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Abstract: AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre
Auger Observatory to extend its range of detection and to directly measure the muon content of
the particle showers. It consists of an infill of surface water-Cherenkov detectors accompanied
by buried scintillator detectors used for muon counting. The main objectives of the AMIGA
engineering array, referred to as the Unitary Cell, are to identify and resolve all engineering issues
aswell as to understand themuon-number counting uncertainties related to the design of the detector.
The mechanical design, fabrication and deployment processes of the muon counters of the Unitary
Cell are described in this document. These muon counters modules comprise sealed PVC casings
containing plastic scintillation bars, wavelength-shifter optical fibers, 64 pixel photomultiplier tubes,
and acquisition electronics. The modules are buried approximately 2.25m below ground level in
order to minimize contamination from electromagnetic shower particles. The mechanical setup,
which allows access to the electronics for maintenance, is also described in addition to tests of the
modules’ response and integrity. The completed Unitary Cell has measured a number of air showers
of which a first analysis of a sample event is included here.

Keywords: Detector design and construction technologies and materials; Particle detectors; Over-
all mechanics design (support structures and materials, vibration analysis etc); Performance of High
Energy Physics Detectors
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1 Introduction

The Pierre Auger Observatory [1], located in the province of Mendoza, Argentina, is a hybrid
detector covering 3,000 km2 with 1660 surface stations (the surface detector, SD) and 27 fluores-
cence telescopes. The SD stations are arranged in a triangular grid of mostly 1.5 km spacing, while
the telescopes are split amongst four sites at the edge of the surface array. Currently, the Auger
Observatory is being upgraded, and AMIGA [2] is one of the enhancement projects.

Two of the main objectives of AMIGA are to measure the composition-sensitive observables of
extensive air showers and to study features of the hadronic interactions. The optimum set of detector
measurements for an event includes energy, atmospheric depth at shower maximum Xmax,EM, and
the number of muons at an optimal lateral distance from the shower axis Nopt

µ . Additionally, the
muon production depth Xmax,µ (the reconstruction of which is under development) is an observable
of considerable interest. Reconstruction of these parameters requires quality measurements of the
muonic and the electromagnetic components of showers. Once these parameters are measured, the
best available multi-parametric fit may be applied. AMIGA is designed to measure muon arrival
times and Nopt

µ . The former might enable the reconstruction of the muon longitudinal profile. The
latter is obtained by sampling the muon lateral distributions. These two observables reduce energy
reconstruction systematics, particularly when the fluorescence detector is not operating. Note that
AMIGA can measure the muon longitudinal profile with a nearly 100% duty cycle.

AMIGA consists of an infilled area of 61 detector pairs (figure 1) each one composed of a
surface water-Cherenkov detector and a buried 30m2 Muon Counter (MC). The AMIGA MCs are
deployed on a 750m triangular grid to directly measure the muon content of showers with primary
energies greater than 3 × 1017 eV. A spacing of 750m and an area of 23.5 km2 were chosen due to
the small particle footprint and high flux of low-energy showers.

A Unitary Cell (UC) of seven SD stations on a hexagonal grid has already been equiped
with MCs in the same area as the Auger Engineering Radio Array (another enhancement of the

Figure 1. Left: map of theAMIGAarraywith brown background (from [4])with theUnitaryCell engineering
array position (in gray). Right: layout of the Unitary Cell showing the locations of MCs and corresponding
water-Cherenkov stations. Figure is not to scale. Green and yellow boxes represent MC modules buried at
approximately 2.25m and 1.3m, respectively.
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Auger Observatory) allowing for combined analyses [3]. The UC has aided in the debugging of
engineering issues and the understanding of the counting uncertainties, in order to attain a stable
detector and final design for the production of AMIGA. Additionally, one of the most important
tasks of the given prototype of muon detectors is to minimize muon-number counting uncertainties
stemming from mechanical design.

The MCs have a modular design in which the 30m2 detection area is divided in two modules
with 5m2 and two with 10m2 detection area. Each of the detector modules has its own acquisition
system triggered by the SD station (figure 2). Currently, two of the UC position have twin muon
detectors, which consist of two 30m2 MCs separated by approximately 10m. The purpose of these
detectors is to study counting fluctuations.

2 Requirements for the AMIGA muon detectors

Among the many requirements for the MCs, only those affecting the mechanical design of the
detectors are mentioned here:

• Number of detectors: AMIGA is designed to have at least 61 MCs. Therefore, MCs must be
easy and fast to manufacture in order to complete the project in a reasonable time period.

• Muon sensitivity: the MCs must be sensitive only to the muon content of the particle showers
produced by incident cosmic rays. Simulations show that a vertical shielding of 540 g
cm−2 clearly suffices to reduce the electromagnetic punch-through to a negligible level at
core distances of interest. This shielding is equivalent to burying the detectors ∼ 2.25m
underground (considering an average local soil density of 2.38 ± 0.05 g cm−2 [5]).

• Detection area and segmentation: based on simulations, the detection area was chosen to
be 30m2 divided in 192 segments (see [6] for details about detection area and segmentation

Figure 2. Schematics of a Muon Counter (MC) and Surface Detector (SD) of the AMIGA Unitary Cell
together with the AMIGA electronics.
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simulations). The segmentation of the detector is also related to the time span over which a
muon is to be sought, since two muons arriving in the same time window could be counted
as one. The finer segmentation corresponds to less muon pile-up in a fixed time window.
The minimum muon time window is defined by the convolution of the decay time of the
scintillator and the optical fiber.

• Lifetime: because only the electronics can undergo maintenance over a period of 10 years
underground, the scintillator module components’ ruggedness and aging characteristics have
to be considered.

• Transportation and deployment: the modules must be both easy to handle and durable enough
to withstand both long transportation in a semi-truck trailer as well as hard underground
deployment conditions (high pressure from the soil above the modules). They must also have
light-tight and water-tight seals.

• Power supply: detectors are deployed in the field over a large-area array so a photovoltaic
system is the only reasonable power solution. Accordingly, a low-power electronics design
must be developed for the production phase of the project.

• Costs: the cost must be as low as possible given the number of scintillator modules to be built.
The mechanical design of the modules must be optimized to allow for the use of standard
trucks and cranes.

3 Description of the scintillator modules

Four modules, 2 × 5m2 and 2 × 10m2, were deployed at each site in the UC [7] for pile-up and
signal attenuation cross comparison tests. Additionally, the electronics of the modules allow for
both integration of the total detected signal as well as independent counting of muons. Integration
allows for measurements close to the core, and the segmentation (scintillation bars) results in a
sturdy muon counting technique with low muon pile-up in a defined inhibition time window.

Every scintillator module comprises 64 scintillation bars, each of dimensions 40mm× 10mm
× 4m, with a 1.2mm diameter wavelength-shifting (WLS) optical fiber glued into a lengthwise
groove of the bar. The light produced in the scintillation bars is collected and propagated along
the WLS fibers (figure 3), which then couple to multi-pixel PMTs (photomultiplier tubes). The 64
scintillators and optical fibers are lodged within a PVC (Polyvinyl Chloride) casing and, together
with the electronics kit, form the detector module.

The electronics of the modules facilitate identification of pulses above a given threshold and
thus allow for the counting of muons without detailed knowledge of signal structure and peak
intensity. The thresholds of the module’s 64 channels can be individually monitored and set
manually or through a calibration algorithm (see [8] for details about the electronics slow-control
implementation). This method is very robust since it does not rely on deconvoluting the number
of muons from an integrated signal. Thus, it does minimally depends on the PMT gain (and
its fluctuations), the muon impact position on the scintillator bar, and the corresponding light
attenuation along the fiber length. It also does not require thick scintillators to reduce Poisson

– 4 –
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Figure 3. Schematic of a scintillator bar excited by a muon. Highlighted are the trajectories of the incident
particle (in red), the photons produced within the bar (in blue) and within the fiber (in green).

fluctuations in the number of SPEs (single photoelectrons) produced per incident muon. However,
it does rely on fine counter segmentation to prevent under counting due to simultaneous muon
arrivals. It additionally depends on the adjustment of thresholds within an appropriate range to
ensure good counting efficiency.

3.1 Scintillation bars

Plastic scintillators were chosen because of their quality mechanical and maintenance-free proper-
ties. The scintillation bars, which were produced and quality-controlled at Fermilab, are 4m long
extruded bars (for the 10m2 modules) of polystyrene doped with fluor and co-extruded with TiO2
as an outer layer for reflectivity. They have a detection cross section of 40mm× 10mm with a
2.0mm groove centered on the top side without a TiO2 coating.

The core of these extruded scintillation bars consists of a compound of Dow Styron 663W
polystyrene as the base material [9]. The attenuation length of the extruded scintillation bars is
55± 5mm for the fast component and approximately 24 cm for the slow component. Therefore, the
light must be carried to the PMT using an optical fiber.

3.2 Optical fibers

To build the AMIGAMCs, the WLS optical fiber is glued in the groove with an optical cement that
matches the refractive index of the fiber and the scintillator. Then, the uncoated groove, with the
optical fiber inside, is covered with a reflective aluminum foil to avoid photon losses (figure 3).

The fibers used in the AMIGA modules are the Saint-Gobain BCF-99-29AMC multi-clad
fibers. They have the same dopant as the BCF-92 fibers (the standard catalog model by Saint-
Gobain) but were ordered to have twice the concentration. The fibers are glued to the scintillators
with BC-600 optical cement (clear epoxy resin) recommended by Saint-Gobain. Tests performed by
the MINOS experiment [10] have shown that minimal effects from the yellowing of the scintillators
and the optical cement are expected for the working conditions of the AMIGA MCs.

– 5 –
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4 Main sources of muon counting uncertainties

4.1 Muon pile-up

The convolution of fiber and scintillator decay times results in a pulse structure similar to the one
shown in figure 4, which corresponds to ∼9 SPEs. Greater light yields translate into higher numbers
of SPEs, which in turn result in greater probabilities of wider digital muon traces (for the same
discrimination threshold). As seen in the figure, the muon-signal width at 1/3 of the SPE level
is ∼13 ns including the last isolated SPE. The mean number of SPEs in a module was found to
be less than 25 even for situations where muons hit a point on a scintillation bar with the highest
light output.

Basically, the wider the pulse width the more over-counting for a fixed time window in which a
single muon may be counted. Therefore, the mechanical design of the module considers the usage
of fast optical fibers. Additionally, the fiber end opposite the PMT is painted black and clipped at
45◦, in order to reduce the photon reflections, which may result in delayed SPE pulses and thus
larger signal widths. Painting the fiber end results in a reduction of the SPE yield of approximately
one SPE (compared with no painting) at the farthest point of the scintillation bar from the PMT,
and in no appreciable reduction for the closest point.

A simulation was performed to decide on the inhibition time window duration (figure 5) in
which a single muon may be counted. One thousand muons were injected 1m away from the
PMT, i.e., the point of the scintillation bar closest to the PMT. A 200 ns time span was used in the
search for muon signals using a bit-pattern counting algorithm (see [11] for details about patterns
and counting strategies in addition to their effects on counting efficiency). Starting at 10 ns, this
time span was divided in time windows increasing in 5 ns steps. Over-counting can occur when an
injected muon deposits a signal in more than one of these inhibition windows. As shown in figure 5,
80% over-counting would result with a 10 ns inhibition window, 9% for 20 ns, and 1.3% for 25 ns.
Virtually no over-counting results with larger inhibition windows.

The inhibition time window is set at 25 ns by default, but may be adjusted in 3.125 ns steps
since the reconstruction of muon numbers is performed during off-line analysis.

Figure 4. Example of a real H8804-200MOD PMT anode output corresponding to ∼ 9 SPEs. This was
generated by a muon passing through the scintillator (with an oscilloscope configured with 50Ω input
impedance, given that the mean SPEpeak for this pixel of the PMT is ∼ 26mV).

– 6 –
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Figure 5. Muon over-counting as a function of inhibition window width (simulated).

Muons incident on the same scintillation bar with a time separation less than the width of a
time window cannot be resolved individually. Nevertheless, the number of muons in the detector
can still be inferred from the number of bars with signal. Using a model that considers only the
detector segmentation, it was estimated that up to approximately 700 muons could be reconstructed
in a MC with a statistical uncertainty of 10% [12]. The maximum number of muons that may be
counted is limited by other factors, e.g., PMT cross-talk and inclined muons passing through more
than one bar. As such, a 30m2 muon detector partitioned into 192 segments and with the inhibition
time window set to 25 ns is considered to be a good trade-off between cost and scientific output.

Even with a 10% decrease in detection area, the uncertainties do not rise considerably, thus
permitting the malfunctioning of up to 6 channels. Such malfunctions could arise from module
construction, damage while transporting and/or deployment, defective PMT pixels, or defective
electronics channels.

4.2 SPE yield and PMT cross-talk

The muon counting efficiency depends on the SPE yield of the scintillator/fiber/PMT system in
addition to the counting algorithm implemented in the reconstruction. For a segmented counter
there is a trade-off between muon identification and over-counting due to the PMT XT (cross-talk)
between channels. The XT has been measured to be less than 1% (charge relationship) between
adjacent pixels and negligible for diagonally neighboring pixels [13, 14]. Nonetheless, the strategy
adopted for muon identification is a signal where at least two non-overlapping SPE pulses are above
threshold. This is because the probability of having two cross-talk SPEs (non-overlapping) in the
same neighboring pixel is negligible. Note that the counting strategy can be re-adapted at the
time of analysis within the software to make it more thorough and to include additional timing and
adjacency conditions.

The SPE yield was also experimentally measured in a dark box with the setup shown in figure 6.
Evaluation of fibers from different manufacturers (Saint-Gobain and Kuraray) and different fiber
characteristics (e.g., different diameters, rounded and squared fibers) was performed to find an
optical fiber with suitable mechanical characteristics that help to reduce counting uncertainties (e.g.
fiber diameter, light-output). Given its narrow signal structure yet still sufficiently high light yield,
the 1.2mm BCF-99-29AMC Saint-Gobain rounded fiber was chosen. The setup was designed to
be as similar as possible to the channel of a module with the longest optical fiber, i.e., it has an

– 7 –
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Figure 6. Setup to measure the number of SPEs produced per muon. Two 4 cm× 4 cm× 1 cm scintillator
bars and a regular multi-anode PMT were used to generate a coincidence trigger. A 5m Saint-Gobain fiber
was glued within the groove of a 4m scintillation bar and curved-up at one end to optically connect it to
a PMT.

Figure 7. Scanning results for PMT SPE yield vs. fiber distance for 32 channels of a module. The scanner
with a radioactive source was calibrated with background muons [15]. Distance corresponds to the scanned
fiber position in relation to the PMT. Minimum/maximum distances are not constant between fibers since
they differ in their routing to the PMT. Regardless, the first and last points of each curve correspond to the
beginning and end of the associated scintillation bar (including a safety margin at both ends).

extra fiber length of ∼1m. The minimum radius of fiber curvature (produces photon losses) used
in the module design to prevent damage is 15 cm, which was also included in the experimental
setup. The number of SPEs produced at the PMT photocathode by single muons was measured
after calibration of the PMT. The PMT gain and its stability were monitored through the analysis of
single pulses from the suspected SPE pulses.

All the modules undergo quality-control testing before transportation to the Observatory. This
is done bymeasuring the light-attenuation curves of the fibers with a 5mCu radioactive 137Cs source
moved by an x − y scanning system designed for AMIGA. The scanner allows for rapid module
characterization by measuring a current which can be normalized to number of SPEs through a
calibration with background muons (see figure 7 for results). The setup for this calibration is similar
to that of figure 6 but with a different muon hodoscope that allows its performance on a module
instead of a single scintillation bar. The scanner’s operation with different PMTs to take into account
variations in quantum efficiency produced similar results.

– 8 –
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4.3 Other counting uncertainties

Counting uncertainties derive from multiple sources including the detector modules, the PMTs,
electronics noise, counting algorithms, shower sampling resolution, shower-to-shower fluctuations,
and electromagnetic punch-through. All of these sources are included in simulations of different
cosmic-ray primaries. In turn, these simulations are used to calculate the so-called merit factor,
which is a measure of how well it is possible to discriminate between cosmic rays of different
composition. The merit factor for differentiation between proton and iron is defined as

fp,Fe =
���〈N

opt
µ,Fe〉 − 〈N

opt
µ,p〉

���√
σ2
µ,Fe + σ

2
µ,p

, (4.1)

where Nopt is the number of muons at a given optimum reference distance and σ is the standard
deviation therein. The merit factor is estimated to be 2.1 and 1.7 for a primary with an arrival angle
of 0◦ and 38◦, respectively (at an energy of 1018 eV and considering 30m2 MCs separated by 750m
and buried 1.3m underground). Further discussion of the merit factor is not within the scope of
this paper and will be reserved for elsewhere.

5 Mechanical design

5.1 Module casing

To follow the requirements mentioned in the previous sections, a decision was made to split the
module in two halves with 32 bars on each side of a centrally located PMT (figure 8). This design
has the following advantages:

• It allows for the use of standard trucks for transportation thereby reducing the project costs.

• It produces less optical fiber wastage due to the reduced distance between the farthest scintil-
lation bar and the PMT.

• It facilitates easy access to the modules for maintenance after deployment. The module itself
can be used as an access platform for the technicians. This is possible because the PMT sits
in the middle of the module and not beside it.

• It is more robust and permits a simpler support scheme for the electronics.

• It allows for use of commercial 2mm PVC plates for the casing with a standard size of
1.5m× 3m, thereby considerably reducing the costs and the number of plates to be sealed to
fabricate the casing.

• It facilitates deployment of the fibers in the scintillator grooves in two groups of 32 during
assembly. This is more convenient for the technicians to work comfortably on every part of
the module.

– 9 –
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Figure 8. Left: picture of two 10m2 modules being manufactured at the same time in the ITeDA (Instituto de
Tecnología en Detección y Astropartículas) facilities. The 64 scintillation bars are divided into two groups
of 32 bars each, with all optical fibers curving up into the centrally located optical coupling device for the
PMT. The scanner using a radioactive source can be seen at the back of the facility. Right: diagram of the
PVC casing of the 10m2 scintillator module and centrally located electronics dome.

5.2 Optical coupling and alignment system

The optical fibers and the PMT are joined by an optical connector (figure 9, top right) made out of
black POM (black Polyoxymethylene). POM was chosen for its good machining properties, which
allow fast and precise milling without deformation or material burning. Black color was chosen to
help to reduce optical XT among the PMT pixels due to reflections in the PMT glass-photocathode
boundary. Note that since the connector is the same for all modules, there is no need to replace it if
a PMT requires swapping.

Figure 9. Alignment system for coupling of PMT and optical fiber. Left: the X-Y-W (W for rotation)
alignment bench and the high-resolution camera. Right top: a module’s optical connector with the 64 fibers
glued. Right bottom: the PMT with metal pins inserted into the holes drilled in the casing.
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During the assembly process, the 64 optical fibers are threaded and glued inside the drilled
holes of the optical connector. Then a fly-cutter milling machine is used to simultaneously cut
and polish all the fiber ends and the connector’s front face. As a result, the fibers are left flush
with the optical connector, which lies flat against the PMT glass reducing the optical XT between
neighbouring pixels.

Fly-cutting was chosen over polishing with regular sandpaper because the former is faster and
reduces the risk of leaving residuals inlaid in the polished face of the soft plastic fibers (figure 10),
that may increase the optical XT and/or reduce the SPE yield. Furthermore, sandpaper polishing is
typically performed as a wet process, which is not easily applicable to the mechanical design of the
modules and their assembly procedure. A comparison with a rapid polishing is shown in the figure.
Detailed polishing is precluded by the mass-production timeline. Finally, the optical coupling is
then enhanced with Saint-Gobain BC-630 optical grease to better match the refractive indexes.

The PMTs (which were also used by the Opera experiment [16]) are delivered by Hamamatsu
in their POM casing ready for the alignment procedure (figure 9) consisting of the insertion of two
metal pins aligned with the first dynode of the pixels using an X-Y-W positioning system. These
metal pins then match with the alignment holes in the optical coupler.

5.3 Module handling and transportation

After performing the corresponding finite-element simulations (figure 11, left), a decision wasmade
to glue four “U" PVC profiles along the length of the module to enhance its structural integrity
and provide grabbing points for handling (only for the AMIGA UC module). Modules are lifted

Figure 10. Results of using a fly-cutter with diamond tools (left) versus a fast fiber polishing with sand paper
(right) up to #1500 (1500 grits cm−2). The pictures at the bottom correspond to a quarter of the optical fiber
taken with an Olympus bx60m microscope (10x brightfield). The stripes left by the fly-cutter are the very
subtle nearly vertical lines (bottom left picture).
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Figure 11. Left: finite-element simulation of module handling with a simplified hanger structure [17]
showing the suggested attachment points. Right: a 10m2 module being lifted. The detector is being
extracted from the laboratory and placed inside the transportation container.

and handled with a steel-hanger structure that attaches to the modules along their top surfaces
(figure 11, right).

A container was built to allow for the simultaneous transport of up to four modules, which
permits it to be lifted by standard fork-lifts (each module weighs approximately 300 kg) to reduce
logistical costs.

6 Construction and testing

6.1 Manufacturing

The gluing of the fibers on the scintillators is labor and skill intensive. The process must be
administered as uniformly as possible, and careful inspection is necessary to ensure good optical
coupling along the fiber length. Experience has shown that this process is difficult to automate.

The rest of the assembly consists of gluing the rest of the PVC parts (e.g., manifold plate,
optical coupler and its holder) and the scintillation bars in the PVC casing with Teroson MS 939
adhesive (figure 12, left). The optical connector is then attached to the central holder and the fibers
are glued into the bars’ grooves as previously explained. The top PVC plates are also glued to the
scintillation bars with Teroson MS 939 adhesive to close the module casing. The borders of the
modules are sealed with Plexus MA310, which is a solid 2-component glue that prevents ground
water from entering.

6.2 Mechanical and quality assurance tests

Pneumatic leak tests are administered after sealing the casing (figure 12, left). The gluing process
for the Teroson MS 939 adhesive is performed in a way that allows for the passage of air (figure 12,
right) throughout a module to test its hermeticity. After performing this test, the port used to
pressurize the module is left unsealed in order to compensate for changes in atmospheric pressure
during travel. This venting hole is filled with Plexus glue once the module arrives at its destination.

One final test is performed to identify defective channels and to inspect their light output. This is
done using the scanning system discussed in section 4.2. All of the modules in the UC including the
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Figure 12. Left: process of gluing the scintillation bars into the PVC casing. Right: process of gluing the
frame PVC bars to the PVC sheets of the casing, which allows for hermeticity testing.

twin detectors were tested. The rate of defective channels was found to be approximately a third of a
percent. Failures were due to either fiber manufacturing defects or incorrect fiber/scintillator gluing.

7 Deployment

Prior to deployment, a back-hoe digger excavates the pits in which modules are to be placed. A
levelled fine sand bed is prepared at the bottom of the pit to provide a flat platform for the modules.
The modules are then inserted into the pits with the same back hoe and covered with approximately
20 cm of local sand to provide additional protection during the refilling of the pits

7.1 Ground shielding uniformity

The AMIGA UC modules are buried approximately 2.25m underground, which amounts to ap-
proximately 540 g cm−2 of vertical mass (a total of about 60% more than the atmosphere at the
level of the Auger Observatory, namely, 870 g cm−2), to provide shielding from electromagnetic
particles. Twomodules have also been deployed to examine whether rates of electron punch through
are tolerable at a depth of 1.3m (figure 1, right).

Since the module is buried, its mechanical design provides a way to access both the electronics
and the PMT for maintenance purposes. To do this, an access tube that is filled with large
commercial grade bags of local soil after maintenance to ensure uniform shielding (figure 13, left).
Once filled, the access tube is covered with a lid designed to resist sun exposure, large animals, and
high-speed winds.

7.2 Layout

The four modules of each UC MC are arranged in an “L" shape (figure 14) in an effort to minimize
possible systematics arising from highly-inclined muons.

The modules are deployed with a horizontal separation of approximately 5m from the SD
station in an effort to guarantee shielding uniformity independently of the shower arrival direction.
On the other hand, larger separations are avoided in order to prevent excessive cabling for power
and data.
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Figure 13. Left: schematic of the module-access tube used for electronics maintenance. Right: installation
of an access tube at deployment time. The access tube is sealed to the module for water tightness.

Figure 14. Module layout of an MC in the AMIGA UC. The particular 10m2 module at the left here is
separated from the rest because it was deployed at an earlier point in time with respect to the other three.
There is a horizontal separation of approximately 5m between the SD station and the modules to improve
the shielding uniformity. The excavation area is marked with a dashed line.
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8 Module data acquisition

The electronics of the MCs are split in two: the “underground electronics" installed in each buried
module and additional “surface electronics" at the SD station common to all of the modules of the
MC. Both are powered by solar panels (figure 2).

The surface electronics are comprised of the interfacewith the SD electronics (trigger andmuon
data transfer), the wireless communication to the Observatory CDAS (Central Data Acquisition
System), the network switch to communicate with the modules of the MC, and the power regulator
of the photovoltaic system. The underground electronics include the PMT, the analog front-end, a
digital boardwith an FPGA (Field Programmable Gate Array) andmemories, and amicro-controller
board for interface, data transmission and slow control.

The PMT is a 64-pixel Hamamatsu H8804-200MOD, which is a H7546 device with a different
casing and a high quantum efficiency ultra bi-alkaline photocathode, i.e., the quantum efficiency is
still approximately 21% at the optical fiber emission peak. The last dynode output is also available
and is common to all channels in these PMTs, which facilitates signal-charge integration of the
whole module.

The analog front-end holds 64 pre-amplifiers and discriminators which are remotely set to an
adjustable fraction of the average SPE amplitude of each PMT pixel. In this way, the PMT pulses
are converted into a train of 0s and 1s, which correspond to the respective absence or presence
of a signal above the mentioned threshold. One bit per channel is saved in the front-end memory
forming a 64-bit character word per time bin. This conversion is performed in 3.125 ns time bins
in the FPGA (see [18] for details about the electronics kit). Basically, the memory consists of two
circular buffers that store 2048 bins of 64 bits. Following an SD trigger these bit trains are stored.
They are then recovered and transmitted upon a request from the CDAS.

9 AMIGA sample event

The MC modules are currently acquiring and transmitting data to the CDAS. A first analysis of an
event demonstrating the capability of the MCs to count muons and measure their arrival times is
shown in figure 15. This event corresponds to a 8 × 1017 eV shower arriving with a zenith angle
of 19◦ where the shower core landed within the UC. The event occurred while the UC was under
construction and six MCs participated in the event. At the time four MCs had a detection area
of 10m2, one 45m2, and one 60m2. The number of reconstructed muons per MC was 16, 2, 1,
0, 43 and 28 respectively. The MC with zero muons was also considered in the fit to the lateral
distribution function of muons (blue downwards arrow). This event shows the quality performance
of the module design and the data reconstruction used for muon counting.

10 Production mechanical design

Expertise gained from the UC informed the development of some design modifications for the
AMIGA production phase. These modifications targeted cost reduction, faster mass production,
and streamlined deployment. The main upgrades already implemented in the mechanical design
are: PVC folding to produce the module casing, modules lifting with a hanger with vacuum suction
cups, 30 cm diameter access tube for maintenance, and better deployment procedure to avoid usage
of styrofoam. See appendix A for additional technical information if desired.
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Figure 15. First analysis of a sample event detected in coincidence by the SD and AMIGA. Top: lateral
distribution functions fitted from data recorded by each detector. Bottom: muon arrival times for the MC at
420m from the shower core.

11 Conclusions

The design of the UC muon counters has been shown to function successfully within expecta-
tions. The mechanical design of the modules has shown quality results regarding mechanical
and functional stability, performance of the couplings with PMTs, light and water tightness, and
temperature stability.

No major mechanical damage or module losses were suffered during the construction and
deployment of the 38 modules of the UC, the twin detectors, and other prototypes.

First longitudinal and lateral muon profiles have been reconstructed and are currently under
further analysis. The stable and quality performance of the AMIGA muon counters is reflected
in the analysis of events recorded thus far. Important advances in the engineering of the muon
counters’ logistics (i.e., fabrication procedures, transportation, and deployment techniques) have
been achieved, which have allowed for much progress during the re-design phase for module mass-
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production. Some upgrades to the mechanical design for production were described here. The
goals of these upgrades are primarily to increase production rate and to reduce the cost per detector
module for fabrication/production and post-deployment maintenance.

A Additional technical information

A.1 Module dimensions

The UC includes modules with different detection areas, 5m2 and 10m2, both of which have 64
channels, which results in a factor of 2 difference in segmentation area. The 5m2 and the 10m2

modules have external dimensions of approximately 5m× 1.4m and 9m× 1.4m, respectively. Both
are built with the same technique and specifications except for minor mechanical details.

A.2 Scintillators

The dopants follow the proportions: 1% PPO [2,5-diphenyloxazole] and 0.03% POPOP [1,4-bis(5-
phenyloxazole-2-yl)benzene], by weight of base material and with concentration variations of no
more than ±10%. These dopant components result in a blue-emitting scintillator with an emission
maximum of approximately 420 nm. The outer layer is extruded in a second extrusion machine and
consists of a compound of clear polystyrene with TiO2 in a concentration of 15% by weight of the
base material (with variations of no more than ±10%). The scintillation light yield uniformity is
quality-controlled when the bars are manufactured to be constant to ±5%.

A.3 Optical fibers

The dependence of the muon arrival-time distribution on the distance of a MC from the shower core
allows for reconstruction of the muon production depth. For this reason and the problem of pile-up,
the temporal characteristics of the detector modules are of great importance. As mentioned before,
a fast Saint-Gobain fiber is used, which complements the scintillator decay time of 3.7± 0.5 ns
(measurement performed by the manufacturer).

The BCF-99-29AMC multi-clad fibers (same as the fast BCF-92 but twice the dopant concen-
tration) have a second layer of cladding that has an even lower refractive index and thus permits
total internal reflection at this second boundary. The additional photons guided by multi-clad
fibers increase the output signal by up to 60% as compared to conventional single-clad fibers. The
BCF-92 fibers have maximum light absorption at 410 nm and maximum emission at 485 nm for the
absorption and emission spectra. Also, they have a decay time of 2.7 ns, which makes them ideal for
use with the scintillation bars chosen for AMIGA. The standard cladding material for Saint-Gobain
fibers is PMMA (polymethylmethacrylate, C5H8O2). It has a density of 1.2 g cm−3 and a refractive
index of 1.49. The trapping efficiency of these round fibers ranges from 3.4% to approximately 7%
for events occurring at the fiber axis and near the core-cladding interface, respectively.

The fiber diameter has a direct impact on the light output of the scintillator channels. Mea-
surements taken with prototype detectors showed that both 0.8mm and 1.2mm fibers generate
enough light output for the 5m2 and 10m2 modules, respectively. However, 0.8mm fibers are
not suitable for the 10m2 modules. As such, 1.2mm was adopted for both module sizes for
manufacturing convenience.
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The scintillator-fiber transmission coefficient (BC-600 optical cement) is expected to remain
constant due to the position of the fiber (glued at the very bottom of the groove) and at a working
temperature measured to be lower than 20 degrees Celsius with only seasonal variations.

A.4 PVC casing

The module casing is comprised of PVC including its structural profiles and the electronics dome.
It is formed by a frame (PVC bars with a section of 1 cm× 4 cm) all along the perimeter and is
closed with 2mm extruded PVC plates on the top and bottom. The 64 scintillation bars fit inside
this casing. All the PVC pieces are custom-made (cut and/or glued) in the project facilities from
industrial extruded PVC bars, sheets, and tubes (for the electronics dome). PVCwas chosen because
it is inexpensive, light, resistant, easy to machine, and easy to seal with thermal solder or glue.

The manufacturing of most of the module’s components (figures 8 and 16) is automated by
the use of a computerized numerical control router milling machine. The PVC electronics dome
(figure 16) is split into two main pieces. The lower one is fixed to the PVC casing and provides an
outlet for the cabling and protection for the enclosed curved fibers. The upper part is removable
and allows access to the electronics in the event that replacement or maintenance is required. The
pieces are sealed together with a rubber O-ring which provides water- and light-tightness.

A.5 Optical coupling

The fly-cutter is equipped with two tool bits with diamond inserts. In addition, this machine
is supported by a portable anti-vibrating structure to reduce creation of stripes and to allow for
operation close to the modules during assembly.

The optical connector is supported within the fixed part of the module’s dome with ∼1 cm of
floating freedom to allow for compensation of any difference with the electronics holding support
and the PMT dimensions. The optical connector attaches directly to the PMT (which is fixed to the

Figure 16. PVC casing of the scintillator modules (measures in mm). Left: longitudinal view of the module.
Styrofoam blocks glued on top and underneath the module provide mechanical protection and prevent sun
exposure. Right: electronics-dome parts.
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electronics) and is held in place by a couple of springs providing enough pressure to ensure good
optical coupling.

The positions of the pixels (focalization electrodes and first dynodes for each of the 64 channels)
of different PMTs vary by some tenth of a mm with respect to the casing. The final alignment is
performed using 4 distinct alignment marks (dots) provided by Hamamatsu on each side of the
PMTs. These indicators define two orthogonal lines which intersect at the PMT center. As such, a
metal cross and a high-resolution camera are used to align the PMT alignment dots and the optical
connector with an X-Y-W (W for rotation) system (figure 9). Once alignment is complete, two
metal pins are inserted into holes drilled in the PMT casing, which precisely align with the optical
connector holes (previously drilled while machined).

A.6 Transportation container

A container was built to allow for the simultaneous transport of up to four modules, made of
aluminum for its lightness, which permits it to be lifted by standard fork-lifts (each module weighs
approximately 300 kg) to reduce logistical costs. It was designed to resist deformation during
elevation and placement onto a truck trailer. Moreover, this container is also used to transport
modules up to the deployment site without needing tomake any transfer at the Observatory facilities.
A 5 cm thick foam layer was installed at the bottom of the container in order to protect the modules
against any vibrations of the truck. Low density styrofoam was inserted in between the modules to
reduce vibrational effects.

A.7 Construction, testing and deployment

Threading the 64 fibers into the optical connector is skill intensive. For ease of process and min-
imization of damage risk, the optical fibers are cut at ∼45◦ to make a sharp ending for threading
through the connector holes. Connector holes are drilled slightly larger than the fiber diame-
ter to reduce instances of fibers cracking during threading but not large enough such that glue
leakage occurs.

The “bubble test" is performed by pressurization of the module with compressed air (1.02
atmospheric pressure) and applying soapy water to the sealed borders to search for bubbles (see [19]
for details of the standard testing method for leaks).

During deployment, the walls of the pits are excavated approximately 50 cm wider than the
size of the modules and with a step shape in the top half meter in order to reduce risks associated
with falling rocks and walls collapsing. The soil structure was, however, very firm and compact,
and no collapses have been observed.

The service access for the electronics was designed from a PVC tube with a diameter of 1.3m
(built out of a PVC strip, not extruded). The access tube is filled with large commercial grade bags
of local soil after maintenance to ensure uniform shielding. A high density styrofoam structure sits
between the electronics dome and these bags, in order to protect the former.

The access tubes are transported independently of the detector modules, and installed at
deployment time (figure 13, right). This involves sealing them to the module’s upper surface with
Plexus MA310 adhesive to ensure that their position remains static and that they are water tight.
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A.8 Proposals for the production mechanical design

The main upgrades already implemented in the mechanical design are:

• PVC folding: the UC modules have PVC bars at the edge of the casing to which the top
and bottom PVC sheets are glued (figure 12, right). A prototype module has already been
manufactured for which these bars were replaced by folding of the edges of the bottom PVC
sheet to glue directly to the scintillation bars and the top PVC plate. This procedure reduces
the number of parts in a module and requires approximately half of the MA310 glue sealing.
Additionally, it reduces the need for leak testing, and the period during assembly for which
the use of a breathing mask is necessary.

• No U-profiles: the production prototype module does not have PVC U-profiles. It is lifted
with rubber vacuum suction cups as is done in the glass industry.

• Small access tube: the access tube is now constructed with a 30 cm diameter PVC tube that
permits the removal of the electronics and the PMT with a probe. This reduces the cost since
the small diameter tubes are much cheaper than those of 1.3m diameter, and do not require
the use of cranes to remove the large bags of soil. Additionally, these tubes allow for faster,
easier, and safer deployment.

• No styrofoam: the deployment procedure will be improved to ensure no rocks are present in
the sand protection layers. Additionally, the elevation hanger will provide protection from
sun exposure during deployment.
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