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Abstract: We propose a model reduction method that involves sequential application of
clustering of linkage classes and Kron reduction. This approach is specifically useful for chemical
reaction networks with each linkage class having less number of reactions. In case of detailed
balanced chemical reaction networks that are governed by general enzyme kinetics, we show
that our procedure ensures that the space of equilibria corresponding to the original model is a
subspace of the space of equilibria of the reduced model.
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1. INTRODUCTION

An important topic in systems biology is the study of
large-scale models of biochemical reaction networks that
describe the dynamics of metabolism, signaling, gene ex-
pression, etc. in living cells. Biochemical reaction net-
works usually involve many enzyme-catalyzed processes
governed by nonlinear enzyme-kinetic rate laws. Owing
to intricate stoichiometry and regulatory mechanisms, the
enzyme-catalyzed processes of a network are highly inter-
dependent. Consequently, the complexity of the models
describing their dynamics is daunting, even if we make
simplifying assumptions of uniform spatial distribution
and constant system temperature and pressure. A deter-
ministic model of such a reaction network may contain
high-dimensional sets (typically of the order of 100) of
coupled polynomial or rational ordinary differential equa-
tions, which sometimes require huge computational effort
to analyze.

There is a growing need of mathematical tools for analyz-
ing complex models of reaction networks and for obtaining
biological insights from the analysis. The computational
effort required to analyze a mathematical model of bio-
chemical reaction network is considerably reduced if we
can obtain a reduced model that mimics the behaviour of
the original model satisfactorily, but contains less differen-
tial equations and parameters as compared to the original
model.

Model reduction of biochemical reaction networks has been
a very active area of research in the past few years and
a lot of complementary approaches have been devised
for the purpose. The reader is referred to [14] for a
detailed exposition of some well known model reduction

procedures. Here we list only a few of the known methods.
The most commonly used techniques are the singular
perturbation method, the time-scale separation technique
[6,12,15,17,20], the rapid-equilibrium approximation, also
known as the quasi-equilibrium approximation (see [18])
and the quasi steady-state approximation (QSSA) (see for
e.g., [19]). Model reduction can also be carried out by
reducing the number of parameters (e.g. [2,10–12]) or the
number of reactions (e.g. [1,3,5,13]). Some of these model
reduction methods are based on a priori experimental
information and/or biological knowledge and hence are
only locally effective.

The authors of the current paper have previously proposed
a model reduction method [16] that overcomes most of
the limitations of the other well known model reduction
approaches. The method proposed in [16] proceeds by a
simple stepwise reduction in the number of ‘complexes’,
which are the combinations of species on the left and
right-hand sides of the various reactions in the network.
The method is based on the reduction of the underlying
weighted Laplacian (see [4] for a definition) describing
the structure of the graph of complexes which is a graph
with vertices corresponding to the complexes and edges
corresponding to the reactions in the network. The effect
of this stepwise reduction is monitored by an error integral,
which quantifies how much the behaviour of the reduced
model deviates from the original. The procedure ensures
that the set of complexes that are deleted is in some sense
the optimal set for which the desired level of closeness
between the transient behaviors of the original and the
reduced model is obtained. This method is inspired by
Kron reduction method [9] which is a popular method of
reduction of resistive electrical network models.



Listed below are the advantages of the method proposed
in [16] that cannot all be found in one particular model
reduction method that was listed earlier. The model re-
duction technique of [16] is easy to implement and can
be automated. It does not rely on a priori knowledge
about the experimental conditions or biological function
of the network. Furthermore, the reduced model largely
retains the kinetics and structure of the original model.
This enables a direct biochemical interpretation and yields
insight into which parts of the network have the highest
influence on its behaviour. It also accelerates computations
by reducing computational effort, especially when we deal
with models of huge biochemical reaction networks. For
networks governed by mass action kinetics, an improve-
ment of the model reduction approach [16] in terms of the
computational effort involved has been proposed recently
(see [7]).

The model reduction approach of [16] has one serious
limitation which we explain below. Assume that every
connected component (linkage class in chemical reaction
network (CRN) terminology) of the graph of complexes
corresponding to a network has only two complexes. In
this case, deletion of any complex by the approach of [16]
simply results in the deletion of the corresponding linkage
class. For example assuming that X1, . . . , X10 are distinct
chemical species, consider the following reaction network
with 3 linkage classes.

X1 +X2 
 X3 +X4

X4 +X5 
 X6 +X7

X7 +X8 
 X9 +X10

}
(1)

Deletion of the complex X4 + X5 results in elimination
of the second linkage class. Thus the reduced model will
have the first reaction occuring independently of the third
reaction and consequently the reduced model will exhibit
a dynamic behaviour which is far from that of the original
model. Most biochemical networks in real life fall under
the category of reaction networks with each linkage class
having only two complexes and therefore there is a need
to develop a more effective graph-theory based approach
for model reduction of biochemical reaction networks.
In this paper, we propose a method to overcome this
particular limitation. Each step of this method involves
clustering two linkage classes and deletion of complexes in
the clustered linkage class. The clustering of linkage classes
at every step ensures that the resulting linkage class has at
least three complexes, so that deletion of a single complex
from it does not result in the elimination of the linkage
class.

We further consider the application of our model reduc-
tion procedure for detailed balanced networks governed
by general enzyme-kinetic rate laws. The reader is referred
to [8] for a description of properties of such networks. Ther-
modynamically the assumption of detailed-balancedness
for any network without interactions with the external
environment is well justified as it corresponds to micro-
scopic reversibility. We show that for such networks, the
clustering procedure described in this paper ensures that
the space of equilibria of the original network is equivalent
to that of the clustered network. As a consequence to this,
the sequential application of clustering of complexes and
Kron reduction will result into a reduced model where the
space of equilibria of the original network is a subspace

of that corresponding to the reduced network. This set
inclusion property is due to the property of Kron reduction
method applied to detailed-balanced networks [21].

Notation: The space of n dimensional real vectors is
denoted by Rn and the space of n dimensional real vectors
consisting of all strictly positive entries is denoted by Rn

+.
Define the mapping Ln : Rm

+ → Rm, x 7→ Ln(x), as the
mapping whose i-th component is given as (Ln(x))i :=
ln(xi).

2. PRELIMINARIES

Let us recall the general description of (bio)chemical reac-
tion networks as recently reviewed in [22]. In this paper, we
consider reversible (bio)chemical reaction networks that
do not interact with the external environment, meaning
that there are no inflows from and no outflows to the
external environment. Assume that there are m species,
c complexes and r reversible reactions in such a network.
Define the complex composition matrix Z as the m × c
matrix whose α-th column captures the expression of the
α-th complex in the m chemical species. For example
consider the reversible reaction network given by

X1 + 3X2 
 X3 
 2X1 + 2X2 (2)

For the above reaction network, the complex composition
matrix is given by

Z =

[
1 0 2
3 0 2
0 1 0

]
Note that all the entries of the complex composition
matrix are nonnegative integers. We define as in [21]
the graph of complexes as a directed graph whose nodes
are the complexes and whose edges correspond to the
reversible reactions of the network. The direction of each
edge is arbitrary, usually given by the direction of the
forward reaction of the network. Note that the direction
of each edge of the graph of complexes does not affect
the modelling or the model reduction procedure described
in this paper. One can associate an incidence matrix B
with the graph of complexes. This is a matrix of dimension
c× r. The jth column of B corresponds to the jth edge of
the graph of complexes and has entries −1 corresponding
to the tail vertex, +1 corresponding the head vertex and
the remaining entries are all 0. Observe that an incidence
matrix B corresponding to the reaction network (2) is

B =

[−1 0 1
1 −1 0
0 1 −1

]

For simplifying the description of our approach later, let
us introduce further the following notations. For a given
reaction edge i, we denote a substrate complex (which is
assumed to be the tail vertex of i-th edge) by Si and a
product complex (which corresponds to the head vertex)
by Pi. Correspondingly, ZSi and ZPi

denote the column
of Z that is related to the complex Si and Pi, respectively.

The connected components of a chemical reaction net-
work are called its linkage classes. Assume that a given
reversible chemical reaction network has ` linkage classes.
Then its complex composition matrix Z and incidence



matrix B can be partitioned according to its linkage classes
as follows.

Z = [Z1 Z2 . . . Z`] (3)

B =


B1 0 0 . . . 0
0 B2 0 . . . 0
...

...
. . .

...
...

0 . . . 0 B`−1 0
0 . . . . . . 0 B`

 (4)

We denote by x ∈ Rm
+ , the vector of concentrations of

chemical species participating in the given network of
reactions and by v ∈ Rr the vector of reaction rates of the
network. The dynamics of a chemical reaction network is
described by the equation ẋ = ZBv, where v is a function
of x that depends on the governing laws of the reactions
in the network.

A vector of concentrations x∗ ∈ Rm
+ is called a ther-

modynamic equilibrium for the dynamics ẋ = ZBv(x) if
v(x∗) = 0. At a thermodynamic equilibrium, every re-
versible reaction of the network is at equilibrium. A chem-
ical reaction network with dynamics given by ẋ = ZBv(x)
is called detailed-balanced if there exists a thermodynamic
equilibrium x∗ ∈ Rm

+ . It can be shown that every reac-
tion of a detailed-balanced reaction network is necessarily
reversible (see [21, Proposition 3.2] for a proof).

In this paper, we mainly consider detailed-balanced bio-
chemical reaction networks that are governed by general
enzyme-kinetic rate laws. The reaction rate vj of the jth

reaction of such a network is given by

vj(x) = dj(x)
(
kforwj exp

(
ZT
SjLn(x)

)
−krevj exp

(
ZT
Pj

Ln(x)
))
, (5)

where for j = 1, . . . , r, dj : Rm
+ → R+ is a rational function

of its argument in case that the governing law for the jth

reaction is Michelis-Menten-type kinetics and it is equal
to 1 in case the governing law is mass action kinetics. We
remark that in practice the function dj usually depends on
the composition of the substrate and the product complex
of the jth reaction. For other properties of such reaction
networks, we refer interested readers to [8].

3. CLUSTERING LINKAGE CLASSES

Recall as mentioned in the introduction that every step
of our model reduction procedure consists of clustering
two linkage classes and then deleting complexes from the
resulting linkage class. In this section, we explain in detail
how the clustering is carried out.

Without loss of generality, let us discuss our general
method for clustering two linkage classes by combining
some of the complexes from the two linkage classes. These
linkage classes may share common chemical species in two
different complexes occuring in these linkage classes. Con-
sider two different complexes C1 and C2 from each linkage
class that will be combined. Associated to these com-
plexes, we denote ZC1 and ZC2 as the complex composition
vectors corresponding to C1 and C2, respectively. Let us
introduce a new complex C12 whose elements contain all
species in C1 and C2, by allocating additional complex

composition vectors z1 and z2 with non-negative integer
entries such that the following relation holds

ZC1
+ z1 = ZC2

+ z2 =: ZC12

As an example, let us recall the chemical reaction network
in the Introduction in (1). We can combine the complexes
X3 +X4 and X4 +X5 to form a new complex C12 through
infinite number of possibilities. For instance, we can add
the species X5 to the first complex and, vice versa, the
species X3 to the second complex, where in this case,

z1 = [0 0 0 0 1 0 0 0 0 0]
T

z2 = [0 0 1 0 0 0 0 0 0 0]
T
,

and thus,

ZC12
= [0 0 1 1 1 0 0 0 0 0]

T
.

In the above example, we exploit the fact that there is a
common species X4 in both complexes and what we need
to add to each complex is the remaining species from the
other complex. Another possibility is by incorporating all
species from the other complex. If we consider again the
previous example, the vectors z1 and z2 are given by

z1 = ZC2
= [0 0 0 1 1 0 0 0 0 0]

T

z2 = ZC1
= [0 0 1 1 0 0 0 0 0 0]

T
,

and the combined complex composition vector ZC12
be-

comes
ZC12

= [0 0 1 2 1 0 0 0 0 0]
T
.

Since the choice of z1 and z2 is arbitrary, one should
determine these vectors in such a way that some of the
dynamical properties of the original model can be retained.

Assume that the original network has ` linkage classes and
its complex composition matrix Z and its incidence matrix
B has a partition corresponding to its linkage classes given
by equations (3) and (4) respectively. Assume without
loss of generality that the linkage classes that are being
clustered are the first two linkage classes whose complex
composition matrices are given by Z1 and Z2. As before,
we identify the complexes C1 and C2 as the complexes-
to-be-combined from the first and second linkage classes,
respectively. Furthermore, for simplicity of presentation,
we can perform a permutation in the ordering of complexes
from each linkage class such that C1 is the last complex
in the first linkage class and C2 is the first complex in the
second linkage class.

Now consider a partition of Z1 as follows

Z1 =
[

Zr1︸︷︷︸
Rm×(c1−1)

ZC1︸︷︷︸
Rm×1

]
where c1 is the number of complexes in the first linkage
class. Similarly consider the partition of Z2 given by

Z2 =
[
ZC2︸︷︷︸
Rm×1

Zr2︸︷︷︸
Rm×(c2−1)

]
where c2 is the number of complexes in the second linkage
class.

In the following, we discuss the construction of a new
complex composition matrix Ẑ from the original Z such
that we are able to preserve some of the equilibrium
properties.

Let V1 denote a matrix with m rows and the same number
of columns as Zr1 , each of whose columns is equal to z1. Let



V2 denote a matrix with m rows and the same number of
columns as Zr2 , each of whose columns is equal to z2. Then

the new complex composition matrix Ẑ corresponding to
the clustered network is

Ẑ = [Zr1 + V1 ZC12
Zr2 + V2 Z3 Z4 . . . Z`] , (6)

where Z3, Z4, . . . Z` are the complex composition sub ma-
trices corresponding to the linkage class 3, 4, . . . `, respec-
tively. One can check easily that the clustered network will
have `−1 linkage classes since the first three entries of the
right hand side of the above equation correspond to one
linkage class.

We thus add the complex with the composition vector z1
to every complex in the first linkage class and add the
complex with the composition vector z2 to every complex
in the second linkage class. Thus every complex in the first
two linkage classes are modified. We show later that in case
of a special category of reaction networks called detailed
balanced networks which are necessarily reversible, such a
modification does not alter the equilibrium properties of
the network.

We show now how the incidence matrix corresponding to
the graph of complexes is modified by clustering. Consider
partitions of B1 and B2 given by

B1 =

[
Br1
BC1

]
B2 =

[
BC2

Br2

]
where Br1 denotes the rows of B1 corresponding to all
the complexes of the first linkage class apart from C1 and
similarly Br2 denotes all the rows of B2 corresponding to
all the complexes of the second linkage class apart from
C2. Define

B̂12 =

[
Br1 0
BC1

BC2

0 Br2

]
The matrix B̂12 defined above represents the new incidence
matrix corresponding to the clustered linkage class. The
new incidence matrix B̂ for the clustered network is given
by

B̂ =


B̂12 0 0 . . . 0
0 B3 0 . . . 0
0 0 B4 . . . 0
...

...
...

. . .
...

0 0 0 . . . B`

 (7)

(c.f., the original incidence matrix as in (4)).

Thus the vertices corresponding to the complexes C1 and
C2 in the original graph of complexes are merged. All
the remaining vertices and edges are unchanged. The
clustering of the two linkage classes modifies only the
complexes belonging to the two linkage classes. It does
not change the number, the rate governing laws and the
rate constants of the reactions of the network. Since the
clustered linkage class will have at least 3 complexes,
we can apply Kron reduction [16] to possibly reduce the
order of the model. Note that it does not make sense
to cluster complexes that do not share common species
because the subsequent Kron reduction will then not result
in the reduction of the model-order. The following example
illustrates the application of our clustering procedure
followed by application of Kron reduction in order to
reduce the model-order.

Example 1. Consider the following reversible mass action
reaction network consisting of two linkage classes

X1 +X2

k1



k−1

X3 + 2X4

X3 +X5

k2



k−2

X6 (8)

where k1, k−1, k2, k−2 ∈ R+ are called reaction constants
of the network. Notice that the complexes X3 + 2X4 and
X3 + X5 have one common species X3 and these can be
clustered by the procedure described in the paper. Taking

z1 = [0 0 0 0 1 0]
T

and

z2 = [0 0 0 2 0 0]
T
,

we obtain the following clustered network

X1 +X2 +X5

k1



k−1

X3 + 2X4 +X5

k2



k−2

2X4 +X6 (9)

If we now delete the complex X3 + 2X4 + X5 from the
above network by Kron reduction as explained in [16], we
get

X1 +X2 +X5

k3



k−3

2X4 +X6 (10)

where k3, k−3 ∈ R+ are the reaction constants of the
reduced network. It is easy to see that (10) is a reduced
order network since the dimension of x is reduced from 6
to 5.

4. DETAILED BALANCED NETWORKS GOVERNED
BY GENERAL KINETICS

Any model reduction procedure is supposed to preserve
key properties of the network. In the case of Kron reduc-
tion procedure [16], it is known that if the governing rate
laws of all the reactions of the network are the same, then
the reduced network also has the same governing rate law.
Furthermore, in the case of detailed balanced biochemical
reaction networks governed by general enzyme kinetics,
it is known ( [8], [21, Proposition 6.3]) that although
the space of equilibria expands upon model reduction,
it always contains the space of equilibria of the original
network. We now study this important class of networks
and show that the clustering of linkage classes as described
in the previous section completely preserves the space of
equilibria for this class of networks, i.e., we show that the
space of equilibria is unaltered upon clustering..

Consider now the detailed-balanced network governed by
general kinetics as discussed in section 2. Let the first r1
reactions be the reactions in linkage class 1 and the next
r2 − r1 reactions be those in linkage class 2 and we are
clustering linkage classes 1 and 2. If v̂j denotes the rate
of the jth reaction of the clustered network, then it is
easy to see that v̂j = vj for j = r2 + 1, r2 + 2, . . . , r, i.e.,
the reaction rates of reactions in linkage classes 3 onward
remain the same after clustering, since the complexes, the
rate governing laws, the number and rate constants of the
reactions in these linkage classes are not altered. Since
the substrates and products of the first r2 reactions are
modified after clustering, for j = 1, 2, . . . , r2, the function

dj can be modified to d̂j which depends on the species

involved in the clustered complexes. Since d̂j does not
influence the equilibrium points, it provides us with an



additional degree of freedom where d̂j can be determined
later to fit with the dynamic behavior of the original
network. Using the complex clustering as described in the

previous section and using d̂j , the rates for reactions in
the first two linkage classes are given by

v̂j = d̂j(x)
(
kforwj exp

(
ẐT
SjLn(x)

)
− krevj exp

(
ẐT
Pj

Ln(x)
))
,

(11)

for all j = 1 . . . r2 where Ẑ is the clustered complex
composition matrix as in (6).

Proposition 1. Consider a detailed-balanced reaction net-
work governed by general kinetics whose dynamics is de-
scribed by ẋ = ZBv(x), with v(x) denoting the reaction
rates vector whose jth component is given by equation (5).
Assume that the first two linkage classes of this network
are clustered resulting in the new dynamics

ẋ = ẐB̂v̂(x), (12)

where Ẑ and B̂ are as in (6) and (7), respectively, and v̂j
is as in (11) for the first r2 reactions and v̂j(x) = vj(x)
otherwise. Then the clustered network is detailed balanced
and the space of equilibrium points is the same for both
the clustered and the original networks.

Proof. Let E and Ê denote the space of equilibria
of the original and the clustered networks. One of the
results that We need to prove is that E = Ê . Since the
original network is detailed-balanced, every equilibrium is
a thermodynamic equilibrium as proved in [21, Theorem
4.1]. Thus E is the set of solutions to v(x) = 0. Following
equations (5), E is the set of solutions to

kforwj exp
(
ZT
SjLn(x)

)
− krevj exp

(
ZT
Pj

Ln(x)
)

= 0, (13)

j = 1, 2, . . . , r.

From (6), it follows that for j = 1, . . . , r1

v̂j(x) = d̂j(x)kforwj exp
(
(ZSj + z1)T Ln(x)

)
−d̂j(x)krevj exp

(
(ZPj + z1)T Ln(x)

)
= d̃j(x)

(
kforwj exp

(
ZT
SjLn(x)

)
−krevj exp

(
ZT
Pj

Ln(x)
))

where d̃j(x) := d̂j(x) exp
(
zT1 Ln(x)

)
. Similarly, for j = r1+

1, . . . , r2, it is easy to see that

v̂j(x) = d̃j(x)
(
kforwj exp

(
ZT
SjLn(x)

)
−krevj exp

(
ZT
Pj

Ln(x)
))

where d̃j(x) := d̂j(x) exp
(
zT2 Ln(x)

)
. Since d̂j(x) > 0 for

j = 1, . . . , r2, it follows that also d̃j(x) > 0. Consequently,
if x∗ ∈ E , then for j = 1, . . . , r1

v̂j(x
∗) = d̃j(x

∗)
(
kforwj exp

(
ZT
SjLn(x∗)

)
−krevj exp

(
ZT
Pj

Ln(x∗)
))

= 0.

Similarly, for j = r1 + 1, . . . , r2, we have that

v̂j(x
∗) = 0

Thus v̂(x∗) = 0. This implies that x∗ is a thermody-
namic equilibrium for the clustered network, which in turn
implies that the clustered network is detailed-balanced.
Hence every equilibrium of the clustered network is a
thermodynamic equilibrium, in particular a solution of the
set of equations (13). This implies that E = Ê . 2

The result in Proposition 1 shows that clustering preserves
both the detailed-balancedness and the space of equilibria
of the original network. Recall (see [21, Section 6]) that
Kron reduction preserves the detailed-balancedness and
retains the space of equilibria of the original network.

It should be noted that the clustering procedure described
in this paper does not actually reduce the model order.
It is useful in model-order reduction only if combined
iteratively with Kron reduction since the latter procedure
has the limitation that it can only effectively reduce
reactions in the same linkage class. Since both approaches
retain the space of equilibria from the original network
that they start with, we can apply an iterative reduction
procedure involving subsequent applications of clustering
and Kron reduction methods and this will ensure that the
space of equilibria of the original network will be retained
in the final reduced network. The iterative reduction
procedure will also provide effective means to reduce a
given original detailed-balanced network to any desired
extent, which is not the case if only Kron reduction is
applied.

5. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel model reduction
method, which is based on an iterative procedure involving
subsequent applications of clustering of chemical com-
plexes and Kron reduction, for simplifying (bio)chemical
reaction networks with general kinetics. In case, the origi-
nal network is detailed-balanced, the proposed method can
retain the space of equilibria from the original network and
the resulting reduced network is also detailed-balanced and
governed by general kinetics.

As discussed in Section 3, there are infinite number of
ways of combining two complexes in two linkage classes
in order to cluster these linkage classes. Currently, we are
investigating how two complexes in separate linkage classes
can be combined so as to have minimum effect on the
overall dynamics of the network upon clustering. We are
also evaluating the efficacy of the proposed method and
the applicability of iterative procedure of clustering and
Kron-based reduction to a number of curated models of
biochemical networks.
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