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Abstract: In this paper we recall and extend the main results of Van der Schaft, Rao,
Jayawardhana (2015) concerning the use of Kirchhoff’s Matrix Tree theorem in the explicit
characterization of complex-balanced reaction networks and the notion of formal balancing. The
notion of formal balancing corresponds to a weak form of the Wegscheider conditions which only
depends on the structure of the graph of complexes and the kinetic constants, and thus is not
restricted to mass action kinetics. It is shown that the logarithm of the Kirchhoff vector can be
interpreted as a potential for the logarithm of the vector of equilibrium constants.
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1. EXTENDED ABSTRACT

Recall the framework of isothermal chemical reaction net-
work theory, originating in the work of Horn, Jackson
and Feinberg in the 1970s, see e.g. Horn, Jackson (1972);
Feinberg (1972); Horn (1972); Feinberg, Horn (1974). Con-
sider a chemical reaction network with m chemical species
(metabolites) with concentrations x ∈ Rm+ , among which
r chemical reactions take place. The left-hand sides of the
chemical reactions are called substrate complexes and the
right-hand sides the product complexes. To each chemi-
cal complex (substrate and/or product) of the reaction
network one can associate a vertex of a graph G, and
to every reaction (from substrate to product complex)
a directed edge, with tail vertex the substrate and head
vertex the product complex. Let c be the total number of
complexes involved in the chemical reaction network, then
the resulting directed graph G with c vertices and r edges
is called the graph of complexes, and is defined by its c× r
incidence matrix D. The j-th column of D (corresponding
to the j-th edge of the graph) contains a 1 at the position of
the head vertex and a −1 at the position of the tail vertex,
with zeros everywhere else. Finally the composition of the
complexes in terms of the chemical species is defined by
the m × c complex composition matrix Z; the coefficients
of its k-th column expressing the composition of the k-th
complex.

The dynamics of the chemical reaction network takes the
well-known form

ẋ = Sv(x) = ZDv(x), (1)

where v(x) ∈ Rr is the vector of reaction rates, and
S = ZD is the stoichiometric matrix. In many cases
of interest (including mass action and Michaelis-Menten

kinetics) the j-th reaction rate vj is of the form

vj(x) = kjσwσ(x), (2)

with kjσ > 0 a reaction (kinetic) constant, and wσ(x)
a certain function of the concentrations of the chemical
species of the substrate complex σ. For example, in the
case of mass action kinetics rj(x) is a monomial in the
concentrations of the chemical species of the substrate
complex. Collecting the reaction constants in the r × c
matrix K we have v(x) = Kw(x), and the dynamics of
the chemical reaction network takes the form

ẋ = −ZLw(x) (3)

with c × c matrix L := −DK. It is verified that L
has nonnegative diagonal elements and nonpositive off-
diagonal elements. Moreover, since 1Tc D = 0 also 1Tc L = 0,
i.e., the column sums of L are all zero. Hence L defines a
weighted Laplacian matrix 1 for the graph of complexes G.

In this paper we will study the structural properties of
the chemical reaction network based on the properties of
the Laplacian matrix L (as well as the composition matrix
Z), independently of the form of w(x). The main tool will
be Kirchhoff’s Matrix Tree theorem 2 . For our purposes
Kirchhoff’s Matrix Tree theorem can be summarized as
follows. First assume the graph G is connected, or equiv-

1 In Horn, Jackson (1972); Horn (1972) (minus) this matrix is called
the kinetic matrix, and is denoted by A.
2 This theorem goes back to the classical work of Kirchhoff on resis-
tive electrical circuits; see Bollobas (1998) for a succinct treatment. A
nice account of the Matrix Tree theorem in the context of chemical
reaction networks can be found in Mirzaev, Gunawardena (2013).
Also in Dickenstein et al. (2011) Kirchhoff’s Matrix Tree theorem is
mentioned and exploited in the closely related, but different, context
of investigating how far complex balancing is from detailed balancing;
see the discussion later on.



alently the kernel of L is 1-dimensional. Then a vector
ρ ∈ R̄c+ (the closure of the positive orthant) with ρ ∈ kerL
can be computed as follows. Denote the (i, j)-th cofactor
of L by Cij = (−1)i+jMi,j , where Mi,j is the determinant
of the (i, j)-th minor of L, which is the matrix obtained
from L by deleting its i-th row and j-th column. Define the
adjoint matrix adj(L) as the matrix with (i, j)-th element
given by Cji. It is well-known that

L · adj(L) = (detL)Ic = 0 (4)

Furthermore, since 1Tc L = 0 the sum of the rows of L
is zero, and hence by the properties of the determinant
function it directly follows that Cij does not depend on
i; implying that Cij = ρj , j = 1, · · · , c. Therefore by
defining ρ := (ρ1, · · · , ρc)T , it follows from (4) that Lρ = 0.
Furthermore, cf. (Bollobas, 1998, Theorem 14 on p. 58),
ρi is equal to the sum of the products of weights of all the
spanning trees of G directed towards vertex i. In particular,
it follows that ρj ≥ 0, j = 1, · · · , c. In fact, ρ 6= 0 if and
only if G has a spanning tree. Furthermore, since for every
vertex i there exists at least one spanning tree directed
towards i if and only if the graph is strongly connected,
we may conclude that ρ ∈ Rc+ if and only if the graph is
strongly connected. In case the graph G is not connected
the same analysis can be performed on any of its connected
components.

The vector ρ will be called the Kirchhoff vector of the
Laplacian matrix L. The first use of the Kirchhoff vec-
tor is in a complete, constructive, characterization of
complex-balanced mass action kinetics reaction networks.
Recall that a chemical reaction network is called complex-
balanced if there exists an equilibrium x∗ satisfying

Dv(x∗) = 0, (5)

implying that at the equilibrium x∗ not only all the chem-
ical species, but also the complexes remain constant; i.e.,
for each complex the total inflow (from the other com-
plexes) equals the total outflow (to the other complexes).
The existence of a complex-balanced equilibrium admits
a complete analysis of the set of all equilibria and their
stability; see Rao, van der Schaft, Jayawardhana (2013)
and the references quoted therein.

In Van der Schaft, Rao, Jayawardhana (2015) the follow-
ing characterization of existence of a complex-balanced
equilibrium was obtained, extending Theorem 3C in Horn
(1972). 3

Theorem 1.1. The mass action reaction network dynamics
ẋ = −ZLw(x) on the graph of complexes G is complex-
balanced if and only if each connected component of G is
strongly connected (or, equivalently, ρ ∈ Rc+) and

DTLn ρ ∈ imDTZT = imST , (6)

where the elements of the sub-vectors ρj of ρ are obtained
by Kirchhoff’s Matrix Tree theorem applied to L for each
j-th connected component of G.

In the rest of this paper we concentrate on reversible
chemical reaction networks. In this case the edges of G
come in pairs: if there is a directed edge from vertex i to
j then there also is a directed edge from j to i (and in

3 The main difference being that in Horn (1972) the positive vector
ρ ∈ kerL remains unspecified, while in our case it is explicitly given
by Kirchhoff’s Matrix Tree theorem.

the case of multiple edges from i to j there are as many
edges from i to j as edges from j to i). This means that the
connected components of G are always strongly connected,
or equivalently, that ρ as obtained from Kirchhoff’s Matrix
Tree theorem is in Rc+. Then define the undirected graph

Ḡ as having the same vertices as G but half its number of
edges, by replacing every pair of oppositely directed edges
of G by one undirected edge of Ḡ. Denote the number
of edges of Ḡ by r̄ = 1

2r. Endow subsequently Ḡ with
an arbitrary orientation (all results in the sequel will be
independent of this orientation), and denote the resulting
incidence matrix by D̄. Clearly, after possible reordering
of the edges, D̄ is related to the incidence matrix D of G
as

D =
[
D̄ −D̄

]
(7)

To the j-th edge of Ḡ there now correspond two reac-
tion constants k+

j , k
−
j (the forward and reverse reaction

constants with respect to the chosen orientation of Ḡ).
Collecting the forward reaction constants into a matrix
K+ and the reverse reaction constants in a matrix K−, it
follows that the Laplacian matrix is given as

L = D̄K+ − D̄K− (8)

with Kirchhoff vector ρ satisfying D̄K+ρ = D̄K−ρ.

Furthermore, define the equilibrium constants Keq
j :=

k+
j

k−
j

, j = 1, · · · , r̄, and the vector Keq := (Keq
1 , · · · ,Keq

r̄ )T .

Recall Feinberg (1989); Schuster, Schuster (1989) that a
mass action kinetics reaction network is called detailed-
balanced 4 if and only if it satisfies

LnKeq ∈ im S̄T , (9)

where S̄ := ZD̄ is the stoichiometric matrix of the
reversible network with graph Ḡ. This is equivalent to

σ1 lnKeq
1 + · · ·+ σr̄ lnKeq

r̄ = 0

for all σ = (σ1, · · · , σr̄) such that σT S̄T = 0. Writing out

Keq
j =

k+
j

k−
j

this is seen to be equivalent to

(k+
1 )σ1 · · · (k+

r̄ )σr̄ = (k−1 )σ1 · · · (k−r̄ )σr̄ (10)

for all σ such that S̄σ = 0, known as the (general-
ized) Wegscheider conditions (Wegscheider (1902)). From
a thermodynamic perspective, the Wegscheider conditions
imply that along all cycles the entropy of the closed net-
work will increase.

Recently in Dickenstein et al. (2011) the notion of for-
mally balanced was introduced, based on Feinberg’s circuit
conditions in Feinberg (1989), and weakening the above
Wegscheider conditions. In our set-up this notion is defined
as follows.

Definition 1.2. The reversible reaction network Ḡ with
incidence matrix D̄, and vector of equilibrium constants
Keq is called formally balanced if

LnKeq ∈ im D̄T

Since S̄ = ZD̄ ’formally balanced’ is trivially implied
by ’detailed-balanced’. Furthermore, if there are no cycles

4 This means, see e.g. Horn, Jackson (1972); Van der Schaft, Rao,
Jayawardhana (2012), that there exists an equilibrium for which
every forward reaction is balanced by its reverse reaction.



(and thus ker D̄ = 0) the reaction network is automatically
formally balanced.

The notion of ’formally balanced’ is seen to be equivalent
to

σ1 lnKeq
1 + · · ·+ σr lnKeq

r̄ = 0

for all σ = (σ1, · · · , σr̄)T such that σT D̄T = 0, which in
turn is equivalent to

(k+
1 )σ1 · · · (k+

r̄ )σr̄ = (k−1 )σ1 · · · (k−r̄ )σr̄ (11)

for all σ such that D̄σ = 0 (that is, for all cycles σ).
We will refer to (11) as the weak Wegscheider conditions.
Note that the weak Wegscheider conditions only depend
on the structure of the graph Ḡ (i.e., its cycles) and the
equilibrium constants, and not on the complex composi-
tion matrix Z as in the case of the ’strong’ Wegscheider
conditions (10).

The following theorem and corollary were derived in Van
der Schaft, Rao, Jayawardhana (2015).

Theorem 1.3. Consider a reversible chemical reaction net-
work given by the graph Ḡ with incidence matrix D̄, and
with ρ determined by L. The following statements are
equivalent

(1) Ldiag (ρ1, · · · , ρc) is symmetric

(2) LnKeq = D̄TLn ρ

(3) LnKeq ∈ im D̄T (formally balanced)

Corollary 1.4. A reversible reaction network is detailed-
balanced if and only if it is formally balanced as well as
complex-balanced.

In case the reversible reaction network is formally balanced
the symmetric matrix L(x∗) = Ldiag (ρ1, · · · , ρc) can be
written as

Ldiag (ρ1, · · · , ρc) = D̄KD̄T

where K is the r̄ × r̄ diagonal matrix, with α-th diagonal
element given by κα := k+

α ρj = k−α ρi where the α-th edge
of Ḡ corresponds to the reversible reaction between the i-th
and the j-th complex. For the interpretation of the positive
constants κα as conductances of the reversible reactions
please refer to Ederer, Gilles (2007); Van der Schaft, Rao,
Jaywardhana (2013).

Since the matrix D̄T corresponds to taking differences we
note that as a consequence of Theorem 1.3 the logarithm of
the Kirchhoff vector ρ can be interpreted as a potential for
the logarithm of the vector Keq of equilibrium constants.
In the final version of this paper we will also extend the
setting to partially irreversible reaction networks which are
limits of detailed-balanced reversible networks; cf. Gorban,
Yablonsky (2011) for their characterization.
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