
extreme divergence from the F2 population average than did the epiRILs. These 
findings lead us to conclude that severe losses of DNA methylation along Arabidopsis 
chromosomes have no drastic implications for recombination-mediated genome 
evolution. This high level of robustness raises questions concerning the precise 
mechanisms that have shaped the recombination landscape in this species in the first 
place. 

Of course, severe depletion of DNA methylation can drive other important 
events, such as large-scale structural rearrangements and polyploidization, which 
may impact the course of genome evolution. In addition, natural epigenetic 
variation, such as that associated with differential DNA methylation, can act on 
complex traits that are under natural selection [30], thereby changing linkage 
disequilibrium relations within and across chromosomes. However, understanding 
and documenting the impact of epigenetic variants on complex traits is challenging, 
mainly because of the technical difficulties in ruling out the confounding effect of 
DNA sequence polymorphisms [31]. Because of this limitation, it has been argued 
that the epiRILs constitute an ideal system for the study of epigenetic inheritance in 
Arabidopsis [17, 32–34]. We and others have shown recently that many adaptive 
phenotypes, such as plant height, flowering time, and growth rate, are highly 
heritable in this population [12, 35, 36]. Segregating phenotypic effects also have 
been observed in another epiRIL population which was obtained from a cross 
between Col(met1) and Col(WT) [37]. 

A logical next step in the analysis of these populations is to map and 
characterize the epigenetic basis of these complex traits. The linkage map reported 
here (Fig. 1B) can be used in conjunction with classical quantitative trait-locus 
mapping methods to achieve this characterization in the ddm1-derived epiRILs. 
Ultimately, such efforts should contribute significantly to our understanding of 
epigenetics in adaptive evolution. 
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3.4 Materials and methods 
 

3.4.1 Methylome analysis 
 
MeDIP was carried out as previously described [18] followed by hybridization to a 
custom NimbleGen tiling array covering the Arabidopsis genome at 165 nt resolution 
[38]. Including dye-swaps, we performed a total of 256 array experiments (SI 
Appendix, section 1). For each array, probe signals were classified into three 
underlying methylation states, methylated (M), intermediate (I), or unmethylated 
(U), using the HMM presented previously (SI Appendix, section 2)  [18]. These 
inferred methylation states were cross-validated against whole-genome bisulfite 
sequencing data of six epiRILs (SI Appendix, section 3, Fig. S1, and Table S1). 
 

3.4.2 Definition of parental DMRs 
 
We conducted a probe-level comparison of the HMM calls between the ddm1 and 
WT parents (SI Appendix, section 4). Probe-level methylation calls were denoted as 
polymorphic when the parents differed (e.g., I in ddm1 and M in WT) and as 
nonpolymorphic when they were identical (e.g., U in ddm1 and U in WT). 
Neighboring probes reporting the same polymorphic state were collapsed into single 
regions. Hence, parental DMRs were defined as regions of at least three consecutive 
probes that reported the same extreme polymorphic state (i.e., transitions from M 
in WT to U in ddm1 or vice versa). We found 2,611 DMRs, all of which were U in the 
ddm1. Detailed summary statistics are given in SI Appendix, Table S2. 
 

3.4.3 Calling of parental origin of DMRs in the epiRILs 
 
For any given epiRIL the parental origin of each DMR (i.e., epigenotype) was 
determined using an HMM-based inference method (SI Appendix, section 4). 
 

3.4.4 Mendelian segregation criterion 
 
Under the assumption that DMRs were stable for eight generations of breeding, both 
WT- and ddm1-like parental states should appear according to Mendelian 
segregation ratios in the epiRILs. The sampling variation around these ratios was 
calculated from a binomial distribution taking into account the sample size (n = 123), 
the cross design, and the 8 % F2 contamination previously reported [12]. DMRs in 
the epiRILs showing a percentage of WT-like states between 62.7 % and 83.3 % (the 
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expected value being 73 %) were taken as putative transgenerationally stable 
markers. In total 867 parental DMRs fulfilled this criterion and were used 
subsequently as a starting point for map construction (SI Appendix, section 5, Fig. S2, 
and Table S3). 
 

3.4.5 Extension of Lander–Green algorithm 
 
Derivation of a genetic map using DMRs was carried out through an extension of the 
Lander-Green algorithm [20], which was designed to accommodate marker and 
individual specific error rates. Our implementation of this algorithm is detailed in SI 
Appendix, section 6. 
 

3.4.6 Transcriptome analysis of epiRILs and ddm1 seedlings 
 
Whole-genome expression profiling was performed using a custom NimbleGen tiling 
array [37]. For experimental details, see SI Appendix, section 7. 
 

3.4.7 Transgenerational analysis of DMRs 
 
MeDIP-chip was carried out for epiRIL 344 for seven generations of selfing after the 
backcross, following the protocol described above. At each generation, DNA from 
five siblings was pooled. The expected signal behavior was derived using a Markov 
Chain strategy, considering the Mendelian inheritance of the marker probes (SI 
Appendix, section 8). 
 

3.4.8 Construction of the consensus map 
 
To facilitate a meaningful comparison of the epiRILs map with those of the 17 
different F2 populations, we constructed a consensus map (SI Appendix, section 9 
and Fig. S11) by using the epiRILs map as a reference and selecting from each of the 
F2 maps the SNPs closest to the reference, allowing a maximum distance of ±1.39 
Mb. The average distance from reference was ±0.17 Mb, which led to little loss of 
information in capturing the recombination structure along the genome (SI 
Appendix, Figs. S12 and S13). Markers deemed too distant were not included in the 
consensus map. This process resulted in 83 markers (SI Appendix, Table S7). 
 
 
 



Chapter 3 

88 

3.4.9 Recombination intensities at major annotation transitions 
 
Fig. 2A and C shows that the recombination intensity increases rapidly at the 
pericentromeric boundaries, which also coincide with major transitions in genome 
content from genes to transposons. To find the area where the recombination 
intensity is maximal, we implemented a sliding window approach (SI Appendix, 
section 10 and Fig. S15). 
 

3.5 Note added in proof 
 
During the reviewing process, Yelina et al. (Yelina NE, Choi K, Chelysheva L, Macaulay 
M, de Snoo B, et al. (2012) Epigenetic remodeling of meiotic crossover frequency in 
Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet 8: e1002844) 
reported elevated centromere-proximal COs, coincident with pericentromeric 
decreases and distal increases in met1 mutants. However, total numbers of CO 
events were found to be similar between wild-type and met1. These results support 
the trends observed in the epiRIL population. 
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Abstract 
 
Quantifying the impact of heritable epigenetic variation on complex traits is an 
emerging challenge in population genetics. Here, we analyze a population of isogenic 
Arabidopsis lines that segregate experimentally induced DNA methylation changes 
at hundreds of regions across the genome. We demonstrate that several of these 
differentially methylated regions (DMRs) act as bona fide epigenetic quantitative 
trait loci (QTLepi), accounting for 60 to 90% of the heritability for two complex traits, 
flowering time and primary root length. These QTLepi are reproducible and can be 
subjected to artificial selection. Many of the experimentally induced DMRs are also 
variable in natural populations of this species and may thus provide an epigenetic 
basis for Darwinian evolution independently of DNA sequence changes. 
 

4.1 Introduction 
 
Methylation of cytosines is an epigenetic mark involved in the silencing of 
transposable elements (TEs) and genes [1]. Despite its functional conservation across 
many species [2, 3], intraspecific surveys have revealed widespread variation in DNA 
methylation patterns within populations [4–6]. Estimates in the model plant 
Arabidopsis thaliana indicate that heritable changes in the methylation status of 
clusters of cytosines, which could be functionally more relevant than individual 
cytosines [7], arise spontaneously at rates similar to that of DNA sequence mutations 
[8, 9]. A key challenge in population genetics is to show that epigenetic variants exist 
independently of cis- or trans-acting DNA sequence changes, are stably transmitted 
over many sexual generations, and are associated with heritable phenotypic 
variation [10]. Addressing this challenge using natural populations continues to pose 
major technical difficulties. 

To overcome these difficulties, we established in Arabidopsis a population of 
so-called epigenetic recombinant inbred lines (epiRILs) that have almost identical 
DNA sequences but segregate many differences in DNA methylation [11]. To derive 
this population, a plant homozygous for the recessive ddm1-2 mutation was first 
crossed with a near-isogenic wild-type (WT) individual. The ddm1-2 mutation leads 
to a loss of DNA methylation and silencing over transposable elements (TEs) mainly, 
with potential consequences on the expression of neighboring genes [12], but 
transposition events are relatively rare [13]. Importantly, some of the DNA 
methylation and expression changes induced by ddm1-2 are inherited independently 
of the mutation [14, 15]. A single F1 DDM1/ddm1-2 individual was therefore 
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backcrossed to the WT parental line, and after selection of F2 progeny homozygous 
for the DDM1 allele, the epiRILs (N > 500) were selfed for six generations (Fig. S1). 

Phenotypic analysis revealed significant broad-sense heritability in the 
epiRILs, with estimates ranging from about 0.05 to 0.4 [11, 16, 17]. Theoretical 
predictions indicate that these heritability values are consistent with a small number 
of parentally derived quantitative trait loci (QTL) [17, 18]. We hypothesized that 
these QTL are caused by stably inherited DNA methylation changes originating from 
the ddm1-2 mutant founder parent. Indeed, a survey of the DNA methylomes of a 
selected set of 123 epiRILs identified hundreds of parental differentially methylated 
regions (DMRs) showing Mendelian segregation patterns [19]. Using an informative 
subset of 126 of these DMRs as physical markers, we were able to derive a genetic 
map covering 81.9% of the total genome [19]. 

Here, we used this map in conjunction with classical linkage analysis to 
search for epigenetic quantitative trait loci (QTLepi) underlying complex traits in the 
epiRIL population. 
 

4.2 Results 
 

4.2.1 Interval mapping 
 
We interval-mapped [20] two highly heritable (and weakly correlated) complex 
traits, flowering time (FT1) and primary root length (RL1) (Fig. 1, Fig. S2, and Table 
S1). The FT1 phenotype was obtained in a greenhouse experiment [11], whereas RL1 
was measured in a climate-controlled growth chamber [21]. Linkage analysis 
detected highly significant QTL for FT1 on chromosome 1 (chr 1) [40.59 cM; 
logarithm of the odds ratio for linkage (LOD) = 8.72], chr 4 (30 cM; LOD = 4.43), and 
chr 5 (41.73 cM; LOD = 8.53) (Fig. 1A and Table S2). For these three QTL, the plants 
that inherited the WT epigenotype at the peak marker flowered significantly later 
than those with the ddm1-2 inherited epigenotype (Fig. S3A). The combined additive 
effects of these QTL explained 86.78% of the broad-sense heritability for the trait 
and 51.14% of the total phenotypic variance (Fig. 1B and Table S3). All three QTL 
were confirmed using independent flowering time data (FT2) collected in a field 
experiment [17] (Fig. 1, A and B, and Table S3), which indicates that these QTL are 
robust across environmental settings. For RL1, we detected significant QTL on chr 1 
(38 cM; LOD = 4.9), chr 2 (6.47 cM; LOD = 5.28), and chr 4 (50 cM; LOD = 2.65) (Fig. 
1C and Table S2). The WT-inherited epigenotype at the peak QTL markers was 
associated with longer primary roots compared with the ddm1-2 inherited 
epigenotype (Fig. S3B). The combined additive effect of these QTL explained 59.36% 
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of the estimated broad-sense heritability and 32.69% of the total phenotypic 
variance (Fig. 1D and Table S4). Again, all three QTL were confirmed with data from 
a replicate phenotyping experiment (RL2) (Fig. 1, C and D, and Table S4). 
 
 

 
 

Figure 1. Interval mapping results. (A) QTL mapping profiles for two independent flowering 
time measurements (FT1 and FT2), as well as their average (combined). FT1 was measured in 
the greenhouse and FT2 in a field experiment. (B) Percentages of phenotypic variance and of 
broad-sense heritability (H2) explained by the peak QTL markers (MM#). Error bars, ±1 
standard error of the estimate. (C) QTL mapping profiles for two independent primary root 
length measurements (RL1 and RL2), as well as their average (combined). Both RL1 and RL2 
were measured in a climate-controlled growth chamber. (D) Same as in (B), but for RL. 
 
 

4.2.2 Ruling out ddm1-2-derived TE insertions 
 
Our linkage mapping results indicate that the broad-sense heritability in the epiRILs 
is mainly due to causal variants originating from the parental generation and not 
from later generations of inbreeding. To examine the possibility that these parentally 
derived causal variants are transposable element (TE) insertions that occurred in the 
ddm1-2 parental line rather than DMRs, we resequenced a representative sample of 
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52 of the 123 epiRILs (Tables S5 and S6). Our analysis revealed, in addition to several 
nonshared TE insertions, a total of four shared TE insertions in the RL and FT QTL 
 
 

 
 

Figure 2. Ruling out ddm1-2-derived TE insertions as a cause for the epiRIL QTL. (A) 
Resequencing of 52 epiRILs and targeted PCR of an additional 27 epiRILs detected four shared 
insertions in the RL and FT QTL intervals (coordinates are according to TAIR10). Phenotypic 
analysis testing for the effect of TEs and peak QTL markers [P values from multiple regression 
models (Table S8)]. (B) Validation of the RL QTL by selective epigenotyping of 82 short- and 
long-root F3 progeny obtained using the crossing scheme shown. (C) Quantitative PCR 
analysis of McrBC-digested DNA of tail-selected samples was used to determine DNA 
methylation levels at the peak markers MM91, MM330, and MM694 on chr 1, 2, and 4, 
respectively (right panel). We used marker MM330 on chr 2 instead of the peak marker 
MM240. These markers are in tight linkage, but MM330 was easier to assay by PCR. Error 
bars, ±1 SEM. (D) Example of the presence or absence of the most common insertion 
(ATCOPIA 93) in a sample of epiRILs and the pools of short- and long-root F3 individuals. (Top) 
Results of PCR with primer pairs designed to amplify one end of the element and its flanking 
sequence. (Bottom) Results of PCR with primer pairs designed to amplify the WT sequence. 
Positive control: epiRIL 55. 

A

COL-/-

F1-COL+/-

COL+/+ xCross between two new 
WT (COL+/+) and ddm1-2 
(COL-/-) founder plants.

Selfing of a F1 plant epi-
heterozygote for all peak 
QTL markers on chr 1, 2, 
and 4.

F2-COL+/+ F2-COL+/- F2-COL-/-

F3-COL+/+

Selfing of a single F2 with 
wild-type genotype at the 
DDM1 locus.

B

Phenotyping and selective
epigenotyping of short and 
long root F3 plants.

short root (SR)
(N = 41)

long root (LR)
(N = 41)

x

x

%
 M

et
hy

la
tio

n

negative 
control

positive
control

MM91
chr 1

MM330
chr 2

MM694
chr 4

COL+/+ COL-/- F3-LR F3-SR

M
et

hy
la

tio
n 

le
ve

l

0

100

C

D

presence

absence

F3epiRILs

Trait QTL Inserted sequence Number of epiRILs shared Phenotypic effect (p -value)
Chr Start Stop Name Start Stop Seq PCR Total TE QTL marker

FT1 1 15908858 17261949 ATENSPM3 16836944 16837131   5 / 52  2 / 27   7 / 79 0.0076 5.20E-07
RL1 1 13617271 17523612 ATENSPM3 16836944 16837131   5 / 52  2 / 27   7 / 79 0.023 0.00012
RL1 1 13617271 17523612 ATENSPM3 / HELITRON 17407431 17410302   2 / 52  0 / 27   2 / 79 0.75 0.00012
RL1 4 8906583 11824662 ATCOPIA93 9649457 9651158 13 / 52  9 / 27 22 / 79 0.073 0.020
RL1 4 8906583 11824662 ATCOPIA78 10736583 10740627 18 / 52  8 / 27 26 / 79 0.99 0.020



Chapter 4 

98 

confidence intervals (Fig. 2A, Fig. S4, and Table S6): two shared TE insertions in the 
chr 1 interval and two in the chr 4 interval. We were able to confirm the shared TE 
insertions using targeted polymerase chain reaction (PCR) assays in an additional 27 
epiRILs (Fig. 2, A and D, and Tables S5 to S7). 

However, further analysis revealed that shared TE insertions were not 
consistently inherited from the ddm1-2 parent (Fig. S4 and Table S6). Thus, we found 
that the ATCOPIA78 insertion on chr 4 lies in an interval of WT origin and is present 
in about one-third of the epiRILs, which indicates that this insertion occurred in the 
F1 individual rather than in the ddm1-2 parent. Similarly, the two ATENSPM3 
insertions on chr 1 lie in intervals of ddm1-2 origin but are absent in some epiRILs 
with this epigenotype, suggesting that they either occurred in the parental ddm1-2 
line, with excisions in some epiRILs, or else arose in the F1 individual. Finally, the 
ATCOPIA93 insertion on chr 4 lies in an interval that is of ddm1-2 origin in some 
epiRILs and of WT origin in others, reflecting a highly dynamic inheritance pattern. 
Attempts to associate these shared TE insertions with phenotypes revealed a 
significant association for ATENSPM3 (chr 1) with root length and flowering time (FT, 
P = 0.0076; RL, P = 0.023) (Fig. 2A and Table S8A) and a borderline significant effect 
for the ATCOPIA93 (chr 4) insertion on primary root length (P = 0.073). However, 
phenotypic effects were much weaker than those of the peak QTL markers (Fig. 2A 
and Table S8, B and C), which implies that these shared TE insertions are unlikely 
causal. 

To support this conclusion, we crossed a new pair of WT and ddm1-2 founder 
plants (Fig. 2B) [21] and selfed the F1 to select a single DDM1/DDM1 F2 individual 
that was “epi-heterozygote” for all three QTL peak markers on chr 1, 2, and 4 [21]. 
After an additional selfing, we selected F3 progeny from the long and short extremes 
of the RL distribution. DNA methylation analysis confirmed the association of short 
and long primary roots with the ddm1-2–like and WT methylation states at the peak 
QTL marker, respectively (Fig. 2C) [21]. Furthermore, the tail-selected F3 individuals 
contained none of the shared TE insertions identified in the epiRIL population (Fig. 
2D and Table S6). We thus conclude that the epiRIL QTL are most likely caused by 
the heritable (ddm1-2 induced) loss of DNA methylation in the QTL intervals. 
 

4.2.3 Candidate DMRs in the epiRIL QTL intervals 
 
Next, we searched for putative causal DMRs in the RL and FT QTL intervals. We 
analyzed the methylomes (~165 base pair resolution) of the 123 epiRILs and their 
founders [19] and required candidate DMRs to be in approximate linkage 
disequilibrium with the peak QTL marker and displaying clear differences in DNA 
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methylation states and expression levels between the WT and the ddm1-2 founder 
lines (Figs. S5 to S8). Our search revealed 325 candidate DMRs within the FT QTL 
 
 

 
 
Figure 3. DNA methylation profiles of candidate DMRs in the epiRIL QTL intervals. (A and B) 
Location and annotation of candidate DMRs detected for FT (A) and RL (B). The top part of 
the rectangles shows the DNA methylation profile of the WT and ddm1-2 parents, 
respectively (U, unmethylated; I, intermediate DNA methylation; M, high-level DNA 
methylation). The DNA methylation profiles of the epiRILs are indicated below and are 
ordered according to the epigenotype of the peak marker [from WT (top) to ddm1-2 
(bottom)]. The bottom part of the rectangles shows the annotations that overlap with the 
DMRs (GP, gene promoters; GB, gene bodies; TE, transposable element sequences; IR, 
intergenic regions). A schematic representation of each chromosome is plotted above each 
rectangle. (C) Number of candidate DMRs detected for each QTL interval (values inside 
circles) and the number of unique annotations (values outside circles) with which they 
overlap. DMRs can overlap multiple annotations (Tables S12 and S13). Colors and 
abbreviations are as in (A). 
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intervals (chr1, 53; chr4, 16; chr5, 256), which mapped to 44 unique genes (including 
promoter regions), 153 annotated TE sequences, and 77 intergenic regions (Fig. 3, A 
and C, and Tables S9, S10, and S12). For the RL QTL intervals, we detected 506 
candidate DMRs (chr 1, 122; chr2, 367; chr4, 17), mapping to 71 unique genes 
(including promoter regions), 261 annotated TE sequences, and 122 intergenic 
regions (Fig. 3, B and C, and Tables S9, S11, and S13). Further analysis of these 
candidate DMRs did not identify any obvious flowering time and root length genes 
(Tables S10 and S11), which could be consistent with the lower amplitude of 
phenotypic variation observed among the epiRILs than among highly contrasted 
accessions [16]. However, we cannot rule out that the candidate DMRs are in LD with 
causal DMRs that could not be called with our method. Ultimately, fine-mapping 
approaches and targeted manipulation of selected DMRs will be required to identify 
causal regions. 
 

4.3 Conclusion and discussion 
 
Our analysis of the epiRILs demonstrates that induced DMRs can be stably inherited 
independently of DNA sequence changes and function as epigenetic quantitative 
trait loci (QTLepi). Phenotypically, the detected QTLepi have all the necessary 
properties to become targets of natural or artificial selection. Taking advantage of 
the single-nucleotide resolution methylomes of 138 natural accessions [4] (Table 
S14), we could show that about 30% of the heritable DMRs identified in the epiRIL 
population overlap with naturally occurring DMRs among these accessions (Figs. S9 
and S10). Therefore, these epiRIL DMRs may have been historical targets of 
epimutations in the wild, either through trans-induced ddm1-like mutation events 
or else through still unknown mechanisms. This finding indicates in turn that DMRs 
could also act as QTLepi in natural populations and thus constitute a measureable 
component of the so-called “missing heritability.” This possibility may have deep 
implications on how we delineate and interpret the heritable basis of complex traits. 
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Abstract 
 
Despite the importance and wide exploitation of heterosis in commercial crop 
breeding, the molecular mechanisms behind this phenomenon are not well 
understood. Interestingly, there is growing evidence that beside genetic also 
epigenetic factors contribute to heterosis [1-3]. Here we used near-isogenic but 
epigenetically divergent parents to create epigenetic F1 hybrids (epiHybrids) in 
Arabidopsis, allowing us to quantify the contribution of epigenetics to heterosis. We 
measured traits such as leaf area (LA), growth rate (GR), flowering time (FT), main 
stem branching (MSB), rosette branching (RB), final plant height (HT) and seed yield 
(SY) and observed several strong positive and negative heterotic phenotypes among 
the epiHybrids. For LA and HT mainly positive heterosis was observed, while FT and 
MSB mostly displayed negative heterosis. Heterosis for FT, LA and HT could be 
associated with several heritable, differentially methylated regions (DMRs) in the 
parental genomes. These DMRs contain 35 (FT and LA) and 14 (HT) genes, which may 
underlie the heterotic phenotypes observed. In conclusion, our study indicates that 
epigenetic divergence can be sufficient to cause heterosis. 
 

5.1 Introduction 
 
Heterosis describes an F1 hybrid phenotype that is superior compared to the 
phenotype of its parent varieties. The phenomenon has been exploited extensively 
in agricultural breeding for decades and has improved crop performance 
tremendously [4, 5]. Despite its commercial impact, knowledge of the molecular 
basis underlying heterosis remains incomplete. Most studies mainly focused on 
finding genetic explanations, resulting in the classical dominance [4, 6, 7] and 
overdominance [7, 8] models describing heterosis. In line with genetic explanations 
it has been observed that interspecies hybrids often show a higher degree of 
heterosis than intraspecies hybrids, indicating that genetic distance correlates with 
the extent of heterosis [5, 9]. However, genetic explanations do often not sufficiently 
explain nor predict heterosis. There is growing evidence that also epigenetic 
divergence plays a role in heterosis [1-3]. It has for example been shown that altered 
epigenetic profiles at genes regulating circadian rhythm play an important role in 
heterotic Arabidopsis hybrids [10]. Moreover, heterotic hybrids of Arabidopsis, 
maize and tomato are shown to differ in levels of small regulatory RNAs and/or DNA 
methylation (5mC) relative to their parental lines [11–14]. Processes such as the 
transfer of 5mC between alleles (trans chromosomal methylation, TCM), or a loss of 
5mC at one of the alleles (trans chromosomal demethylation, TCdM) have been 
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indicated to contribute to the observed remodeling of the epigenome [1, 13, 15]. 
Strikingly, some of these changes in 5mC levels have been shown to be stable over 
multiple generations [15, 16]. 

Hybrids are usually generated from parental lines that vary at both the 
genomic and epigenomic level and disentangling those two sources of variation is 
challenging. To overcome this limitation, we generated epigenetic Arabidopsis 
thaliana F1 hybrids (epiHybrids) from near-isogenic but epigenetically divergent 
parental lines by crossing Col-0 wild-type (Col-wt) as maternal parent to 19 near-
isogenic ddm1-2-derived epigenetic recombinant inbred lines (epiRILs) [17] as the 
paternal parents (Fig. 1A). DDM1 (DECREASE IN DNA METHYLATION 1) is a 
nucleosome remodeler and a ddm1-2 deficiency leads to a severe loss of 5mC [18], 
primarily in long transposable elements and other repeat sequences [19]. EpiRILs 
carry chromosomes that are a mosaic of Col-wt and hypomethylated ddm1-2-
derived genomic regions [17, 20, 21] (Fig. 1A). Nineteen epiRIL parental lines were 
selected that sample a broad range of 5mC divergence from the Col-wt reference 
methylome (Fig. 1B, Table S1). Besides, lines were chosen that have a wild-type 
methylation profile at FWA (Supplementary Fig. 1, Table S1), as loss of DNA 
methylation at the FWA (FLOWERING WAGENINGEN) locus is known to affect 
flowering time [22]. Furthermore, we selected for a range of phenotypic variation in 
two traits that have previously been monitored in the epiRILs, flowering time and 
root length (Table S1); outliers were excluded [21]. With our experimental design we 
could demonstrate, as proof-of-principle, the extent to which divergence in 5mC 
profiles in parental lines can contribute to heterosis. 
 

5.2 Materials, methods and definitions 
 
The phenotypic performance of the 19 epiHybrids and their parental lines was 
assessed by monitoring about 1090 plants (~28 replicates per line) for a range of 
quantitative traits: LA, GR, FT, MSB, RB, HT and SY (Tables S2-S7). The phenotypic 
observations for SY were inconsistent in a replication experiment, therefore those 
datasets were excluded from further analysis. The hybrids and parental lines were 
grown in parallel in a climate-controlled chamber with automated watering. The 
plants were randomized throughout the chamber to level out phenotypic effects 
caused by plant position. LA was measured up to 14 days after sowing (DAS), using 
an automated camera system (Fig. 1F), and growth rate (GR) was determined based 
on this data (SI text). FT was scored manually as opening of the first flower. After all 
plants started flowering, the plants were transferred to the greenhouse and grown 
to maturity. MSB, RB and HT were scored manually after harvesting of the plants. 
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Figure 1. Heterosis occurs in epiHybrids. (A) Experimental setup. Lines are depicted 
schematically as one chromosome with the numbers indicating the epiRIL ID (e.g. 371 & 492) 
and the respective epiHybrid (e.g. 371H & 492H). (B) Genome-wide 5mC levels (y-axis) of the 
Col-wt line in green and the epiRIL parental lines in salmon. Numbers indicate the epiRIL IDs. 
The 5mC levels were calculated as the proportion of methylated MeDIP probes with respect 
to the total amount of probes. (C - E) Three classes of phenotypic effects monitored in the 
epiHybrids. The black dashed line indicates the mid-parent value. The green and salmon 
dashed lines indicate the mean performance of the parental lines. The white dashed lines 
indicate the mean performance of the epiHybrids. (F) Col-wt, epiHybrid 232H and epiRIL 232 
at 13 days after sowing as an example for high-parent heterosis. (G) Phenotypic effects in six 
traits monitored across the 19 epiHybrids. The right panel summarizes positive and negative 
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Figure 1. (continued) … heterotic effects per trait. (H - J) Examples of epiHybrids exhibiting 
high-parent heterosis in leaf area and height (LA and HT; H and I), and low-parent heterosis 
in flowering time (FT; J) Error bars, ± 1 SEM. Deviation from high parent or low parent is 
shown in percent. 
 
 
The extent of heterosis was evaluated by comparing the hybrid performance with its 
parental lines. We distinguished five effects (Fig. 1C-E): additivity, positive mid-
parent heterosis (positive MPH), negative mid-parent heterosis (negative MPH), 
high-parent heterosis (HPH) and low-parent heterosis (LPH). An additive effect 
describes a hybrid performance that is equal or close to the average performance of 
the two parents (the mid-parent value, MPV). MPH refers to deviations in percent 
from the MPV in positive or negative direction. Hybrids displaying MPH are further 
tested for HPH and LPH, which describe hybrid performance exceeding the highest 
parent, or falling below the lowest parent, respectively. In crop breeding, the focus 
is usually on obtaining HPH and LPH as these present novel phenotypes that are 
outside the parental range. Depending on the trait monitored and commercial 
application, either HPH or LPH can be considered superior. For instance, early 
flowering may be preferable over late flowering; in such cases maximizing LPH may 
be desirable. For other traits, such as yield or biomass, it is more important to 
maximize HPH. However, in order to obtain a comprehensive view of hybrid 
performance it is informative to also track MPH in addition to LPH and HPH, because 
many mature traits may be affected by other traits that do not display fully penetrant 
heterotic effects. 
 

5.3 Results 
 

5.3.1 Observed heterotic phenotypes 
 
We observed a remarkably wide range of heterotic phenotypes among the 
epiHybrids (Fig. 1G, Tables S2-19). The magnitude of these phenotypic effects was 
substantial (Fig. 1H-J, Supplementary Fig. 2, Tables S8-19) and similar to that typically 
seen in hybrids of Arabidopsis natural accessions [23, 24]. Many epiHybrids (16/19) 
exhibited significant MPH in at least one of the six monitored traits (FDR = 0.05, Fig. 
1G). Across all hybrids and traits, we observed 30 cases of positive MPH and negative 
MPH. Among those, four cases show LPH and nine cases show HPH (Fig. 1G). 
Interestingly, in 11 out of the 17 cases of MPH the phenotypic means of the 
epiHybrids were in the direction of the phenotypic means of the epiRIL parent rather 
than in the direction of the Col-wt parent (Tables S2-7, F1 trend). Also all four LPH 
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and two of the HPH cases were in the direction of the epiRIL parent (Fig. 1I-J, 
Supplementary Fig. 2). This observation illustrates that ddm1-2-derived 
hypomethylated epialleles are often (partially) dominant over wild-type epialleles, 
which contrasts the situation seen in EMS screens where novel mutations typically 
act recessively. 

We observed cases of HPH for LA, HT and MSB, and cases of LPH for FT and 
MSB. HPH for LA occurred in epiHybrids 232H, 195H and 193H (3/19 epiHybrids). 
Those epiHybrids significantly exceeded their best parent (Col-wt) by 17%, 18% and 
15%, respectively (Fig. 1H, Table S19). Interestingly, although growth rate (GR) is 
developmentally related to LA, hybrid effects in GR were only moderately, albeit 
positively, correlated with LA (rho = 0.57, P = 0.02), which implies that LA heterosis 
is determined by other traits besides GR. For HT we detected five cases of significant 
HPH with up to 6% increases in HT (Fig. 1I, Table S14). One may expect LA HPH to 
strongly correlate with HT HPH, as the rosette is providing nutrients for the 
developing shoot [25]. However, HPH for both LA and HT occurred only in one 
epiHybrid (193H; Fig. 1G). For MSB, we detected one case of HPH (64H; Fig. 1G and 
Supplementary Fig. 2). 

Besides positive heterosis, our phenotypic screen revealed strong negative 
heterotic effects for FT (earlier flowering) and MSB (less main stem branching). 
Significant LPH occurred in the epiHybrids 232H, 208H and 344H (FT) and 438H (MSB) 
(Fig. 1J, Supplementary Fig. 2, Tables S15, S17). In the most prominent case for FT 
(232H), FT was about 10% earlier than that of the earliest flowering parent. 208H 
and 344H flowered 3% and 4% earlier than their lowest parent (epiRIL 208 and epiRIL 
344), respectively. 438H showed 14% less MSB than the lowest parent 
(Supplementary Fig. 2). 
 

5.3.2 Confirmation with replicate experiments 
 
The reproducibility of our findings was tested by performing replicate experiments, 
using seeds from newly performed crosses and the same climate controlled growth 
chamber as before. We focused on epiHybrids that exhibited relatively strong 
positive or negative heterotic phenotypes in the initial screen (193H, 150H, 232H; 
Fig. 1G), and measured LA, FT and HT. We found that the direction of the heterotic 
effects in LA, FT and HT was reproducible in all cases tested (Fig. 2A and B). 
Importantly, the LA and HT HPH observed for 193H, and the strong FT LPH for 232H 
were perfectly reproducible, while LA HPH observed for 232H became positive MPH 
(Fig. 2A). Taken together, these results show that the heterotic effects observed in 
the epiHybrids are relatively stable for LA, HT and FT, even across fresh parental seed 
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batches and independently performed crosses, which is not always the case for 
Arabidopsis phenotypes [26]. 
 
 

 
 
Figure 2. Confirmation of mid-parent (MP) divergence in the initial screen and replicate 
experiment for epiHybrids 150H, 193H and 232H. (A) Results for cases of HPH and LPH for 
LA, HT and FT in initial experiment. (B) Results for traits showing less eminent phenotypic 
effects for LA, HT and FT. The mid-parent value (MPV) is shown as a dashed horizontal line 
and the MP divergence is shown as change from MPV in percent. To illustrate the F1 
epiHybrid distribution for each trait, the individual replicate plants are depicted as dots. (C) 
F1 MP divergence for LA, HT and FT for all epiHybrids. The MPV is shown as a horizontal 
dashed line and MP divergence is shown as change from MPV in percent. The epiHybrids 
are ordered from highest (left) to lowest (right) F1 MP divergence. To illustrate the F1 
epiHybrid distribution for each trait, the individual replicate plants are depicted as dots. 
Variance component analysis was used to estimate how much of the total variation in MP 
divergence can be explained by between-cross variation. The F-statistic from this analysis is 
shown in the boxes. 
 

4.1.1 Interval mapping using mid-parent divergence as phenotype 
 
To understand the sources of the LA, HT and FT heterotic effects observed among 
the ~530 epiHybrid plants, we calculated the phenotypic divergence of each 
epiHybrid plant from its respective mid-parent value. Using variance component  
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analysis we estimated that 17%, 28% and 51% of the total variation in mid-parent 
divergence for FT, LA and HT, respectively, can be attributed to (epi)genomic 
differences between the Col-wt and epiRILs used for the crosses (Fig. 2C, Table S20, 
SI text). Global 5mC divergence between the Col-wt and the epiRIL parental lines 
could not account for this variation (Supplementary Fig. 3). We therefore reasoned 
that heterotic phenotypes are due to (partial) dominance effects caused by specific 
regions being epi-heterozygous for an epiRIL-inherited hypomethylated epiallele (U) 
and a Col-wt-inherited methylated epiallele (M). To test this possibility, we used the 
methylomes of Col-wt and the epiRIL parents [20] to predict epi-homozygous (MM) 
and epi-heterozygous (MU) regions in the genomes of the epiHybrids (Fig. 3A, SI 
text), and assessed whether heritable epigenetic differences at specific loci could 
explain the variation in MPH among crosses (Supplementary Fig. 4). 

The analysis revealed two QTLs on chromosome (chr) 3 contributing to the 
between-cross variation in MPH in FT (QTL 1: LOD=3.12, 37.62 cM; QTL 2: LOD=3.33, 
101.44 cM, Fig. 3B; Table S21). EpiHybrids epi-heterozygous (MU) at these loci 
showed significant negative MPH compared to their epi-homozygous (MM) 
counterparts (Fig. 3C). While not significant at the genome-wide scale (Fig. 3B), the 
same two QTLs had substantial suggestive effects on LA heterosis in the opposite 
direction than FT (Fig. 3B and C), indicating that both QTLs act pleiotropically. 
 

 
 

Figure 3. Interval mapping approach detects significant QTLs for mid-parent divergence. (A) 
Genome-wide patterns of Col-wt and ddm1-2 inherited epi-haplotypes in the (epi)genomes 
of the parental epiRILs used in this study. (B) QTL profiles for FT, HT and LA. Published QTLsepi 
for root length and flowering time are shown. (C) Effect direction of the QTLs. Error bars, ± 1 
SE of the Estimate (SEE). (D) Zoom in of one of the QTL intervals of FT. The top panel shows 
the annotations along the genome. The bottom panel shows the locations of candidate DMRs 
and the average methylation level along the genome for epiRIL parents that are either 
methylated (MM) or unmethylated (UU) at the peak marker. 
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We also detected a single QTL locus on chr 4 (LOD = 3.33, 56.00 cM) that contributes 
to the between-cross variation in MPH for HT (Fig. 3B, Table S21). In this case, MU 
epiHybrids showed significant positive MPH compared to MM epiHybrids (Fig. 3C). 
Interestingly, the HT QTL overlaps with a previously identified QTLepi for root length 
in the epiRILs [21]. The same study identified QTLsepi associated with FT [21] that we 
did not detect here (Fig. 3B), implying that different regions may play a role in FT 
trait variation than in FT heterosis. 
 

5.3.4 Potential causal variants in the epiHybrid QTL intervals 
 
The detection of heterosis QTLs for FT, LA and HT provided a rationale to search for 
causal variants in the QTL confidence intervals. TE-associated structural variants 
(TEASVs) are known to occur at low frequency in a ddm1-2-derived DNA 
hypomethylated background [17, 21, 27, 28], hence we re-analyzed whole-genome 
sequencing data from the epiRIL parents [21] for TEASVs but did not detect any that 
could account for the QTL effects, suggesting that the QTLs most likely have an 
epigenetic basis (SI text). Indeed, a thorough analysis of the methylomes of the 
parental epiRILs, using the available MeDIP tiling array data [20], identified 55 and 
18 potentially causal differentially methylated regions (DMRs) in the FT, LA and HT 
QTL regions, mapping to 35 and 14 unique genes, respectively (Fig. 3D, 
Supplementary Fig. 5–9, Tables S22-S26, SI text). Potentially interesting genes in the 
candidate regions of the FT/LA QTLs (Table S25) include for example RPL5A, which 
was shown to affect development through regulating auxin and influencing leaf 
shape and patterning [29, 30], and AT3G26480, a protein that shows partial 
homology to GTS1, which has been implemented in biomass accumulation [31]. 
Another potentially interesting candidate is Chup1, which is crucial for chloroplast 
movement in leaves in response to light [32]. These candidate genes provide 
excellent targets for follow-up studies. 
 

5.4 Discussion 
 
In a recently published study, heterosis for rosette area was reported in an 
epigenetic F1 hybrid generated by crossing a met1-derived epiRIL with Col-wt [3]. 
DNA-METHYLTRANSFERASE1 (MET1) is involved in maintenance of DNA methylation 
at cytosines in CG sequence context and a mutation in this gene causes a severe loss 
of DNA methylation in the CG and CHH context [33]. Heterosis was observed in a 
parent-of-origin manner; the reciprocal cross did not result in heterosis [3]. This 
suggests that the heterosis detected may be due to an effect of the maternal 
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cytoplasm rather than differences in epigenetic marks in the parental genomes. 
Here, we used Col-wt as maternal parent in all crosses to specifically monitor 
phenotypic effects associated with the epiRIL methylomes. We observed a wide 
range of heterotic effects, and our proof-of-principle QTL mapping approach 
indicated that these phenotypic effects are very likely attributable to methylation 
differences between Col-wt and the epiRILs. Moreover, our results, together with 
those of Dapp et al. [3], indicate that heterosis in F1 hybrids generated from 
epigenetically divergent lines may be a more general phenomenon. It will be 
interesting to see whether these findings have implications for future crop breeding. 
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Abstract 
 
Stochastic changes in cytosine methylation are a source of heritable epigenetic and 
phenotypic diversity in plants. Using the model plant Arabidopsis thaliana, we derive 
robust estimates of the rate at which methylation is spontaneously gained (forward 
epimutation) or lost (backward epimutation) at individual cytosines and construct a 
comprehensive picture of the epimutation landscape in this species. We 
demonstrate that the dynamic interplay between forward and backward 
epimutations is modulated by genomic context and show that subtle contextual 
differences have profoundly shaped patterns of methylation diversity in Arabidopsis 
thaliana natural populations over evolutionary timescales. Theoretical arguments 
indicate that the epimutation rates reported here are high enough to rapidly 
uncouple genetic from epigenetic variation, but low enough for new epialleles to 
sustain long-term selection responses. Our results provide new insights into 
methylome evolution and its population-level consequences. 
 
Significance 
 
Changes in the methylation status of cytosine nucleotides are a source of heritable 
epigenetic and phenotypic diversity in plants. Here we derive robust estimates of the 
rate at which cytosine methylation is spontaneously gained (forward epimutation) 
or lost (backward epimutation) in the genome of the model plant Arabidopsis 
thaliana. We show that the forward–backward dynamics of selectively neutral 
epimutations have a major impact on methylome evolution and shape genome-wide 
patterns of methylation diversity among natural populations in this species. The 
epimutation rates presented here can serve as reference values in future empirical 
and theoretical population epigenetic studies in plants. 
 

6.1 Introduction 
 
Plant genomes make extensive use of cytosine methylation to control the expression 
of transposable elements (TEs) and genes [1]. Despite its tight regulation, 
methylation losses or gains at individual cytosines or clusters of cytosines can 
emerge spontaneously, in an event termed “epimutation” [2, 3]. Many examples of 
segregating epimutations have been documented in experimental and wild 
populations of plants and in some cases contribute to heritable variation in 
phenotypes independently of DNA sequence variation [4, 5]. These observations 
have led to much speculation about the role of DNA methylation in plant evolution 
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[6–8], and its potential in breeding programs [9]. In the model plant Arabidopsis 
thaliana, spontaneous methylation changes at CG dinucleotides accumulate in a 
rapid but nonlinear fashion over generations [2, 3, 10], thus pointing to high 
forward–backward epimutation rates [11]. Precise estimates of these rates are 
necessary to be able to quantify the long-term dynamics of epigenetic variation 
under laboratory or natural conditions, and to understand the molecular 
mechanisms that drive methylome evolution [12–14]. Here we combine theoretical 
modeling with high-resolution methylome analysis of multiple independent 
Arabidopsis thaliana mutation accumulation (MA) lines [15], including 
measurements of methylation changes in continuous generations, to obtain robust 
estimates of forward and backward epimutation rates. 
 

6.2 Results 
 
We joined whole-genome MethylC-seq [16] data from two earlier MA studies [2, 3] 
with extensive multigenerational MethylC-seq measurements from three additional 
MA lines (Fig. 1A and SI Appendix, Tables S1–S6). The first of these new MA lines 
(MA1_3) was propagated for 30 generations and includes measurements for 13 
(nearly) consecutive generations (Fig. 1A). The other two MA lines (MA2_3) were 
propagated for 17 generations and were measured every four generations on 
average (Fig. 1A). These new data therefore allowed us to track epimutation 
dynamics over a large number of generations and at high temporal resolution. We 
constructed base pair-resolution methylation maps for all sequenced individuals (SI 
Appendix). To obtain a measure of genome-wide methylation divergence between 
any two individuals in a given MA pedigree, we calculated the proportion of 
differentially methylated cytosines in sequence contexts CG, CHG, and CHH (where 
H can be any base but G). For these calculations we used a set of consensus cytosines 
for which all individuals in the pedigrees had coverage of more than three reads (SI 
Appendix). This read coverage cutoff was found to be sufficient for robust 
downstream analyses (SI Appendix, Figs. S1 and S2). Consistent with previous reports 
[2, 3, 10], genome-wide methylation divergence at CG dinucleotides increased with 
divergence time in all pedigrees (Fig. 1B), but not in sequence contexts CHG and CHH 
(SI Appendix, Fig. S3). This distinction reflects intrinsic differences in the 
maintenance pathways that target these three contexts [1] and possibly also 
increased measurement error and cellular heterogeneity for non-CG methylation (SI 
Appendix, Fig. S4). 
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Figure 1. (A) Overview of pedigrees of mutation accumulation lines (MA lines). Red 
numbers indicate the number of generations from common founder. The MA1_1 and 
MA1_2 lines were originally created by Shaw et al. [15] and their methylomes were 
presented in Becker et al. [2] and Schmitz et al. [3], respectively. The MA1_3 and MA2_3 
were generated in this study. (B) Measured CG methylation divergence (circles) with 
corresponding theoretical fits (lines) as a function of divergence time between two 
individuals in a given pedigree (∆" = total divergence time in generations between any two 
individuals). Dashed lines indicate extrapolation from the fitted model. Divergence values 
for CG-TE in datasets MA1_3 and MA2_3 were susceptible to low sequencing depth in these 
experiments and showed increased measurement noise (SI Appendix). Model-based 
analysis of all MA pedigrees revealed that the highly nonlinear divergence until generation 
eight is due to the fixation of segregating epi-heterozygote founder loci (SI Appendix), 
rather than the result of recurrent cycles of forward and backward epimutations as 
previously suggested [11]. 
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6.2.1 Neutral epimutation model 
 
To quantify CG methylation divergence in the MA lines as a function of divergence 
time (measured in generations) and forward–backward epimutation rates, we 
developed a theoretical model similar to those used in the analysis of regular 
systems of inbreeding (Materials and methods and SI Appendix). Briefly, the model 
assumes that an unmethylated cytosine (𝑐𝑢) can become methylated (𝑐𝑚) with 
probability 𝛼 and likewise a methylated cytosine can become unmethylated with 
probability 𝛽. We arbitrarily define 𝛼 as the forward and 𝛽 as the backward 
epimutation rate per generation per haploid methylome. Transitions of diploid 
epigenotypes (𝑐𝑚𝑐𝑚, 𝑐𝑢𝑐𝑢, or 𝑐𝑚𝑐𝑢) from one generation to the next are modeled 
through a transition matrix where the elements of the matrix are determined by the 
Mendelian segregation of epialleles (𝑐𝑚 or 𝑐𝑢) and the rates 𝛼 and 𝛽. Consistent 
with the MA experimental design, selection on epigenotypes during inbreeding is 
assumed to be absent, so that the cumulative divergence among lines is driven solely 
by neutral epigenetic drift. Estimates for the unknown epimutation rates are 
obtained by fitting our model to the CG methylation divergence data of each MA 
pedigree separately (Materials and methods). 
 

6.2.2 Estimates of global CG epimutation rates 
 
As shown in Figure 1B, our model provides an excellent fit to the data, which suggests 
that the observed divergence patterns among the MA lines are largely the result of 
the transgenerational accumulation of selectively neutral epimutations. Model-
based estimates for the forward and backward CG epimutation rates (CG-all) were 
2.56 · 10−4 and 6.30 · 10−4, respectively (Table 1 and SI Appendix, Table S7). These 
estimates are similar to the value provided by Schmitz et al. [3] (4.46 · 10−4) but 
illustrate that methylation loss at CG dinucleotides is globally three times as likely as 
methylation gain. The ratio of loss to gain (𝛽/𝛼), also known as the mutational bias 
parameter, is an important quantity: It determines the CG methylation content of 
the Arabidopsis thaliana genome over evolutionary timescales. Assuming that the 
Arabidopsis thaliana methylome is at equilibrium, the estimated CG forward-
backward epimutation rates imply that -in the absence of selection or gene 
conversion- about 30 % of all CG sites should be methylated and about 70 % are 
unmethylated, which is consistent with actual measurements [16, 17]. 
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Table 1. Estimates of forward and backward epimutation rates. 

 
We assume that an unmethylated cytosine (𝑐𝑢) can become methylated (𝑐𝑚) with probability 
𝛼, and likewise a methylated cytosine can become unmethylated with probability 𝛽. We 
arbitrarily define 𝛼 as the forward and 𝛽 as the backward epimutation rate per generation 
per haploid methylome. Shown are model-based estimates for 𝛼 and 𝛽 as an average of the 
MA1_1, MA1_2, MA1_3, and MA2_3 datasets, as well as the range of these estimates across 
datasets (range). The asterisk indicates that the average estimate was based only on the 
MA1_1 and the MA1_2 data (SI Appendix). These estimates can be considered robust, 
because the different MA pedigrees varied considerably in terms of plant material, growth 
conditions, and sequencing approach (SI Appendix, Table S1). 
 
 

6.2.3 Estimates of annotation-specific CG epimutation rates 
 
We examined the extent to which CG epimutation rates depend on genomic context. 
To do this, we separated all CGs according to annotation (gene bodies, promoters, 
TEs, and intergenic regions; see SI Appendix). Although annotation-specific CG 
epimutation rates were approximately within the same order of magnitude (Table 1 
and SI Appendix, Table S7), subtle differences in these rates had a substantial impact 
on differential divergence of CG methylation across annotation categories (Fig. 1B). 
The highest combined forward and backward rates were found for CGs in gene 
bodies (CG-gene), which were 3.48 · 10−4 and 1.47 · 10−3, respectively (Table 1 and SI 
Appendix, Table S7). By contrast, the lowest rates were found for CGs in TEs (CG-TEs, 
forward: 3.24 · 10−4 and backward: 1.20 · 10−5). As a result of these low epimutation 
rates, methylation divergence for CG-TEs was much less pronounced (Fig. 1B), 
resembling the divergence patterns seen for CHG and CHH contexts (SI Appendix, 
Fig. S3). This observation suggests that CG-TEs come under the influence of silencing 
pathways that primarily target neighboring CHHs and CHGs [18–20]. Indeed, CG-TE 
was the only annotation category in which the ratio of backward to forward 
epimutation rates was less than unity (Table 1 and SI Appendix, Table S7), which 
implies that gain of methylation is strongly favored over methylation loss. 

Context α β β/α

CG-all 2.56 · 10−4 2.08 · 10−4 3.69 · 10−4 6.30 · 10−4 3.23 · 10−4 1.13 · 10−3 2.36 1.55 3.24
CG-gene 3.48 · 10−4 2.77 · 10−4 4.87 · 10−4 1.47 · 10−3 9.46 · 10−4 2.45 · 10−3 4.24 2.84 5.10
CG-TE* 3.24 · 10−4 1.68 · 10−4 4.80 · 10−4 1.20 · 10−5 7.76 · 10−6 1.62 · 10−5 0.040 0.034 0.046
CG-promoter 5.17 · 10−5 2.92 · 10−5 9.33 · 10−5 5.88 · 10−4 1.33 · 10−4 1.40 · 10−3 11.4 4.16 15.08
CG-intergenic 1.15 · 10−4 6.13 · 10−5 1.70 · 10−4 3.25 · 10−4 6.36 · 10−5 7.69 · 10−4 2.83 0.47 4.80

Range (α) Range (β) Range (β/α)
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6.2.4 Genome architecture and chromatin environment predict CG 
methylation divergence patterns along chromosomes 

 
Because CG epimutation rates are annotation-specific, we predicted that 
methylation divergence closely tracks annotation density along chromosomes. To 
test this, we moved in a 1-Mb sliding window along the genome (step size 100 kb) 
and calculated the divergence between MA lines as expected from our model after 
31 generations of independent selfing (Fig. 2B and SI Appendix). Our calculations 
predicted that CG-methylation divergence is low in TE-rich pericentromeric regions 
and high in gene-rich chromosome arms (Fig. 2B and SI Appendix, Figs. S5 and S6). 
Remarkably, these predictions strongly agreed with the observed divergence 
patterns at the genome-wide scale (R2 = 0.74, P < 0.0001). 

An alternative, or complementary, explanation is that the annotation-
specific divergence patterns are simply a reflection of the genome-wide distribution 
of heterochromatic domains, which would explain the clear partitioning between 
pericentromeres and euchromatin. To test this directly, we reanalyzed recent ChIP-
seq data on histone variant H2A.W [21], a proxy for heterochromatin, and estimated 
epimutation rates for CGs in regions that were either enriched or depleted for 
H2A.W (SI Appendix). We used these rates in combination with the genome-wide 
density distribution of H2A.W to derive predictions of CG-methylation divergence 
patterns. Our analysis revealed that, at the genome-wide scale, heterochromatin-
based predictions were approximately equivalent to annotation-based predictions 
(R2 = 0.72, P < 0.0001, SI Appendix, Fig. S5), suggesting that chromatin environment 
is a sufficient and parsimonious explanation for the observed divergence patterns 
along chromosomes. These results further indicate that the maintenance of 
methylation at CG dinucleotides is slightly more error-prone in regions of open 
chromatin compared with more compact regions, probably as a by-product of active 
transcription. 
 

6.2.5 The spectrum of neutral epimutations shapes CG methylation diversity 
in natural populations 

 
An intriguing question is to what extent the epimutation landscape in the MA lines 
provides insights into the mechanisms that shape CG methylation diversity in 
Arabidopsis thaliana natural populations, which are the outcome of long and 
complex evolutionary processes. To assess this we reanalyzed MethylC-seq data 
from a large number of accessions collected from across the Northern Hemisphere  
 



 

Chapter 6
 

126 

 
Figure 2. (A) Genome-wide gene (green) and TE (blue) density as well as a schematic 
representation of chromosomes (circle, centromere; dark gray, pericentromeric region; 
light gray, arm). (B) Genome-wide CG methylation divergence patterns among the 31st 
generation MA lines (MA1_1 and MA1_2) and the natural accessions (brown and gray, 
respectively). The red line indicates the theoretical prediction of divergence based on the 
estimated epimutation rates per annotation weighted by local annotation densities. 
Genome-wide divergence patterns in the MA lines are strongly correlated with the diversity 
patterns in the natural accessions (C), as well as with sequence diversity in the accessions 
(D). (E) The relationship between genetic and epigenetic variation as a function of time and 
different values of the epimutation rates ! and " in a strictly selfing system without 
selection; x axis, time in generations; y axis, expected correlation between genotype and 
epigenotype of two perfectly linked loci (recombination fraction = 0). The estimated CG 
epimutation rate (blue line) is high enough to efficiently uncouple genetic from epigenetic 
variation over relatively short timescales (SI Appendix). (F) Equilibrium frequency (y axis) of 
epigenotypes #$#$ (solid) and #%#% (dashed) in a strictly selfing system as a function of 
fitness (x axis) and different forward-backward epimutation rates (colored lines). The fitness 
of epigenotypes #%#%, #%#$ and #$#$ was defined by  &, 0.5(1 + &) and 1, 
respectively (SI Appendix).  
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Figure 2. (continued) … The estimated CG epimutation rate (blue line) is low enough to yield 
epimutation-selection equilibria close to those found for DNA sequence mutation rates, even 
under weak selection regimes (i.e., small fitness differentials between 𝑐𝑢𝑐𝑢 and 𝑐𝑚𝑐𝑚). This 
means that CG-type epialleles should be stable enough to effectively respond to long-term 
selection, provided they affect fitness. 
 
 
[22] (SI Appendix, Table S8). We focused on a subset of 133 accessions that met our 
quality criteria and calculated CG-methylation diversity in a 1-Mb sliding window 
using the same protocol as with the MA lines (SI Appendix). Although the natural 
accessions were clearly more diverse (Fig. 2B), genome-wide diversity patterns were 
highly similar to those seen in the MA lines (weighted R2 = 0.624, P < 0.0001, Fig. 2C 
and SI Appendix, Fig. S7), particularly in pericentromeric regions (R2 = 0.899, P < 
0.0001) and to a slightly lesser extent in chromosome arms (R2 = 0.525, P < 0.0001). 
These observations are consistent with a recent report by Hagmann et al. [23]. 
Moreover, CG-methylation divergence among the MA lines was also moderately 
correlated with sequence diversity in the accessions, explaining over 25% of the 
genome-wide SNP distribution (weighted R2 = 0.254, P < 0.0001, Fig. 2D and SI 
Appendix, Fig. S8). 

It is unlikely that global patterns of CG-methylation diversity among natural 
accessions are the result of selection acting over broad genomic regions, because 
the same patterns are quickly established in isogenic MA lines in the course of only 
31 generations under constant environmental conditions. Rather, our results suggest 
that these patterns reflect major structural properties of the Arabidopsis thaliana 
genome, which modulate the ratio of forward–backward epimutation rates, and thus 
determine the accumulation dynamics of neutral epimutations over time. It is 
therefore not surprising that the reorganization of genomes during macroevolution 
is necessarily accompanied by a repatterning of methylation divergence among 
lineages or species [24], insofar that such structural changes alter genome-wide 
annotation densities and their accompanying chromatin environment. However, 
structural changes of this type are less prevalent in the course of microevolution; 
hence, neutral epimutations are probably the single most important factor in 
shaping methylome diversity in populations over short to intermediate evolutionary 
timescales. 
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6.3 Discussion 
 

6.3.1 CG epimutation rates are high enough to rapidly uncouple genetic and 
epigenetic variation over evolutionary timescales 

 
Our analysis shows that CG epimutations are about five orders of magnitude more 
frequent than genetic mutations in Arabidopsis thaliana [~ 10−4 compared with ~ 10−9 
[25]] and are subject to forward–backward dynamics that are rarely observed for 
genetic loci. Because of these properties, it is intuitively obvious that these 
epimutation dynamics will lead to an uncoupling of epigenetic from genetic variation 
over relatively short evolutionary timescales [26]. Simple deterministic models show 
that in a strictly selfing system without selection it would require only about 800 
generations to reduce correlations between genotype and epigenotype from unity 
to below 0.5, and only about 2,700 generations to reduce it to below 0.1 (Fig. 2E and 
SI Appendix), and this breakdown is expected to be even faster in outcrossing 
systems. This rapid uncoupling may explain why variation in DNA methylation in 
Arabidopsis thaliana populations is only partly associated with cis- and trans-acting 
DNA sequence variants [22], and thus sheds new light on the molecular mechanisms 
that drive the coevolution of genomes and epigenomes. One situation in which 
genotype-epigenotype associations are expected to be more prevalent is when 
natural accessions have only newly diverged from a common ancestor, as it may be 
the case in recently founded local populations. This prediction can be tested using 
genome-wide association study-based cis- and trans-mapping analysis across 
different groups of accessions that vary along a gradient of genetic relatedness and 
(or) geographic locations. Recent whole-genome and methylome datasets of 
Arabidopsis thaliana local populations collected in North America [23] and Sweden 
[27] may be applicable for that purpose. 
 

6.3.2 CG epimutation rates are low enough for new epialleles to sustain 
long-term selection responses 

 
Although our results provide strong evidence that global patterns of CG-methylation 
diversity among Arabidopsis thaliana natural accessions are mainly influenced by the 
accumulation of selectively neutral epimutations, targeted selection of epialleles at 
specific loci may still be an important process. Particularly in chromosome arms, the 
MA divergence patterns were only moderately correlated with those of the natural 
accessions, suggesting the involvement of other factors such as direct selection on 
CG methylation states and (or) selection via DNA sequence variants that indirectly 
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regulate CG methylation in cis or trans. Indeed, the observation that methylation 
profiles of orthologous genes is often highly conserved across species [28] indicates 
that some epigenetic states are subject to strong evolutionary constraints. For 
epigenetic selection to be effective, epimutations need to be sufficiently stable [29], 
and a lack of stability has been cited as one reason why epigenetic inheritance has 
no potent role in evolution or in the heritability of complex traits [30]. Contrary to 
these conclusions, simple deterministic selection models show that newly arising 
epimutations are stable enough to respond effectively to long-term selection, even 
under weak selection regimes, yielding epimutation-selection equilibria that are 
close to those expected for DNA sequence mutation rates (Fig. 2F and SI Appendix). 
 

6.3.3 Reference values for future population epigenetic studies 
 
In light of our estimates of forward-backward epimutation rates, future work should 
examine the effect of selection in more complex population genetic models that 
account for finite population sizes, migration, and drift such as those proposed by 
Charlesworth and Jain [13]. Recently, Wang and Fan [14] devised a neutrality test 
based on single methylation polymorphism data using a modified version of Tajima’s 
𝐷. We caution that care needs to be taken when supplying epimutation rates to this 
or similar tests. Incorrect assumptions about the ratio of forward and backward rates 
can lead to widely misleading conclusions regarding the role of selection on CG 
methylation. If one assumes that forward and backward rates are equivalent, TE-
associated CGs would most likely be detected as being under strong selection, and 
pericentromeric regions would seem to have undergone selective sweeps. However, 
if one considers that spontaneous methylation gain is about 30 times more likely 
than methylation loss (see Table 1), equilibrium levels of CG-methylation diversity in 
TEs would seem to be entirely consistent with neutrality. Hence, the context- or 
annotation-specific epimutation rates provided here should serve as useful 
reference values when inferring signatures of epigenetic selection in Arabidopsis 
thaliana and possibly in other plant species. 
 

6.4 Materials and methods 
 
Below we provide a brief description of the theoretical model and our estimation 
approach. For a more detailed explanation we refer the reader to SI Appendix. 
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6.4.1 Derivation of neutral epimutation model 
 
Let 𝑐𝑢 and 𝑐𝑚 denote an unmethylated and a methylated cytosine, respectively, and                                   
𝛼 = 𝑃𝑟(𝑐𝑢 → 𝑐𝑚) and 𝛽 = 𝑃𝑟(𝑐𝑚 → 𝑐𝑢) be the probabilities that a cytosine gains 
or loses methylation during or before gamete formation, which can include gains or 
losses of DNA methylation in somatic tissues from which the gametic cells were 
derived. We arbitrarily call 𝛼 the forward and 𝛽 the backward epimutation rate per 
generation per haploid methylome. We modeled the epigenotype frequencies at the 
𝑗th cytosine using a Markov chain with three states: 𝑐𝑢𝑐𝑢, 𝑐𝑢𝑐𝑚, and 𝑐𝑚𝑐𝑚. Taking 
into account Mendelian segregation of epialleles 𝑐𝑚 and 𝑐𝑢 together with rates 𝛼 
and 𝛽, we derived the epigenotype transition matrix 𝐓 after one selfing generation: 
 

 
 
This formulation does not account for higher-order epimutation events, because 
such events are expected to be rare for small epimutation rates. Following Markov 
chain theory, the epigenotype frequencies at cytosine 𝑗 in the MA population after 𝑡 
generations of single seed descent, 𝜋𝑡𝑗 can be expressed as 𝜋𝑡𝑗 = 𝜋0𝑗𝑃𝐕𝑡𝑃−1, 
where 𝑃 is the eigenvector of matrix 𝐓 and 𝐕 is a diagonal matrix of the eigenvalues 
of matrix 𝐓. Using Mathematica 10.0 (Wolfram Research, Inc.) we derived analytical 
solutions for the elements of 𝜋𝑡𝑗, which are functions of 𝑡, 𝛼, 𝛽 as well as the initial 
frequency vector 𝜋0𝑗. These analytical solutions have no easy form and are therefore 
omitted here for brevity. At equilibrium, the 𝜋∞𝑗 represent the expected 
epigenotype frequencies at cytosine 𝑗 among the MA lines after a (hypothetical) 
infinite number of selfing generations (𝑡 = ∞), and were obtained by calculating 
𝑙𝑖𝑚𝑡→∞𝜋𝑡𝑗: 
 

𝜋∞𝑗(𝑐𝑢𝑐𝑢) = 
𝛽((1 − 𝛽)2 − (1 − 𝛼)2 − 1)
(𝛼 + 𝛽)((𝛼 + 𝛽 − 1)2 − 2)  

 

𝜋∞𝑗(𝑐𝑢𝑐𝑚) = 
4𝛼𝛽(𝛼 + 𝛽 − 2)

(𝛼 + 𝛽)((𝛼 + 𝛽 − 1)2 − 2) 

cucu cmcu cmcm

cucu (1 - α)2 2(1 - α)α α2

cucm ¼(β + 1 - α)2  ½(β + 1 - α) (α + 1 - β) ¼(α + 1 - β)2

cmcm β2 2(1 - β)β (1 - β)2



Stochastic changes in cytosine methylation 

 131 

 

𝜋∞𝑗(𝑐𝑚𝑐𝑚) = 
𝛼((1 − 𝛼)2 − (1 − 𝛽)2 − 1)
(𝛼 + 𝛽)((𝛼 + 𝛽 − 1)2 − 2)  

 
For any 0 < 𝛼, 𝛽 < 1, these equilibrium solutions are independent of the initial 
epigenotype proportions 𝜋0𝑗 in the common founder, and depend only on the rates 
𝛼 and 𝛽. The rate at which the epigenotype proportions converge to these 
equilibrium values depends on the relative magnitude of the forward and backward 
rates. 
 

6.4.2 Modeling methylation divergence 
 
To derive analytical formulas for methylation divergence, we score the methylation 
divergence between two independently selfed lines at every cytosine with the 
following distance matrix: 
 

 
 
Let 𝑡1 and 𝑡2 denote the number of generations between two individuals at 
generations 𝐺𝑚 and 𝐺𝑛 and their most recent common founder at generation 𝐺𝑓, 
respectively (i.e., 𝑡1 = 𝐺𝑚 − 𝐺𝑓, 𝑡2 = 𝐺𝑛 − 𝐺𝑓, Fig. 1A). Let 𝜋𝑡𝑖𝑗|𝑐

𝑚𝑐𝑚 be the vector 
of epigenotype frequencies at the jth cytosine after 𝑡𝑖 selfing generations from 𝐺𝑓, 
conditional on the fact that the most recent common founder epigenotype was 
𝑐𝑚𝑐𝑚: 𝜋𝑡𝑖𝑗|𝑐

𝑚𝑐𝑚 = (0,0,1) ∙ 𝑇𝑡𝑖. Using this equation and the methylation 
divergence scoring table above, the divergence between these two lines at this locus 
can be calculated as 
 
 
 
 

cucu cmcu cmcm

cucu 0 ½ 1
cucm ½ 0 ½
cmcm 1 ½ 0
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𝑑𝑡1𝑡2𝑗|𝑐
𝑚𝑐𝑚 =

1
2∑(𝜋𝑡1𝑗(𝑃1𝑘)|𝑐

𝑚𝑐𝑚
4

𝑘=1

∙ 𝜋𝑡2𝑗(𝑃2𝑘)|𝑐
𝑚𝑐𝑚) 

+1∑(𝜋𝑡1𝑗(𝑄1𝑘)|𝑐
𝑚𝑐𝑚

2

𝑘=1

∙ 𝜋𝑡2𝑗(𝑄2𝑘)|𝑐
𝑚𝑐𝑚) 

 
 
with 𝑄1 = {𝑐𝑢𝑐𝑢, 𝑐𝑚𝑐𝑚}, 𝑄2 = {𝑐𝑚𝑐𝑚, 𝑐𝑢𝑐𝑢}, 𝑃1 = {𝑐𝑢𝑐𝑢, 𝑐𝑢𝑐𝑚, 𝑐𝑢𝑐𝑚, 𝑐𝑚𝑐𝑚}, 
and 𝑃2 = {𝑐𝑢𝑐𝑚, 𝑐𝑢𝑐𝑢, 𝑐𝑚𝑐𝑚, 𝑐𝑢𝑐𝑚}. The simple multiplication of these 
frequencies follows from the fact that the selfing lines are conditionally independent. 
The divergence over all loci for which the most recent common founder at 𝐺𝑓 was 
𝑐𝑚𝑐𝑚 is 
 

𝑑𝐺𝑓,𝑡1𝑡2|𝑐
𝑚𝑐𝑚 =∑𝑑𝑡1𝑡2𝑗|𝑐

𝑚𝑐𝑚
𝑗

= 𝑁𝐺𝑓
𝑚𝑚 ∙ 𝑑𝑡1𝑡2𝑗|𝑐

𝑚𝑐𝑚 

 
where 𝑁𝐺𝑓

𝑚𝑚 are the number of methylated cytosines at 𝐺𝑓. The global (or total) DNA 
methylation divergence along the genome can be calculated as 
 

𝐷𝐺𝑓,𝑡1𝑡2 = 𝑑𝐺𝑓,𝑡1𝑡2 |𝑐
𝑚𝑐𝑚 + 𝑑𝐺𝑓,𝑡1𝑡2| 𝑐

𝑢𝑐𝑚 + 𝑑𝐺𝑓,𝑡1𝑡2|𝑐
𝑢𝑐𝑢 

 
where 𝑑𝐺𝑓,𝑡1𝑡2|𝑐

𝑢𝑐𝑚 and 𝑑𝐺𝑓,𝑡1𝑡2|𝑐
𝑢𝑐𝑢 are derived using similar arguments as for 

𝑑𝐺𝑓,𝑡1𝑡2|𝑐
𝑚𝑐𝑚. We prefer to express the global methylation divergence as a 

proportion of all of the cytosines, in which case 
 

𝐷𝐺𝑓,𝑡1𝑡2
∗ =

𝐷𝐺𝑓,𝑡1𝑡2
𝑁  

 
Using the above derived equilibrium epigenotype frequencies, it can be shown that 
the equilibrium divergence is 
 

𝐷∞∗ =
2𝛼𝛽([(1 − 𝛽)2 − (1 − 𝛼)2]2 − 2[𝛼 + 𝛽 − 1]2 + 3)

(𝛼 + 𝛽)2((𝛼 + 𝛽 − 1)2 − 2)2
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6.4.3 Model fitting and parameter estimation 
 
For each pedigree we had a number 𝑀 of line comparisons and we denoted the 
observed methylation divergence between each of them as 𝑂𝐺𝑓,𝑡1𝑡2𝑖, with 𝑖 =
{1,2,… ,𝑀}, and 𝐺𝑓, 𝑡1, and 𝑡2 the times of and from their most recent common 
founder, respectively. We assumed that these observations were generated from 
the proposed epimutation model but contained some unknown measurement error. 
Hence, we had 
 

𝑂𝐺𝑓,𝑡1𝑡2𝑖 = 𝑐 + 𝐷𝐺𝑓,𝑡1𝑡2
∗ + 𝜖𝑖 

 
where 𝑐 is the intercept, 𝐷𝐺𝑓,𝑡1𝑡2

∗  is the theoretical global divergence measure 
introduced above, and 𝜖 is a random measurement error term. For the MA1_1 
population the value of 𝑐 was approximated using the methylation divergence 
between technical replicates. For the other three populations no technical replicates 
were available and 𝑐 was estimated along with the other parameters (SI Appendix, 
Fig. S9). To obtain parameter estimates we minimized 𝑟2 = ∑ (𝑂𝐺𝑓,𝑡1𝑡2𝑖 −i
𝐷𝐺𝑓,𝑡1𝑡2
∗ )2, which is a problem in multivariate nonlinear regression. This involves 

finding solutions to ∇𝑟2 = 0, which can be obtained numerically. Extensive 
simulations showed that our estimation method performs well, even with relatively 
large measurement error (SI Appendix, Fig. S10). 
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Summarizing discussion 
 

 
Plant genomes make extensive use of DNA methylation for the silencing of 
transposable elements and the regulation of genes [1]. Before 2009, many reports 
had shown that the loss or gain of DNA methylation states can be stably inherited 
for many generations, and a number of studies even showed that spontaneous, 
single-locus DNA methylation variants (epialleles) can influence simple categorical 
traits such as flower shape (e.g. symmetrical versus asymmetrical flower; [2]). An 
emerging question at that time was whether the genome-wide segregation of 
multiple epialleles could provide a so far unexplored basis of variation for more 
“complex” traits, such as seed yield, drought resistance, biomass, flowering time, 
height, etc. This question was important because most of these latter traits are the 
primary targets of natural selection in the wild or artificial selection in agricultural 
breeding programs. However, there was no experimental system to answer these 
questions because commonly studied natural or experimental plant populations 
were rife with DNA sequence polymorphisms, which made it impossible to 
disentangle genetic from epigenetic effects. 
 
To solve this problem, a panel of so-called epigenetic recombinant inbred lines 
(epiRILs) in the model plant Arabidopsis thaliana was established [3]. Individuals in 
this population have virtually identical DNA sequences but segregate hundreds of 
experimentally-induced differentially methylated regions (DMRs) across the 
genome. The epiRILs therefore provided a “clean” system to quantify the extent to 
which epigenetic variation can affect complex traits independently of DNA sequence 
polymorphisms. Indeed, extensive phenotypic analysis of the epiRILs showed that 
many ecologically and agriculturally important phenotypes are highly heritable in 
this population [3-5]. These phenotypic observations provided strong (but indirect) 
evidence that segregating DMRs are the cause for these heritability effects. 
 
To provide a more direct demonstration of the causal link between DMRs and 
phenotypic variation in the epiRILs, we performed whole-genome methylation 
profiling for 123 epiRILs using methylated DNA immunoprecipitation in combination 
with tiling arrays (MeDIP-chip; [6, 7]). The epiRIL methylomes were reconstructed 
with the use of a three-state Hidden Markov Model (HMM). The choice for a HMM 
is based on two key properties of the MeDIP-chip data: (1) the signals of the probes 
are noisy proxies of an unobserved (or hidden) methylated, intermediate or 
unmethylated state and (2) the probes are spatially correlated and therefore 
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neighboring probes provide similar information. A HMM provides a powerful 
statistical framework for classifying individual probes given the overall structure of 
the data. Subsequent annotation analysis of the probe classifications shows that 
most of the gene probes are unmethylated and the majority of the transposable 
element probes are methylated, as expected. 

--- Chapter 1 --- 
 
In addition to MeDIP-chip we performed whole-genome bisulfite sequencing (WGBS-
seq) for six of the 123 epiRILs for cross-validation purposes [7]. By conducting a side 
by side comparison between MeDIP-chip and WGBS-seq we show that MeDIP-chip 
performs reasonable well in detecting DNA methylation at the probe level, yielding 
a genome-wide combined false-positive and false-negative rate of about 0.21 [8]. 
Results however indicate that the detection can be susceptible to strong signal 
distortions resulting from a combination of dye bias and the CG content of effectively 
unmethylated genomic regions. Nonetheless, we show that these issues can be 
easily bypassed by taking appropriate data preparation steps and applying suitable 
analysis tools. Altogether we conclude that MeDIP-chip is a reasonable alternative 
to WGBS-seq for the detection of DMRs. 

--- Chapter 2 --- 
 
A direct view of the full methylomes of the epiRILs revealed that many DMRs 
segregate in a strictly Mendelian fashion for at least eight generations while others 
display highly dynamic (non-Mendelian) changes. Using these stable DMRs as 
physical markers, we were able to construct a recombination map in this isogenic 
population [7]. This was the first time that anyone had access to the recombination 
landscape of an experimental population that was variable at the DNA methylation 
level but essentially free of segregating DNA sequence polymorphisms. With this 
system we were in a unique position to answer novel questions regarding the role of 
genetic and epigenetic variation in shaping the recombination landscape in 
Arabidopsis. Prior to this work, both DNA methylation and sequence polymorphisms 
were believed to be major barriers of crossing-over events, particularly in 
pericentromeric regions of chromosomes. Contrary to this expectation, we found 
that suppression of recombination was strongly maintained in core pericentromeres 
in the epiRILs, and even further reinforced at pericentromeric boundaries. As a trade-
off, crossing-over frequencies in chromosome arms were increased, so that the total 
number of crossing-over events was largely preserved globally. From these results, 
we concluded that neither dense DNA methylation nor DNA sequence 
polymorphisms are major determinants of the suppression of recombination in 
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pericentromeric regions, and that other, yet unknown, factors are involved. These 
results were consistent with other reports that were published nearly concurrently, 
but using widely different experimental approaches. 

--- Chapter 3 --- 
 
We employed the above-mentioned recombination map in conjunction with classical 
linkage mapping to identify segregating DMRs that could explain the heritable 
phenotypic effects previously observed in the epiRILs [9]. Using this approach, we 
detected several chromosomal regions that harbor causal DMRs, which together 
accounted for up to 90% of the heritability in flowering time and root length. This 
was the first demonstration, in any organisms, that DMRs can be stably inherited 
independently of DNA sequence changes and function as so-called epigenetic 
quantitative trait loci (QTLepi). Phenotypically, the detected QTLepi have all the 
necessary properties to become targets of natural or artificial selection. This 
possibility has implications for evolutionary biology and applied agricultural genetics, 
and has opened entirely new research lines in the emerging field of population 
epigenetics and epigenomics. 

--- Chapter 4 --- 
 
One important phenomenon that has been extensively exploited in agriculture is 
called heterosis (also called hybrid vigor). Heterosis describes an F1 phenotype with 
improved or increased performance compared to its parent varieties. Despite its 
importance for crop improvement the knowledge of the mechanisms behind this 
phenomena remain incomplete. Interestingly, there is growing evidence that 
epigenetic divergence plays an important role [10-12]. In order to test whether 
divergence in DNA methylation can contribute to heterosis we constructed 
epigenetic F1 hybrids (epiHybrids) by crossing a Col-0 wild-type as maternal parent 
with 19 different epiRILs (Chapter 1 and 3) as paternal parent [13]. Both parental 
epiRIL and wild-type lines were nearly isogenic making it an ideal system to explore 
the contribution of DNA methylation divergence to heterosis. We focused on seven 
different traits (leaf area, growth rate, flowering time, main stem branching, rosette 
branching, final plant height and seed yield) and observed a remarkable wide range 
of heterotic effects. Sixteen of the 19 epiHybrids exhibited significant mid-parent 
heterosis and among these nine exhibited significant low- or high-parent heterosis 
for at least one of the seven traits. Up to 51 % of the total variation in mid-parent 
divergence could be attributed to (epi)genomic differences between the Col-0 wild-
type and epiRILs used for the crosses. Furthermore with the use of classical linkage 
analysis we detected several QTL for leaf area, flowering time and height that could 
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potentially explain the observed variation in mid-parent heterosis. Several of the 
candidate DMRs detected within the QTL regions are close to potentially interesting 
candidate genes. All together these results could potentially have implications for 
future crop breeding. 

--- Chapter 5 --- 
 
The epiRIL study, as well as several other studies have shown examples of 
segregating epimutations (in experimental populations or natural populations) that 
in some cases contribute to heritable phenotypic variation. These observations have 
led to much speculation about the role of DNA methylation in plant evolution, and 
its potential in breeding programs. Precise estimates of the rates at which 
methylation is spontaneously gained (forward epimutation) or lost (backward 
epimutation) at individual cytosines are necessary to be able to quantify the long-
term dynamics of epigenetic variation under laboratory or natural conditions, and to 
understand the molecular mechanisms that drive methylome evolution. In order to 
obtain these rates we combined theoretical modelling with high-resolution 
methylome analysis of multiple independent mutation accumulation (MA) lines [14]. 
Results show that the epimutation rates of CG cytosines are about five orders of 
magnitude higher compared to genetic mutations (10-4 compared to 10-9). Moreover, 
the rate at which methylation is lost (6.30 ∙ 10-4) is about three times higher 
compared to the rate at which methylation is gained (2.56 ∙ 10-4). Annotation-specific 
epimutation rates were in the same order but subtle differences in the rates had a 
substantial impact on the divergence of CG methylation across annotations. 
Furthermore results indicate that these context specific rates have shaped the global 
patterns of methylation divergence in Arabidopsis natural populations rather than 
selection taking place over broad genomic regions, because the patterns in the MA 
lines, which show a high correlation with the patterns of the natural accessions, were 
established in only 31 generations. Finally, theoretical arguments indicate that the 
epimutation rates are strong enough to rapidly uncouple genetic from epigenetic 
variation, but low enough for new epimutations to sustain long-term selection 
responses. The obtained results provide new insights into methylome evolution and 
its population-based consequences. 

--- Chapter 6 --- 
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Nederlandse samenvatting (Dutch summary) 
 
 
Het is al geruime tijd bekend dat genetische variatie (variatie in de genetische code) 
in het DNA zit, overgeërfd kan worden en kan bijdragen aan de variatie van 
eigenschappen binnen de populatie (bijv. de lengte van individuen). Wat minder 
bekend is en wat een fundamentele vraag is binnen de wetenschap, is of de variatie 
die op het DNA ligt (welke een rol heeft in de organisatie en regulatie van het DNA) 
ook overgeërfd kan worden en kan bijdragen aan de variatie in eigenschappen die je 
ziet in een populatie los van de genetische code zelf. Men spreekt in dit geval van 
epigenetische variatie (epi: Grieks voor ‘boven’, ‘op’ of ‘over’) en het vakgebied van 
de epigenetica. Epigenetische variatie wordt onderverdeeld in drie categoriën; (1) 
een chemische verandering van het DNA (methylering van de base cytosine is het 
meest bestudeerd), (2) een chemische verandering van de eiwitten (histonen) die 
samen met het DNA chromatine vormen (bijv. acetylering of andere vormen van 
chemische modificaties) en (3) de aanwezigheid van kleine interferentie-RNAs. In dit 
proefschrift  richten we ons op DNA methylering (toevoeging van een methylgroep 
aan de base cytosine) en bestuderen we deze vorm van epigenetische variatie in de 
model plant Arabidopsis thaliana (zandraket). 
 
Plantengenomen maken extensief gebruik van DNA methylering om de activiteit van 
transposons (transcriptie en transpositie) te remmen en om de activiteit van genen 
(transcriptie) te reguleren. Voor 2009 hebben verschillende raporten aangetoond 
dat de mate van methylering (wel of geen methylatie) stabiel kan worden 
overgeërfd, en een aantal studies heeft zelfs aangetoond dat spontane 
methyleringsvariatie op één locus (een epi-allel) invloed kan hebben op eenvoudige 
eigenschappen zoals de vorm van een bloem (bijv. symmetrische ten opzichte van 
asymmetrische bloemvorm). Een opkomende vraag in die tijd was of de overerving 
van deze epi-allelen over het hele genoom kan bijdragen aan een tot nu toe nog niet 
ontdekte basis van “complexere” eigenschappen, zoals zaadopbrengst, 
droogteresistentie, biomassa, bloeitijd (Engels: flowering time), hoogte etc. Deze 
vraag was belangrijk omdat deze laatste eigenschappen doelwitten (targets) zijn 
voor natuurlijke selectie in het wild of kunstmatige selectie in agrarische 
teeltprogramma’s. Er was echter nog geen experimenteel systeem om deze vragen 
te beantwoorden omdat de gebruikelijke natuurlijke of experimentele 
plantpopulaties naast variatie in DNA methylatie ook DNA sequentie verschillen 
bevatten. Hierdoor is het moeilijk om genetische van epigenetische effecten te 
onderscheiden (bijdrage van beide aan de eigenschappen van de plant). Als  
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oplossing hebben we een populatie van zogenoemde epigenetische recombinante 
inteelt lijnen (epiRILs) geïntroduceerd in de model plant Arabidopsis thaliana (A. 
thaliana). De individuele planten hebben praktisch identieke DNA sequenties maar 
segregeren honderden experimenteel-geïnduceerde differentieel gemethyleerde 
regio’s (Engels: Differentially Methylated Regions; DMRs) verspreid over het hele 
genoom. De epiRILs bieden daarom een “zuiver” systeem om te kwantificeren in 
welke mate epigenetische variatie kan bijdragen aan variatie in complexe 
eigenschappen onafhankelijk van (mogelijke) verschillen in de DNA sequentie. 
Inderdaad, uitgebreid fenotypisch onderzoek van de epiRILs heeft aangetoond dat 
verschillende ecologisch and agrarisch belangrijke eigenschappen in hoge mate 
erfelijk zijn in deze populatie. Deze fenotypische observaties maken het aannemelijk 
dat segregerende DMRs deze erfelijke effecten veroorzaken. 
 
In dit proefschrift gaan we verder met deze zoektocht naar de erfelijke basis van DNA 
methylatie voor de variatie van complexe eigenschappen. We hebben de 
methylatiepatronen bepaald voor het gehele genoom voor meer dan 100 epiRILs 
(beschreven in hoofdstuk 1 en 2). Dit was gedaan met behulp van 
immunoprecipitatie van gemethyleerde DNA fragmenten gevolgd door hybridisatie 
op micro-chips en bisulfiet behandeling van gefragmenteerd DNA gevolgd door next-
generation sequencing (NGS) technologiën. Na het bepalen van de 
methylatiepatronen waren we in staat om een recombinatiekaart te maken voor de 
epiRILs in deze populatie (beschreven in hoofdstuk 3). Deze kaart was gemaakt met 
behulp van DMRs die stabiele segregatie (volgens Mendel) vertonen zoals verwacht 
op basis van de kruising die was toegepast. Dit was de eerste keer in de geschiedenis 
dat men toegang had tot de recombinatiepatronen in een populatie die variabel is 
op DNA methylatieniveau maar, in essentie, vrij is van segregerende DNA 
sequentieverschillen. Deze recombinatiekaart hebben we vervolgens gebruikt voor 
klassieke linkage analyse voor het vinden van DMRs die de geobserveerde 
fenotypische variatie zouden kunnen verklaren (beschreven in hoofdstuk 4). Met 
behulp van deze aanpak waren we in staat om diverse chromosomale regio’s te 
detecteren die DMRs bevatten, die samen tot 90 % van de erfelijkheid verklaren voor 
de gemeten bloeitijd en wortellengte in deze populatie. Dit was de eerste 
demonstratie, in enig organisme, dat DMRs stabiel overgeërfd kunnen worden 
onafhankelijk van DNA sequentieverschillen en functioneren als zogenoemde 
epigenetische quantitative trait loci (QTLepi). We realiseerden ons dat de epiRILs ook 
gebruikt konden worden voor het bestuderen van andere fenomenen zoals heterosis 
(ook wel hybrid vigor genoemd), een fenomeen waarbij de fenotypische 
eigenschappen van F1 hybride nakomelingen betere eigenschappen (bijvoorbeeld 
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meer vruchten) vertonen dan de ouders. Dit fenomeen is veelal benut in agrarische 
teeltprogramma’s voor verscheidene eeuwen als een manier om gewasopbrengst te 
maximaliseren en rassen te verbeteren (bijvoorbeeld melkkoeien). Voor dit 
doeleinde hebben we verschillende hybridepopulaties gecreëerd door epiRILs te 
kruisen met wild-type A. thaliana planten (beschreven in hoofdstuk 5). Verschillende 
eigenschappen werden gemeten zoals bladoppervlak en de hoogte van de planten. 
We hebben met deze experimentele setting bewijs verkregen die aantonen dat 
erfelijke verschillen in cytosine methylatie tussen twee ouderlijke Arabidopsis lijnen 
genoeg zijn om heterosis teweeg te brengen in hun F1 nakomelingen zelfs in de 
nagenoege afwezigheid van DNA sequentie verschillen. 
 
Hoewel we met onze aanpak met de epiRILs veel experimentele controle hebben, 
geeft het geen goed beeld van hoe de DNA methylatieverschillen in natuurlijke 
settings worden verkregen. In A. Thaliana heeft men aangetoond dat epimutaties 
(verandering in de methylatie toestand van CG dinucleotiden) spontaan ontstaan en 
in een snelle en niet-lineaire manier accumuleren, zeer waarschijnlijk als een 
resultaat van snelle toe- en afname dynamiek (Engels: forward-backward dynamics; 
verwerven van methylatie en verliezen van methylatie). Als een uitbreiding op ons 
werk met de epiRILs hebben we openbare en nieuw-gegenereerde bisulfite 
sequencing data gebruikt om robuuste schattingen te krijgen van de snelheid 
waarmee spontaan methylatie toeneemt (forward epimutatie) of afneemt 
(backward epimutatie) op het niveau van individuele cytosines (beschreven in 
hoofdstuk 6). De resultaten laten zien dat de snelheden afhankelijk zijn van de 
genoomcontext (gen regio’s, transposon regio’s, etc.) en dat deze contextverschillen 
het epimutatielandschap langs het gehele genoom hebben vormgegeven in A. 
thaliana. We hebben ook gedemonstreerd dat de kennis van deze snelheden 
gebruikt kan worden voor het voorspellen van patronen van methyloomdivergentie 
over tijdschalen die van agrarisch en evolutionair belang zijn. 
 
Alles bij elkaar genomen heeft het werk dat gepresenteerd is in dit proefschrift 
substantiële bijdrage geleverd aan het snelgroeiende vakgebied van de plant 
epigenetica. 
 
 

 
 



   

  

 
 
 
 
 
 
 



   

 147 

List of abbreviations and acronyms 
 
 
AT  Annotation transition (zone) 
BLAST  Basic local alignment search tool 
bp  Base pair(s) 
BS  Bisulfite 
ChIP  Chromatin immunoprecipitation 
ChIP-chip ChIP followed by hybridization on a tiling array 
ChIP-seq ChIP followed by next-generation sequencing 
cM  CentiMorgan 
chr  Chromosome 
CO  Crossing over 
DAS  Days after sowing 
DDM1 (ddm1) Decrease in DNA methylation 1 
DMR  Differentially methylated region 
DS  Dye-swap 
epiHybrid Epigenetic (F1) hybrid 
epiRIL  Epigenetic recombinant inbred line 
FN  False-negative 
FP  False-positive 
FT (FT1, FT2) Flowering time 
GR  Growth rate 
GWFP  Genome-wide false-positive (rate) 
G/R  IP DNA labelled with Cy3 (green) and input DNA with Cy5 (red) 
HT  Final plant height 
IP  Immunoprecipitated DNA 
LA  Leaf area 
LD  Linkage disequilibrium 
LOD  Logarithm of the odds ratio for linkage 
LPH  Low-parent heterosis 
HMM  Hidden Markov model 
HPH  High-parent heterosis 
MA  Mutation accumulation 
Mb  Mega base pairs = 1,000,000 bp 
MeDIP  Methyl (or methylated) DNA immunoprecipitation 
MeDIP-chip MeDIP followed by hybridization on a tiling array 
MeDIP-seq MeDIP followed by next-generation sequencing 
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MP  Mid-parent 
MPV  Mid-parent value 
MSB  Main stem branching 
NGS  Next-generation sequencing 
nt  Nucleotide 
PCR  Polymerase chain reaction 
QTLepi  Epigenetic quantitative trait locus (or loci) 
QTL  Quantitative trait locus (or loci) 
RB  Rosette branching 
RGB  Additive color model in which red, green and blue are added in  

various ways to reproduce a broad array of colors. 
R/G  IP DNA labelled with Cy5 (red) and input DNA with Cy3 (green) 
RL (RL1, RL2) Primary root length 
SE  Standard error 
SEE  SE of the estimate 
SEM  SE of the mean 
siRNA  Small interfering RNA 
SMP  Single methylation polymorphism 
SY  Seed yield 
TAIR  The Arabidopsis Information Resource; a community resource and  

online database of genetic and molecular biology data for the model  
plant Arabidopsis thaliana  

TCM  Trans chromosomal methylation 
TCdM  Trans chromosomal demethylation 
TE  Transposable element or Tris - EDTA (TE) buffer 
TEASV  TE-associated structural variant 
URL  Uniform resource locator; a reference (an address) to a resource on  

the internet 
WGBS-seq Whole-genome bisulfite sequencing 
WT (wt) Wild-type 
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