

 University of Groningen

On Planning an Evaluation of the Impact of Identifier Names on the Readability and
Maintainability of Programs
Lungu, Mircea; Kurs, Jan

Published in:
Proceedings of the 2nd Workshop on User evaluations for Software Engineering Researchers (USER)

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Lungu, M., & Kurs, J. (2013). On Planning an Evaluation of the Impact of Identifier Names on the
Readability and Maintainability of Programs. In Proceedings of the 2nd Workshop on User evaluations for
Software Engineering Researchers (USER) (pp. 13 - 15)

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://research.rug.nl/en/publications/7ba4482d-1618-48a1-9f75-887f152ef501

On Planning an Evaluation of the Impact of
Identifier Names on the Readability and

Maintainability of Programs
Mircea Lungu, Jan Kurš

{lungu,kurs}@iam.unibe.ch
Software Composition Group

University of Bern
Switzerland

Abstract—One of the long running debates between program-
mers is whether camelCaseIdentifiers are better than
underscore_identifiers. This is ultimately a matter of
programming language culture and personal taste, and to our
best knowledge none of the camps has won the argument yet. It
is our intuition that a solution exists which is superior to both the
previous ones from the point of view of usability: the solution
we name sentence case identifiers allows phrases as nams for
program entities such as classes or methods. In this paper we
propose a study in which to evaluate the impact of sentence case
identifiers in practice.

Index Terms—user evaluation, programming languages, em-
pirical software engineering.

I. INTRODUCTION

There are two ways of conveying domain information in
a program: through the names of the program entities and
through comments in the source code. Since the comments
tend to become out of sync, it follows that the naming of
entities is a critical factor when it comes to the readability
and future maintainability of a piece of software.

In most of the currently popular programming languages the
method names and the class names are the ones conveying this
semantic information [3] and different programming languages
impose different constraints on these names in order to make
the parsing of these programs easier. One almost universal
such constraint is that names of programming entities must
exclude spaces.

Let us consider Smalltalk, a classical OO programming
language with a simple syntax and powerful semantics. Tra-
ditionally, in the language, a unary message send (calling a
method without parameters on an object) has the following
syntax (1):

anObject aMessage.

where both the object that is the receiver of the message
and the message are identifiers, that is sequences of alphanu-
meric characters excluding spaces. For complex identifiers
programmers use the camelcase convention. In fact, Smalltalk
programmers are notorious for using long identifier names and
code snippets like the following are not uncommon (2):

HierarchicalGraph
importFromDownlodedStackOverflowData.

The length of the identifier makes it awkward to read1.
We say that by allowing spaces in the identifier names we

enable sentence case or phrase case – a way of writing iden-
tifiers that look like natural language phrases. We hypothesize
that this would increase the readability and maintainability of
source code.

To allow sentence case in Smalltalk, we slightly modify the
grammar of the language by introducing a separator character
in all the places in the grammar where two identifiers could
be adjacent. With such a syntax change we can allow spaces
in the name of the identifiers, or what we call sentence case
identifiers.

Let us modify the syntax for the message send (1) and
introduce a required comma between the object and the
message that it receives (1’):

anObject , aMessage.

This will allow the example (2) to become:

Hierarchical Graph,
import from downloaded StackOverflow data.

We find this second example to be more elegant. It has the
added benefit of the editor being able to check the spelling of
individual words.

II. RESEARCH QUESTIONS AND USER EVALUATION

Not only that we believe that example (2) is more elegant,
but we believe that a language which would be using sentence
case would would have a series of benefits: it would encourage
programmers to think more about their identifiers (H1), will
look friendlier to newcomers (H2), and will ultimately lead to
an increased readability and maintainability of programs (H3).
These are our intuitions, but they would need to be verified.

1And sometimes results in a useless comment being added to the method
such as "create example from the downloaded StackOverflow data".

However, the approach is not without drawbacks: the ex-
tra “ink” required for adding commas everywhere between
possible colliding identifiers might be tiring (H4) and it will
be received with suspicion by old Smalltalkers (H5). Also,
the sentence case identifiers idea might not scale to other
languages with other grammars.

We are working on implementing the necessary language
modifications which would allow us to run user evaluations
and learn whether our intuitions are correct. Particularly we
plan to answer the hypotheses (H1-H5).

Since most of these hypotheses can be validated through
user evaluations, we plan to have a working prototype running
by the time the USER workshop will be conducted and to
be able to discuss experiment designs with the workshop
participants and, if the context is favorable, involve the other
participants in small experiments.

If evidence supports our intuition, this knowledge would be
useful and guidance for the designers of the future languages
and IDEs. Indeed, the solution could be designed either at the
programming language level, or at the IDE level. One could
also imagine a compatibility layer on top of existing code that
would unCamelcase-ise it and then camelcase it back.

III. RELATED WORK

A very good introduction and discussion on naming in
programming is delivered by Liblit et al. [3] who observe
that the public identifiers have longer and more informative
names, and that the grammar of natural languages influences
the choice of identifier names.

Binkley et al. conducted a study in which they evaluated the
impact of camel case and underscore conventions on source
code readability. They found differences between experts and
beginners [1].

Sharif and Maletic performed an empirical study to compare
the same two identifier styles using eye tracking software.
They found that subjects recognize identifiers with underscore
style more easily [4].

Applescript is a popular scripting language which has a
certain natural language feel and philosophy [2]. As far as
we are aware there are no user studies published about its
design.

IV. CONCLUSION

We have proposed an empirical evaluation of our proposed
modification to a classical programming language. This modi-
fication consists in enabling phrases instead of identifiers. We
believe this would make a language easier to understand for
beginners, and would encourage the experienced developers
to higher quality code. However, since these are only assump-
tions, we plan to design a series of user evaluations to learn
whether our hypotheses will hold. As far as we are aware, this
is quite a novel approach to language design but we believe a
powerful one.

APPENDIX: A SLIGHTLY LARGER EXAMPLE

In order to illustrate our idea with a longer example, we
must introduce a few other details of the Smalltalk syntax.
When a message sent to an object takes multiple parameters,
the parameters are interleaved between the keywords of the
message as in (3)

anObject fooWith: aString andBarWith: aNumber

One added benefit of our approach over traditional Smalltalk
syntax, is the situation in which multiple messages are chained.
The snippet (4):

anObject foo bar

sends foo to anObject and to the resulting object it sends bar.
When the messages take arguments we need to surround all of
them with parentheses, so there is no ambiguity whether we
have a single message with three parameters or three chained
messages with one parameter, as in the example (5):

(((anObject foo :1) bar : ’two’) baz: #three) qux

In our implementation the previous can simply be written as:

anObject , foo: 1, bar : ’two’, baz: #three , qux.

With this rule, consider now the following Smalltalk code:

| shortPaper |
shortPaper ←ShortPaper createNewNamed: ’Planning an Evaluation’

shortPaper authors
addWithFirstName: ’Mircea’ andLastName: ’Lungu’;
addWithFirstName: ’Jan’ andLastName: ’Kurs’;

shortPaper
addAffiliation: ’University of Bern’;
addAbstract: (FileInputStream createFromFile: ’abstract.txt’)

getStreamContents.

(((Net getProtocol: #HTTP) createRequest: #Post) for: shortPaper)
send.

The same example written with sentence case identifiers would
look like this:

| short paper |
short paper←Short Paper, create new named: ’Planning an Evaluation’

short paper, authors,
add with first name: ’Mircea’ and last name: ’Lungu’;
add with first name: ’Jan’ and last name: ’Kurs’.

short paper,
add affiliation: ’University of Bern’;
add abstract: (File Input Stream, create from file: ’abtract.txt’) get

stream contents.

Net, get protocol: #HTTP, create request: #Post, for: short paper, send.

REFERENCES

[1] D. Binkley, M. Davis, D. Lawrie, and C. Morrell. To camelcase or
underscore. In Program Comprehension, 2009. ICPC ’09. IEEE 17th
International Conference on, pages 158 –167, may 2009.

[2] W. R. Cook. Applescript. In Proceedings of the third ACM SIGPLAN
conference on History of programming languages, HOPL III, pages 1–
1–1–21, New York, NY, USA, 2007. ACM.

[3] B. Liblit, A. Begel, and E. Sweetser. Cognitive perspectives on the role
of naming in computer programs. In Proceedings of the 18th Annual
Psychology of Programming Workshop. Psychology of Programming
Interest Group, September 2006.

[4] B. Sharif and J. I. Maletic. An eye tracking study on camelcase
and under_score identifier styles. International Conference on Program
Comprehension, 0:196–205, 2010.

	Introduction
	Research Questions and User Evaluation
	Related Work
	Conclusion
	References

