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Automatic Segmentation of Skin Lesions
Using Multiscale Skeletons

Aim Materials and Methods
Automatic segmentation of skin lesions (e.g. naevi, melanoma) from surrounding
healthy skin tissue is essential for designing effective and efficient computer-based 
methods for diagnosis and prognosis of melanocytic diseases.

Fully automatic tumor segmentation is hard due to variability of several factors:
- tumor morphology (shape, size, structure, occluding hair)
- intrinsic image attributes (skin pigmentation, color, contrast)
- acquisition parameters (imaging devices, image resolution, lens deformation)
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Challenges

Contribution
We present a fully automatic method for skin lesion segmentation from healthy 
tissue. The method is based on a novel image representation: multiscale skeletons.
We compared our automatic segmentation results with manual segmentations
performed by dermatologists. The comparison showed a high similarity in terms of
obtained segmentation results for all tested input images.

Segmentation Method
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We acquired over 50 images of a wide variety of naevi types using a Handyscope device at
2448 x 3264 pixels. After conversion to grayscale luminance images, we compute all possible
segmentations Ti (1<i<255) of each image by luminance thresholding. Small islands (few pixels
size) are next eliminated. Each possible segmentation Ti is next reduced to its so-called skeleton
Si [1]. Simplifying skeletons further removes small-scale noise from the segment boundary [2].
Next, we compute how much of the surface of the input image I is encoded in each segment Ti, 
and encode this data into a segment-relevance graph G. The key to our method is that maxima of
G correspond to relevant segmentations Iauto of I. From each such maximum, we reconstruct 
one segment of I using the skeleton-to-image reconstruction algorithm presented in [1]. 

To validate our automatic segmentation pipeline, we compare our automatic segmentations Iauto 
with tumor segmentations Iman manually performed by dermatologists directly on the input images 
I. A qualitative comparison of the two shows a high similarity, resistance to image-acquisition noise,
insensitivity to the type of tumor structures, occlusion artifacts (hairs), image tints, and image
acquisition parameters. The automatically computed segments exhibit the same smooth borders
and tumor inclusion features shown by the manual segmentations - compare e.g. the segment A
(automatically found) with the manually obtained segmentation Iman shown in the example below.
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Discussion
Ease of use:  Our proposed method is entirely automatic, requiring no user input.
Robustness: Testing all possible segmentations Ti of the input image eliminates all possible image 
acquisition biases (contrast, illumination, tint variation) and captures a wide tumor-structure variability.
Smoothness: Inherent small-scale noise (e.g. small fractal-like boundary details [3] is automatically
eliminated by skeleton simplification but keeps key tumor features e.g. size, outline, and shape [1,2,3].
Efficiency: Our entire pipeline is implemented using parallel graphics hardware, which delivers a
performance of roughly 20 image-segmentations / second on a modern PC (for details, see [4])

Ongoing Work
Quantification: Skeleton descriptors are arguablly effective instruments to quantify all aggregated 
tumor features (e.g. ABCDE criteria). In particular they directly measure the ‘fractal dimension’ [3,5,6].
Analysis: The proposed multiscale segmentation and skeletal representation could be used to
detect and measure more specific, finer-scale, tumor properties, e.g. the presence of specific structures
(e.g. globular, cobblestone, (a)typical network and blue/gray pepper-like patterns)
Comparison: Hausdorff distance metrics can be directly used to measure the segmentation quality [7] 


