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Abstract

Restriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymor-

phism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates

in SNPs derived from restriction-enzyme-based methods remain largely unknown. Here, we estimated genotyping

error rates in SNPs genotyped with double digest RAD sequencing from Mendelian incompatibilities in known

mother–offspring dyads of Hoffman’s two-toed sloth (Choloepus hoffmanni) across a range of coverage and sequence

quality criteria, for both reference-aligned and de novo-assembled data sets. Genotyping error rates were more sensi-

tive to coverage than sequence quality and low coverage yielded high error rates, particularly in de novo-assembled

data sets. For example, coverage ≥5 yielded median genotyping error rates of ≥0.03 and ≥0.11 in reference-aligned and

de novo-assembled data sets, respectively. Genotyping error rates declined to ≤0.01 in reference-aligned data sets

with a coverage ≥30, but remained ≥0.04 in the de novo-assembled data sets. We observed approximately 10- and 13-

fold declines in the number of loci sampled in the reference-aligned and de novo-assembled data sets when coverage

was increased from ≥5 to ≥30 at quality score ≥30, respectively. Finally, we assessed the effects of genotyping cover-

age on a common population genetic application, parentage assignments, and showed that the proportion of incor-

rectly assigned maternities was relatively high at low coverage. Overall, our results suggest that the trade-off

between sample size and genotyping error rates be considered prior to building sequencing libraries, reporting geno-

typing error rates become standard practice, and that effects of genotyping errors on inference be evaluated in restric-

tion-enzyme-based SNP studies.

Keywords: ddRAD, genotyping error, Mendelian incompatibility, next-generation sequencing, single nucleotide

polymorphism

Received 23 March 2015; revision received 10 February 2016; accepted 11 February 2016

Introduction

The advent of next-generation sequencing (NGS) is revo-

lutionizing the field of molecular ecology by facilitating

the discovery and genotyping of thousands of single

nucleotide polymorphisms (SNPs) in nonmodel organ-

isms. Moreover, approaches, such as restriction-asso-

ciated DNA sequencing (RAD-seq) (Baird et al. 2008;

Peterson et al. 2012) and genotyping by sequencing

(GBS) (Elshire et al. 2011), allow for the genotyping of

large numbers of SNP loci across multiple individuals.

As such, restriction-enzyme-based methods hold tremen-

dous potential for improving the characterization of

demographic history (Pujolar et al. 2013; Lozier 2014),

quantification of population connectivity (Corrales &

H€oglund 2012; Funk et al. 2012) and detection of loci sub-

ject to local adaptation (Lamichhaney et al. 2012; Fran-

chini et al. 2014). Nevertheless, the application of

restriction-enzyme-based sequencing approaches for

population-level genotyping is still in its infancy and, in

contrast to more traditional genetic markers such as

microsatellite loci, genotyping error rates in SNPs remain

unknown and factors influencing error rates are largely

unexplored (see Larson et al. 2014; Palti et al. 2015).

Users of restriction-enzyme-based sequencing meth-

ods are confronted with a trade-off between the number

of loci and individuals genotyped and coverage. Limit-

ing genotyping to SNPs with high coverage (i.e. read

depth) reduces error rates in heterozygotes by increasing
Correspondence: Emily D. Fountain, Fax: +1 608 262 9922;

E-mail: efountain@wisc.edu
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the likelihood that both alleles will be detected, but also

limits the number of individuals and loci sampled (Li

et al. 2008; Harismendy et al. 2009). Reducing coverage

allows for greater sample sizes of individuals and loci,

but increases the risk of incorrectly calling a heterozy-

gote a homozygote due to sequencing errors because

fewer correct sequences are available per gene copy. Sev-

eral studies have investigated methods for incorporating

sequencing error rates in data subject to low coverage

(Bansal 2010; Malhis & Jones 2010; Le & Durbin 2011;

Nielsen et al. 2012; Mastretta-Yanes et al. 2015), but the

effects of sequencing error and coverage on genotyping

error rates are uncertain. Therefore, subjectively chosen

coverage and sequence quality criteria often involve low

to medium coverage thresholds in order to maximize the

number of loci (Table 1), and these criteria may result in

error rates that compromise inference (Nielsen et al.

2011).

In addition to the effects sequencing error and cover-

age, genotyping error rates are likely influenced by the

quality of genome reference data available for alignment.

When available, aligning raw sequence reads to a refer-

ence genome prior to SNP and genotype calling may

reduce error rates. A high-quality genome (one that con-

tains no discernable misassemblies and for which some

of the gaps in assembly have been resolved) increases

alignment accuracy due to the removal of contaminated

sequences and a mostly resolved genome (Chain et al.

2009). However, researchers must often conduct align-

ments using draft genomes with low scaffold coverage,

incomplete assembly and an unknown amount of error

(Chain et al. 2009; Gnerre et al. 2011). Moreover, even

low-quality reference genomes are unavailable for many

nonmodel organisms. For nonmodel species, de novo

assembly presents additional challenges for SNP discov-

ery and genotyping including spurious SNP calls as a

result of collapsing paralogs into unique loci (Zhang

et al. 2011).

In this study, we estimated error rates in SNP geno-

types derived from double digest restriction-associated

DNA sequencing (ddRAD) as a function of coverage and

sequence quality criteria, and compared error rates

between reference-aligned and de novo-assembled data

sets. We inferred genotyping error rates based on Men-

delian incompatibilities in mother–offspring pairs of

Hoffman’s two-toed sloth (Choloepus hoffmanni), relation-

ships confirmed through previous field observations of

radiocollared individuals and microsatellite-based

parentage analyses (Peery & Pauli 2012). Estimating

genotyping error rates based on deviations from Men-

delian expectations between closely related individuals

such as parents and their offspring (Douglas et al. 2002;

Hao et al. 2004; Saunders et al. 2007; Haaland & Skaug

2013; Chen et al. 2014) provides a cost–effective alterna-

tive to sequencing the same individuals multiple times

(He et al. 2013; Mastretta-Yanes et al. 2015). We subse-

quently conducted maternity assignments for each off-

spring present in our sample at different coverage

thresholds to assess the effect of genotyping error rates

on a common application in molecular ecology. Our

study is the first to empirically evaluate how SNP geno-

typing error rates are influenced by the combined effects

of coverage and sequence quality in a nonmodel species

using ddRAD sequencing. Based upon these results, we

provide guidelines for selecting coverage criteria in

assays of nonmodel species.

Methods

Field sampling and DNA extraction

We captured 16 mother–offspring pairs (Tables S1–S3,
Supporting information) of Choloepus hoffmanni 85 km

northeast of San Jos�e, Costa Rica. Individuals were wild

caught from February 2010 to February 2011 following

methods described in Peery & Pauli (2012). We collected

Table 1 Examples of coverage and quality score used in previous genetic studies for single nucleotide polymorphism obtained by

restriction-enzyme-based sequencing using de novo assembly and reference genome aligned data. ‘Lowest’ represents the lowest cover-

age minimum used in a study and ‘highest’ represents the highest coverage minimum used in a study

Coverage/Quality score

Linkage mapping Population diversity Phylogenetics

Lowest Highest Lowest Highest Lowest Highest

Reference aligned 5/30c – 5/30f 10/–g – –
De novo-assembled 8/20a 15/–b 6/10d 10/15e 15/20h 12/30i

–: Information on coverage and/or quality score was lacking.
aZhou et al. (2014), bRecknagel et al. (2013), cKai et al. (2014), dRuegg et al. (2014), eLozier (2014), fHohenlohe et al. (2010), gJezkova et al.

(2015), hJones et al. (2013), iWagner et al. (2013).
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tissue by ear punch from captured individuals. Genomic

DNA was extracted from the 32 C. hoffmanni using a Qia-

gen DNeasy Blood and Tissue KitTM (Qiagen, catalog

#59506) following the manufacturer’s protocol for tissue

samples with a modifications to the last step: two sepa-

rate, final elutions of each 65 lL each were conducted.

ddRAD-Seq library preparation and sequencing

We followed the ddRAD protocol by Peterson et al.

(2012) for preparing double digest libraries for sequenc-

ing using the restriction enzymes EcoRI (HF) and MspI

from New England Biolabs, Beverly, MA, USA.

Appendix S1 (Supporting information) contains com-

plete laboratory protocol details. Each library was com-

prised of 50 individuals per library with one library

sequenced per lane. The 32 individuals in this study

were not sequenced in more than one library. The

ddRAD libraries consisted of 50 high-quality DNA

digests (run 1), 50 low-quality DNA digests (run 2) or a

mix of both high- and low-quality DNA extracts to total

50 (run 3). We defined a DNA extract as ‘high quality’ if

the majority of DNA fragments were >500 bp based on

analysis on Agilent 2100 Bioanalyzer with a DNA 1000

Chip (Agilent Technologies, Santa Clara, CA, USA), the

DNA extraction had ~1.8 260/280 ratio, DNA extraction

concentration prior to digestion was ≥60 ng/lL, and

DNA concentration after digestion was >5 ng/lL; and
‘low quality’ if the majority of DNA fragments were

<500 bp, the DNA extraction had <1.7 260/280 ratio,

DNA concentration prior to digestion was <60 ng/lL, and
DNA concentration after digestion was below 5 ng/lL
(Tables S1–S3, Supporting information). We pair-end

sequenced samples to 101 bp with the Illumina

HiSeq2000 high throughput in three lanes, which con-

tained a single PhiX control lane. Sequencing was con-

ducted at University of Wisconsin-Madison

Biotechnology Center, USA.

Single nucleotide polymorphism and genotype calling

We conducted all data cleaning, demultiplexing, SNP

and genotype calling in STACKS 1.20 (Catchen et al. 2013).

Raw reads were demultiplexed by barcode and index,

and were trimmed to 90 bp using the pro-
cess_radtags command. We cleaned the raw

reads at different average quality score values: ≥30, ≥20
and ≥10 by setting the –s command in pro-
cess_radtags to the desired average quality score.

The sliding window (-w) was kept at the default value

of 0.15. The sliding window calculates the average qual-

ity score within a fraction of the read length and discards

any reads that drop below the set -s value within the

sliding window. Individual genotypes were called using

coverage thresholds: ≥30, ≥20, ≥15, ≥10 and ≥5 for each

quality score, leading to 18 combinations of coverage

and sequence quality criteria for each data set (reference-

aligned reduced, reference-aligned full and de novo) for

assessing how the parameters impacted genotyping error

rates. We retained SNPs that were shared between a

minimum two individuals and with a minor allele fre-

quency (MAF) ≥0.02.

Reference alignment. After demultiplexing and cleaning,

we pair-end aligned the remaining R1 and R2 reads to

the C. hoffmanni reference genome version 1.0

(GCA_000164785.1) using SOAP2 (Li et al. 2009). We chose

SOAP2 as this aligner does not soft mask; STACKS 1.20 con-

verts soft-masked regions to Ns which may make calling

some polymorphisms or mapping haplotypes impossible

on soft-masked reads. Parameters for the ungapped

alignment included a maximum of two mismatches per-

mitted in the seed and the insert size constrained

between 400 and 600 bps.

We created two reference-aligned data sets in STACKS

1.20. The first data set (hereafter referred to as ‘reference-

aligned full’) included the pair-end reads that aligned to

the reference genome without the possibility of aligning

to more than one contig (unflagged reads) and all reads

that were flagged as possibly residing on different con-

tigs. The reference-aligned full data set allowed for a

more direct comparison of genotyping error rates with

the de novo-assembled data set, given that the latter

included all demultiplexed reads. The second data set

(from here on referred to as ‘reference-aligned reduced’)

was constructed using only unflagged reads. We gener-

ated the reference-aligned reduced data set to determine

whether including secondary alignments in the analyses

influenced genotyping error rates. Reference-aligned

reads were processed using the ref_map pipeline,

which creates stacks of loci for each sample. All individ-

uals were subsequently loaded into the catalog, and

matches were made against the catalog. The number of

identically aligned sequences required to build a stack

(-m parameter)was evaluated using the values 3 and 5

given that using higher -m values tends to split true loci

into several different loci (Catchen et al. 2011; Mastretta-

Yanes et al. 2015). The two values resulted in similar

numbers of loci and therefore we elected to use setting of

-m = 3 for all subsequent analyses.

De novo assembly. STACKS 1.20 outputs four files after

demultiplexing: P1 reads that have a matching P2 read,

P2 reads that have a matching P1 read, P1 reads that do

not have a matching P2 read and P2 reads that do not

have a matching P1 read. Reads are considered to not

have a pair-end match when the other read was dis-

carded due to low quality or missing the restriction

© 2016 John Wiley & Sons Ltd
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enzyme cut site. We processed individuals using the

denovo_pl pipeline under several scenarios to deter-

mine the best parameters to use for our data

(Appendix S1, Supporting information). To determine

genotyping error rates, we used the paired R1 and R2

reads with the default SNP calling algorithm and the fol-

lowing parameters: -m 3, -M 3, -n 2.

Correction algorithm. Version 1.20 of STACKS includes a

correction algorithm, rxstacks, which may improve

individual genotype calls by making corrections based

the population-level data in four ways: (i) loci are

assigned a log-likelihood score during the stack assem-

bly step of the pipeline, and then using the rxstacks
command, loci can be removed from the data set if they

fall below the user set log-likelihood value; (ii) likely

sequencing errors at the individual level are filtered out

based on the alleles for a particular nucleotide position

in the population and then the nucleotide positions are

recalled using the bounded SNP model (bounded by

known error rate); (iii) confounded loci (for which an

individual has multiple loci that match a single catalog

locus) are filtered; and (iv) excess haplotypes are

removed.

We tested the rxstacks correction algorithm for

quality score ≥20 for minimum coverage criteria of 5, 10,

15 and 20. We did not consider a minimum coverage ≥30
because few individuals remained after the correction

algorithm was applied to the reference-aligned full data

set. For the reference-aligned full data set, after the

ref_map pipeline, we ran rxstacks and imple-

mented a log-likelihood cut-off of �15.0 under a

bounded SNP model with a max bound of 0.01. We

chose the log-likelihood threshold on the criteria that at

least 3000 loci must be genotyped at a log value in order

to retain enough loci for downstream analyses. After

removing spurious loci based on the algorithm as

described above, the cstacks and sstacks com-

mands were rerun on the corrected data using the

default values which allow for no mismatches when gen-

erating the catalog. For the corrected, reference-aligned

full data set, we removed dyads with <100 shared loci

and then we estimated the genotyping error rate. For the

de novo-assembled SNP genotypes, we employed the

same parameter values except the log-likelihood cut-off

(�12.0) which was based on the same criteria used for

the reference-aligned full data set. We conducted a Wil-

coxon signed-rank test in R 3.0.1 (R Core Team 2013)

between the uncorrected and corrected data sets to test

for differences in genotyping error rates and number of

loci.

Estimating genotyping error rates. We identified Men-

delian errors (MEs; i.e. cases where offspring and their

mothers did not share at least one allele at a given locus)

in the 16 mother–offspring dyads for all quality score

and coverage criteria described above in SAS
� 9.4 (SAS

Institute Inc. 2013). Dyads that shared fewer than 100

shared loci (Santure et al. 2010) for a given quality score

and coverage criteria combination were removed from

analyses. Although not all genotyping errors result in a

ME, there is a linear relationship between the number of

genotyping error and ME rates (Saunders et al. 2007).

The genotyping error rate for each dyad was estimated

from the observed ME rate following Saunders et al.

(2007). We calculated expected MEs as the sum of all val-

ues of P
ð1Þ
MEðpA;mÞ over all SNPs where both the mother

and the offspring had genotypes for a given locus,

P
ð1Þ
MEðpA;mÞ¼pApBð2�ð1�1=2pBÞÞm�ð1�1=2pAÞmþ1=2mÞ

pA and pB were the population allele frequencies, and m

was the number of offspring. In our data, m always

equalled one as each mother had only one offspring. In R

3.0.1 (R Core Team 2013), we calculated the median, 25th

and 75th percentiles, and 1.5 9 interquartile range for

genotyping error rates and the number of loci at each

quality score and coverage criteria. Mother–offspring
dyads represented the sampling unit for all summary

statistical estimates. We estimated genotyping error rates

at minimum coverage and quality score values (e.g. cov-

erage ≥10 and quality score ≥20). Also, we investigated

how loci within a particular coverage interval (e.g. cover-

age = 10–20) impacted genotyping error rates (see

Fig. 3B,C) to determine whether the loci with only low

coverage leveraged the genotyping error rates. We

referred to the former as ‘threshold’ analyses and the lat-

ter as ‘interval’ analysis.

Parentage analysis

To assess the effects of genotyping error rates on a popu-

lation genetic application, we conducted parentage anal-

yses under different coverage thresholds in CERVUS 3.0

(Marshall et al. 1998; Kalinowski et al. 2007). Specifically,
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Fig. 1 Dyad-specific genotyping error rates for the reference-

aligned full and de novo-assembled data sets at a quality score

≥20 and coverage ≥10.
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we conducted ‘single-parent’ assignments and treated

the maternity of juvenile sloths as unknown using a

quality score ≥20 for the five coverage thresholds (5, 10,

15, 20 and 30) for uncorrected de novo-assembled and ref-

erence-aligned reduced data sets and three different cov-

erage cut-offs (5, 10 and 20) for the rxstacks
corrected reference-aligned reduced data sets (further

details in Appendix S1, Supporting information). We

determined the statistical significance of parentage

assignments using critical ‘delta’ values at the 95% confi-

dence level, assumed complete sampling of mothers and

assumed a 0.01 and a 0.05 genotyping error rate in sepa-

rate analyses. We recorded the number of offspring that

were correctly and incorrectly assigned, and unassigned

to a mother for each coverage criteria.

Results

After quality control, the average number of pair-end

reads retained for the 32 individuals was as follows:

3 990 770 for quality score ≥30, 5 159 585 for quality

score ≥20 and 5 401 076 for quality score ≥10. The fewest

unmatched P1 and P2 reads were produced at quality

score ≥10 because fewer reads were discarded as low

quality. Full details of sequencing output are provided in

Tables S1–S3 (Supporting information).

Variation in genotyping error rates among dyads

Genotyping error rates varied considerably among the

16 mother–offspring dyads for all quality and coverage

criteria in both reference-aligned full and de novo-

assembled data sets (Fig. 1). Some variation in dyad-

specific genotyping error rates could have been the

result of differences in DNA quality among extractions;

however, ‘low-quality’ DNA extractions occurred in sev-

eral dyads with low genotyping error rates (e.g. dyads

4, 8 and 10; Fig. 1, Tables S1–S3, Supporting informa-

tion). Moreover, several ‘high-quality’ DNA extractions

yielded high genotyping error rates (e. g., dyads 11, 14

and 15; Fig. 1, Tables S1–S3, Supporting information).

Finally, we did not detect a correlation between dyad-

specific genotyping error rates and the shared number

of loci or the average number of reads when coverage

was ≥5 or ≥30.

Reference alignment

A relatively low percentage of reads (28–38%) aligned

with high likelihood to one place in the reference gen-

ome, even when relaxed alignment parameter values

were used that allowed for lower sequence identity or

larger gaps. An additional 35–48% of reads aligned to

more than one place in the reference genome. The

reference-aligned reduced data set (which only included

reads that aligned to one place) had slightly greater med-

ian genotyping error rates compared to the reference-

aligned full data set (which included secondary align-

ments; Fig. 2A). The reference-aligned reduced data set

had fewer loci than the reference-aligned full data set; for

example, the median number of SNP loci was 11 099 and

19 016 at coverage ≥5, respectively (Fig. 2B).
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In the reference-aligned full data set, three dyads had

high (>0.08) genotyping error rates (dyads 11, 13 and 16;

Fig. 1, Tables S1–S3, Supporting information). Removing

these dyads reduced the median and among-dyad vari-

ability in genotyping error rate (Fig. S1, Supporting

information). However, we retained these dyads when

estimating population-level genotyping error rates

because, in the absence of an association between

genotyping error rates and DNA extraction quality, SNP-

based studies will typically have no a priori basis for

censoring samples.

Genotyping error rates decreased with increasing cov-

erage for all quality scores (Figs. 3A, top panel, and S2,

Supporting information). At a coverage ≥5, genotyping
errors exceeded 0.03, but declined to ≤0.01 at coverage

≥30. The median number of loci declined substantially as

the coverage increased; for example, sampled loci

declined from 15 770 to 1 598 at coverage ≥5 to coverage

≥30 when quality score was ≥30 (Fig. 3A, bottom panel).

The median genotyping error rates were greater in the

coverage interval analysis (where loci were restricted to

those within specific coverage intervals) than in the

coverage threshold analysis (Fig. 3A,B). Median geno-

typing error rates were greatest when coverage was

restricted to between ≥5 and ≤10 (>0.10 for all minimum

quality scores). The majority of loci were at coverage ≥30
for each quality score (Fig. 3B, bottom panel), but the

inclusion of low coverage SNPs nevertheless greatly

increased median genotyping error rates. Quality score

criteria did not greatly impact mean genotyping error

rate except at lower coverage (≥5 and ≥10) (Fig. 3C, to

panel). The majority of reads were above a quality score

≥30 and, therefore, changes in number of loci were rela-

tively small across different quality score intervals

(Fig. 3C; bottom panel).

De novo-assembled

We observed the same decline in the median genotyping

error rate as a function of decreasing coverage in the de

novo-assembled data set as occurred in the reference-

aligned full data set. The median genotyping error rate

was ≥0.11 in the de novo-assembled data set at a coverage

≥5 (as opposed to ≥0.03 in the reference-aligned full) and
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was ≥0.04 at coverage ≥30 (Fig. 4A, top panel, and S3,

Supporting information). High median genotyping error

rates in the de novo-assembled data set were mainly due

to high error rates (>0.20) in three dyads (dyads 13, 15

and 16; Fig. 1, Tables S1–S3, Supporting information).

While removing these dyads reduced the median geno-

typing error rate (Fig. S4, Supporting information), these

dyads were retained in the estimation of genotyping

error rates for the reasons described above. The de novo-

assembled data set contained more loci than reference-

aligned full data set for all coverage criteria except at

quality score ≥30 and coverage ≥30 (Figs 3 and 4). How-

ever, like the reference-aligned full data set, the number

of loci declined substantially with increased coverage;

for example, loci declined from 15377 to 1156 at coverage

>5 to coverage ≥30 when quality score was ≥30 (Fig. 4A,

bottom panel). Also, minimum quality score had little

impact on genotyping error rates (Fig. 4A, top panel)

and genotyping error rates increased at low coverage

intervals (Fig. 4B, top panel) in the de novo-assembled

data set.

Rxstacks correction algorithm

Genotyping error rates were significantly lower with

than without the correction for both reference-aligned

full and de novo data sets for low coverage (≥5 and ≥10,
Table 2). However, applying the rxstacks correction

did not always lower the median genotyping error rate

(Figs 5 and S5, Supporting information). In the refer-

ence-aligned full data set, the median genotyping error

rate was greater with the correction than without the cor-

rection at higher coverage thresholds (Fig. 5A, top

panel). The correction process resulted in a significant

decrease in the number of loci (Table 3). The median

genotyping error rate was lower and the number of loci

was greater in the uncorrected data set when coverage

≥10 than in the corrected data set when coverage ≥5
(Fig. 5). The effectiveness of the correction process in

reducing genotyping error rates varied among dyads

(Fig. 6A,B). Moreover, some dyads were removed from

the analysis because they shared <100 loci after the cor-

rection (Fig. 6A,B).

Parentage analysis

Varying the assumed genotyping error rate (0.01 or 0.05)

had no effect on the maternity assignments (data not

shown). The number of assignments and the proportion

of correct assignments were identical between the

uncorrected reference-aligned reduced and the de

novo-assembled data sets, but the proportion of correct

assignments was slightly lower when the rxstacks
correction was applied to the reference-aligned data set.

A greater number of maternities were assigned at lower

coverage, but the proportion of incorrect assignments

was higher at low coverage (e.g. between 0.20 and 0.30

for coverage ≥5 vs. 0.14 for coverage ≥30; Fig. 7).
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Discussion

Our study provides the first empirical estimates of geno-

typing error rates in SNPs identified with ddRAD-based

methods and highlights the importance of using suffi-

ciently stringent coverage criteria to achieve ‘reasonable’

genotyping error rates. What constitutes a reasonable

genotyping error rate will ultimately depend on the

objective of the study using SNP genotypes, but using

coverage criteria ≥5 and ≥10 led to genotyping error rates

that reduced the proportion of correct maternity assign-

ments in this study. Adopting higher coverage thresh-

olds increased the proportion of correct assignments but

resulted in the loss of loci and individuals, as well as

fewer total correct assignments. Consequently, a trade-

off exists between sample sizes and genotyping error

rates, and reducing the number of loci to achieve a lower

error rate could affect the strength of inference. Conduct-

ing additional sequencing runs or including fewer indi-

viduals in a library may be required to obtain the desired

number of loci and individuals at sufficiently stringent

coverage criteria. By comparison, genotyping error rates

were relatively insensitive to sequence quality when cov-

erage was ≥10, and applying a relaxed quality criteria

(e.g. ≥10) may in some cases be a reasonable approach

for maintaining the sample size of loci and individuals.

Approximately 20% of the raw reads did not align to

the reference genome in either reference-aligned data

sets. Raw reads can be discarded during alignment as

reference genomes are often incomplete as is the case

with the Choloepus hoffmanni genome. We suspect that

the reference-aligned full data set contained considerably

more loci than the reference-aligned reduced data set

(Fig. 2) because many (35–48%) reads were secondary

alignments. These secondary reads could have aligned to

multiple locations because they contained repetitive

Table 2 Comparison of genotyping error rates for single

nucleotide polymorphisms genotyped with and without the cor-

rection algorithm, rxstacks for a quality score ≥20 at four

coverage thresholds (5, 10, 15 and 20) for reference-aligned full

and de novo-assembled data sets. The number of dyads in the

uncorrected data was restricted to match the dyads present in

the corrected data. A higher number for the sum of positive

ranks, that is the sum of ranks assigned to the differences as

greater than zero, indicate that the corrected data have lower

genotyping error rates

Sum of

positive

ranks

Sum of

negative

ranks Z P

Reference aligned

Coverage ≥5 120 16 �2.69 <0.01
Coverage ≥10 105 0 �3.30 <0.01
Coverage ≥15 61 17 �1.72 0.08

Coverage ≥20 48 18 �1.33 0.18

De novo-assembled

Coverage ≥5 124 12 �2.90 <0.01
Coverage ≥10 96 40 �1.45 0.15

Coverage ≥15 74 46 �0.80 0.42

Coverage ≥20 51 40 �0.38 0.70
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DNA, which can comprise 50% of a genome (Schmid &

Deininger 1975). Including secondary alignments may

increase the likelihood of calling false SNPs and impact

subsequent data analysis (Treangen & Salzberg 2011),

but in our case, genotyping error rates were not appre-

ciably different between the reference-aligned full and re-

duced data sets (Fig. 2A). As secondary reads had

negligible effects on genotyping error rates, and the ref-

erence-aligned full and de novo-assembled data sets

included a similar proportion of reads, we limited com-

parisons of the effect of coverage criteria on genotyping

error rates and numbers of loci to these two data sets (i.e.

not the reference-aligned reduced data set).

The reference-aligned full data set yielded lower

genotyping error rates than the de novo-assembled data

set for a given combination of coverage and sequence

quality criteria. For example, applying coverage ≥5
yielded median genotyping error rates ≥0.03 and ≥0.11 in

reference-aligned full and de novo-assembled data sets,

respectively. Coverage interval analyses for both data

sets indicated that loci with the lowest coverage (cover-

age ≥5 and ≤10) had the highest median genotyping error

rates. The coverage interval results suggest that low cov-

erage loci were responsible for the high genotyping error

rates when lower coverage thresholds were applied.

Increasing coverage reduced error rates to what could be

considered low levels in the reference-aligned full data

set (≤0.01 at coverage ≥30), but error rates remained com-

paratively high in the de novo-assembled data set (≥0.04
at coverage ≥30). Thus, high coverage criteria will likely

need to be applied to de novo-assembled data sets if low

Table 3 Comparison of mean loci for single nucleotide poly-

morphisms genotyped with and without the correction algo-

rithm, rxstacks for a quality score ≥20 at four coverage

thresholds (5, 10, 15 and 20) for reference-aligned full and de

novo-assembled data sets. The number of dyads in the uncor-

rected data was restricted to match the dyads present in the cor-

rected data. A higher number for the sum of positive ranks, that

is the sum of ranks assigned to the differences as greater than

zero, indicate that the corrected data have fewer loci

Sum of

positive

ranks

Sum of

negative

ranks Z P

Reference-aligned full

Coverage ≥5 136 0 �3.52 <0.01
Coverage ≥10 105 0 �3.30 <0.01
Coverage ≥15 105 0 �3.30 <0.01
Coverage ≥20 91 0 �3.18 <0.01

De novo-assembled

Coverage ≥5 130 6 �3.21 <0.01
Coverage ≥10 136 0 �3.52 <0.01
Coverage ≥15 120 0 �3.41 <0.01
Coverage ≥20 91 0 �3.18 <0.01
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genotyping error rates are required. Adopting strict cov-

erage criteria will come at the expense of the number of

loci and individuals sampled in both data sets, as we

observed approximately 10- and 13-fold decline in the

number of loci sampled in the reference-aligned full and

de novo-assembled data sets when coverage was

increased from ≥5 to ≥30, respectively.
Sampling more individuals and loci by adopting

lower coverage may counteract some of the effects of

SNP genotyping errors on ecological inference, particu-

larly with de novo assembly (Davey et al. 2013). Lowering

coverage thresholds has been shown to improve esti-

mates of some population genetic parameters (Buerkle &

Gompert 2013; Mastretta-Yanes et al. 2015). Although

relaxing coverage criteria substantially increased the

number of loci in our study, several dyads included in

the de novo-assembled data set had notably high geno-

typing error rates at low coverage (e.g. four of 16 dyads

had error rates >0.15 at coverage ≥10; Fig. 1). We do not

expect using a small sample size inflated genotyping

error rates for the de novo assembly. Both the de novo-

assembled and reference-aligned full data sets had a sim-

ilar number of dyads with high genotyping error rates;

however, the dyad Mendelian incompatibilities were

consistently higher in the de novo-assembled data set.

Adding more dyads would not influence the overall pat-

tern of higher genotyping errors in the de novo-assembled

data. Based on the results of our maternity assignments

despite higher genotyping error rates, the de

novo-assembled data set performed on par with the refer-

ence-aligned reduced data set in a population genetic

application. The similar precision may be due to the sub-

stantially larger number of loci in the de novo-assembled

data set; however, if a low genotyping error is required,

setting a higher quality and coverage scores for de novo

assembly may be necessary.

Although the number of sequenced raw reads was

similar among individuals, the number of retained reads

was highly variable. This variation may have resulted

from differences in DNA concentration after the barcode

ligation and DNA clean-up (DaCosta & Sorenson 2014).

The high level of variation in genotyping error rates

among dyads was likely indicative of differences in

genotyping error rates among sampled individuals. Two

offspring with incorrect maternities (at coverage ≥5 and

≥10) were members of dyads with high genotyping error

rates. Samples with high genotyping error rate can be

identified and excluded from analyses via resequencing

or by checking for Mendelian incompatibilities when

parent–offspring data are available. Moreover, removing

individuals occurring in dyads with high genotyping

error rates may allow for the relaxation of coverage and

quality score criteria, in turn, increasing the number of

loci and individuals that can be sampled. However, rese-

quencing is often not feasible and parent–offspring data

are often not available, such that excluding individuals

with consistently low coverage or few genotyped loci

may represent the best approach for reducing genotyp-

ing error rates (Bradic et al. 2013; Franchini et al. 2014).

Nevertheless, high genotyping error rates in some of the

dyads in this study were not directly attributable to sam-

ple quality suggesting that ‘low-quality’ samples may

not necessarily need to be excluded from analyses. Alter-

natively, overall genotyping error rates can be reduced

by removing problematic loci rather than excluding indi-

viduals. However, while applying a coverage ≥20 low-

ered the median genotyping error substantially in

reference-aligned full data set, doing so still led to the
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inclusion of some dyads with high genotyping error

rates. Adopting a coverage ≥30 removed all dyads with

high genotyping errors, in addition to reducing median

genotyping error rates to nearly zero, in reference-

aligned full data sets. Thus, applying relatively strict cov-

erage criteria may be the most effective way to reduce

both overall error rates and the prevalence of high-error

individuals.

The correction algorithm of rxstacks signific

antly improved genotyping error rates for the reference-

aligned full data set when low-quality scores and

coverage criteria were applied. At higher minimum cov-

erage (≥20), the correction resulted in little improvement

because low genotyping error rates had already been

achieved. Although the correction improved genotyping

error rates when coverage was low, the corrected data

set contained 43% fewer loci than the uncorrected data

set. Low minimum coverage is often selected to increase

the number of loci (Buerkle & Gompert 2013), but this

advantage is lost when applying the correction to low

coverage data. For example, adopting a coverage ≥10 for

the reference-aligned full data set without the correction

resulted in a lower median genotyping error rate and a

greater number of loci than applying the correction at

coverage ≥5. Thus, we recommend considering more

stringent coverage criteria rather than applying the

rxstacks correction to low coverage loci, as doing so

may result in more loci with acceptable genotyping error

rates.

Appropriate coverage thresholds and the effect of

genotyping errors will vary by application. For example,

relaxed coverage criteria are more likely to miss rare

variants than common ones and will thus be more likely

to impact studies of demographic history than popula-

tion genetic structure (Johnson & Slatkin 2008). Different

types of genotyping errors can affect population genetic

analyses differently. In genomewide association studies

that involve case–control populations, classifying a more

common homozygote as a rare homozygote is the most

deleterious genotyping error (Kang et al. 2004). An incor-

rectly classified rare allele may indicate an association

with a trait or disease within the case population. Addi-

tionally, high genotyping error rates may result in calling

excess homozygous individuals, which may lower esti-

mates of population-level heterozygosity (e. g. Fst esti-

mates, Pompanon et al. 2005). Not all incorrect

genotypes will likely impact population genetic infer-

ences and importantly, we were unable to determine

whether estimates of genotyping error rates were a result

of heterozygote to homozygote errors or vice versa given

the use Mendelian incompatibilities. In general, median

genotyping error rates and variation in genotyping error

among dyads were lowest with high coverage (≥20 and

≥30), and adopting a conservative strategy may benefit

many applications. If relaxed coverage criteria are

applied to increase the sample size of loci and individu-

als, the degree to which the application in question is

sensitive to the rate and type of genotyping errors could

be assessed (for example) through simulation analyses.

Restriction-enzyme-based NGS methods allow for the

genotyping of a large number of SNPs, making them an

attractive choice for many applications in molecular ecol-

ogy (Davey et al. 2011). However, our results suggest that

care should be given to decisions regarding coverage cri-

teria and quality score when applying these methods.

Although our estimates of genotyping error rates apply

primarily to RAD-seq analysis (particularly with STACKS),

increases in genotyping error rates as coverage decreases

are probably the case for RAD-based methods in general.

Moreover, we suggest that reporting genotyping error

rates in RAD-based studies become standard (Pompanon

et al. 2005), as has been called for in microsatellite-based

studies (Lampa et al. 2013). Resequencing a subset of

individuals or characterizing Mendelian incompatibili-

ties is necessary to estimate genotyping error rates; if

both approaches are infeasible, we recommend applying

stringent quality scores and coverage criteria to reduce

error rates. Equally important, we recommend that the

trade-off between number of loci and genotyping error

rates be considered in the design phase of the study

rather than in downstream analyses.
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≥10.
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≥20.
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als, sample quality and the sequencing library for quality score

≥30.

Fig. S1 Figure of median genotyping error for reference-aligned

full reads using all 16 dyads vs. dataset with the three low-qual-

ity dyads removed.

Fig. S2 Reference-aligned full dataset changes relative to that

observed at minimum coverage (≥5) and quality score (≥10).

Fig. S3 de novo-assembled dataset changes relative to that

observed at minimum coverage (≥5) and quality score (≥10).

Fig. S4 Figure of median genotyping error for de novo-assembled

dataset using all 16 dyads vs. dataset with the three low-quality

dyads removed.

Fig. S5 rxstacks corrected dataset changes relative to that

observed at minimum coverage (≥5) and quality score (≥10) for
reference-aligned full and de novo-assembled datasets.

Appendix S1 Detailed methods for laboratory protocols, de novo

assembly parameter tests and parentage assignments.
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