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Schizophrenia, D2 Receptor Occupancy 
and Translational Modeling
General Introduction

chapter 1





The aim of this thesis was to use pharmacokinetic and pharmacodynamic modeling tools to 
predict the target receptor occupancy of antipsychotic drugs for the treatment of schizophre-
nia. In this introduction, an overview about schizophrenia, translational modeling concepts 
and translational modeling in schizophrenia is presented.
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Schizophrenia

Schizophrenia is a lifelong and often devastating psychiatric disorder of which the 
first symptoms often are recognized in late adolescence or early adulthood. The dis-
ease rarely occurs before adolescence or after the age of 40 years (1). The risk of 
developing schizophrenia is less than 1% in the general population. Schizophrenia 
is defined by characteristic but nonspecific disturbances in the form and content of 
thought, perception, cognition, emotion, sense of self, volition, social relationships, 
and psychomotor behavior (2). The etiology of schizophrenia remains unclear to 
date. Although the fundamental pathology of schizophrenia remains ambiguous, it 
has been hypothesized that an excessive level of striatal dopamine (3), which can be 
caused by several factors, is responsible for the development of psychotic symptoms. 
A developmental cascade leading to schizophrenia involves several factors action on 
early neuronal development stage to late adolescence (Figure 1.1) (4). Dopamine dys-
regulation appears to be the final step in this complex developmental cascade. 

Figure 1.1: Aetiological model of schizophrenia (Figure is reused with permission from reference 4).
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It was postulated that an early developmental insult to mesocortical dopamine 
system would reduce the dopamine function (hypodopaminergia) in this system and 
which in turn would lead to dopamine elevation (hyperdopaminergia) in mesolimbic 
dopamine system (5). In addition, the complex physiological function of dopamine, 
acting through different dopaminergic pathways with unique activities in each of 
them, makes the aetiology of this disease even more complicated. 

Dopamine Pathways and their Functions

In the brain, four dopamine pathways play a role in the pathophysiology of schizo-
phrenia as well as in the therapeutic effects and side effects of antipsychotic agents 
that are designed to block the dopamine D2 receptor (Figure 1.2 and Table 1.1).

Figure 1.2: Dopaminergic pathways of the brain. Each colored line represents each dopaminergic 
pathway.
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Hypotheses of Schizophrenia

The Dopamine Hypothesis
The onset and course of schizophrenia has been hypothesized to result from dysregu-
lation in the dopamine-mediated neurotransmission (6). The Dopamine hypothesis 
mainly relies on the observation that the clinical antipsychotic potency of current 
drugs is in direct relation to their affinity to the D2 receptors (7). 

A developmentally specific dysfunction in the dopaminergic innervation of the 
prefrontal cortex (PFC) leads to the hypodopaminergic activity in mesocortical 
pathway and causes negative and cognitive symptoms of schizophrenia. This func-
tional deficit in dopamine neurotransmission in the PFC would increase subcorti-
cal dopamine turnover (8). This leads to the hyperdopaminergic activity in other 
dopaminergic pathways (in the subcortical region) and causes positive symptoms 
of schizophrenia. Thus, this hypothesis incorporates an explanation for positive and 
negative symptoms. However, the new generation of antipsychotic drugs have affinity 
for multiple receptors and showed antipsychotic efficacy with less affinity towards D2 
receptors (9). 

The Glutamate Hypothesis
Several studies have reported the involvement of the glutamatergic system (2, 10, 
11) in schizophrenia pathogenesis. Glutamate appears to play an important role in 
regulating the dopamine release. The interactions between the glutamatergic and the 

Table 1.1: Dopaminergic Pathways in schizophrenia

Pathways and Functions Dopamine antagonism

Mesolimbic Pathway 
Controls emotion and sensations of pleasure
Hyperactivity in this pathway is seems to be 
responsible for psychosis. 

Reduction of positive symptoms

Mesocortical Pathway
Controls cognitive function
Hypoactivity in this pathway may be 
responsible for the negative and cognitive 
symptoms of schizophrenia. 

Worsening negative and cognitive 
symptoms

Nigrostriatal Pathway 
Controls movements

Extrapyramidal symptoms, akathisia, 
dystonia and tardive dyskinesia

Tuberoinfundibular Pathway 
Controls prolactin release

Hyperprolactinemia and sexual 
dysfunction
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dopaminergic systems may be highly significant in the aetiology and pathophysi-
ology of schizophrenia (11). The glutamate hypothesis of schizophrenia proposes 
that neurodevelopmental abnormalities in glutamate synapse formation result in 
the hypofunction of N-Methyl-D-aspartate (NMDA) receptors and thereby an ab-
normal dopamine activity which is associated with the symptoms of schizophrenia. 
Noncompetitive NMDA antagonists like phencyclindine (PCP) and ketamine were 
reported to (re)produce psychotic conditions, which are very similar to the positive 
and negative symptoms of schizophrenia, including hallucinations and delusions. 
This observation directed towards the hypofunctionality of the NMDA receptor in 
schizophrenia patients. Several studies have shown that NMDA hypofunction can 
lead to alterations in dopamine-related phenomena similar to those observed in 
schizophrenia, namely, subcortical dopamine excess and cortical D1 receptor upregu-
lation (11, 13).

Though pathophysiology of schizophrenia is explained based on different hy-
potheses, it is clear that all these hypotheses funnel into the abnormal dopamine 
activity. Hence, D2 receptor antagonism is being the basis for the drug therapy in 
schizophrenia. 

Aripiprazole

Partial D2 
agonism

Multiple - 
receptor - targeted

Risperidone
Paliperidone
Sertindole
Ziprasidone
Iloperidone

Typical 
Antipsychotics Atypical Antipsychotics

Serotonin - Dopamine
Antagonist 

 

Haloperidol
Chlorpromazine 

Clozapine
Olanzapine
Quetiapine

Efficacy against positive symptoms
Variable efficacy against negative and cognitive symptoms

No or low EPS liability

Efficacy against
 positive  symptoms

Associated with EPS

Dopamine
D2 antagonist

Fast Koff

Clozapine
Quetiapine

Figure 1.3: Classification of antipsychotic drugs.
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Antipsychotics – Mechanism of Action

Antipsychotic drugs are classified as typical (or conventional) antipsychotics and 
atypical (or new generation) antipsychotics based on their mechanism of action 
(Figure 1.3)

Typical or Conventional Antipsychotics

By the 1970s, it was widely recognized that the key pharmacological property of all 
neuroleptics with antipsychotic properties was their ability to block dopamine D2 
receptors, specifically in the mesolimbic dopamine pathway. The hyperactivity of 
dopamine in this pathway was postulated to cause the positive symptoms. These typi-
cal antipsychotics bind to the D2 receptors throughout the brain and block them. This 
results in a hypofunction of the dopamine system in all dopamine pathways, which 
causes apart from the antipsychotic effects also the side effects, e.g. extrapyramidal 
symptoms (EPS).

Atypical Antipsychotics

A reduction of excessive dopaminergic neurotransmission in the mesolimbic brain 
regions without blocking dopamine transmission in the nigrostriatal projections is 
the characteristic of atypical antipsychotics. Low or less EPS and lack of sustained 
prolactin elevation are the essential features of atypicality. 

Fast “Koff” antipsychotics
All antipsychotics block dopamine D2 receptors, but some dissociate from the recep-
tors more quickly than others (Figure 1.4). The rate of dissociation from the receptor 
is characterized by the rate constant koff.

It had been demonstrated that slow koff antipsychotic agents (e.g. haloperidol) 
have been associated with EPS and prolactin elevation, whereas the fast koff antipsy-
chotic agents (e.g., clozapine, quetiapine) are known to be free of EPS and prolactin 
elevation. Kapur et al showed that antipsychotic agents may differ as much as almost 
a thousand-fold in the rate at which they dissociate from the D2 receptor and it is the 
koff that determines how quickly the antipsychotic drug will respond to the dynamic 
interaction between dopamine and D2 receptors in the synapse (14). Thus, a fast koff 
at the D2 receptor may contribute to the atypicality of antipsychotics (15). However, 
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it is noteworthy that not all the atypical antipsychotics have a fast dissociation from 
the receptor (Figure 1.4).

Hence, it is clear that atypicality of an antipsychotic depends not only on the dis-
sociation rate constant of the drug from the receptor (koff).

Serotonin – Dopamine antagonists 
This class of atypical antipsychotics is characterized by relatively weak affinities for 
dopamine D2 receptors and high affinities for serotonin 5-HT2A receptors. The high 
affinity for 5-HT2A receptors seems to play a role in the low EPS side effects on atypi-
cal antipsychotic treatment. The combination of D2 and 5-HT2A antagonism may 
increase dopamine levels in the prefrontal cortex and alleviate the cognitive dysfunc-
tion. In the nigrostriatal pathway, serotonin-dopamine antagonists play a dual role 
by inducing the release of dopamine via 5-HT2A antagonism. The released dopamine 
competes with the drug for the D2 receptor and reverses the blockade of the D2 recep-
tor. As D2 receptor blockade is reversed, serotonin-dopamine antagonists cause little 
or no EPS. Since there are few 5-HT2A receptors in the other brain regions (for e.g. 
mesolimbic pathway), antipsychotic actions are preserved. 

Figure 1.4: Koff values of different antipsychotics.
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Multiple-receptor-target antipsychotics (‘Magic shotgun’)
Most of the common central nervous system disorders — such as depression, bipolar 
disorder and schizophrenia — seem to be polygenic in origin. Hence, it was proposed 
that designing non-selective drugs (‘magic shotguns’) that interact with several mo-
lecular targets would lead to new and more effective medications for schizophrenia.

The prominent example for this class of atypical antipsychotics is clozapine. 
Clozapine, has a low affinity to some of the dopamine (D1, D2, D3 and D5) receptors 
and has a high affinity for a number of serotonin (5-HT2A, 5-HT2C, 5-HT6, 5-HT7), 
dopamine D4, muscarinic (M1, M2, M3, M4, M5), adrenergic (Alpha1 and Alpha2) and 
other biogenic amine receptors (16). The atypilcality of clozapine was determined 
by the absence of EPS and clozapine showed superiority in treating schizophrenia. 
Clozapine is thought to normalize glutamatergic and dopaminergic neurotransmis-
sion in schizophrenia, thereby ameliorating symptoms, via complex interactions with 
a large number of molecular targets (16). 

Despite of these superior antipsychotic effects, clozapine was voluntarily with-
drawn from the treatment of schizophrenia due to the agranulocytosis side effect. 
Health authorities in most countries approved its use only for treatment-resistant 
schizophrenia with regular hematological monitoring to detect granulocytopenia. 
Other atypical antipsychotics including quetiapine and olanzapine also have appreci-
able affinities for other receptors (16). 

Partial agonists
Partial agonist offer clinical efficacy with a diminished liability for producing side 
effects. The atypical antipsychotic aripiprazole has the pharmacologic mechanism 
of action as a partial agonist at dopamine D2 receptors, providing antipsychotic ef-
ficacy without significant EPS. For partial agonists, the effective receptor blockade 
is lower than the receptor occupancy by a proportion reflecting the amount of in-
trinsic agonist activity (17). Hence, even a high D2RO (95%) may not induce EPS or 
elevate prolactin levels. Moreover, aripiprazole has a robust pharmacological pro-
file at several serotonin (5-HT1A, 5-HT2A, 5-HT2C, 5-HT7) and dopamine (D2, D3, 
D4) receptors (16). So although aripiprazole is clearly a functionally selective partial 
agonist, its complex pharmacology precludes us from concluding that its beneficial 
actions in schizophrenia are due solely to partial agonism of D2 receptors (16). It is 
more likely that the balance of partial agonism and antagonism at a multiplicity of 
receptors is responsible for its efficacy in schizophrenia and related disorders. Other 
recently developed partial D2/3 agonists did not show a significant efficacy over other 
drugs (16).
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1Dopamine D2 Blockade and Treatment Of Schizophrenia

Several arguments can be mentioned to support the hypothesis that the therapeutic 
effects and side effects of antipsychotic drugs are closely related to their dopamine D2 
receptor occupancy.
• Several studies suggest that blockade of 65% to 80% of D2 receptors is the key to 

antipsychotic efficacy for both conventional neuroleptics and atypical antipsy-
chotics (7). However, some antipsychotics, for example clozapine, show antipsy-
chotic activity at a lower receptor blockade (20-67%) than other antipsychotics 
(7). Aripiprazole, an atypical antipsychotic, has been shown to be a partial ago-
nist on the D2 receptors (18). Hence for aripiprazole a higher degree of D2 recep-
tor occupancy may be required for antipsychotic efficacy.

• Drugs devoid of D2 antagonism and with high 5-HT2A occupancy did not show 
any antipsychotic activity (19). 

• Investigational drugs that acting as non-D2 dopamine antagonists in schizophre-
nia showed inferior efficacy results in clinical studies (16).

• Animal studies suggested that blockade of D2 receptor is required for efficacy (20, 21). 
• Dopamine D2 receptor occupancy (D2RO) higher than 80% increases the risk of 

adverse effects such as extra pyramidal symptoms (22, 24). 
• Additionally, D2RO is also connected to prolactin elevation, a side effect of an-

tipsychotic treatment. Prolactin elevation is closely associated with D2RO higher 
than 70% (25, 26). 
Thus, D2RO plays a crucial role in schizophrenia drug discovery, drug devel-

opment and therapy. In general, target occupancy is important both in early drug 
discovery, where accurate knowledge of the degree of occupancy could help to deter-
mine the suitability of a drug candidate for further development, and later in the drug 
development process, when target site occupancy measurements can guide dosing 
selection (27). Hence, it is essential to predict D2RO in humans during the early drug 
discovery phase to expedite the drug development process. 

Translational PKPD Modeling 

In general the effect of a drug is a result of the interplay of the drug distribution to 
the site of action and the complex cascade of dynamic pharmacological processes or 
responses. PKPD models describe the complex relationship between drug exposure, 
and the pharmacological effect. 
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In a human system, it is often not possible to obtain information on the expo-
sure to the drug at the site of drug action and it is sometimes impossible to obtain 
information on the time course of pharmacodynamic markers. However it is possible 
to measure the drug concentration at the site of action in animals. Understanding 
the exposure-effect relationship in animals using PKPD modeling tools may allow 
translating this relationship from one species to other using appropriate scaling fac-
tors and human specific information on PK and receptor binding. Lepist and Jusko 
proposed a method for the scaling of pharmacodynamic parameters across species 
using a relatively simple physiological model (28). With an assumption of pharma-
codynamic marker or similar drug-receptor interaction for the pathological condi-
tions between animals and human, it is can be hypothesized that the structural PKPD 
models developed on the basis of data obtained from lower species are applicable to 
humans (29). 

Moreover, the mechanism-based PKPD modeling approaches which have the 
unique capacity to explicitly make a distinction between drug-specific and biologi-
cal system-specific parameters. Drug-specific parameters describe the interaction 
between the drug and the biological system in terms of target affinity and target ac-
tivation, whereas system-specific parameters describe the response of the biological 
system (Figure 1.5). The distinction between drug-specific and biological system-
specific parameters is crucial for predicting drug effects in humans accurately. 

Danhof et al (30) proposed that the values of drug-specific parameters such as 
target affinity are likely to be identical between species and between individuals. This 

Figure 1.5: Components of mechanism-based pharmacokinetic–pharmacodynamic (PKPD) 
models. (Figure is reused with permission from reference 42)
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would imply that binding rate constants estimated in animals could be used in hu-
man to extrapolate the pharmacodynamics from rat to human.

However, several other studies showed differences in receptor affinity between 
species (31). Notwithstanding divergent reports on the species independence of 
drug-specific parameters, an integration of allometric principles, in vitro informa-
tion, and a physiological basis to PKPD modeling would increase the potential to 
translate effects from rat to human (29, 32, 33). Hence, translational PKPD mod-
eling can be defined (Mager and Jusko) as the integration of in silico, in vitro, and 
in vivo preclinical data with mechanism-based models to anticipate the effects of 
new drugs in humans and across different levels of biological organization (Figure 
1.6) (34).

Translational PKPD modeling tools are increasingly used in drug development 
to improve the predictability of clinical efficacy by providing insight on the likely 
PKPD relationship for drugs in development to facilitate decisions with respect to 
the dose and dosing regimen for clinical trials (33, 35, 36). Interspecies scaling has 
been successfully applied to scale pharmacodynamic effects like hypothermic and 
cortisol responses to buspirone and flesinoxan treatment; the effect on reticulocytes, 

Figure 1.6: Components of mechanism-based pharmacokinetic–pharmacodynamic (PKPD) 
models for translation of animal data to human clinical pharmacology. Predictive techniques 
(above the arrows) can be improved by selective measurements (below the arrows). PBPK – 
physiology-based PK; QSPR-quantitative structure–PKPD relationship. (Figure is reused with 
permission from reference 33).
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red blood cells and hemoglobin levels of erythropoietin and the antinociceptive and 
respiratory depressant effects of buprenorphine (29, 32, 37). 

Translational Models in CNS active drugs 
The main objective of PKPD modeling is to elicit the relationship between drug ex-
posure (preferably at the site of action) and effect of the drug. As stated before, in 
central nervous system (CNS) disorders it is seldom possible to measure drug con-
centrations in the human brain. In addition, in schizophrenia drug development it 
is not often possible to repeatedly measure the pharmacodynamic markers (e.g. tar-
get occupancy) in patients due to the experimental constraints. However, measuring 
drug concentration at the site of action (or target organ) and a repeated measurement 
of pharmacodynamic marker (e.g. target occupancy) is possible in animals. Hence, 
understanding the complex target site distribution and target site binding in animals 
using PKPD modeling tools would be of value in predicting these relationships to 
humans. 

Target site distribution and translational PKPD modeling
The distribution of a drug to the site of action is an important determinant in the 
time course and intensity of drug effects in CNS drug therapy. Drug distribution to 
the brain is characterized by both passive diffusion and active efflux by transporters 
present at the luminal surface of the blood-brain-barrier (BBB). So, the drug con-
centration at the site of action may be different from the concentration in the plasma 
compartment. It is reported that drugs that are P-gp substrates in rats are likely to 
also be P-gp substrates in higher species (38). Nevertheless, translating the target 
site kinetics for CNS active drugs from rat to human would require proper under-
standing of drug transport at the BBB of both species taking into account differential 
expression and functionality of drug transporters (39) and structural differences of 
BBB between species (40). This involves physiology-based pharmacokinetic (PBPK) 
modeling concepts for interspecies scaling because in PBPK modeling the system 
has to be represented in a physiologically realistic manner using species-specific 
data on tissue structure, volume and the associated blood flows. Target site distribu-
tion of several CNS active drugs was successfully described using the combination 
of physiology and mechanism-based PKPD approaches, for drugs such as opoids, 
antipsychotics and serotonin reuptake inhibitors. Liu et al (41) proposed a hybrid 
physiology-based model to explain the brain kinetics of several CNS active drugs.

In conclusion, one of the challenging tasks for the inter-species translation of 
drug distribution to brain is the translation of passive permeability and active trans-
port between species. Once developed, such a model might be used to predict the 
target site (brain) distribution of drugs in human. 
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Target binding and translational PKPD modeling
The ultimate effect of drug-target binding and activation depends on target affinity 
and intrinsic efficacy and receptor expression and transduction processes (42). PKPD 
modeling approaches for target binding and activation are based on the concepts of 
the receptor theory. Receptor theory defines that target affinity and intrinsic efficacy 
are drug-specific properties, whereas receptor expression and the transduction proc-
ess are dependent on the biological system. As stated earlier, this distinction of drug-
specific and system-specific properties is essential for translational modeling. 

In translational modeling, these drug-specific properties can often be predicted 
on the basis of in vitro bioassays. Furthermore, the values of drug-specific pharma-
codynamic parameters (target affinity) are often identical between species. System-
specific parameters vary between species and scaling of system-specific parameters 
remains challenging. However, simple allometric principles have been successfully 
applied to extrapolate biological system-specific parameters from rat to human. The 
mechanism-based PKPD concepts were applied with success in animal to human 
extrapolation of the pharmacodynamics of semi-synthetic µ opioid receptor agonists, 
selective serotonin 5-HT1A receptor agonists and gamma-aminobutyric acid receptor 
agonists (42). 

In conclusion, a successful implementation of a translational framework to pre-
dict clinical outcome or biomarker responses (e.g. D2RO in schizophrenia) in clinical 
situations will have an impact on the drug development process. Thus, translational 
models hold the key to expedite the selection of lead compounds, the selection of 
first-in-human dose and the design of clinical trials. Translational PKPD modeling 
has the potential to integrate information across species and to direct effective drug 
development.

Translational PKPD Modeling in Schizophrenia

The research described in this thesis work was performed within the framework 
of the Dutch Top Institute Pharma project: Mechanism-based PKPD modeling 
(http://www.tipharma.com). This platform involves leading pharmaceutical compa-
nies worldwide, and academic institutes from The Netherlands. This program focus-
es on the development and application of novel mechanism-based PKPD modeling 
concepts to describe the processes on the path between plasma concentration and 
effect that can be employed for extrapolation and prediction of treatment effects in 
drug development. 

Translational PKPD modeling in schizophrenia is one of the projects of within this 
platform with an overall objective of developing a general PKPD model framework 
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that integrates receptor-binding data across species and clinical data (both efficacy 
and safety) across compounds and that can be used to optimize drug development 
strategies for future compounds in schizophrenia. This project comprised three parts 
(Figure 1.7). 

1. Prediction of receptor occupancy in human using in vitro and preclinical 
information

2. Linking receptor occupancy of antipsychotics to efficacy and safety 
3. Extrapolation of the translation concepts developed in the project to other 

receptor subtypes
This thesis is concerned with part 1 and 3 of the overall project. 

The aim of the research described in thesis was to develop a generic mecha-
nistic pharmacokinetic and pharmacodynamic (PKPD) modeling framework 
that scales in vitro and preclinical in vivo information to the human situation. 
This thesis is focused on drugs used to treat schizophrenia.

Figure 1.7: Translational PKPD modeling in schizophrenia.
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The research described in this thesis was aimed to develop a generic mechanistic 
pharmacokinetic and pharmacodynamic (PKPD) modeling framework that scales in 
vitro and preclinical in vivo information to the human situation and was focused on 
schizophrenia drug development. 

Schizophrenia is a severe and disabling disorder, associated with marked so-
cial and occupational dysfunction, tenfold increase in suicidal risk, intensive use 
of healthcare resources, and poor prognosis (1). Although the fundamental pathol-
ogy of schizophrenia remains ambiguous, it has been hypothesized that an excessive 
level of striatal dopamine, which can be caused by several factors, is responsible for 
development of psychotic symptoms (2). It is now widely accepted that dopamine 
and the dopamine D2 receptor in the brain play a central role in schizophrenia (2, 
3). As a result, dopamine D2 receptor occupancy (D2RO) can be used as a potential 
biomarker for the clinical outcome of schizophrenia therapy (4). D2RO is measured 
by positron emission tomography (PET) in clinical studies and by both radio-ligand 
binding and PET studies in preclinical studies (5, 10). Moreover, drug-receptor in-
teraction is also measured in in vitro experiments using receptor-bearing tissue or 
a cloned receptor system (10). Drug-receptor interaction is a dynamic process, which 
is described by association and dissociation rates. The rate constants of association 
and dissociation help to understand drug action in living systems. However, the in 
vivo association and dissociation rates of drugs to and from the receptors may be in-
fluenced by a number of conditions (11). The distribution of the drug to the receptor 
across the blood-brain-barrier (BBB) via passive diffusion and with active efflux may 
exert additional constraints on the drug-receptor binding process (12). The influence 
of this complex transport process on receptor binding is not yet elucidated. The new 
generation of antipsychotic drugs has affinity for multiple receptors and shows antip-
sychotic efficacy with less affinity towards D2 receptors (13). Hence, extension of this 
framework to other receptor types would increase utility of this work.

For antipsychotic drugs, catalepsy in rats and extra-pyramidal side effects (EPS) 
in human are caused by excessive D2RO (>80%)(8). Even though a clear relationship 
between D2RO and side effects exists, the relationship between catalepsy and EPS is 
lacking. Hence, the information on catalepsy in rats is not yet utilized in human dose 
projections. 

PKPD modeling is an excellent tool not only to characterize the time course of drug 
effects but also to separate drug-specific and system-specific factors contributing to 
the pharmacodynamics of a drug (14). Therefore it is hypothesized that a mechanism-
based PKPD model framework would allow to integrate data from receptor binding 
studies, and to translate to clinical receptor occupancy, efficacy and safety parameters. 

In the development of this translational framework, PKPD modeling and sim-
ulation were applied at different levels: i) describing drug distribution to brain, ii) 
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characterizing drug binding to the D2 receptor, iii) predicting human D2RO using in 
vitro and preclinical in vivo information and iv) linking D2RO with side effects. This 
is described in the following four chapters.

Chapter 3: Drug transport to the brain is a complex process involving different 
transport mechanism and the subsequent drug binding to receptor is a dynamic proc-
ess. Since this model is intended for translational purposes, we developed a physiolo-
gy-based pharmacokinetic and pharmacodynamic (PBPKPD) model to characterize 
the drug distribution into the brain and to explain the kinetics of the binding of the 
drug to its receptor using association and dissociation rate constants for the atypical 
antipsychotic olanzapine in rats. 

Chapter 4: The aim of this chapter is to develop a PKPD model describing D2RO 
for the atypical antipsychotics risperidone and paliperidone in rats using the hy-
brid physiology-based PKPD model structure obtained by using olanzapine in rats 
(chapter 3). This model takes into account the distribution of a drug in the brain 
and association and dissociation kinetics at the D2 receptors. Risperidone and pali-
peridone are atypical antipsychotics with high affinity for D2 and 5-HT2A receptors. 
Risperidone is metabolized to paliperidone and both drugs show similar binding 
properties and clinical profile. Therefore, to properly describe receptor occupancy 
of risperidone and eventually its clinical effect, it is necessary to take into account 
the formation of paliperidone, its distribution to brain and its binding to receptors. 
Therefore, we extended the previously published model for olanzapine to incorporate 
metabolite formation, brain kinetics and receptor binding. Also, since both risperi-
done and paliperidone are known P-glycoprotein (P-gp) substrates, we included an 
active efflux process at the brain-blood barrier. We also investigated whether binding 
to 5-HT2A receptors influence PK and PD of both drugs.

Chapter 5: The objective of this chapter is to explore different approaches to pre-
dict human striatal D2RO of antipsychotics using the previously developed transla-
tional PBPKPD model structure. This model allows for the integration and scaling 
of information from in vitro and preclinical in vivo data to the human situation. We 
also attempted to combine different approaches to determine the minimal amount 
of information required to predict human D2RO using this translational framework. 
Since atypical antipsychotics also bind to other receptors in the brain, we also used 
the extended model structure which accounts for 5-HT2A binding to predict human 
5-HT2ARO. 

Chapter 6: The relationship between the different outcome parameters used to 
assess the side effects in preclinical and clinical studies is not elucidated yet. Hence, 
we used PKPD tools to relate D2RO and catalepsy in rats and subsequently we com-
pared the D2RO-catalepsy relationship in rats with the D2RO-EPS relationship in hu-
mans in a quantitative manner. Furthermore, we aimed at a model structure that can 
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predict the severity of catalepsy for other antipsychotics. These tools and approaches 
might help to predict the incidence of EPS and other side effects and thereby acceler-
ate the drug development process.

Chapter 7: In this chapter, we discuss the need of PKPD modeling concepts in 
the development of translational framework. The discussion is focused on the chal-
lenges and limitations involved in the translational modeling of receptor occupancy. 
In addition, we discuss the possibilities of using this framework for other therapeutic 
indications. 

Chapter 8: presents the final summarizing discussion.
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Abstract

Purpose A mechanism-based pharmacokinetic-pharmacodynamic model was developed to 
predict the time course of dopamine D2 receptor occupancy (D2RO) in rat striatum following 
administration of olanzapine, an atypical antipsychotic drug.
Methods A population approach was utilized to quantify both the pharmacokinetics and 
pharmacodynamics of olanzapine in rats using the exposure (plasma and brain concentra-
tion) and D2RO profile obtained experimentally at various doses (0.01-40 mg/kg) adminis-
tered by different routes. A two-compartment pharmacokinetic model was used to describe 
the plasma pharmacokinetic profile. A hybrid physiology- and mechanism-based model was 
developed to characterize the D2 receptor binding in the striatum and was fitted sequentially 
to the data. The parameters were estimated using nonlinear mixed-effects modeling.
Results Plasma, brain concentration profiles and time course of D2RO were well described 
by the model and the validity of the proposed model is supported by a good agreement be-
tween the estimated association and dissociation rate constants, and the in vitro values from 
literature. 
Conclusion This model includes both receptor binding kinetics and pharmacokinetics as the 
basis for the prediction of the D2RO in rats. Moreover, this modeling framework can be ap-
plied to scale the in vitro and preclinical information to clinical receptor occupancy.
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Introduction

Schizophrenia is a lifelong and often devastating, psychiatric disorder which often 
begins in late adolescence or early adulthood (1). Although the fundamental pathol-
ogy of schizophrenia remain ambiguous, it has been hypothesized that an excessive 
level of striatal dopamine, which can be caused by several factors, is responsible for 
development of psychotic symptoms (2). This is also supported by the elevation of 
dopamine release in naïve patients following an acute amphetamine challenge (3). 
Preclinical and clinical studies suggest that blockade of dopamine-2 receptors (D2 re-
ceptors) is the key pharmacological component to the antipsychotic efficacy of both 
the typical and the newer atypical antipsychotics (4, 5). However, the degree of D2 re-
ceptor antagonism required for an antipsychotic efficacy is still unclear. Some an-
tipsychotics, for example clozapine, show antipsychotic activity at a lower receptor 
blockade (20-67%) than other antipsychotics (6). Aripiprazole, an atypical antipsy-
chotic, has been shown to be a partial agonist on the D2 receptors (7). Kapur et al (8) 
reported that the rate of dissociation of antipsychotics from the D2 receptors drives 
their efficacy and safety. These studies show that little is known about the degree of 
target occupancy and the role of the dynamic interactions between the drugs and 
the receptor in schizophrenia treatment. Moreover, the importance and influence of 
the distribution to the target site on the receptor binding is not yet elucidated and 
it is known that some antipsychotics, e.g. risperidone and its active metabolite pali-
peridone, are P-gp substrates and that therefore their transport into brain involves 
a complex process of active and passive transport (9). In addition, one of the other 
challenges in schizophrenia drug discovery and development is scaling and extrapo-
lating the dopamine-2 receptor occupancy (D2RO) obtained in preclinical studies to 
the clinical situation in a quantitative manner.

Hence, there is a need for a tool in the drug discovery process to characterize 
both penetration of the candidate compound into the brain (target site distribution) 
and the degree of D2RO, which could also support the scaling of D2RO from rat to 
human. It is essential to have sufficient information about the cascade of processes 
(distribution to and in the brain, receptor occupancy as a net result of association and 
dissociation) to generate such a tool. In schizophrenia drug discovery research, the 
information available to study the drug distribution into brain and the time course of 
D2RO is rather sparse. Brain concentration and D2RO are usually measured at the ter-
minal time point, unless a labor-intensive microdialysis technique is used. Standard 
radioligand binding study protocols provide limited data with respect to brain expo-
sure and receptor binding obtained at only one time point from one animal. 

Pharmacokinetic and pharmacodynamic (PKPD) modeling tools are extensively 
used to characterize the process between drug administration and its effect. In the 
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last two decades, population-based approaches are being utilized to integrate the 
available sparse information from different resources to study the underlying PKPD 
processes. These approaches provide population mean parameter estimates and al-
low partition into inter-individual and intra-individual variability. Mechanism-based 
pharmacokinetic–pharmacodynamic models integrated with population approaches 
were used to characterize and predict the time course of pharmacodynamic respons-
es in rats and human (10, 11). These models parameterize biophase equilibration 
kinetics and receptor association– dissociation kinetics to describe the drug binding 
to receptors. The important feature of these mechanistic models is their ability to 
distinguish the system- and drug- specific parameters, which has been proven to be 
useful in the extrapolation of treatment effects from rat to human. Moreover, these 
PKPD models when combined with physiological parameters have the ability to pre-
dict human PKPD properties using prior information from in vitro and preclinical 
studies (12). 

In the present analysis, PKPD tools were utilized to describe the brain distribu-
tion and D2RO of olanzapine, an atypical antipsychotic drug which is a dopamine 
D2 receptor antagonist and which has been proven to have antipsychotic effects in the 
treatment of patients with schizophrenia (13). 

Hence, a mechanism-based population PKPD model was developed to describe 
the time course of D2RO of olanzapine, with emphasis on the modeling of receptor 
association/dissociation kinetics. This model can be utilized in the future to translate 
the in vitro and preclinical information to D2RO in humans. 

Methods

Data Management
This work was performed within the framework of the Dutch Top Institute Pharma 
project: Mechanism-based population PKPD modeling (http://www.tipharma.com). 
This mechanism-based population PKPD modeling platform involves leading phar-
maceutical companies from worldwide and academic institutes from The Netherlands. 
The data used for this analysis were contributed by the pharmaceutical companies 
who are the members of this mechanism-based population PKPD platform. The data 
was anonimized, except the modeler was aware that the data was sourced from three 
industrial partners: Janssen Research and Development, Belgium, Merck Sharp and 
Dohme Limited – The Netherlands and Pfizer Global Research and Development 
– USA. The dataset included plasma and brain exposure data of olanzapine and its 
D2RO measured at different time intervals from 12 different studies, which con-
sisted of 283 rats of either the Wistar or Sprague-Dawley strain. The experimental 
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procedures for the plasma sample collection, brain dissection, tissue homogeniza-
tion, and D2RO measurements were similar across the different study sites and these 
procedures were published elsewhere (4, 14). Exposure and occupancy information 
was obtained following the administration of olanzapine by either intraperitoneal, 
subcutaneous or intravenous route in a wide range of single doses (0.01 to 40 mg/kg 
body weight). More details about the studies and data are depicted in Table 3.1. 

Modeling Tools
A population based approach was employed to utilize all the relevant information 
in order to obtain population parameter estimates along with both the inter-animal 
and residual variability. All the parameter estimations were performed with the 
nonlinear mixed effects modeling software NONMEM (version VI level 2.0) (15). 
Log-transformed plasma and brain olanzapine concentrations were used for the data 
analysis, and concentrations below the limit of quantification were excluded from 
this analysis.

The inter-animal variability on the parameters was modeled according to:

Pi = θ * exp(ηi)

in which Pi is the estimate of parameter P for the ith animal, θ the population estimate 
for parameter P and exp(ηi) the inter-animal random deviation of Pi from P. The 
values of ηi are assumed to be normally distributed with mean zero and variance ωi

2. 
Inter-animal variability is expressed as per cent coefficient of variation which is the 
square root of ωi

2 *100. 
The adequacy of the PK model was assessed on the basis of goodness-of-fit plots, 

parameter correlations and precision in parameter estimates. An additional struc-
tural parameter or inter-animal variability (IAV) was included in the model if the 
resulting change in objective function value (OFV) was >6.64 (p<0.01). Different 
types of residual error models (proportional, additive, combined proportional and 
additive) were tested. Based on the visual inspection of the diagnostic plots, a pro-
portional error model was proposed to describe residual error in the plasma and 
brain drug concentration, as ln(Yobsij) = ln(Ypredij) + εij in which Yobsij is the jth 
observed concentration in the ith animal, Ypredij is the predicted concentration. An 
additive term was used to account for the unexplained variability in D2RO as Yobsij 
= Ypredij + εij , in which Yobsij is the jth observed D2RO in the ith animal, Ypredij is 
the predicted D2RO. The residual random variable (εij) was assumed to be normally 
distributed with mean zero and variance σ2. The residual error describes the error 
terms which remain unexplained and refers to, for example, dosing inaccuracies, as-
say and experimental error (e.g., error in recording sampling times) and structural 
model misspecifications.
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During the analysis, Census (16) integrated with Xpose (R package) (17) was 
used for NONMEM run management and also for making different types of diagnos-
tic plots, which were used in the model selection process.

Population Pharmacokinetic Analysis
To determine the basic structural pharmacokinetic model for olanzapine, one- and two- 
compartment models were tested. Population pharmacokinetic values of olanzapine were 
estimated using the first-order conditional estimation method (FOCE). This model was 
implemented by user-defined differential equations using the ADVAN 9 subroutine in 
NONMEM. Using this routine, the parameters systemic clearance (CL in L/h/kg), vol-
ume of the central compartment (V1 in L/kg), volume of the peripheral compartment (V2 
in L/kg), inter-compartmental clearance (Q in L/h/kg), and bioavailability for intraperito-
neal (FIP) and subcutaneous (FSC) routes of administration were estimated.

Hybrid Physiology-based Pharmacokinetic-Pharmacodynamic Model
A mechanism- and physiology-based PKPD model was developed and evaluated for 
its usefulness in describing the time course of brain concentration and D2RO. A four 
compartment hybrid physiology-based pharmacokinetic and pharmacodynamic 
(PBPKPD) model was sequentially linked to the plasma population pharmacokinetic 
model to describe the concentration-time profile of olanzapine in brain and the bind-
ing to D2-receptors in striatum, which consists of brain-vascular, brain-extravascular, 
striatum-free and striatum- bound compartments (Figure 3.1). Following administra-
tion, olanzapine is transported from the plasma compartment to the brain-vascular 
compartment; this process is assumed to be influenced only by the cerebral blood flow. 
Only the unbound olanzapine in this intravascular compartment crosses the blood-
brain barrier (BBB) and is transported into the brain-extravascular compartment, 
which is governed by the brain-extravascular clearance (CLbev). Furthermore, olanzap-
ine is transported from the brain-extravascular compartment to the striatum compart-
ment where it can reversibly bind to the dopamine receptor complex (Figure 3.1). The 
receptor association and dissociation processes were described using kon as the receptor 
association rate constant (nM-1h-1), koff as the receptor dissociation rate constant (h-1), 
and the Dopamine D2 receptor density (Bmax) in rat striatum. The volumes of brain-
vascular (Vbv) and brain-extravascular (Vbev) compartments were assumed to be equal 
to the physiological values in the rat: 0.00024 L/kg and 0.00656 L/kg, respectively (18). 

The clearance from the brain-vascular compartment (CLbv) was assumed to be equal 
to the cerebral blood flow in rats, which is 0.312 L/h/kg (18). The brain-extravascular and 
striatum-free compartments were assumed to be equilibrated rapidly. This was achieved 
by fixing the clearance between brain-extravascular and striatum-free compartments 
(CLst) to a high value. The unbound fraction of olanzapine in plasma (fuplasma) and brain 
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(fubrain) were fixed to the values obtained from literature: 0.23 and 0.034, respectively (19). 
The brain-extravascular clearance (CLbev), the binding parameters (kd and koff) and the 
Bmax were estimated by fitting the PBPKPD model to the experimentally obtained brain 
concentrations and dopamine receptor occupancy data. Kd, (an equilibrium constant) 
and koff were estimated from the model and kon was derived as kon=koff/Kd. During this 
analysis, the plasma pharmacokinetic parameters were fixed to the parameter estimates 
obtained from the population pharmacokinetic analysis. This model was implemented 
through user-defined differential equations in the ADVAN 9 subroutine in NONMEM 
and differential equations related to this processes are provided in Appendix 1. 

Central

CLbv

CLbev

CLst

Brain 
Vascular
fuplasma,Vbv

Brain 
Extravascular

fubrain,Vbev

Koff

Kon
Striatum 

Free
Striatum 
Bound

Peripheral
V2V1

CL

DosePlasma 
Pharmacokinetics

Brain
Pharmacokinetics

Pharmacodynamics

1

3

2

4

5 6

Q

Figure 3.1: A schematic representation of the PBPKPD model. The model incorporates different 
processes to explain the time course of D2RO. The plasma pharmacokinetics describe the disposi-
tion of the drug in the plasma, the brain pharmacokinetics describe the processes involved in the 
transport of drug from plasma to brain, and the striatum compartment explains the drug bind-
ing to receptors through the binding constants.
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This model was based on the following assumptions: (1) Cerebrospinal fluid flow 
does not significantly influence the brain disposition, and (2) Plasma pharmacoki-
netics are not affected by brain disposition. The latter assumption allows the plas-
ma concentration-time profile to be described by a conventional two-compartment 
model, independent of the brain distribution. In addition, it allows a separate analy-
sis of the plasma concentration data to the population pharmacokinetic model.

During model development, it was observed that the model was not able to esti-
mate Bmax. So this parameter was assumed to be 48 nM, calculated as the maximum 
concentration of olanzapine bound to this receptor (20).

Due to the scarcity of data, no inter-animal variability was assumed in the 
PBPKPD model. In vivo and ex vivo binding studies were performed to measure the 
D2RO in rats. So, it was also attempted to estimate separate binding constants for 
each in vivo and ex vivo studies. Moreover, an active efflux parameter was added in 
the model to check for the influence of active drug transport across the BBB.

Sensitivity Analysis
The objective of this analysis was to develop a stable mechanism- and physiology-
based PKPD model that could be supported by the data used in the analysis and 
with a minimum number of parameters to be estimated. Hence, it was decided to 
perform a sensitivity analysis so that the model could be reduced by removing pa-
rameters, which have little or no influence on the model outputs. Hence, the phar-
macodynamic parameters Kd (derived as koff/kon), koff, kon and Bmax were perturbed to 
determine their influence on the D2RO. A series of simulations were conducted with 
differing parameter values, which were varied 5- and 10-fold on the lower and higher 
side of the base value (model parameter estimate). Each simulation was conducted 
by altering one parameter at a time and fixing all remaining parameter values. The 
outputs considered for the parameter sensitivity analysis were the simulated D2RO-
time profiles with respect to the altered pharmacodynamic parameter. All simula-
tions were performed using R (version 2.10). Primarily, 3 mg/kg dose was selected 
for this analysis, as this is the intermediate dose in the available dataset. Subsequently, 
a lower and higher dose levels to 3 mg/kg dose were also included in this analysis. 
D2RO profiles were generated over a 24-hour time interval.

Model Evaluation
The bootstrap resampling technique and stochastic simulation and estimation (SSE) 
were used as model evaluation tools to check the stability and adequacy of the model, 
respectively. In the bootstrap resampling technique, bootstrap replicates are gener-
ated by sampling randomly from the original data set with replacement. One thou-
sand replicate data sets were obtained using the bootstrap option in the software 
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package Perl Speaks NONMEM (PsN, version 3.2.4) (21). This resampling was strati-
fied based on the three dose levels (low, medium and high). Low, medium and high 
dose levels included the doses ranges from 0.01 to 0.63 mg/kg, 1 to 3 mg/kg and 
10 to 40 mg/kg, respectively. Parameter estimates for each of the re-sampled data 
sets were obtained by fitting the final model using NONMEM. Finally, median and 
90% confidence intervals of all model parameters were calculated and the medians 
of the bootstrap estimates were compared with parameter values obtained from the 
original dataset. Furthermore, a simulation-based evaluation was performed using 
the SSE option as implemented in PsN. Briefly, the final PBPKPD model was used to 
both stimulate 1000 datasets and subsequently estimate PKPD parameters from these 
simulated datasets. The accuracy in parameter estimation was assessed from the bias 
as calculated below. 

For instance, bias is calculated for koff as 

Bias (%) = (Median (koff-i (1..n) ) – True koff ) / True koff * 100%

where, koff-i is the population mean koff for the ith simulated dataset, n is the number of 
simulations, True koff is the value which was used for the simulation.

Predictive check for D2RO
A predictive check was performed to determine whether the final PBPKPD model 
provides an adequate description of D2RO. One thousand datasets were simulated 
from the final PBPKPD parameter estimates to compare the distribution of simulated 
D2RO with the observed D2RO. The median, lower (5%) and upper (95%) quantiles 
of the simulated D2RO were calculated for a time period between 0 and 360 min after 
olanzapine administration.

Application of the Rat PBPKPD model
Rat PBPKPD model structure was integrated with available population pharma-
cokinetic parameters from human plasma concentration-time data, in vitro binding 
constants, fraction unbound in human plasma (22), and human brain physiologi-
cal information (23) to predict the human D2RO of olanzapine. All the parameters 
which were used for the simulations, are tabulated in Table 3.2. Distribution of olan-
zapine across the BBB surrogated with permeability surface area product (PS) was 
calculated as a product of in vitro apparent membrane permeability (Papp, which is 
15.7 *10-6 cm/s) (19) value and human brain endothelial surface area (20 m2) (24). 
One thousand human D2RO- time curves were simulated for 10 mg/day and 20 mg/
day dose levels, administered orally. Inter-individual variability (IIV) in the plasma 
population pharmacokinetic parameters was accounted in these simulations. The ob-
served human D2RO was taken from the published literature domain (25,26). These 
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Table 3.2: Population pharmacokinetic parameters, passive membrane permeability, 
physiological parameters and in vitro binding values used for the simulations

Parameter Values used in human 
D2RO Simulations Source

CL/F (L/h) 19.5 (58)* (25)

V/F (L) 1150 (75)* (25)

Ka (h-1) 0.600 (32)* (25)

koff (h-1)   2.34 (35)

Kd (nM) 5.10 # (38)

fraction unbound in plasma 0.0700 (22)

fraction unbound in brain 0.034 (19)

Human cerebral blood flow (L/h) 36.0 (24)

Human brain extravascular volume (L) 1.4 (23)

Human brain vascular volume (L) 0.150 (23)

CLbev (L/h) 11.3 **

CL/F clearance; Ka absorption rate constant; V/F central volume of distribution;
* Population mean (Inter-Individual variability as %CV)
** Calculated as Papp* human brain endothelial surface area
# In vitro Ki value assumed as Kd

Table 3.3: Population pharmacokinetic parameter estimates from the original data set and 
resulting from 1000 bootstrap replicates for V1, CL, V2, Q with 90% confidence interval (CI)

Parameter Original dataset 
(%RSE)

Median of 1000 
bootstrap replicates

90% CI from Non-
parametric bootstrap

V1(L/kg) 4.22 (9) 4.17 3.61-4.93

CL (L/h/kg) 3.21 (9) 3.12 2.74-3.65

V2 (L/h/kg) 2.23 (14) 2.23 1.87-2.87

Q (L/h/kg) 1.70 (30) 1.67 1.19-2.92

FIP 0.636 (12) 0.633 0.538-0.771

Inter-animal variability

IAV-CL (%CV) 56 (19) 55 47-66

IAV-F1 (%CV) 87 (18) 87 73-98

Residual variability

Proportional Error 0.141 (7) 0.130 0.073-0.159

%RSE = Relative standard error as obtained from the COVARIANCE option of NONMEM
IAV = Inter-animal variability calculated as 100 ×√ω2, where ω2 is the variance term

mjohns21
Sticky Note
Accepted set by mjohns21
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observed values were measured at steady-state conditions after varying treatment du-
ration across different studies. Hence, the simulations were made at steady-state con-
ditions, which were achieved within 2 weeks of drug treatment. Berkeley Madonna 
(version 8.3.18, Berkeley Madonna Inc, University of California, USA) was used in 
this simulation study. The predictive power of this translational approach was deter-
mined by comparing the simulations with observed human D2RO. 

Results

Population Plasma Pharmacokinetics
A two-compartment model best described the plasma pharmacokinetics of olanzap-
ine. The appropriateness of the two-compartment over the one-compartment model 
was based on the visual comparison of goodness-of-fit (GOF) plots and the lower 
objective function. Population pharmacokinetic parameter estimates are given in 
Table 3.3. The observed and population predicted concentration of olanzapine is de-
picted in Figure 3.2. 

All structural pharmacokinetic parameters were estimated precisely with accept-
able relative standard error (RSE) which varied between 9% and 30%. The absorption 
rate constant was not estimable due to lack of information on early time points for 
both the intraperitoneal and the subcutaneous routes of administration and hence it 
was assumed that olanzapine was administered directly into the central compartment. 
A relative bioavailability was estimated for the intraperitoneal route of administra-
tion. The bioavailability for the subcutaneous route of administration was estimated 
to be close to 1. Indeed, fixing this parameter improved the model convergence with 
a successful covariance step, so the bioavailability for the subcutaneous route of ad-
ministration was assumed to be complete for further modeling. Estimation of inter-
animal variability was possible only for CL and FIP and was estimated as 56% and 87%, 
respectively. No trend or pattern was observed in the conditional weighted residual 
diagnostics versus time and in the population predictions versus time, which dem-
onstrates that this model adequately describes the time course of olanzapine plasma 
concentration (Figures. 3.2 and 3.3).

Hybrid Physiology-Based PKPD model
Initially, a PBPKPD model was developed, which included the effect of binding to the 
receptor on the free drug concentrations at the receptor binding sites (Figure 3.1). 
Parameter estimates that were obtained using this model are tabulated (Table 3.4). 
Later, a sensitivity analysis was performed to identify whether the model could be 
reduced by removing any parameters that were not influencing the model output(s). 
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Figure 3.2: Goodness-of-fit plots for the final PBPKPD model. Depicted are scatter plots of the 
observed olanzapine concentrations or D2RO vs. population predictions and scatter plots of the 
population conditional weighted residuals vs. time.

Plasma Pharmacokinetics

Brain Pharmacokinetics

Dopamine D2 receptor occupancy

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

● ●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●●

●

●●
●

●●●

●
●

●

●●

●●

●●

●

●●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●
●●

●●

●●

●●●●

●●●

●

●

●

●
●

●

●
●
●

●

●
●
●

●
●●

●

●
●

●
●

●

●

●●
●

●
●
●

●●●

●●
●

●
●●

●

●
●

●

●
●●

●●
●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 2 4 6 8

0
2

4
6

8

Log−Population Predicted Plasma Concetrations

Lo
g−

O
bs

er
ve

d 
Pl

as
m

a 
Co

nc
et

ra
tio

ns

0 100 200 300 400

−4
−2

0
2

4

Time (in minutes)

Co
nd

itio
na

l W
ei

gh
te

d 
Re

sid
ua

ls

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●●

●

●●

●

●●●

●

●

●

●●
●●
●●

●
●●
●

●
●●
●●

●

●

●●●

●

●●

●
●●

●●

●●

●●●●

●●●

● ●

●

●
●

●

●
●
●

●

●
●
●

●
●●

●
●

●

●

●

●

●
●●
●

●

●

●

●●
● ●

●

●

●
●●

●

●
●

●

●
●●

●●
●
●

●

●

●

●

●

●

●●●●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●
●●

●●
●●
●

●

●

●●

●
●●●

●

●●

● ●

●

●

●

●

●
●
●

●

●

●

●●

●●

●

●●●

●●
●

●

●●

●

●

●

●

●

●
●
●

●
●●

●
●●

●●
●

●●

●

●
●
●
●

●●
●

●

●

●

●

●

●

●●
●

●

●

●
●●

●●

●

●

2 4 6 8 10

2
4

6
8

10

Log−Population Predicted Brain Concetrations

Lo
g−

O
bs

er
ve

d 
Br

ai
n 

Co
nc

et
ra

tio
ns

0 100 200 300 400

−4
−2

0
2

4

Time (in minutes)

Co
nd

itio
na

l W
ei

gh
te

d 
Re

sid
ua

ls

●

●

●

●

●

●●●
●●
●●

●

●

●

●

●●●

●●
●
●

●●
●●

●

●
●●

●
●●
●

●

●●
●

●

●

●
●

●

●●
●

●

●

●
● ●

●●●●●
●

●

●
●

●

●
● ●

●
●

●

●

●
●●

●
●● ●

●●
●●●

●
●
●

●●●●●●●
●

●

●

●

●

●

●

●
●
●
●

●
●●

●
●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●
●
●

●
●●

●●

●●

●●

●●
●●●●

●
●

●

●

●

●
●
●●

●●
●●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●
●●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Population Predicted D2 RO

O
bs

er
ve

d 
D 2

 R
O

0 100 200 300 400

−4
−2

0
2

4

Time (in minutes)

Co
nd

itio
na

l W
ei

gh
te

d 
Re

sid
ua

ls

●●

●

●

●

●●
●

●
●●
●

●
●

●

●●

● ●●
●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●●

●

●●●●

● ●

●●
●●● ●

●
●

●

●

●

●
●●●●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●●

●

●

●

●
●

●
●
●

●

●

●
●
●

●

●

●

●

●

●
●

●●
●

●●
●
●

●

●

●●

●

●●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●
●
●

●

●
●

●
●
●●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

● ●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●●

●

●●
●

●●●

●
●

●

●●

●●

●●

●

●●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●
●●

●●

●●

●●●●

●●●

●

●

●

●
●

●

●
●
●

●

●
●
●

●
●●

●

●
●

●
●

●

●

●●
●

●
●
●

●●●

●●
●

●
●●

●

●
●

●

●
●●

●●
●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 2 4 6 8

0
2

4
6

8

Log−Population Predicted Plasma Concetrations

Lo
g−

O
bs

er
ve

d 
Pl

as
m

a 
Co

nc
et

ra
tio

ns

0 100 200 300 400

−4
−2

0
2

4

Time (in minutes)

Co
nd

itio
na

l W
ei

gh
te

d 
Re

sid
ua

ls

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●●

●

●●

●

●●●

●

●

●

●●
●●
●●

●
●●
●

●
●●
●●

●

●

●●●

●

●●

●
●●

●●

●●

●●●●

●●●

● ●

●

●
●

●

●
●
●

●

●
●
●

●
●●

●
●

●

●

●

●

●
●●
●

●

●

●

●●
● ●

●

●

●
●●

●

●
●

●

●
●●

●●
●
●

●

●

●

●

●

●

●●●●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●
●●

●●
●●
●

●

●

●●

●
●●●

●

●●

● ●

●

●

●

●

●
●
●

●

●

●

●●

●●

●

●●●

●●
●

●

●●

●

●

●

●

●

●
●
●

●
●●

●
●●

●●
●

●●

●

●
●
●
●

●●
●

●

●

●

●

●

●

●●
●

●

●

●
●●

●●

●

●

2 4 6 8 10

2
4

6
8

10

Log−Population Predicted Brain Concetrations

Lo
g−

O
bs

er
ve

d 
Br

ai
n 

Co
nc

et
ra

tio
ns

0 100 200 300 400

−4
−2

0
2

4

Time (in minutes)

Co
nd

itio
na

l W
ei

gh
te

d 
Re

sid
ua

ls

●

●

●

●

●

●●●
●●
●●

●

●

●

●

●●●

●●
●
●

●●
●●

●

●
●●

●
●●
●

●

●●
●

●

●

●
●

●

●●
●

●

●

●
● ●

●●●●●
●

●

●
●

●

●
● ●

●
●

●

●

●
●●

●
●● ●

●●
●●●

●
●
●

●●●●●●●
●

●

●

●

●

●

●

●
●
●
●

●
●●

●
●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●
●
●

●
●●

●●

●●

●●

●●
●●●●

●
●

●

●

●

●
●
●●

●●
●●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●
●●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Population Predicted D2 RO

O
bs

er
ve

d 
D 2

 R
O

0 100 200 300 400

−4
−2

0
2

4

Time (in minutes)

Co
nd

itio
na

l W
ei

gh
te

d 
Re

sid
ua

ls

●●

●

●

●

●●
●

●
●●
●

●
●

●

●●

● ●●
●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●●

●

●●●●

● ●

●●
●●● ●

●
●

●

●

●

●
●●●●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●●

●

●

●

●
●

●
●
●

●

●

●
●
●

●

●

●

●

●

●
●

●●
●

●●
●
●

●

●

●●

●

●●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●
●
●

●

●
●

●
●
●●
●●



pKpD Modeling of the rO of Olanzapine in rats

49

3

Figure 3.3: Observed and predicted olanzapine concentrations and D2RO vs. time. Open circles 
represent the observed olanzapine concentrations or D2RO and the solid line represent the popu-
lation predictions for 3 mg/kg dose of olanzapine administered subcutaneously.

The simulated D2RO profiles (model outcome) following variations in Kd, kon, koff and 
Bmax for a dose of 3 mg/kg are shown in Figure 3.4. This sensitivity analysis clearly 
showed that Bmax did not influence the model output when perturbed to different val-
ues, whereas perturbations of the values Kd, kon and koff all affected the D2RO to some 
extent. This sensitivity analysis was also performed using lower and higher dose lev-
els, which resulted in similar observations to those at the 3 mg/kg dose level. As little 
or no influence of the parameter Bmax was shown at any of the doses, a reduced model 
with an alternative assumption was proposed as described in Figure 3.5. Briefly, this 
model assumes that binding to dopamine receptors does not affect the brain concen-
tration significantly and thereby allows to drop the striatum free compartment from 
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the full model. In other words, it is assumed that a relatively low fraction of the drug 
in the brain extra-vascular compartment binds to the dopamine receptor. Further, 
this reduced model was subjected to model evaluation. The parameter estimates ob-
tained from this model were close to the earlier model with Bmax (Table 3.4) indicat-
ing that the reduced model is equivalent to the full model. There were no significant 
parameter correlations (R>0.95) reported in the NONMEM output between any of 
the PKPD model parameters, indicating the uniqueness of the parameter estimates 
obtained from the reduced model. Information about the brain concentration levels 
was limited to one observation per animal, which leaves no opportunity to estimate 
both inter- and intra-individual variability for brain clearance. No trend or pattern 
was observed in the conditional weighted residual diagnostics versus time and in the 
population predictions versus time which demonstrates that this model adequately 
describes the time course of olanzapine brain concentration and D2RO (Figs. 3.2 and 
3.3). Different sources of the data and data scarcity explain the high residual variabil-
ity of the brain concentrations. 

Model evaluation 

Population Plasma Pharmacokinetic Model
In the bootstrap analysis of the population plasma pharmacokinetic model, all the 
replicates were minimized successfully. The population estimates as well as the 

Table 3.4: Population brain pharmacokinetic and pharmacodynamic parameter estimates 
from full and reduced PBPKPD model

Parameter
Full Model (FM) Reduced Model (RM) % difference

Population Mean (%RSE) Population Mean (%RSE)

CLbev(L/h/kg) 0.433 (16) 0.394 (15) -10

Kd (nM) 14.6 (7) 14.7 (8) <1

koff (h-1)   3.04 (24) 2.62 (24) -16

kon (nM-1 h-1)*   0.208 0.178 -17

Proportional 
error (BC) 0.479 (6) 0.479 (6) <1

Additive Error 
(D2RO) 0.136 (5) 0.136 (5) <1

%RSE = Relative standard error as obtained from the COVARIANCE option in NONMEM
*kon derived as koff/Kd
% difference calculated as,100-(Parameter estimate- RM*100/ Parameter estimate-FM)
BC = Brain Concentration
D2RO = Dopamine D2 receptor occupancy
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residual error of this model are in close agreement with the median values as depict-
ed in Table 3.3. Difference in the estimated parameters from the final model between 
the original observed plasma data and the combined bootstrap replicates was <3% 
for all the parameter estimates.

Figure 3.4: Simulated drug concentration-time profiles for perturbations in different pharmacody-
namic parameters at the 3 mg/kg dose level. The values were perturbed 5- and 10-fold at the higher 
and lower end of the base value. The fold variations are denoted by numerals corresponding to the 
extent of variation. The perturbations at the lower end of the base parameter values are denoted by 
the letter L and at the higher end by the letter G. For example, L10 indicates a value 10-fold lower 
than the base value of the parameter. This nomenclature is adapted from reference 27.
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Hybrid physiology-based pharmacokinetic-pharmacodynamic model
In the bootstrap analysis, 960 out of 1000 bootstrap replicates minimized successful-
ly. The population estimates as well as the residual error terms of the final model are 
in close agreement with the median values of the 960 successful bootstrap replicates. 
The median bootstrap estimates and 90% non-parametric bootstrap confidence in-
tervals are depicted in Table 3.5. In figure 3.6, the distribution of the PKPD parameter 
estimates from the 1000 simulated datasets is displayed as a histogram. 955 out of 
1000 simulated datasets minimized successfully. The bias for CLbev, Kd, koff was 2.2, 
0.7, and 0.5%, respectively. The bias for the residual variability on brain concentration 
and D2RO was -0.2 and -0.7%, respectively. 

Central

CLbv

CLbev

Brain 
Vascular
fuplasma,Vbv

Brain 
Extravascular

fubrain,Vbev Koff

Kon
D2 Binding

Peripheral
V2V1

CL

DosePlasma 
Pharmacokinetics

Brain
Pharmacokinetics

Pharmacodynamics

1

3

2

4 5

Q

Figure 3.5: The reduced model incorporates different processes to explain the time course of 
D2RO. This model excluded the non-influential parameter Bmax from the full model. This reduced 
model is based on the assumption that binding to dopamine receptors does not affect the free 
drug concentration in the brain.
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Table 3.5: Population brain pharmacokinetic and pharmacodynamic parameter 
estimates from the original data set and resulting median 1000 bootstrap replicates 

with 90% confidence interval for the Reduced Model

Parameter Original dataset 
(%RSE)

940 bootstrap 
replicates (n=940)

95%CI from Non-
parametric bootstrap

CLbev(L/h/kg) 0.394 (15) 0.398 0.276-0.648

Kd (nM) 14.7 (8) 14.6 12.2-17.7

koff (h-1)   2.62 (24) 2.64 1.58-6.36

Proportional error (BC) 0.479 (6) 0.470 0.380-0.560

Additive Error (D2RO) 0.136 (5) 0.141 0.121-0.152

%RSE = Relative standard error as obtained from the COVARIANCE option in NONMEM
BC = Brain Concentration
D2RO = Dopamine D2 receptor occupancy

Figure 3.6: Histograms of CLbev, Kd, and koff (in logarithmic scale) based on the 1000 stochastic 
simulations and estimations. Median values are plotted with blue solid lines and overlaid with 
the true parameter estimates (red solid lines). The blue dotted lines represent the 25th and 975th 
values of 1000 parameter estimates. 
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Predictive check for D2RO
The result of the predictive check for D2RO is depicted in Figure 3.7. More than 80% 
of the observed olanzapine D2RO are within the range of the simulated upper (95%) 
and lower (5%) quantiles of the simulated D2RO.

Application of the Rat PBPKPD model
This hybrid PBPKPD model structure, using available human pharmacokinetic mod-
el parameters, in vitro permeability and binding data, predicted the human D2RO 
for olanzapine at both 10 mg/day and 20 mg/day dose levels well. The result of these 
simulations is depicted in Figure 3.8.
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Figure 3.7: Predictive check of the PBPKPD model for D2RO after olanzapine administration, 
at 3 mg/kg dose. A number of 1000 data sets were simulated from the final PBPKPD parameter 
estimates. Depicted are the observed D2RO (dots) and the shaded area represent the upper (95%) 
and lower (5%) quantile of the simulated D2RO. Median of the simulated D2RO are represented 
as solid line and median of the observed D2RO are represented as dashed line.
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Discussion

This work aimed at developing a mechanism- and physiology-based PKPD model for 
olanzapine, which takes into account the barriers in drug transport to the brain and 
describes the association and dissociation kinetics of the drug to the D2-receptor. The 
mechanistic nature and population basis of this model could provide a reliable tool 
for translating D2RO between species that may support future drug discovery efforts, 
both specifically in the development of antipsychotics as more generally in the devel-
opment of drug targeting other receptors in the brain.

A population approach is utilized here to integrate sparse data from a range of ex-
perimental sources to estimate the PKPD parameters. Plasma pharmacokinetics was 
fitted well using a two-compartment classical pharmacokinetic model. There were 

Figure 3.8: Observed and predicted steady-state D2 receptor occupancy in humans after oral 
administration of 10 mg/day (a) or 20 mg/day (b) of olanzapine. Simulations were performed 
using the rat PBPKPD model structure integrated with in vitro apparent permeability and in 
vitro binding information (Table V). Depicted are the observed D2RO (dots) and the shaded area 
represent the 95% prediction limits of the simulated D2RO. The medians of the simulated D2RO 
are represented as a solid line. 
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only 3 rats with a full plasma concentration-time profile after intravenous olanzapine 
administration and during the modeling exercise, it was observed that bioavailability 
of olanzapine administered through the subcutaneous route was close to one with 
low inter-animal variability. Hence, to stabilize and increase the FIP parameter preci-
sion, it was assumed that olanzapine administered by the subcutaneous route had 
a bioavailability of 100%. However, high variability in FIP was estimated, which may 
reflect dosing inaccuracies or a variable first-pass effect. There are some deviations 
in the observed and population-predicted olanzapine concentrations, which could 
potentially be explained by covariates. Nevertheless, a covariate analysis was not per-
formed due to lack of information on the individual characteristics of the animals. 
Possible sources of this variability were differences in the analytical methodologies 
which were used to measure the plasma concentration. In addition, the study sites 
where studies were performed (three different pharmaceutical companies) could also 
be a source of variation. However, no covariate relations were graphically observed 
between different study sites and pharmacokinetic parameters. Finally, population 
PK model evaluation demonstrated the accuracy and precision of the developed pop-
ulation PK model. This population pharmacokinetic model was utilized as a driving 
force for the brain PBPKPD model. 

Target-site distribution might be complex for drugs acting on targets in organs 
protected by specific barriers (e.g. the brain), so a detailed characterization of these 
barriers is required to be included in the brain PBPKPD for meaningful concen-
tration- and effect relationships. Drug distribution across the BBB was previously 
described by several pharmacokinetic models, which utilized the drug levels from 
extracellular fluid of brain to model the drug transport across the BBB (28-30). 
These models explained both the passive and active drug transport across the BBB 
in a quantitative manner. The objective of this study was to make a PKPD model 
structure, to explain the drug transport of antipsychotics across the BBB and the time 
course of D2RO, which later can be utilized for translating PKPD information from 
rat to human. It is expected that these PKPD models when combined with physio-
logical basis have the ability to predict human PKPD properties using prior informa-
tion from in vitro and preclinical studies. So, this PBPKPD model was developed on 
a physiology basis including brain-vascular and brain-extravascular compartments 
to describe the brain pharmacokinetics and striatum compartments to explain the 
binding to dopamine D2 receptors. This physiology basis is expected to enable this 
model structure to utilize the in vitro permeability and any efflux related information 
as a surrogate to explain drug transport across the brain in humans. Additionally, the 
observed brain drug concentrations were obtained from the whole brain homoge-
nates, which represent the drug in both vascular and extravascular compartments of 
the brain. The brain-vascular and brain-extravascular compartment structure enables 
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this PBPKPD model to adapt this type of brain drug concentration data without any 
correction. This PBPKPD model adequately described both the brain concentration 
and D2RO. The brain pharmacokinetic parameter CLbev describes the passive trans-
port of olanzapine across the blood brain barrier. It has been reported that olanza-
pine is a substrate for the BBB drug transporter P-glycoprotein (P-gp) in mice (31). 
Therefore, an active efflux parameter was added in the model to account for the active 
transport of olanzapine across the BBB. However, this additional parameter did not 
improve the model fit and consequently this additional parameter was not retained 
in the final model. Moreover, there are ambiguous reports about the active transport 
of olanzapine across the BBB in different species from both in vivo and in vitro stud-
ies (32-34). A significant influence of lag-time between drug exposure and D2RO is 
expected for antipsychotic compounds and seen in the data. This model identifies 
both brain distribution (transfer across BBB) and binding kinetics (kon and koff) as de-
terminants of this time delay on effect. A simulation based analysis also showed that 
both these components are essential to explain this time delay process (not shown).

The limited information on the brain concentrations (one observation per ani-
mal) did not allow separating the inter-animal and residual variability. Hence, no 
inter-animal variability for brain pharmacokinetics was estimated and this resulted 
in a high residual variability (48%) for the brain concentrations. In addition to the 
possible sources that were discussed earlier, different surgical procedures, brain dis-
sections and extraction procedures could also cause high residual variability. 

The pharmacodynamic parameters were estimated by incorporating a binding 
model to the brain pharmacokinetic model. This modeling exercise was started with 
the assumption that the binding to the dopamine receptor did affect the free drug 
concentration in the receptor vicinity, which included the parameter for maximum 
binding capacity (as Bmax) in the model. Later, sensitivity analysis showed that the 
value of the parameter Bmax hardly affected the model output. This observation could 
be either due to the model structure or to the limited information about this param-
eter. Hence, in the final model it was assumed that binding to D2 receptors did not 
affect the free drug concentration in the receptor vicinity. Nevertheless, this model 
still holds its mechanistic nature by characterizing the time course of D2RO on the 
basis of receptor association and dissociation kinetics. It has been demonstrated that 
antipsychotics differ in their koff (dissociation) rate, which may determine the efficacy 
and safety of the antipsychotics (35). Hence, the current population PKPD model for 
olanzapine is proposed, which allows the separate characterization of the kinetics 
of target site distribution and the receptor association and dissociation kinetics as 
determinants of the time course of the dopamine D2RO. This model, as implemented 
in NONMEM, was able to estimate Kd and koff with acceptable RSE of 8 and 24%, 
respectively. Kd and koff were estimated using the D2RO data from both in vivo and 
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ex vivo binding studies. However, when it was attempted to estimate separate values 
of Kd and koff for in vivo and ex vivo binding studies, this resulted in imprecise koff 
estimates. Zasadny et al (36) found a significant correlation in the D2RO measured 
using ex vivo binding and in vivo imaging techniques in rats. Hence, it is agreeable 
to estimate single values of Kd and koff using the D2RO from both ex vivo and in vivo 
studies. The validity of the proposed model is supported by the good agreement be-
tween the estimated pharmacodynamic parameters and the in vitro koff (2.34 h-1) and 
Ki (17 nM) values in rats (35, 37). 

The model evaluation tools indicated that some parameters (CLbev and koff) had 
wide bootstrap confidence intervals. These wide bootstrap confidence intervals could 
be due to scattered and unbalanced information available from our dataset, which 
consists of D2RO information from a wide range of doses (Table 3.1). So the boot-
strap procedure could resample unrealistic datasets with very limited information to 
estimate the PKPD parameters, resulting in wide confidence intervals. However, the 
median bootstrap parameter estimates are close to the model parameter estimates, 
which indicates that this model could still be accepted with confidence. Moreover, 
the results of the predictive check for D2RO showed that most of the observed D2RO 
at 3 mg/kg dose levels were within the 5th and 95th percentiles of the simulated values. 
So, this model described the observed D2RO reasonably well. However, the median 
of the simulated values were not in close agreement with the median of the observed 
data (Figure 3.6). This could be due to the limited and unbalanced amount of D2RO 
observations available at each time points. 

This proposed PBPKPD model is intended to be utilized in a translational frame-
work to scale pharmacokinetic and pharmacodynamic information from rats to 
human. So, this general translational framework was based on a mechanism-based 
approach which accounts for the different processes involved in the transport of drug 
to brain. Moreover, this mechanism- and physiology-based PKPD model separates 
the drug specific properties, which describe the interaction between the drug and the 
biological system (target affinity, occupancy), and system specific properties, which 
describe the functioning of the biological system. Further, the utility of this proposed 
PBPKPD model was tested for its ability to predict the human dopamine D2 recep-
tor occupancy. These simulations were based on in vitro koff values obtained from rat 
studies (35), in vitro human D2 receptor binding values (38) and calculated surrogate 
(for example, PS) for the drug transport across BBB. Danhof et al (39) proposed that 
the values of drug-specific parameters such as target affinity are likely to be identical 
between species and individuals. This would imply that the binding rate constants 
estimated in rats can be used in human as well to extrapolate the pharmacodynamics 
from rat to human. However, several other studies showed differences  in receptor 
affinity and protein binding between species (40). Notwithstanding divergent reports 
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on the species independence of drug-specific parameters, an integration of allomet-
ric principles (41-43), in vitro information, and a physiological basis to PKPD mod-
eling would increase the prospective of  translating effects from rat to human. The 
human D2RO predictions at both dose levels are acceptable as 24 out of 39 observed 
values are within the 95% prediction limits. The predictions might improve further 
by considering the inclusion of allometric principles and in vitro in vivo correlations. 
Some antipsychotics, e.g. risperidone and its active metabolite paliperidone, have 
been extensively studied as P-gp substrates, and, therefore their transport into and 
from brain involve a complex process of active and passive transport (9). This model 
structure, with few modifications, will also allow to extend this approach for other 
drugs with active transport across the BBB.

Hence, this proposed PBPKPD model, which accounts for the barriers in drug 
transport and describes the association and dissociation kinetics, may be a useful tool 
to extrapolate the D2RO of antipsychotics from rat to human. 
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Abbreviations

bBB blood-brain barrier 
Bmax  dopamine D2 receptor density
CB  concentration of olanzapine bound to receptor
CEV  concentration in extravascular brain compartment
CL  systemic clearance
CLbev  brain-extravascular clearance 
CLbv  brain-vascular clearance
D2RO  Dopamine D2 Receptor Occupancy 
FOCE  First Order Conditional Estimation method
fuplasma  unbound fraction in plasma
fubrain  unbound fraction in brain
GOF  Goodness of Fit plots
FIP  bioavailability for intraperitoneal route of administration
FSC bioavailability for subcutaneous route of administration
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IAV inter-animal variability 
kon  receptor association rate constant 
koff  receptor dissociation rate constant
MW  Molecular Weight
nM  nanomoles/litre
OFV Objective Function Value
PKPD  pharmacokinetic and pharmacodynamic
PBPKPD  physiology-based pharmacokinetic and pharmacodynamic
Q  inter-compartmental clearance 
SSE  stochastic simulation and estimation
RSE  Relative Standard Error 
V1 volume of the central compartment 
V2 volume of the peripheral compartment
Vbv  volume of brain-vascular compartment 
Vbev  volume of brain-extravascular compartment

Appendix 1

Full Model :
d(A1)/dt = (Q/V2)*A2 – (Q/V1)*A1 – (CL/V1)*A1

d(A2)/dt = (Q/V1)*A1 – (Q/V2)*A2

d(A3)/dt = (CLbv/V1)*A1 – (CLbv/V3)*A3 – (CLbev/V3)*fuplasma*A3 + (CLbev/V4)*fubrain*A4

d(A4)/dt = (CLbev/V3)*fuplasma*A3 – (CLbev/V4)*fubrain*A4 – (CLst/V4)*fubrain*A4 + (CLst/
V5)*fubrain*A5

d(A5)/dt = (CLst/V4)*fubrain*A4 – (CLst/V5)*fubrain*A5 – kon*fubrain*A5*(Bmax – CB) + koff*A6

d(A6)/dt = kon*fubrain*A5*(Bmax– CB) – koff*A6

Where,
Subscripts 1-6 represent Volumes (V) and Amount (A) of olanzapine at central, 
peripheral, brain-vascular, brain-extravascular, striatum-free and striatum-bound 
compartments, respectively;
CL, Q, CLbv,CLbev, CLst represent clearance of olanzapine in the central, peripheral, 
brain-vascular, brain-extravascular, striatum-free compartments, respectively.
CB is concentration bound to receptor as (A6/V6)/(MW/1000) in nM;
MW is Molecular Weight of olanzapine;
D2RO is calculated as CB/Bmax.

Note that the transport from the central compartment to the brain-vascular 
compartment is not included in the equation d(A1)/dt .This allows the plasma con-
centration-time profile to be described by a conventional two-compartment model, 
independent of the brain distribution. 
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Reduced Model:
Equations for d(A1)/dt, d(A2)/dt, and d(A3)/dt are identical to the Full Model.
d(A4)/dt = (CLbev/V3)*fuplasma*A3 – (CLbev/V4)*fubrain*A4 
d(A5)/dt = kon*fubrain*CEV*(1–A5) – koff*A5

Where,
Subscripts 1-4 represent Volumes (V) and Amount (A) of olanzapine at central, pe-
ripheral, brain-vascular, brain-extravascular compartments, respectively;
A5 is the fractional D2 receptor occupancy;
CL, Q, CLbv, CLbev represent clearance of olanzapine in the central, peripheral, brain-
vascular, brain-extravascular compartments, respectively;
CEV is the concentration in extravascular brain compartment as (A4/V4)/ (MW/1000) 

in nM.
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Abstract

Purpose A pharmacokinetic-pharmacodynamic model was developed to describe the time 
course of brain concentration and dopamine D2 and serotonin 5-HT2A receptor occupancy 
(RO) of the atypical antipsychotic drugs risperidone and paliperidone in rats.
Methods A population approach was utilized to describe the pharmacokinetics and pharma-
codynamics of risperidone and paliperidone using plasma and brain concentrations and D2 

and 5-HT2A RO data. A previously published physiology- and mechanism-based (PBPKPD) 
model describing brain concentrations and D2 receptor binding in the striatum was expanded 
by including metabolite kinetics, active efflux from the brain and binding to 5-HT2A receptors 
in the frontal cortex. 
Results A two-compartment model best fit to the plasma pharmacokinetic profile of both 
risperidone and paliperidone. The expanded PBPKPD model described brain concentrations 
and D2 and 5-HT2A RO well. Inclusion of binding to 5-HT2A receptors was necessary to de-
scribe observed brain-to-plasma ratios accurately. Simulations showed that the receptor affin-
ity strongly influences the brain-to-plasma ratio pattern.
Conclusion Binding to both D2 and 5-HT2A receptors influences brain distribution of risperi-
done and paliperidone. This may stem from their high affinity for D2 and 5-HT2A receptors. 
Receptor affinities and brain-to-plasma ratios may need to be considered before choosing the 
best PKPD model for centrally active drugs.
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Introduction

Schizophrenia is a chronic psychiatric disorder which affects almost 1 % of the popu-
lation worldwide (1). It is characterized by the presence of positive symptoms (e.g. 
hallucinations, delusions), negative symptoms (e.g. social withdrawal, reduced mo-
tivation) and cognitive impairments. The majority of drugs for schizophrenia target 
psychotic symptoms as their primary goal (1). It has been hypothesized that elevated 
dopamine levels in the striatum lead to psychosis. This is consistent with the fact that 
all currently available antipsychotic drugs act as dopamine D2 receptor antagonists 
(with one exception of a partial agonist – aripiprazole) (1). Usually 65-80% D2 recep-
tor occupancy (RO) is believed to be necessary for a clinically relevant outcome, but 
occupancy above 80% leads to side effects, i.e. Extra Pyramidal Symptoms (EPS) (2).

In addition to blocking D2 receptors, newer antipsychotics (so-called second 
generation or atypical antipsychotics) have a high affinity towards other receptors. 
Specifically, many of them show a higher affinity towards serotonin 5-HT2A receptors 
than towards D2 receptors. It has been hypothesized that this higher 5-HT2A/D2 affinity 
ratio contributes to the lower incidence of side effects of atypical antipsychotic drugs: 
EPS and prolactin elevation (3). Binding to 5-HT2A receptors could theoretically also 
lead to improved efficacy towards negative symptoms in schizophrenia (4). 5-HT2A an-
tagonism may confer atypicality on antipsychotic drugs with relatively weaker D2 an-
tagonism (or partial D2 agonism) because of the ability of 5-HT2A receptors to modulate 
the activity of dopaminergic neurons differentially in different regions of the brain (5).

Predicting human receptor occupancy in a quantitative manner based on ani-
mal studies is one of the challenges in the drug discovery and development proc-
ess. Pharmacokinetic and pharmacodynamic (PKPD) modeling tools are extensively 
used to describe drug distribution and effect (6). Recently utilization of mechanistic 
factors in the PKPD modeling has been strongly advocated (7). Inclusion of mech-
anistic factors like biophase distribution and receptor association and dissociation 
kinetics allows for a better understanding of processes leading to the observed data 
(8), as well as distinguishing between system- and drug-specific parameters and ex-
trapolation of drug effects from rat to human (7). 

The aim of this study was to develop a population PKPD model describing D2RO 
for the atypical antipsychotics risperidone and paliperidone in rats. As a starting point 
we used a hybrid physiologically-based PKPD model which has recently been pub-
lished for the atypical antipsychotic drug olanzapine in rats (9). This model describes 
the plasma pharmacokinetics using conventional compartmental analysis techniques 
while processes in the brain are described in a more physiological manner, taking 
into account the distribution of a drug in the brain and association and dissocia-
tion kinetics at the D2 receptors. Here, we apply this model to other antipsychotics: 
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risperidone and 9-hydroxy-risperidone (paliperidone). Both drugs are atypical an-
tipsychotics with high affinity for D2 and 5-HT2A receptors. Risperidone is metabo-
lized to paliperidone and both drugs show similar binding properties and clinical 
effect profiles. Therefore, to properly describe the RO of risperidone and eventually 
its clinical effects it is necessary to take into account the formation of paliperidone, 
its distribution to the brain and its binding to receptors. Therefore, we extended the 
previously published model to incorporate metabolite formation, its brain kinetics 
and its receptor binding parameters. Also, since both risperidone and paliperidone 
are known P-glycoprotein (P-gp) substrates (10) we included an active efflux process 
at the blood-brain- barrier. We also investigated whether binding to 5-HT2A receptors 
influenced the PK and PD of both drugs.

Methods

Data
This work was performed within the framework of the Dutch Top Institute Pharma 
project: Mechanism-based population PKPD modeling (http://www.tipharma.com). 
This modeling platform involves leading global pharmaceutical companies and aca-
demic institutions from The Netherlands. Data used for the modeling were gener-
ated previously by the pharmaceutical companies: Janssen Research and Development 
(Belgium), Merck  Sharp & Dohme Limited (The Netherlands) and Pfizer Global 
Research and Development (USA) and were anonimized before releasing to the mod-
elers. Results from a number of studies were used including dose-response and time 
course studies. Male Sprague Dawley or Wistar rats were used for the experiments. 
Risperidone (RIS) was administrated intravenously (IV), intraperitoneally (IP) or 
subcutaneously (SC) in a wide range of single doses (0.01 to 40 mg/kg). In most ex-
periments, RIS plasma and brain concentrations and its RO (either D2 or 5-HT2A) 
were measured in one animal at one time point (since animals have to be euthanized 
for brain concentration and RO measurements). In a few studies paliperidone (PALI) 
concentrations were measured after RIS or PALI administration. An overview of the 
studies utilized is given in Table 4.1. For RO studies either the striatum or the frontal 
cortex was removed for the measurement of D2 or 5-HT2A receptor occupancy, respec-
tively. The rest of the brain was homogenized and drug concentration was measured. 
An in vivo or ex vivo method was used for both 5-HT2A and D2 RO measurements. [3H]
raclopride was used as a radioligand for D2 RO studies and [3H]M100907 for 5-HT2A 
RO studies. The experimental procedures for the plasma sample collection, brain dis-
section, tissue homogenization and RO measurements were similar across the differ-
ent study sites and these procedures were based on published reports (11, 12).
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Table 4.1: O
verview

 of available data used in the PK
PD

 analysis.

Study #
# of rats

drug
1 

RO
A

2
dose [m

g/kg]
tim

e points [h]
observation type

RO
 m

ethod
3

1
3

RIS
IV

2.5
0.12, 0.33, 1,2,4,8

PC
-R

N
A

2
4

RIS
IV

2
0.12, 0.33, 1,2,4

PC
-R

N
A

3a
23

PA
LI

SC
5

0.25,0.5,1,2,4,8
PC

-P, StrC
-P, C

orC
-P

N
A

3b
23

RIS
SC

5
0.25,0.5,1,2,4,8

PC
-R, PC

-P, StrC
-R, 

StrC
-P, C

orC
-R, C

orC
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Model development
We used a population approach to describe the pharmacokinetics and pharmaco-
dynamics (receptor binding) of RIS and PALI and to obtain population parameter 
estimates together with the inter-individual variability. Modeling was done using the 
non-linear mixed effects modeling software NONMEM (version VII level 2) (13). 
ADVAN 13 subroutine was used to allow explicit writing of differential equations de-
scribing receptor dynamics (APPENDIX). Log-transformed plasma and brain drug 
concentrations were used for the data analysis, and concentrations below the limit of 
quantification were excluded from this analysis.

Inter-individual variability (IIV) on each parameter was modeled assuming a log-
normal distribution. Additive, proportional and combined residual error models were 
tested.

A number of structurally different PK and PD models have been evaluated (see 
below). Model selection was based on the likelihood ratio test, parameter estimates 
and their relative standard errors, residual error values and goodness-of-fit plots. An 
additional structural parameter or inter-individual variability was included in the 
model, if the resulting change in objective function value (ΔOFV) was >6.64 (p<0.01 
assuming χ2 distribution). The following goodness-of-fit plots were inspected visually 
in order to assess the fit of the model to the data: observations versus population and 
individual predictions, individual weighted residuals versus individual predictions 
and conditional weighted residuals (CWRES) versus time.

During the analysis, Pirana software (14) was used for NONMEM run manage-
ment and Xpose package in R (15, 16) for making diagnostic plots.

General model structure and modeling approach
We did a sequential analysis where we first described the plasma PK of RIS and PALI 
in a conventional compartmental way. We assumed that this analysis provides an 
adequate description of concentration in plasma, which in turn is the driving con-
centration for the brain distribution and receptor binding model. Therefore, it is 
appropriate to fix plasma parameters while simultaneously estimating brain distribu-
tion and receptor binding parameters from brain concentration and receptor occu-
pancy data. This has been done in the second part of the analysis.

Plasma PK model
One- and two-compartment models for both RIS and PALI were tested. For SC and IP 
administration different absorption models were tested: zero-order and first-order ab-
sorption in combination with a lag time. For IP dosing of RIS we checked models with 
and without first pass metabolism by assuming that part of the administered RIS dose 
is converted to PALI before reaching the systemic circulation. Bioavailability for IP and 
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SC doses were estimated relative to IV dosing. Since there were no data after IV admin-
istration of PALI, we assumed that RIS and PALI have the same bioavailability for the 
SC route of administration. This allows estimating the volume of distribution and other 
absorption parameters of PALI. To account for metabolite formation we divided the 
elimination clearance for RIS into two clearances: metabolic clearance to PALI (CLmet) 
and clearance by other routes of elimination (CLRIS). (Figure 4.1). First-order condi-
tional estimation method (FOCE) was used to obtain PK parameter estimates.

PKPD modeling
After finding the appropriate plasma PK model, population parameters for plasma 
(mean and inter-individual variability) were fixed after which brain concentrations 
and RO were fitted simultaneously. Initially only D2 RO was taken into account as D2 
binding is assumed to be crucial for the drug’s antipsychotic action (2). We started 
with the previously published hybrid physiologically-based PKPD model (9), but 

Figure 4.1: A schematic representation of the plasma PK model. Plasma PK of both RIS and 
PALI follows a two-compartment model. IV and IP dosing goes directly to the central compart-
ment. A fraction of the absorbed dose for IP RIS route of administration goes directly to the RIS 
central compartment and a fraction of the absorbed dose goes to the PALI central compartment 
(FrFPM) representing first pass metabolism. Absorption after SC dosing is described by consecutive 
zero- and first order processes for both RIS and PALI. DRSC is the duration of the zero-order proc-
ess after SC dosing. Total elimination clearance of RIS is divided into metabolic clearance (CLmet) 
and the clearance by other routes of elimination (CLRIS).



pKpD Modeling of the rO of risperidone and paliperidone in rats

75

4

also checked simplifications of this model, i.e. binding not affecting brain kinetics 
(simplified model from (9)) and reduction in the number of brain compartments 
by merging intra- and extra-vascular compartments together or assuming only one 
compartment for drug not bound to receptors in the brain. 

Figure 4.2: (a) A schematic representation of the PKPD model. The plasma PK has been omitted 
(see Figure 1) and brain kinetics and receptor binding have been presented here for one drug only 
because of the complexity of the model. The same model structure applies for RIS and PALI. (b) 
Representation of the competitive binding to the same receptors by RIS and PALI. Measured RO 
is the sum of occupancies obtained by both drugs. Here only binding to D2 receptors is shown. 
The same principle applies for 5-HT2A receptors. [D2] – concentration of free D2 receptors, [R] 
– unbound concentration of RIS, [D2R] – concentration of D2 receptor complex with RIS, [P] – 
unbound concentration of PALI, [D2P] – concentration of D2 receptor complex with PALI. D2 
receptor occupancy (RO) is the sum of RO exerted by both drugs.
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The hybrid physiology-based PKPD model consists of four compartments in 
brain: vascular, extra-vascular, striatum free and striatum bound compartment 
(Figure 4.2). Volumes of these compartments were fixed to physiological values: 
0.00024, 0.00656, 0.0002 L/kg for vascular, total extra-vascular and striatum, respec-
tively (17, 18). Clearance between plasma and vascular compartment (CLbv) was as-
sumed to be equal to cerebral blood flow in rats, which is 0.312 L/h/kg (17), for both 
RIS and PALI. In the model, transport of RIS and PALI between the vascular and 
extra-vascular compartment across the blood-brain barrier (BBB) was governed by 
two processes: passive diffusion and active efflux. Separate values of passive clearance 
(CLbev) and active efflux clearance (CLefflux) were estimated for RIS and PALI when 
possible. We checked whether linear or saturable efflux processes described the data 
best. Only unbound drug could cross the brain-blood barrier (BBB). Plasma protein 
binding is constant over wide range of concentrations in humans (19). We assumed 
that the same is true for rats and plasma and brain fraction unbound were fixed to lit-
erature values: fuplasma-RIS=0.0798, fubrain-RIS=0.0699, fuplasma-PALI=0.129, fubrain-PALI=0.0755 
(20).

We assumed fast equilibration between the extra-vascular and striatum free 
compartments. This was achieved by fixing the corresponding clearance (CLstr) to 
a high value (500 L/h/kg). In striatum, RIS and PALI reversibly bind to D2 recep-
tors. Binding to receptors was described using kon as the receptor association rate 
constant (nM-1h-1), Koff as the receptor dissociation rate constant (h-1), and Bmax as the 
maximum binding capacity of these drugs to the receptor. Including explicit binding 
kinetics is justified because of the hysteresis observed between D2 (or 5-HT2A) recep-
tor occupancy and brain concentration when excluding striatum or frontal cortex 
(from D2 and 5-HT2A occupancy studies, respectively; data not shown). RIS and PALI 
compete for the same receptors and hence the measured RO is the sum of occupan-
cies obtained by both drugs. 

Both RIS and PALI have a strong affinity towards 5-HT2A receptors. Therefore, we 
decided to evaluate also an extended model in which we included binding to these 
receptors in the frontal cortex, where the density of 5-HT2A receptors is the highest 
(21). To that end, we included two additional compartments: cortex free and cortex 
bound. We fixed the volume of frontal cortex to 0.0035 L/kg (22). As for striatum, 
we assumed fast equilibration between brain extra-vascular and cortex free com-
partments. Binding to 5-HT2A receptors was described using kon, Koff and Bmax values 
specific for these receptors. Kd (dissociation rate constant) and Koff were estimated 
from the model and kon was calculated as Koff/Kd. We checked whether we could es-
timate different binding constants for data obtained from in vivo and ex vivo binding 
experiments.

First-order conditional estimation method (FOCE) was used to fit the models.
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Model evaluation
For the plasma PK model a bootstrap analysis was done to determine the precision of 
the parameter estimates. In the bootstrap technique, bootstrap replicates are gener-
ated by randomly sampling individuals from the original dataset with replacement. 
1000 samples were used and they were stratified by study. Parameter estimates for 
each of the re-sampled datasets were obtained by fitting the final plasma PK model 
using NONMEM. Median, 5-th and 95-th percentiles were calculated for all the pa-
rameters and medians of bootstrap estimates were compared with parameter values 
obtained from the original dataset. 

Additionally, since the original dataset is rather heterogeneous and bootstrapping 
may lead to biased results, we also did log-likelihood profiling (LLP). In this method 
each parameter is in turn fixed to lower or higher values than the one estimated by 
the model and the reduced model is fit to the data. Obtained OFV is compared with 
the OFV of the original model. The 90% confidence interval (CI) of a parameter is 
calculated by finding the value of the parameter at which the difference in OFV is 
3.84 (p=0.05 assuming χ2 distribution). Bootstrap analysis and log-likelihood profiling 
were done with the help of the software package Perl Speaks NONMEM (PsN) (23). 

Due to the great heterogeneity of the dataset and very long run times we did not 
perform a bootstrap analysis for the PD model. However, we did the log-likelihood 
profiling to find 90% CIs of the parameter values. 

In order to check the predictive performance of the model we simulated 1000 data-
sets from the final PKPD model. Then we graphically compared the observed plasma and 
brain concentrations and D2 and 5-HT2A RO with median and 90% prediction intervals 
calculated from the simulated data for each dose and route of administration separately.

Brain-to-plasma ratios
We simulated brain and plasma concentrations based on population parameter es-
timates (without inter-individual and residual variability) for doses and time points 
corresponding to the ones seen in the data set. For each simulated time point we 
calculated brain-to-plasma ratios and compared them graphically with the observed 
brain-to-plasma ratios, plotting only brain-to-plasma values if both plasma and brain 
concentrations were above the level of quantification. To check the influence of dif-
ferent parameters, we also simulated the brain-to-plasma ratio pattern in the absence 
of active efflux and with a 10 times higher value of brain clearances and of increases 
or decreases of the receptor association and dissociation constants kon and Koff. To 
that end, we either fixed CLefflux to zero or used CLbev and CLefflux 10 times higher than 
estimated from the model, or kon/Koff values 10 times lower or higher than estimated 
by the model. All other parameter values were the same as estimated by the model. 
We used R software for the simulations.
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Table 4.2: Parameter estimates of the plasma PK model from the original dataset 
and from 1,000 bootstrap replicates.

Parameter
Parameter 
estimate 
(% RSE)

Bootstrap 
median

5th-95th 
percentile from 

bootstrap

90% CI obtained 
from log-likelihood 

profiling

FIP-RIS 0.412 (12) 0.413 0.314-0.540 0.321-0.530

FSC 0.816 (9) 0.810 0.654-1.03 0.672-0.987

FrFPM 0.268 (12) 0.271 0.213-0.337 0.209-0.332

KaSC-RIS (1/h) 2.84 (20) 2.90 2.25-4.07 2.13-4.16

KaSC-PALI (1/h) 1.31 (22) 1.31 1.00-1.77 0.969-1.84

DRSC-RIS (h) 0.161 (55) 0.170 0.0157-0.313 0.0490-0.283

DRSC-PALI (h) 0.162 (54) 0.167 0.0848-0.261 0.0276-0.320

Vc-RIS (L/kg) 1.29 (6) 1.28 1.07-1.56 1.11-1.49

CLRIS (L/h/kg) 1.62 (9) 1.62 1.29-2.07 1.34-1.95

CLmet (L/h/kg) 0.775 (11) 0.757 0.591-0.974 0.623-0.961

Vp-RIS (L/kg) 0.169 (16) 0.168 0.128-0.223 0.131-0.220

QRIS (L/h/kg) 0.0882 (25) 0.0891 0.0529-0.137 0.0601-0.132

Vc-PALI (L/kg) 1.27 (15) 1.21 0.0647-1.64 0.0087-1.66

CLPALI (L/h/kg) 1.06 (10) 1.04 0.768-1.36 0.847-1.32

Vp-PALI (L/kg) 0.251 (54) 0.281 0.119-2.11 0.0767-75.5

QPALI (L/h/kg) 0.269 (128) 0.245 0.0428-23.4 0.0294-48.3

Inter-individual variability

IIV-FIP (%CV) 80.6 (7.7) 80.4 70.8-89.7 70.0-92.9

IIV-KaSC-RIS (%CV) 46.4 (52.3) 47.9 29.5-70.5 27.1-84.3

IIV-KaSC-PALI (%CV) 34.4 (30.2) 33.0 11.12-50.6 17.0-58.7

IIV-DRSC-RIS (%CV) 91.2 (80.6) 84.2 0.912-287 17.3-211

IIV-CLRIS (%CV) 30.5 (13.3) 29.7 16.3-38.2 23.2-39.0

IIV-CLPALI (%CV) 16.2 (32.8) 16.0 10.4-22.6 10.9-24.5

Proportional residual error

Risperidone 0.233 (16.5) 0.220 0.174-0.279 0.192-0.288

Paliperidone 0.186 (14.2) 0.171 0.131-0.214 0.147-0.238

% RSE – Relative Standard Error as calculated by NONMEM covariance step.
Inter-individual variability is expressed as percent coefficient of variation.
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Results

Plasma PK
Plasma PK was best described by a two-compartment model for both RIS and PALI 
(Figure 4.1). For the SC route of administration consecutive zero- and first-order 
absorption described the data best. For the IP route absorption parameters could not 
be estimated and it was assumed that dosing was directly to the central compartment. 
However, including first pass metabolism where a fraction of the RIS dose goes di-
rectly to the PALI central compartment improved the fit of the model. Parameter esti-
mates of the final model are given in Table 4.2. In the final model six inter-individual 
variability parameters (for FIP, KaSC-RIS, KaSC-PALI, DRSC-RIS, CLRIS, CLPALI) were retained.

Parameters for the rate of zero-order absorption and volume of distribution and 
inter-compartmental clearance for PALI could not be estimated precisely (Table 4.2). 
However, we decided to keep them in the model since removing them led to a sig-
nificantly worse fit and it was important to describe the plasma PK as precisely as 
possible for the description of brain kinetics and receptor binding.

Goodness-of-fit plots did not show any systematic deviation between obser-
vations and population and individual predictions nor any trends in conditional 
weighted residuals versus time, which demonstrates that this model adequately de-
scribes the plasma PK of RIS and PALI (Figure 4.3).

PKPD 
The previously published hybrid physiology-based PKPD model (9) fitted the data 
best after adjusting for binding to 5-HT2A receptors (Figure 4.2). A model with 
only D2 receptor binding (9) led to high residual error (>60%) for brain concentra-
tion. Using a combined error model reduced the proportional error to some extent. 
However, this model did not explain the observed brain-to-plasma ratio adequately 
(Figure 4.6a-b). These problems were overcome when the model was extended to 
include 5-HT2A receptor binding in frontal cortex.

Our data did not allow us to estimate reliably all brain clearance parameters 
(CLbev-RIS, CLefflux-RIS, CLbev-PALI, CLefflux-PALI). Change in parameter values within rela-
tively wide range did not lead to changes in model fit. Therefore, we assumed that 
CLbev or CLefflux is the same for RIS and PALI. Assuming a single CLefflux parameter 
led to termination problems. However, the model with a single CLbev value had an 
OFV only slightly lower (<0.5) than the model with four clearance parameters and 
RSE values obtained from the covariance step were acceptable. Therefore, in the final 
model CLbev was assumed to be the same for RIS and PALI.
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Figure 4.3: Goodness-of-fit plots 
of the PKPD model. Presented are 
scatter plots of plasma and brain 
concentrations and D2 and 5-HT2A 
RO versus population predictions 
and conditional weighted residuals 
(CWRES) versus time.
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Different Kd and Koff values for D2 and 5-HT2A were estimated by the model. 
However, we were not able to estimate different Kd and Koff values for RIS and PALI, 
therefore we assumed that Kd and Koff values are the same for RIS and PALI, which is 
consistent with literature in vitro values (24). Similarly, we also had to assume that the 
binding rate constants for both in vivo and ex vivo binding RO measurements were 
the same. Describing active efflux from brain as a saturable process did not improve 
the fit therefore in the final model the active efflux was assumed to be linear. Due to 
the complexity of the model we were not able to estimate IIV variability for the brain 
PKPD model parameters. Therefore, we fixed the IIV parameters to zero. Final pa-
rameter estimates of the model are given in Table 4.3.

Table 4.3: Parameter estimates of the PKPD model and their relative standard error.

Parameter Parameter 
estimate % RSE 90% CI obtained from 

log-likelihood profiling

CLbev-RIS (L/h/kg) 2.13 29 0.333- >1000c

CLbev-PALI 
a(L/h/kg) 2.13 29 0.333- >1000c

CLefflux-RIS
 (L/h/kg) 9.97 28 1.49- >1000c

CLefflux-PALI
 (L/h/kg) 46.5 28 7.24- >1000c

KdD2 (nM) 0.463 14 0.336-0.628

Koff-D2 (1/h) 0.671 19 0.427-1.03

Kon-D2
b (1/nM/h) 1.45 - -

Bmax-D2 (nM) 245 15 194-305

Kd5-HT2A (nM) 0.219 15 0.134-0.313

Koff-5-HT2A (1/h) 0.525 25 0.257-0.970

Kon-5-HT2A
b (1/nM/h) 2.40 - -

Bmax-5-HT2A (nM) 47.0 11 37.3-58.9

Residual error

Proportional BC RIS 0.362 7 0.315-0.419

Proportional BC PALI 0.424 18 0.351-0.519

Additive % D2 RO 17.7 8 15.1-20.7

Additive % 5-HT2A RO 18.2 7 1.49-22.4

% RSE – percent Relative Standard Error as calculated by NONMEM covariance step.
BC – brain concentration
a – assumed to be the same as CLbev-RIS
b – calculated as kon=koff/Kd
c – OFV does not change with increasing parameter value
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Goodness-of-fit plots did not show any systematic deviation between observa-
tions and population and individual predictions nor trends in CWRES versus time, 
which demonstrates that this model adequately describes the brain concentrations of 
RIS and PALI and their D2 RO (Figure 4.3). Some time-course pattern can be seen in 
the plot of CWRES versus time for 5-HT2A RO, but CWRES values are relatively low.

Model evaluation
Median bootstrap parameter estimates of the PK model were in good agreement with 
model estimated population values (Table 4.2). 90 % confidence intervals were large 
for some parameters, especially related to absorption and for the PALI peripheral 
compartment. 

Results of log-likelihood profiling for brain parameters show that most param-
eters are estimated precisely with exception of the brain clearance parameters (Table 
4.3). Further inspection of results showed that the values of clearance parameters 
(CLbev, CLefflux-RIS and CLefflux-PALI) did not influence model fit and other parameter es-
timates much. The upper limits of CI for these parameters could not be found, show-
ing that the transport is fast and equilibration between brain and plasma is not much 
affected by the exact values of clearances. Moreover, close inspection of the results 
show that relative value of active efflux clearance to passive clearance seems to be 
very constant. For all the values of CLbev, CLefflux-RIS and CLefflux-PALI inspected by LLP, 
the ratio of CLefflux-RIS to CLbev was in range of 4.57-4.87 while ratio of CLefflux-PALI to 
CLbev was in range of 21.1-22.2. 

Some of the predictive check results are depicted in Figure 4.4. We present the 
result for the IP route of administration for doses of 0.1 and 1 mg/kg since for these 
doses there were time course data available for 5-HT2A and D2 RO and they had 
more data points than other doses. Practically all observations fall within the range 
of the 5-th and 95-th percentile. Median time course of D2 RO is predicted well. For 
5-HT2A, RO seemed to be underestimated for later time points. Prediction intervals 
are very wide since the residual error in our model is also relatively big. However, it 
should be noted that the variability of the data is also large (see for example 5-HT2A 
RO at 1h).

Inspection of the model-predicted plasma and brain concentrations for the cas-
es where observations were reported to be below the level of quantification (LOQ), 
shows that exclusion of the observations below LOQ from the analysis did not lead 
to a significant bias. For the studies where LOQ was known, only around 15% of 
observations were above LOQ and in less than 5% of the cases of total predicted 
concentrations were outside the confidence intervals based on the residual standard 
error. For the studies where LOQ was not known the predicted concentrations were 
also low.
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Brain-to-plasma ratios
The observed brain-to-plasma ratios were higher at lower plasma concentrations and 
even out as plasma (or brain) concentration increases, both for RIS and PALI (Figure 
4.5). Even after multiplication of the brain-to-plasma ratio by fubrain/fuplasma=0.876 and 
obtaining “free brain-to-plasma ratio”, the brain-to-plasma ratio at higher concen-
trations is lower than one due to active efflux from the brain. This brain-to-plasma 
ratio pattern was seen for both the total brain concentration and the concentration 
measured in brain excluding striatum (from the studies where D2 RO was measured) 
or excluding frontal cortex (from studies where 5-HT2A RO was measured). A model 
with only D2 receptor binding in striatum did not predict higher brain-to-plasma 
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Figure 4.4: Predictive check of the PKPD model.. Panels a-c represent respectively risperidone plas-
ma concentration, risperidone brain concentration after removing striatum and D2 RO after IP ad-
ministration of a 1 mg/kg dose of risperidone. Panels d-f represent respectively risperidone plasma 
concentration, risperidone brain concentration after removing frontal cortex and 5-HT2A RO after 
IP administration of a 0.1 mg/kg dose of risperidone. Dots represent the observed data; the dashed 
line represents the median of the observed data; the shaded area represents 90% prediction interval 
based on 1000 simulated datasets; the grey line represents the median of the simulated data.
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ratios for lower concentrations (Figure 4.6a-b). Including binding to 5-HT2A recep-
tors in the model predicted brain-to-plasma ratios well (Figure 4.6a-c) over the entire 
concentration range. 

Fixing CLefflux to zero led to an increase of brain-to-plasma ratios, but the general 
pattern stayed the same (Figure 4.6d). Increasing CLbev and CLefflux had virtually no 
effect on the brain-to-plasma ratios (not shown). If Koff and kon values for both D2 
and 5-HT2A receptors were 10 times higher (implying no change in Kd) then brain-
to-plasma ratios at lower concentrations were slightly lower and at higher concentra-
tions they were the same as in the original model (Figure 4.6e). The same effect was 
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Figure 4.5: Brain-to-plasma ratios against plasma concentrations. (a) Data from studies where 
total brain concentration was measured; circles – RIS, triangles – PALI. (b) Data from D2 RO 
studies where brain concentration was measured after removing striatum. (c) Data from 5-HT2A 
RO studies where brain concentration was measured after removing frontal cortex. For b and c 
only RIS data was available and different symbols represent different studies.
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visible with and without efflux. Increasing Kd by increasing koff leads to an almost 
constant brain-to-plasma ratio (Figure 4.6f). Increasing Kd by decreasing kon had 
a  similar effect, but less pronounced (data not shown). If we increased koff for D2 
receptors only, then brain-to-plasma ratios became constant only for brain concen-
trations excluding cortex (brain concentration measured in 5-HT2A RO studies; data 
not shown). If we increased koff only for 5-HT2A receptors then brain-to-plasma ratios 
became constant only for brain concentrations excluding striatum (brain concentra-
tion measured in D2 RO studies; data not shown).

Figure 4.6: Observed and simulated brain-to-plasma ratios. Open circles in panels a-c represent 
observed brain-to-plasma ratios for total brain (a), brain excluding striatum – from D2 RO stud-
ies (b) and brain excluding frontal cortex – from 5-HT2A RO studies (c). In all the panels gray 
dots represent predictions of our final model. Black dots represent prediction of the model with 
only D2 receptor binding (a-b), or prediction of final model but assuming no efflux (d), kon and 
koff values 10 times higher (e) or koff values 10 times higher (f) than in the final model. Only total 
brain-to-plasma ratios are depicted in panels d-f. Qualitatively similar results were obtained for 
brain concentrations from D2 and 5-HT2A studies.
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Discussion

In this paper we present an extension of the previously published PKPD model for 
olanzapine (9) to two other antipsychotic drugs: risperidone and paliperidone. This 
model describes the time course of D2 receptor occupancy after administration of the 
antipsychotics and takes brain distribution into account. Here, we expand the model 
by taking into account metabolite formation and its receptor binding, active efflux 
from the brain and binding to 5-HT2A receptors.

Some antipsychotic drugs (such as risperidone and aripiprazole) have active me-
tabolites. The active metabolite of risperidone, paliperidone, achieves high concen-
trations in plasma and brain (25, 26). It also shows potent binding to D2 and 5-HT2A 
receptors and is by itself a potent antipsychotic drug (27, 28). Therefore, to describe 
receptor occupancy of a parent drug in a mechanistic way, it is necessary to take into 
account formation, brain kinetics and receptor binding of the metabolite.

It has been shown in in vitro studies and studies with knockout mice, that both 
risperidone and paliperidone are P-gp substrates (10). Inclusion of active efflux at 
the BBB in the model was indeed necessary to describe the data properly. Relative 
values of model predicted parameters for active efflux at the BBB for both drugs are 
in line with previous experimental studies. Most of the studies with mdr1a knockout 
mice (10, 29) show that the difference in brain-to-plasma ratios between the knock-
out and the wild-type mice is considerably larger for paliperidone in comparison 
to risperidone (with one exception where the ratio is slightly higher for risperidone 
(30)). Similar results have been found in in vitro experiments with MDCK cells in an 
transwell assay (31) and are in line with our results. It has been assumed in our model 
that the active efflux is a linear process. This seems to be a valid assumption for risp-
eridone and paliperidone, since modeling the active transport as a saturable process 
did not improve the fit. This is in line with the finding that the highest brain concen-
trations of risperidone and paliperidone seen in our dataset were around 2 µM, while 
the Km values (concentration of substrate yielding half maximum activity) for P-gp 
transport from in vitro studies range between 5.6 to 26 µM (30, 32, 33). So clearly, 
the concentrations observed in vivo are far below the saturation levels for risperidone 
and paliperidone.

Paliperidone is less lipophilic than risperidone, therefore one would expect that it 
will diffuse slower through biological membranes. However, in vitro essays show that 
passive permeability of risperidone and paliperidone are quite similar (31). Therefore, 
assuming the same value for passive clearance through BBB can be justified. Probably 
more data, especially for paliperidone, would be needed to estimate separate param-
eters of both drugs. However, it should be noted that it might be difficult to estimate 
passive and active clearance parameters reliably. It seems that, at least in our dataset, 
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brain concentration is only informative about the ratio of active and passive proc-
esses. Extensive simulation study would be probably necessary to establish what data 
is needed in order to be able to estimate precisely brain clearance parameters.

Another extension of the previous model developed for olanzapine is the inclu-
sion of binding to 5-HT2A receptors. We included binding to 5-HT2A receptors when 
we observed that the model with binding only to D2 receptors in striatum did not 
provide a good fit to the data and also after inspecting observed and model predicted 
brain-to-plasma ratio plots (Figures 4.5, 4.6a-c). The brain-to-plasma ratio was not 
constant for risperidone, suggesting the influence of specific binding to receptors on 
the brain kinetics. Similar plots made for olanzapine show that the brain-to-plasma 
ratio is practically constant and that the brain concentrations of olanzapine are high-
er than those for risperidone (data not shown). This suggests that olanzapine shows 
a different pattern of brain kinetics than risperidone and paliperidone. Therefore, 
we explored the influence of the different parameters on the brain-to-plasma ratio. 
First, we simulated brain-to-plasma ratios assuming no active efflux, to see if higher 
brain concentrations would lead to more constant brain-to-plasma ratios. Our simu-
lations show that even without efflux, the brain-to-plasma ratios were not constant 
(Figure 4.6d), suggesting that the higher brain-to-plasma ratio was not related to the 
active efflux process. Next we investigated whether the pattern could be explained by 
the disequilibrium between plasma and brain caused by slow transport between the 
two. However, increasing brain clearance had virtually no effect on brain-to-plasma 
ratios. We also looked at the influence of receptor binding parameters on the brain-
to-plasma ratios. Therefore, we simulated the influence of increasing values for both 
koff and kon ten-fold, reflecting a more rapid equilibration of receptor binding, without 
changing the receptor affinity Kd. This resulted in slightly lower brain-to-plasma ra-
tios at the lowest concentrations (Figure 4.6e). This suggests that the increased brain-
to-plasma ratio may be only partly explained by disequilibrium between unbound 
and bound drug. Finally, an increase of the Kd values by increasing koff or decreasing 
kon ten-fold led to more constant brain-to-plasma ratios (Figure 4.6f). A higher Kd 
implies that receptor occupancy is lower at the same unbound brain concentration, 
and therefore the contribution of the bound drug to the total brain concentration is 
less pronounced, resulting in a lower brain-to-plasma ratio. 

Olanzapine has lower binding affinity for D2 and 5-HT2A receptors than risp-
eridone and paliperidone (9, 34). According to our model, brain-to-plasma ratios 
are constant under these conditions. The lower D2 binding affinity of olanzapine as 
compared with risperidone may explain why for olanzapine a simpler model with 
only binding to D2 receptor and binding not affecting brain kinetics could explain 
the data well (9). Risperidone and paliperidone have relatively low values of the dis-
sociation constant for 5-HT2A receptors compared to other antipsychotics (34, 35), so 
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one would expect that a simpler model (where binding to 5-HT2A receptors does not 
affect brain distribution) could be appropriate for these drugs. Even in cases where 
kon and koff values are unknown, plotting brain-to-plasma ratios against plasma con-
centrations would indicate whether a simpler model would be appropriate.

In the model for olanzapine, the receptor density (Bmax) did not influence the 
model fit and could be removed from the model (9). For risperidone and paliperi-
done, receptor binding influenced brain kinetics, therefore receptor density was an 
important parameter. This was demonstrated by the precise estimate of Bmax for both 
D2 and 5-HT2A receptors (Table 4.3). Bmax values estimated by the model were 245 nM 
and 47.0 nM for D2 receptors in striatum and 5-HT2A receptors in frontal cortex, 
respectively. This 5-HT2A receptor density is in line with the values of 25-60 nM esti-
mated from in vitro studies (36-39) (assuming 10% protein content (40)). Average D2 
receptor density from in vitro studies is 48 nM (40) with a highest estimated value of 
75 nM (41). This is approximately 3 to 5 times lower than the value estimated by the 
model. However, some discrepancy is not surprising since in our model Bmax repre-
sents the theoretical receptor density, while in in vitro assays it represents the density 
of receptors available for the radioligand used. Fixing Bmax to values different than the 
ones estimated by the model worsened the model fit (results not shown). Simulations 
showed that changing Bmax values lead to considerable changes in brain concentration 
and receptor occupancy (data not shown).

To our knowledge, no values are published for in vivo or in vitro association and 
dissociation constants for D2 or 5-HT2A receptors in rats for risperidone and paliperi-
done. In vitro binding constant (Ki) values (which can approximate Kd values) for D2 
binding found in literature are usually around 2 to 3 nM (34, 42-44), however a value 
of 0.44 for risperidone has also been reported (45). For 5-HT2A binding in vitro Ki 
values of 0.12-0.39 and 0.25 nM for risperidone and paliperidone, respectively, have 
been reported (34, 42, 43, 45). Therefore, the in vivo values obtained in our model 
are within the range of in vitro values in rat tissues for 5-HT2A binding and somehow 
on the lower end of the in vitro range for D2 binding. Difference between values ob-
tained in vivo and in vitro may be caused by different radioligands used in in vitro and 
in vivo studies. It is also conceivable that the receptor-binding properties of drugs in 
brain neuronal cells under in vivo conditions differ significantly from those in brain 
homogenates and membrane fractions (46). 

We assumed the same binding affinities for risperidone and paliperidone, since 
our data sets did not allow estimation of separate kon and koff values for risperidone 
and paliperidone. More receptor occupancy data for paliperidone would be neces-
sary to estimate paliperidone association and dissociation rate constants. However, 
since published in vitro Ki values in rat brain tissues are similar for risperidone and 
paliperidone (34), assuming the same rate constants for both drugs should not lead 
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to much bias, especially since the parameters were estimated quite precisely (RSE 
between 14 and 25%).

Assuming the same values for binding constants for risperidone and paliperidone 
may theoretically be one of the reasons why there are relatively big residual errors for 
brain concentrations and receptor occupancy estimated in our model (Table 4.3). 
This could also apply to RO measurements obtained from in vivo and ex vivo studies. 
Trying to estimate separate binding parameters for in vivo and ex vivo measurements 
or excluding the less common ex vivo RO data from the analysis resulted in problems 
with model convergence and in less precise parameter estimates. Use of different rat 
strains could also theoretically explain at least a part of the intra- and inter-individual 
variability. However, when we plotted individual post-hoc estimates for different pa-
rameters, we did not see any difference between the different rat strains or different 
RO measurement methods. 

Considerable residual errors both in PK and PD may stem partly from differ-
ences in experimental procedures (especially brain dissection) on different occasions 
and at the different pharmaceutical companies that provided the data. Body weight 
variations could also potentially explain a part of the observed inter-individual vari-
ability, but we had no information of body weight of the rats allowing us to use it as 
a covariate in the model. Residual errors could probably be reduced if there was an 
inter-individual variability in brain PKPD parameters. However, we were not able to 
estimate these variabilities and decided to fix them to zero.

 A predictive check of the PKPD model showed that it can predict D2 RO rea-
sonably well up to 8 hours (Fig 4.3e, 4.5). But the model seems to lead to under-
prediction at 24h (Fig 4.3e). Median 5-HT2A RO also seems to be under-predicted for 
later time points (Figure 4.4). Only two studies had a time course of D2 RO and one 
study a time course of 5-HT2A RO while most of the studies had only observations at 
the 1h time point. On the one hand, this unbalanced dataset could lead to parameter 
estimates which explain all data well, but with some model misspecification for the 
later time points. On the other hand, with just a few observations for later time points 
it is difficult to judge if a deviation between observation and prediction is not just 
a random error. More D2 and 5-HT2A RO time course data are necessary in order to 
obtain better description of the full time course of receptor occupancy by the model. 

Our dataset shows that binding to receptors influences brain concentrations and 
that D2 binding alone could not explain the data well. In the model we included 
binding to D2 and 5-HT2A receptors (the only available data), but both risperidone 
and paliperidone also bind to other receptors. In vitro data with rat tissue or rat 
cloned cells show that risperidone and paliperidone have high affinity (Ki not more 
than 5 times higher than Ki for D2 receptors) for α1 and α2 adrenoceptors and for 
serotonin 5-HT7 receptors (34, 44, 45). However, densities of all of these receptors 
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in rat brain are relatively low (below 100 fmol/mg of protein) (47-50). Therefore, 
we would not expect the influence of binding to these receptors on brain kinetics 
to be significant. Risperidone and paliperidone bind also to histamine H1 receptors 
and other subtypes of dopamine and serotonin receptors (34, 45). However, since 
Ki values for these receptors are more than 5 times higher than Ki values for D2 
and 5-HT2A receptors, based on our simulations of brain-to-plasma ratio we would 
not expect this binding to affect the rat brain distribution. Similarly, based on in 
vitro binding to human cloned receptors and receptor densities in the human brain 
(34, 51) binding to other receptors should not strongly influence brain kinetics in 
human. 

Our model can be utilized for the human prediction of D2 and 5-HT2A RO. 
Using the sequential approach, human plasma PK models can be developed sepa-
rately in a conventional way and receptor occupancy can be predicted afterwards. 
Usage of a physiology-based approach in describing brain distribution and recep-
tor binding allows utilization of human physiological values, in vitro information 
and rat-to-human scaling to predict human receptor occupancy. This translational 
approach can also be used for drugs which have an active metabolite or show active 
efflux at the brain-blood barrier. Since it is known that D2 RO is linked with clinical 
outcome and side effects of antipsychotics (2), but that it is difficult and costly to 
measure, the ability to predict human D2 RO based on plasma data can help with 
linking different doses of drugs with their clinical effect. This work is ongoing in 
our research group.

In conclusion, we have shown that the previously published hybrid physiologi-
cally-based model structure developed for olanzapine (9) can be utilized to describe 
the PKPD of risperidone and paliperidone in rats. However, some drug-specific ad-
justments were necessary. Addition of active metabolite formation and active efflux 
was straight-forward. Additionally, binding to 5-HT2A receptors has been included 
in order to describe the brain distribution well. This may stem from the fact that 
risperidone and paliperidone have higher affinity to D2 and 5-HT2A receptors than 
olanzapine. Therefore, receptor affinities and brain-to-plasma ratios may need to be 
considered before choosing the best PKPD model for centrally active drugs.
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Abbreviations

BBB blood-brain barrier 
Bmax  receptor density
CL  systemic clearance
CLbev  passive brain-extravascular clearance 
CLbv  brain-vascular clearance
CLcor brain-cortex clearance
CLefflux active efflux clearance
CLmet metabolic clearance of RIS to PALI
CLPALI  systemic clearance of PALI
CLRIS  systemic clearance of RIS by other routes than metabolism to PALI
CLstr brain-striatum clearance
CWRES conditional weighted residuals
FOCE  First Order Conditional Estimation method
fuplasma  unbound fraction in plasma
fubrain  unbound fraction in brain
GOF  Goodness Of Fit plots
FIP  bioavailability for intraperitoneal route of administration
FrFPM Fraction of the absorbed RIS IP dose going directly to PALI central compartment
FSC bioavailability for subcutaneous route of administration
IIV inter-individual variability 
IP intraperitoneal
IV intravenous/intravenously
Kd receptor dissociation constant
kon  receptor association rate constant 
koff  receptor dissociation rate constant
nM  nanomoles/litre
OFV Objective Function Value
PALI paliperidone
PKPD  pharmacokinetic and pharmacodynamic
P-gp P-glycoprotein
Q  inter-compartmental flow between central and peripheral compartment
RIS risperidone
RO receptor occupancy
RSE  Relative Standard Error 
SC subcutaneous
Vc volume of the central compartment 
Vp volume of the peripheral compartment
Vbv  volume of brain-vascular compartment 
Vbev  volume of brain-extravascular compartment
Vcor volume of frontal cortex compartment
Vstr volume of striatum compartment



Chapter 4

92

Appendix

Differential equations used to describe plasma PK: 
d(Adepot-RIS)/dt = DOSESC-RIS/DRSC-RIS(t<DRSC-RIS) – kaSC-RIS*Adepot-RIS

d(Ac-RIS)/dt = kaSC-RIS*Adepot-RIS + (QRIS/Vp-RIS)*Ap-RIS – (QRIS/Vc-RIS)*Ac-RIS – (CLRIS/Vc-RIS)* 
Ac-RIS – (CLmet/Vc-RIS)*Ac-RIS

d(Ap-RIS)/dt = (QRIS/Vc-RIS)*Ac-RIS – (QRIS /Vp-RIS)*Ap-RIS

d(Adepot-PALI)/dt = DOSESC-PALI/DRSC-PALI (t<DRSC-PALI) – kaSC-PALI*Adepot-PALI

d(Ac-PALI)/dt = kaSC-PALI*Adepot-PALI + (QPALI/Vp-PALI)*Ap-PALI – (QPALI/Vc-PALI)*Ac-PALI – 
(CLPALI/Vc-PALI)*Ac-PALI + (CLmet/Vc-RIS)*Ac-RIS

d(Ap-PALI)/dt = (QPALI/Vc-PALI)*Ac-PALI – (QPALI/Vp-PALI)*Ap-PALI

Differential equations used to describe brain kinetics and receptor binding:
d(Abv-RIS)/dt = (CLbv/Vc)*Ac-RIS – (CLbv/Vbv)*Abv-RIS – (CLbev-RIS/Vbv)*fuplasma-RIS*Abv-RIS + 

(CLbev-RIS/Vbev)*fubrain-RIS *Abev-RIS + (CLefflux-RIS/Vbev)*fubrain-RIS*Abev-RIS

d(Abev-RIS)/dt = (CLbev-RIS/Vbv)*fuplasma-RIS*Abv-RIS – (CLbev-RIS/Vbev)*fubrain-RIS*Abev-RIS – 
(CLefflux-RIS/Vbev)*fubrain-RIS*Abev-RIS – (CLstr/Vbev)*fubrain-RIS*Abev-RIS + (CLstr/Vstr)*
fubrain-RIS*AstrF-RIS – (CLcor/Vbev)*fubrain-RIS*Abev-RIS + (CLcor/Vcor)*fubrain-RIS*AcorF-RIS

d(AstrF-RIS)/dt = (CLstr/Vbev)*fubrain-RIS*Abev-RIS – (CLstr/Vstr)*fubrain-RIS*AstrF-RIS – kon-D2*
fubrain-RIS*AstrF-RIS*(Bmax-D2 – CBD2-RIS – CBD2-PALI) + koff-D2*AstrB-RIS

d(AstrB-RIS)/dt = kon-D2*fubrain-RIS*AstrF-RIS*(Bmax-D2 – CBD2-RIS – CBD2-PALI) – koff-D2*AstrB-RIS

d(AcorF-RIS)/dt = (CLcor/Vbev)*fubrain-RIS*Abev-RIS – (CLcor/Vcor)*fubrain-RIS*AcorF-RIS – kon-5-HT2A*
fubrain-RIS*AcorF-RIS*(Bmax-5-HT2A – CB5-HT2A–RIS – CB5-HT2A-PALI) + koff-5-HT2A*AcorB-RIS

d(AcorB-RIS)/dt = kon-5-HT2A*fubrain-RIS*AcorF-RIS*(Bmax-5-HT2A – CB5-HT2A-RIS – CB5-HT2A-PALI) – 
koff-5-HT2A*AcorB-RIS

d(Abv-PALI)/dt = (CLbv/Vc-PALI)*Ac-PALI – (CLbv/Vbv)*Abv-PALI – (CLbev-PALI/Vbv)*fuplasma-PALI*
Abvv-PALI + (CLbev PALI/Vbev)*fubrain-PALI*Abev-PALI + (CLefflux-PALI/Vbev)*fubrain-PALI*Abev-PALI

d(Abev-PALI)/dt = (CLbev-PALI/Vbv)*fuplasma-PALI*Abv-PALI – (CLbev-PALI/Vbev)*fubrain-PALI*Abev-PALI – 
(CLefflux-PALI/Vbev)*fubrain-PALI*Abev-PALI – (CLstr/Vbev)*fubrain-PALI*Abev-PALI + (CLstr/Vstr)*
fubrain-PALI*AstrF-PALI – (CLcor/Vbev)*fubrain-PALI*Abev-PALI + (CLcor/Vcor)*fubrain-PALI*AcorF-PALI

d(AstrF-PALI)/dt = (CLstr/Vbev)*fubrain-PALI*Abev-PALI – (CLstr/Vstr)*fubrain-PALI*AstrF-PALI – kon-D2*
fubrain-PALI*AstrF-PALI*(Bmax-D2 – CBD2-RIS – CBD2-PALI) + koff-D2*AstrB-PALI

d(AstrB-PALI)/dt = kon-D2*fubrain-PALI*AstrF-PALI*(Bmax-D2 – CBD2-RIS – CBD2-PALI) – koff-D2*AstrB-PALI

d(AcorF-PALI)/dt = (CLcor/Vbev)*fubrain-PALI*Abev-PALI – (CLcor/Vcor)*fubrain-PALI*AcorF-PALI – kon-5-HT2A*
fubrain-PALI*AcorF-PALI*(Bmax-5-HT2A – CB5-HT2A–RIS – CB5-HT2A-PALI) + koff-5-HT2A*AcorB-PALI

d(AcorB-PALI)/dt = kon-5-HT2A*fubrain-PALI*AcorF-PALI*(Bmax-5-HT2A – CB5-HT2A –RIS – CB5-HT2A-PALI) – 
koff-5-HT2A*AcorB-PALI
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Where subscripts RIS and PALI denote parameters referring to risperidone and pali-
peridone, respectively. Subscripts depot, p, c, bv, bev, strF, strB, corF, corB represent 
volumes (V) and amounts (A) in depot (only for SC dosing), central, peripheral, 
brain vascular, brain extravascular, striatum free, striatum bound, frontal cortex free, 
frontal cortex bound compartments. DRSC represents duration of zero-order absorp-
tion process for SC dosing. kaSC is the absorption rate constant for SC dosing. CL, Q, 
CLbv, CLstr, CLcor represent clearance in the central, peripheral, brain vascular, stria-
tum free, cortex free compartments, respectively. CLmet represent metabolic conver-
sion of RIS to PALI. CLbev and CLefflux represent passive diffusion and active efflux 
through the BBB. Bmax is the receptor density. CB are concentrations bound to recep-
tor in nM. They are calculated as follows:
CBD2-RIS=1000*AstrB-RIS/Vstr/MWRIS

CBD2-PALI=1000*AstrB-PALI/Vstr/MWPALI

CB5-HT2A-RIS=1000*AcorB-RIS/Vcor/MWRIS

CB5-HT2A-PALI=1000*AcorB-PALI/Vcor/MWPALI

Where MW is a molecular weight.
RO is calculated as (CBRIS+CBPALI)/Bmax.
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Abstract

Objectives To assess the ability of a previously developed hybrid physiology-based pharma-
cokinetic and pharmacodynamic (PBPKPD) model to predict the dopamine D2 receptor oc-
cupancy (D2RO) in human striatum following administration of antipsychotic drugs.
Methods A hybrid PBPKPD model, previously developed using information on plasma con-
centrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO 
in human. The rat pharmacokinetic and brain physiology parameters were substituted with 
human population pharmacokinetic parameters and human physiological information. To 
predict the passive transport across the human blood brain barrier, apparent permeability 
values were scaled based on rat and human brain endothelial surface area. Active efflux clear-
ance in brain was scaled from rat to human using MDR1 expression. Binding constants at the 
D2 receptor were corrected based on the differences between in vitro and in vivo systems of 
the same species. The predictive power of this physiology-based approach was determined 
by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at 
clinically relevant doses. 
Results Predicted human D2RO was in good agreement with clinically observed D2RO for 
five antipsychotics. Human D2RO predictions improved when based on models integrating in 
vitro and in vivo information. However, D2RO was under-predicted for haloperidol.
Conclusions The rat hybrid PBPKPD model structure, integrated with in vitro and preclinical 
in vivo model parameters and human pharmacokinetic and physiological information, con-
stitutes a scientific basis to predict the time course of D2RO in man.
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Introduction

In schizophrenia drug therapy and research, dopamine D2 receptor occupancy 
(D2RO) is often used as a target biomarker to quantify the relationship between ef-
ficacy and side effects (1). Several studies suggest that blockade of 65% to 80% of D2 
receptors is the key to antipsychotic efficacy for both conventional neuroleptics and 
novel antipsychotics (2-4). D2RO higher than 80% increases the risk of adverse effects 
such as extra pyramidal symptoms (5). Thus, D2RO has a central role in schizophre-
nia drug discovery, drug development and therapy. Target occupancy is important 
both in early drug discovery, where accurate knowledge of the degree of occupancy 
could help to determine the suitability of a drug candidate for further development, 
and later in the drug development process, when target site occupancy measure-
ments can guide dose selection (6). D2RO is clinically measured using positron emis-
sion tomography (PET) or single-photon emission computed tomography (SPECT) 
methodology, which are both expensive and time-consuming. Tools to predict clini-
cal D2RO in preclinical drug discovery phases are therefore valuable. It is well known 
that current antipsychotics also activate or antagonize other targets in the central 
nervous system. For example, risperidone has a higher affinity for serotonin (5-HT2A) 
receptors than for D2 receptors (5). Extensions of this tool to other receptors would 
therefore increase the value of the current translation framework. 

Recently, we have reported physiology-based pharmacokinetic and pharmacody-
namic (PKPD) models to characterize the time course of D2RO and 5-HT2A receptor 
occupancy (5-HT2ARO) in rats (7,8). The mechanistic and physiology basis of these 
models should potentially allow the prediction of human PKPD properties using 
physiological parameters and prior information from in vitro and in vivo preclinical 
studies (9). The present investigation is aimed to determine how these models can be 
used for translating receptor occupancy from rat to humans.

Development of a translation tool to predict human D2RO (based on PKPD mod-
els) involves scaling information from rat to human. This involves accounting for 
drug distribution to the brain and the drug’s ability to bind to striatal D2 receptors. 
Drug distribution to the brain is not only characterized by passive diffusion process 
but also by active efflux transporters present at the luminal surface of the blood-
brain-barrier (BBB). Similarities in the in vitro permeability values determined by 
various types of experiments provide a basis to integrate and scale information on 
passive drug transport to the brain from in vitro to in vivo or from one species to 
the other (10). However, differential expression and heterogeneity in the homology 
of drug transporters involved in the active drug transport across the BBB leads to 
challenges when scaling active transport related information from one species to 
another (11). Notwithstanding divergent reports on the species independence of 



translational Modeling in Schizophrenia

103

5

drug-specific parameters, integration of in vitro parameters with a physiologically 
based PKPD modeling would increase the potential of successfully translating effects 
from preclinical species to humans (12). 

Hence, the objective of this work was to explore different approaches to predict 
human striatal D2RO using a generic translational PBPKPD model structure, which 
allows integration and scaling of information from preclinical in vitro or in vivo data 
to the human situation. Different approaches were compared to determine the mini-
mal amount of information required for this translational work. A previously devel-
oped extended model structure was also used to predict human 5-HT2ARO based on 
these approaches. 

Methods

Data
This work was performed within the framework of the Dutch Top Institute Pharma 
project: Mechanism-based PKPD modeling (http://www.tipharma.com). This mech-
anism-based PKPD modeling platform involves leading pharmaceutical companies 
worldwide, and academic institutes from The Netherlands. Three pharmaceutical 
companies who are the members of this mechanism-based PKPD modeling platform, 
namely, Janssen Research and Development – Belgium, Merck Sharp and Dohme – 
The Netherlands and Pfizer Worldwide Research and Development – USA, provided 
human plasma concentration data for haloperidol (HAL) and paliperidone (PAL) and 
helped with collection of human D2 and 5-HT2a receptor occupancy data. Clozapine 
(CLZ), HAL, olanzapine (OLZ), PAL and quetiapine (QTP) were used in this study as 
model antipsychotic drugs. The observed human D2RO for these antipsychotics were 
taken from the literature (2, 13-25). For risperidone (RIS), human D2RO was provided 
from the pharmaceutical companies who are involved in this project. 

Population pharmacokinetic (PK) parameters for CLZ, OLZ, QTP and RIS were 
obtained from literature (1,26,27). However, no population PK models have been re-
ported in literature for HAL and PAL. So, for these compounds in-house population 
PK models were developed. The population PK model for haloperidol was developed 
on the basis of data from 7 studies, comprised of 122 individuals [healthy volunteers 
(n=20) and schizophrenic patients (n=102)] and 515 plasma concentrations obtained 
across a wide dose range of 1 to 60 mg/day administered either as single or multiple 
doses. The population PK model for paliperidone-extended release was developed 
on the basis of data from 3 studies, comprised of 870 individuals and 4169 plasma 
concentrations obtained across a wide dose range of 3 to 15 mg/day administered as 
an OROS® once daily formulation.
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Physiology-Based PKPD Model Structure
A physiology-based PKPD (PBPKPD) model was previously developed and evalu-
ated for its usefulness in describing the time course of brain concentration and D2RO 
in rats (7). This model contains expressions to describe the kinetics in brain-vascular, 
brain-extravascular, striatum-free and striatum-bound compartments (Figure 5.1). 
Following administration, drug is transported from the plasma compartment to the 

Plasma 
Pharmacokinetics

CLbv

CLbev

CLst

Brain 
Vascular

fuplasma,Vbv

Brain 
Extravascular

fubrain,Vbev

CLeff

KoffKon

Striatum Free

Striatum Bound

Figure 5.1: A schematic representation of the PBPKPD model. The model incorporates differ-
ent processes to explain the time course of D2RO. The brain pharmacokinetics describes the 
processes involved in the transport of drug from plasma to brain, and the striatum compart-
ment explains the drug binding to receptors through the binding constants.
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brain-vascular compartment; this process is assumed to be determined only by the 
cerebral blood flow. Only the unbound drug in this vascular compartment crosses the 
BBB and is transported into the brain-extravascular compartment, which is governed 
by the brain-extravascular clearance (CLbev). Furthermore, drug is transported from 
the brain-extravascular compartment to the striatal-free compartment. The brain-
extravascular and striatum-free compartments were assumed to be equilibrating 
rapidly. In striatum-bound compartment, drug can reversibly bind to the dopamine 
receptor complex (Figure 5.1). The receptor association and dissociation processes 
were described using kon as the second-order receptor association rate constant (nM-

1h-1), and koff as the first-order receptor dissociation rate constant (h-1). Dopamine D2 
receptor density in striatum was parameterized as Bmax. 

In addition to the previously developed rat PBPKPD model structure, an active 
efflux clearance (CLeff) component between brain-extravascular and brain-vascu-
lar compartments was included in this predictive model to explain the active drug 
transport from brain, when appropriate (i.e. for RIS and PAL). Additionally, this rat 
PBPKPD model structure was extended to account for binding of RIS and PAL to the 
5-HT2A receptor (8). This extended model included two additional compartments 
(cortex-free and cortex-bound). Binding to 5-HT2A receptors was described using as-
sociation and dissociation constants and receptor density values specific for 5-HT2A 
receptors. This extended model structure was used to predict both D2 and 5-HT2A 
receptor occupancy in humans in this simulation study. 

Human D2RO predictions
The rat PBPKPD model structure (Figure 5.1) was used to predict the D2RO ver-
sus time profile of antipsychotics in humans by substituting all parameters of the rat 
model by their human analogues, according to the following methods:

(1) Human population PK parameters estimated using total plasma concentra-
tions were obtained either from models developed in-house or from published litera-
ture (Table 5.1). 

(2) Physiological parameters, such as blood flow to the brain and the brain vol-
umes were obtained from literature (Table 5.2). 

(3) Passive permeability transport across the BBB was scaled from in vitro or 
in vivo rat to in vivo human based on the assumption that permeability for passive 
diffusion per cm2 of brain endothelial surface is identical between different systems. 

(4) Active efflux transport for PAL and RIS was scaled using pertinent informa-
tion on P-gp protein expression in different systems as a scaling factor. 

(5) Receptor binding was either derived from in vitro Ki values or in vivo Kd 
values corrected for differences between in vitro and in vivo system of the same 
species. 
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(6) Experimentally determined values of the fraction unbound in human plasma 
and in rat brain were obtained from the literature. Unbound fraction in human brain 
is assumed to be equal to the unbound fraction in rat brain.

Different approaches were used to obtain human parameters and they were de-
tailed as Approaches A-C in this section. 

Table 5.2: Physiological values used in human D2RO predictive model

Parameter Value Reference

Human cerebral blood flow (L/h) 36.0 (30)

Human brain extravascular volume (L) 1.40 (44)

Human brain vascular volume (L) 0.150 (44)

Human striatal volume (L) 0.00700 (45)

Human cortex volume (L) 1.08 (44)

Dopamine D2 receptor density in human striatum (nM) 28.0 (46)

5-HT2A receptor density in human frontal cortex (nM) 195 (47)

Table 5.1: Parameter Estimates Used in the Population Pharmacokinetic Models

Clozapine Haloperidol Olanzapine Paliperidone Quetiapine

Population mean values (IIV as %CV)

Vc (L) 719(62) 401 (37) 1150 (75) 395.4 (47) 380 (10)

CL (L/h) 37.9 (28) 53 (44) 19.5 (58) 14.15 (45) 96.0 (59)

Vp (L) - 1500 - - -

Q (L/h) - 140 - - -

F (%) -# 60 -# -# -#

Ka (h-1) 1.37 (24) 0.230 0.600 (32) 2.49 2.50 (80)

DUR (h) 22.87

Clozapine, Olanzapine and Quetiapine : Reference (26); Haloperidol and Paliperidone: 
Parameters obtained from in-house developed model
Population PK parameters for Risperidone was obtained reference from (27). Reader is 
requested to refer there for more details
Vc – central volume of distribution, CL – clearance, Vp – peripheral volume of distribution, 
Q – inter-compartmental clearance, F  – absolute bioavailability, Ka  –  absorption rate 
constant, DUR – duration of zero-order absorption, IIV-Inter-individual variability, %CV 
coefficient of variation
#Not estimated and CL and V are corrected for F
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Approach A was based only on human in vitro information (in vitro apparent 
permeability, efflux ratio (ER), in vitro Ki and koff).

Approach B was based on the in vivo parameters (rCLbev, rCLeff, Kdrat, koff-rat) ob-
tained from the rat PBPKPD model.

Approach C was aimed at using minimal information to get the best predictions 
of human D2RO by integrating the approaches A and B. 

All the parameters values used for these simulations are presented in Table 5.3.

Approach A: Human D2RO predictions based on in vitro information

Passive drug transport to the brain
Experimentally determined in vitro apparent permeability (Papp) values were used 
to predict passive distribution of antipsychotics across the BBB. Specifically, values 
of the in vitro permeability across multidrug resistance Madin-Darby canine kidney 
(MDR1-MDCK) type II cell monolayers were obtained from Summerfield et al (28). 
Permeability determined while attenuating transporters denotes the ability of the 
molecule to traverse membranes by passive means (29). These Papp values were trans-
lated to a meaningful parameter of human brain extra-vascular clearance (hCLbev) 
across the BBB by taking the product of Papp and human brain endothelial surface 
area of 20 m2 (30). 

Active drug transport from the brain
For antipsychotics, PAL and RIS which are known to have both active and passive 
transport across the BBB, the active transport component was derived from in vit-
ro efflux ratio determinations. ER is commonly used as an indicator of active drug 
transport in CNS drug discovery. ER is calculated as the ratio of effective permeabil-
ity for a drug from the basal side to the apical side [Passive + Active] to that in the 
opposite direction [Passive – Active] (31). ER was used to calculate the human active 
efflux clearance (hCLeff) of RIS and PAL. 

Derivation of in vitro CLeff from ER is shown below.

  
– Eq (1)

After rearrangement this gives,

 
In vitro CLeff (L/h) = CLbev * 

 
– Eq (2)

where, CLbev represents the passive permeability across the BBB (L/h).
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Table 5.3: In vitro , in vivo and ex vivo values estim
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2 RO

 predictive m
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0.011

 a
0.023

 b
0.034

 a
0.0755

c
0.025

a
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c
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a

0.0300
d

0.0800
e

0.0700
f

0.226
0.170

 f
0.100
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 predictions based on in vitro inform

ation

Papp x 10
-6 (cm

/s)
28.3

a
28.6
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In vitro CLeff was scaled to the in vivo human system based on MDR1 expression. 
MDR1 expression in MDR1-MDCKII cells in vitro was reported as 359.6 µg/cm2 

(32). This expression was normalized for the surface area of the cell monolayer 
(0.0625 cm2) as 22.4 µg of MDR1 protein. MDR1 expression in human brain was 
calculated as 357.6 µg/1400 g of brain based on the documented expression levels of 
6.06 fmol/µg of protein (11). 

Therefore,

hCLeff (L/h) = In vitro CLeff (L/h) * 
 

– Eq (3)

Receptor binding parameters
In vitro Kihuman values were used as the parameter Kd (equilibrium constant). If avail-
able, in vitro or ex vivo experimentally determined koff values were used in these sim-
ulations (Table 5.3). If experimental koff values were not available, then calculated 
koff values based on Ki and koff correlation of different antipsychotics were used, as 
reported previously (5).

Approach B: Human D2RO predictions based on in vivo information

Appropriateness of available rat hybrid PBPKPD model determined in vivo param-
eters for human D2RO predictions was assessed. Binding constants, rCLbev and rCLeff, 
were obtained using PBPKPD models developed by us previously (7, 8). This in vivo 
model based information was only available for OLZ, PAL and RIS.

Passive drug transport to the brain
Calculated Papp (Pappcalc) values were derived as the ratio between PBPKPD model-
estimated in vivo rCLbev and rat brain endothelial surface area (150 cm2/g) and then 
normalized for an average rat brain weight of 2 g/250 g of rat (28). The product of 
Pappcalc and the human brain endothelial surface area (20 m2) was used as the hCLbev 
– the passive transport clearance across the human BBB. 

Active drug transport from the brain
Human active efflux clearance was predicted based on the PBPKPD model-estimated 
rCLeff and mdr1a protein expression in micro vessels in rat. Mdr1a expression values 
for rats were not available, hence, mdr1a expression in rat brain was assumed to be 
equal to that of mouse. Mouse mdr1a expression was documented as 14.1 fmol/µg 
of protein (11). The following equation (4) describes the assumed relationship which 
was used to derive the hCLeff.
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hCLeff (L/h) in human = rCLeff (L/h) * 

  – Eq (4)

Receptor binding parameters
In vivo human kon and koff were assumed to be equal to the model estimated in vivo 
kon-rat and koff-rat values as they are often believed to be drug-specific parameters (33). 
For OLZ, model estimated in vivo Kdrat and koff-rat values were taken from our previ-
ous publication (31). For RIS and PAL, in vivo binding constants were obtained from 
the extended model structure where the time courses for D2 and 5-HT2A receptor 
binding were modeled together. These parameters are shown in Table 5.4.

Table 5.4: Brain PKPD model parameter estimates obtained from Rat PBPKPD model 
and used in the predictive model

Olanzapine(a) Paliperidone(b) Risperidone(b)

Parameters (RSE)

CLbev (L/h/kg) 0.433 (16) 2.13# 2.13 (29)

Kd (nM) – D2 binding 14.6 (7) 0.463# 0.463 (14)

Koff (h-1) – D2 binding 3.04 (24) 0.671# 0.671 (19)

CLeff (L/h/kg) NA 46.5 (28) 9.97 (28)

Kd (nM) – 5-HT2A binding NA 0.156# 0.219 (15)

Koff (h-1) – 5-HT2A binding NA 0.310# 0.525 (25)
#Assumed to be equal to risperidone
(a)Reference (7); (b)Reference (8)
NA – Not applicable
RSE – Relative standard Error
RSE is not available for CLeff as it is derived parameter

Approach C: Human D2RO predictions integrating in vitro and in vivo information

Passive and active drug transport to the brain
Scaling and calculation used in Approach A were also applied in the integrated 
Approach C.
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Receptor binding parameters
In vivo Kdhuman parameters were corrected for the differences between in vitro and in 
vivo scenarios by normalizing model estimated in vivo Kdrat and in vitro Ki values for 
rat and human, as shown in equation (5). 

 
Kdhuman (nM) = In vitro Kihuman * 

 
– Eq (5)

In vivo koff-human values were assumed to be equal to in vitro or ex vivo experimen-
tally determined koff values. 

Human 5-HT2ARO predictions
The objective of this exercise was to check the utility of the extended model structure 
to predict human D2RO and 5-HT2ARO. In vitro Kihuman and Kirat for PAL were 0.250 
nM (34). In vitro Kihuman and Kirat for RIS were 0.160 and 0.210 nM, respectively (34, 
35). Since the koff value for 5-HT2A binding was not available from any in vitro source, 
the in vivo based Approach B and the integrated Approach C were applied for these 
predictions.

Human D2 receptor occupancy simulations
For each approach (approach A-C), 1000 human D2RO- time course curves were 
simulated at clinically relevant doses, administered orally. Differential equations 
(Appendix 1) explaining the pharmacokinetics and pharmacodynamics of antipsy-
chotics were used in these simulations as implemented in R (Version 2.10.1) using 
the deSolve package (36). Inter-individual variability (IIV) in the population pharma-
cokinetic parameters was accounted for in these simulations. The predictive power 
of this translational approach was determined by comparing these simulations with 
observed human D2RO. Hence, the conditions or the scenario for the simulations 
were based on the nature of the human D2RO information. For most antipsychotics 
time course of D2RO was simulated and results at steady state (achieved within 2 or 
3 weeks of repeated drug dosing) were compared with the observed steady state RO. 

For all the drugs, prediction of time course was plotted and compared graphically 
with observed D2RO. Additionally, for OLA, RIS and PAL box plots of prediction 
errors were made to compare the applicability of the different approaches and their 
predictive power. For this purpose, D2RO or both D2RO and 5-HT2aRO predictions 
were made for a drug treatment of 3 weeks, at a single time point (12 h after the last 
dose of OLZ, RIS and 2 h after the last dose of PAL). These predictions were then 
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Figure 5.2: Observed and predicted steady-state D2 receptor occupancy in humans after oral ad-
ministration of antipsychotics at clinically relevant doses. Simulations were performed using the 
rat PBPKPD model structure integrated with in vitro apparent permeability, efflux ratio and in 
vitro binding information (Approach A). Depicted are the observed D2RO (dots) and the shaded 
area represent the 95% prediction limits of the simulated D2RO. The medians of the simulated 
D2RO are represented as a solid line.
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compared with the median of the actual observations. The selection of dose and time 
points was based on the availability of data. 

% Prediction Error (PE) was calculated as follows,

 
% PE = 100 * 

 
– Eq (6)

The median D2RO observed experimentally for OLZ, PAL and RIS were 54.9 %, 
77.4%, 75.8%, respectively. The 5-HT2ARO observed for RIS was 100% (37). 

Results

Human D2RO predictions

Approach A
This approach predicted the time course of human D2RO very well for four of the 
antipsychotics, but not for HAL, RIS and PAL. The result of these simulations is de-
picted in Figure 5.2. The percentage prediction bias of these predictions is depicted 
for OLZ, PAL and RIS in Table 5.5 and Figure 5.3.

Table 5.5: Percentage Prediction bias across different approaches used for predicting 
human D2RO

Information used in predictions Olanzapine Paliperidone Risperidone

Approach A -13 -35 -28

Approach B -53 -39 -33

Approach C -7 10 15

Human D2RO using extended model structure

Approach B NA NA -23

Approach C NA NA 15

Human 5-HT2ARO using extended model structure

Approach B NA NA -26

Approach C NA NA -9

NA – Not applicable
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Approach B
The predictive model based on in vivo model estimated parameters under-predicted 
the human D2RO for OLZ, RIS and PAL (Table 5.5, Figure 5.3).

Approach C
The predictive model using the “corrected” in vivo Kdhuman estimates predicted hu-
man D2RO for OLZ, RIS and PAL the best when compared to the other approaches. 
For OLZ, the predictions based on either combined approach or in vitro information 
alone were similar (Figure 5.3). For PAL and RIS, the D2RO was slightly over-predict-
ed and the prediction bias was small in comparison to the other approaches (Figure 
5.3-5.4) and Table 5.5. 
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Figure 5.3: Box-plots representing 
the % prediction error (PE) for dif-
ferent approaches where in vitro, in 
vivo and integrated in vitro and in 
vivo information were used to pre-
dict the human D2RO. Letters A, B 
and C denotes the three different ap-
proaches, Approach A, Approach B 
and Approach C, respectively.
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Figure 5.4: Observed and predicted steady-state D2 receptor occupancy (D2RO) in humans after 
oral administration of risperidone or paliperidone at clinically relevant doses. Depicted are the 
observed D2RO (dots) and the shaded area represent the 95% prediction limits of the simulated 
D2RO. The medians of the simulated D2RO are represented as a solid line. Panel (a) and Panel 
(b) represent the human D2RO predictions for paliperidone achieved by approaches A and C, 
respectively. Panel (c) and Panel (d) represent the human D2RO predictions for risperidone based 
on approaches A and C, respectively.
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Figure 5.5: Box-plots represent the % prediction error (PE) for human D2RO and 5-HT2A RO 
predictions of risperidone at 4 mg/day dose. % PE for human D2RO predictions obtained by both 
D2 model structure (D2MS) and an extended model structure (5-HT2AMS) are compared in the 
left hand panel. Right hand panel represents the human 5-HT2ARO predictions of risperidone 
obtained from the extended model structure using approach B and C.

Human 5-HT2ARO predictions
The extended predictive model using the “corrected” in vivo Kdhuman estimates pre-
dicted the human 5-HT2ARO for risperidone better than approach B. Human D2RO 
predictions were similar to that of the model which only accounts for the D2 receptor 
binding (Table 5.5, Figure 5.5).
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Discussion

This study aimed to utilize the recently proposed rat PBPKPD model structure (7, 
8) in a translational framework to scale pharmacokinetic and pharmacodynamic 
information from rats to human. The objective of this work was also to determine 
the minimal information required to be included in this translational framework to 
predict the D2RO during the early drug discovery phase, while taking into account 
distribution to the brain and receptor binding.

It is well known that drug distribution to the brain is not only limited by tight 
junctions but also by active efflux transporters present at the luminal surface of the 
BBB. Hence, hCLbev and hCLeff were included in this model structure to explain pas-
sive permeability and active efflux processes in a mechanistic manner. 

Passive permeability of drugs across the BBB was calculated based on the prod-
uct of human brain endothelial surface area and Papp values obtained from in vitro 
MDR1-MDCK. In vitro effective permeability of compounds with various character-
istics across human primary brain endothelial cells was comparable to those obtained 
with bovine and rat capillary endothelial cells (10). Nevertheless, it is likely that in in 
vivo condition that there would be differences in efficiency in permeability between 
species, given the difference in surface area of brain. Hence, it is also reasonable to 
evaluate the utility of PKPD model-estimated in vivo parameters in this translational 
approach. This may help to fill the gaps in the predictions based on in vitro values and 
hence, Approach B was developed, where in vivo PBPKPD model estimated param-
eters were used in the simulations.

The hCLbev calculated based on in vitro Papp or Pappcalc (calculated based on rCLbev) 
values were different (Table 5.3). This could direct towards an explanation for the dif-
ferent efficiency of drug transport in in vitro and in vivo systems. However, it should 
be noted that Pappcalc was derived using reported rat brain endothelial surface area, 
which ranges from 100 to 240 cm2 per g brain tissue (38,39). Notwithstanding to this 
uncertainty in rat brain endothelial surface area, deriving a relationship between mod-
el-estimated rCLbev (and thereby Pappcalc) and in vitro Papp based on more compounds 
might help to improve the translation approach. However, the limited number of com-
pounds used in our PKPD analysis did not allow us to elicit such a relationship. So, in 
the absence of such a relationship, it seems to be more appropriate to base the scaling 
of in vitro Papp values to hCLbev on human brain endothelial surface area only. Hence, 
while integrating in vitro and in vivo information (i.e. Approach C), calculated hCLbev 
was based only on in vitro Papp value and human brain endothelial surface area.

Predicting or calculating active efflux clearance at the human BBB using in vitro 
information was a challenging and complicated task. In this simulation study, ER was 
used to account for the active drug transport out of the brain. Subsequently, active 
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efflux transport was also scaled to human based on the estimates obtained from the 
rat PBPKPD model and expression of mdr1(a) protein in both species (i.e. Approach 
B). Due to non-availability of the appropriate mdr1a expression data in rats, it was 
assumed that it is equal to that of mouse, which may lead to some bias in the predic-
tions. Nevertheless, this work provides a framework to account for the active drug 
transport in humans. It is noteworthy that both these approaches (Approach A and 
B) are plausible because of their mechanistic basis. Additionally, the active transport 
was included as a linear process rather than non-linear as usually described for in 
vitro systems, since the free concentrations of drug at the BBB (in rats) were much 
lower than the concentrations used in vitro, and remain most likely below the Km 
(concentration require for the half -maximal transport) for the transporter, which 
makes this assumption acceptable. 

There is a lack of human brain drug exposure information to evaluate these ap-
proaches. Extension of this method to other types of drugs (such as P-glycoprotein 
substrates) needs to be tested, which will also serve as an evaluation tool for both 
these approaches. 

This predictive model structure was obtained from a preclinical system where the 
drug binding to D2 receptors was explained by accounting for the association and dis-
sociation rates of antipsychotics. Hence, it is appropriate to include in vitro or in vivo 
binding constants in this model structure to predict human D2RO. Danhof et al (40) 
proposed that the values of drug-specific parameters such as target affinity are likely 
to be identical between species and individuals. This would imply that the binding 
rate constants estimated in rats can be used to extrapolate the pharmacodynamics 
from rat to human. The model estimated in vivo Kdrat values for OLZ were close to in 
vitro Kirat values (rat cloned D2L system – 17 nM), but in vitro Kihuman values (human 
cloned D2L system – 5.1 nM) were different from both these values of the rat system. 
Additionally, PAL and RIS in vitro Kirat values (most commonly reported as 2 nM) 
are different from the model estimated in vivo Kdrat values (0.364 nM). The human 
D2RO predictions for OLZ, RIS and PAL were not consistent with the observed hu-
man D2RO data when model estimated in vivo Kdrat was used as the in vivo Kdhuman 
parameter in the predictive model. This challenges the general belief that drug-spe-
cific parameters like Kd can be used across species without any scaling. However, this 
difference in drug-specific parameters between species needs to be examined with 
more drugs before being generalized. This difference between the in vivo and in vitro 
scenario for the same species could arise from the assumptions used in both in vitro 
calculations and model estimations. Additionally, radio-ligand selection and distur-
bances in assumed equilibrium conditions in in vitro and in vivo systems could lead 
to biased or inappropriate Ki calculations (41). The model estimates of in vivo Kdrat 
for RIS are influenced by the brain distribution kinetics and it was elucidated that 
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the brain-to-plasma ratio (in rats) is not constant for RIS, suggesting an influence 
of specific binding to receptors on the brain-kinetics (8). It has already been shown 
that the binding to both D2 and 5-HT2A receptors (extended model) was essential 
to explain the relationship between drug exposure and receptor occupancy in the 
preclinical system with good precision (8). Hence, this extended model structure was 
used to predict both D2 and 5-HT2A receptor occupancy in humans. The extended 
structure predicted 5-HT2ARO well. Surprisingly, the D2RO predictions achieved by 
using these two different model structures remained closer to each other; and this 
extension, which was essential for model fitting in a preclinical system, did not sig-
nificantly improve the human D2RO predictions. Nevertheless, this extended model 
structure underscores the ability of this model framework to be flexible and extend-
able to other receptor types.

Our objective was also to study the minimal information required to predict hu-
man D2RO. In general, human D2RO was predicted well for CLZ, OLZ and QTP, when 
only in vitro information (Approach A) was used in the simulations. This demon-
strates the ability of this model structure to predict human D2RO with minimal in 
vitro information. However, for PAL and RIS human D2RO, it seems more appropriate 
to correct human in vitro information with rat in vitro and in vivo values. Hence, a cor-
rection was applied as explained in equation-5. This correction might help with the 
normalization of the scaling from an in vitro to an in vivo system for different species.

In this simulation study, the time course of plasma concentrations was obtained 
from available population pharmacokinetic parameters. It is also possible to predict 
these pharmacokinetic parameters based on in silico and in vitro information using 
commercially available tools, like Simcyp (Simcyp Ltd., Sheffield, UK). So, the re-
quirement of population pharmacokinetic parameters is not essential. 

For HAL, D2RO predictions were lower than the observations. This may be relat-
ed to the high ratio of unbound concentrations of HAL in brain and plasma, which is 
close to 4 in rats (42). This high brain to plasma ratio may indicate a unique active in-
flux transport to the brain. In addition, it has been documented that the metabolism 
of HAL involves a conversion of HAL to reduced haloperidol, and back-conversion of 
reduced haloperidol to HAL (43) in the brain of guinea pigs. Accounting for this me-
tabolism and/or active influx transport may help to improve predictions. Extending 
this predictive model structure to include such complexity is practically possible, if 
sufficient information about any related process is provided beforehand. 

Applications of this predictive tool are not limited to only predicting D2RO in 
early drug discovery but also in selecting appropriate first in human doses based on 
pharmacodynamics. It is not anticipated that predictive tools will completely replace 
the need for experiments, though it is plausible that this tool can help to design more 
informative and more efficient clinical studies. 
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Conclusion

A general translational framework was developed which is based on a mechanism-
based approach and accounts for the different processes involved in the transport of 
drug to the brain. In vitro information (Papp and Ki) were good enough to predict the 
human D2RO for those drugs distributed to the brain by passive permeability proc-
esses. An integrated approach where in vitro and in vivo information were combined, 
predicted the human D2RO better than other approaches for drugs with active efflux 
transport from brain. This model structure with an appropriate extension also pre-
dicted the human 5-HT2ARO well.
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Appendix 1

PBPKPD Model used to predict human D2RO 
Plasma pharmacokinetics varies depends on the antipsychotic drug used (Table 5.1)
d(Abv)/dt = (CLbv/Vplasma)*Aplasma – (CLbv/Vbv)*Abv – (CLbev/Vbv)*fuplasma*Abv + (CLbev/

Vbev)*fubrain*Abev + (CLeff/Vbev)*fubrain*Abev

d(Abev)/dt = (CLbev/Vbv)*fuplasma*Abv – (CLbev/Vbev)*fubrain* Abev – (CLeff/Vbev)*fubrain*Abev  – 
(CLst/Vbev)*fubrain*Abev + (CLst/Vstf)*fubrain*Astf

d(Astf)/dt = (CLst/Vbev)*fubrain*A bev – (CLst/Vstf)*fubrain*Astf – kon*fubrain*Astf*(Bmax – CB) + 
koff*Astb

d(Astb)/dt = kon*fubrain*Astf*(Bmax – CB) – koff*Astb

Where,
Subscripts plasma, bv, bev, stf, sb represent Volumes (V) and Amount (A) of drug at 
plasma, brain-vascular, brain-extravascular, striatum-free and striatum-bound com-
partments, respectively;
CLbv, CLbev, CLst represent transport of drug to brain-vascular, brain-extravascular, 
striatum-free compartments, respectively.
CLeff represents the active efflux transport of drug from brain-extravascular compartment.
CB is concentration bound to receptor as (Astb/Vstb)/ (MW/1000) in nM;
MW is Molecular Weight of the drug used;
D2RO is calculated as CB/Bmax*100%
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Abstract

Objectives Dopamine D2 receptor occupancy (D2RO) is the major determinant of efficacy and 
safety in schizophrenia drug therapy. Excessive D2RO (>80 %) is known to cause catalepsy 
(CAT) in rats and extrapyramidal side effects (EPS) in human. The relationship between CAT 
scores in rats and EPS events in human is not yet clear. The objective of this study was to use 
pharmacokinetic and pharmacodynamic modeling tools to relate CAT with D2RO in rats and 
compare that with the relationship between D2RO and EPS in human. Additionally, we aimed 
to develop a model that can predict the CAT score for other antipsychotics. 
Methods Severity of CAT was assessed in rats at hourly intervals over a period of 8 hours after 
antipsychotic drug treatment. These CAT scores were ordered categorical in nature and each 
score may be correlated with the adjacent observation. In addition, we observed a time-delay 
between D2RO and effects. Hence, we used an indirect response model with and without 
Markov elements to explain the relationship of D2RO and CAT. 
Results Both models explained the CAT data well for olanzapine, paliperidone and risperi-
done. However, only the model with the Markov elements predicted the CAT severity well 
for clozapine and haloperidol. The relationship between CAT scores in rat and EPS scores in 
humans was elucidated in a quantitative manner. The probability of having EPS for 0% D2RO 
is approximately 5%, which shows the effect placebo on EPS. The risk of EPS does not exceed 
10% over placebo correlates with less than 86% D2RO and less than 30% probability of CAT 
events in rats. This tool may be useful to predict the severity of human EPS from D2RO and 
CAT scores in rats.
Conclusion The relationship between D2RO and CAT scores was elucidated using the indirect 
response model with Markov elements. A quantitative relationship between CAT as observed 
in rats and EPS as observed in humans was elucidated and may be used in drug discovery to 
predict the risk of EPS in humans from D2RO and CAT scores in rats.
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Introduction

In schizophrenia drug therapy and research, dopamine D2 receptor occupancy 
(D2RO) is used as a biomarker for both efficacy and incidence of side effects (1). 
Several studies suggest that blockade of 65% to 80% of D2 receptors is the basis for to 
the antipsychotic efficacy of both the conventional neuroleptics and the novel antip-
sychotics (2-4). D2RO higher than 80% increases the risk of adverse effects such as 
extrapyramidal symptoms (EPS) (5). In preclinical research, catalepsy (CAT) is used 
as a rodent model for evaluating EPS liability (6). CAT is a condition characterized 
by wax-like muscular rigidity, in which an abnormal body posture is maintained over 
an extended period of time. This effect is generally considered to be an animal model 
for the antipsychotic-induced EPS in human. In general, the procedure to assess CAT 
measures the time that an animal maintains an unusual position. It has been sug-
gested that mechanisms involved in the mediation of CAT in rats and EPS in humans 
might indeed be similar (7). However, a translation of dose-response relationships 
for CAT and EPS thus far has not been established. 

Recently, pharmacokinetic and pharmacodynamic (PKPD) models are increas-
ingly being used to characterize and predict the time course of pharmacodynamic 
responses for both preclinical and clinical scenarios. These models use the principles 
of capacity limitation and turnover processes to describe the time course of pharma-
cological effects in a mechanistic manner (8). The key feature of these mechanistic 
models is their ability to differentiate between the system- and drug-specific param-
eters, which have been proven to be useful in the prediction and extrapolation of 
treatment effects (9-11). These PKPD models were applied in the present study, in 
order to elucidate the D2RO-CAT relationship in rats and to predict any side effects 
in humans. Modeling is not only useful to summarize and characterize data, but also 
for predicting answers to questions without performing the new experiments (12). 
This “applied” modeling concept can be used to simulate and extrapolate treatment 
effects to different scenarios. This characteristic of PKPD modeling tools may be used 
to predict the relationship between D2RO and side effects during early drug discovery 
phases. 

Hence, the objective of this modeling study was to characterize a relationship 
between D2RO and CAT in rats using PKPD modeling tools. We related the different 
scales of side effects in rats and human, in a quantitative manner. Furthermore, we 
aimed at a model structure that can predict CAT severity for other antipsychotics. 
These tools and approaches might be useful to predict side effects and thereby accel-
erate the drug development process.
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Methods

Data
This work was performed within the framework of the Dutch Top Institute Pharma 
project: Mechanism-based PKPD modeling (http://www.tipharma.com). This mech-
anism-based PKPD modeling platform involves leading pharmaceutical companies 
worldwide, and academic institutes from The Netherlands. The pharmaceutical com-
panies who are the members of this mechanism-based PKPD modeling platform, 
namely, Janssen Research and Development – Belgium, Merck Sharp & Dohme – The 
Netherlands and Pfizer Worldwide Research and Development – USA, provided data 
on D2RO and CAT scores after treatment with clozapine (CLZ), haloperidol (HAL), 
olanzapine (OLZ), paliperidone (PAL) and risperidone (RIS). 

Catalepsy experiments
CAT studies were performed using Wistar rats at different dose levels for each drug 
(modified after Janssen et al., 1965) (13). CAT was assessed in rats at hourly intervals 
over a period of 8 hours after the administration of test compound or vehicle. A con-
trol group (vehicle treatment) was included in all these experiments and the historical 
data from vehicle treatment was available and used for the following categorization. 
Each rat was scored based on the severity of the CAT as pronounced (score=3), mod-
erate (score=2), slight (score=1), and absent (score=0). Evaluations of CAT were based 
on the sum of the scores from two independent observers, resulting in a score that 
ranged from 0 to 6. However, the criteria for drug-induced CAT were determined 
as absent for the scores ≤ 2, as mild for the scores between 3 and 5 (occurrence 0.1% 
of control animals) and severe for scores of 6 (not observed in controls). During this 
model development, CAT scores of absent, mild and severe were coded as 0, 1 and 2, 
respectively. Details of these animal studies are presented in Table 6.1. 

Table 6.1: Details of animal studies used in this analysis 

Name of the 
antipsychotics

Dose Range  
(mg/kg)

Number of Rats 
used

Number of 
observations

Clozapine 0.63-320 85 765

Haloperidol 0.16-10 70 630

Olanzapine 0.16-40 99 891

Paliperidone 0.08-40 46 414

Risperidone 0.04-10 80 720
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Dopamine D2 Receptor Occupancy Simulations
The animal study protocol for CAT experiments was aimed to measure the time 
course of CAT severity. Hence, it was not possible to measure D2RO in the same 
animals and plasma drug concentrations were not available for these rats. Hence, we 
used previously developed PKPD models to simulate D2RO for each dose level.

Previously, we developed hybrid physiology-based pharmacokinetic and phar-
macodynamic (PBPKPD) models to describe the relationship between drug expo-
sure in plasma and brain with D2RO in rats for OLZ, PAL and RIS. These models have 
been described elsewhere (14, 15). Briefly, classical pharmacokinetic models based on 
a population approach were used to describe the plasma concentration time profiles. 
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0 Figure 6.1: This plot illustrates the time 
delay between Dopamine D2 Receptor 
occupancy (D2RO) and its effect on 
catalepsy (CAT) scores for all the drugs. 
Bar chart represents the time course of 
CAT scores (0,1 and 2) and the red line 
indicates the D2RO for the respective an-
tipsychotics. Left-y axis depicts the fre-
quency of CAT scores and right-y axis 
represents percentage D2RO. 
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Distribution of drug to the brain was described based on passive and if applicable, 
active drug transport mechanisms. Subsequent binding to D2 receptors in striatum 
was characterized using association and dissociation constants of these drugs to D2 
receptors. So, we used this previously developed PBPKPD model to simulate D2RO 
for OLZ, PAL and RIS and used the simulated D2RO to develop a model to explain 
the time course of CAT severity in rats. 

In addition, we also had CAT severity information for CLZ and HAL in rats. 
However, there was not enough information available on plasma and brain drug 
concentrations and D2RO to develop a PBPKPD model. We therefore simulated the 
time course of D2RO based on a published empirical PKPD model. We referred to 
the original publications for more details on PKPD modeling (14-17). For HAL, the 
pharmacokinetic parameters were obtained from a PK model developed by us. We 
intended to use the D2RO of CLZ and HAL to predict the D2RO-CAT relationship 
obtained using the PKPD model that was developed using the CAT scores from OLZ, 
PAL and RIS.

Pharmacodynamic Model
Modeling ordered categorical nature of CAT score consisted of an indirect response 
(IDR) model combined with a logistic regression model to describe the relationship 
between D2RO and the CAT scores. Further, we explored the requirement of Markov 
element to properly account for the correlation between frequently observed CAT 
scores. 

Indirect response model
During exploratory data analysis, a time delay between D2RO and severity of CAT 
scores (Figure. 6.1) was evident. Model building was therefore initiated by account-
ing for this time delay using biophase, transduction and IDR models. It was found 
that IDR model gave better results than other models on the basis of objective func-
tion and model fit. 

The IDR (18) model as implemented in this analysis, utilizes Kin as zero-order 
rate constant for the production of response and Kout as first-order rate constant for 
the loss of response. 

d(R)/dt = Kin*(Q/(Q50+Q)) – Kout*R

Q is the transformed form of D2RO which was derived as RO / (100- RO), where 
RO refers to the D2 receptor occupancy. This transformation allows Q to have a value 
from 0 to infinity for D2RO from 0 to 100%. A similar transformation was applied 
to estimate RO50, as Q50 = (RO50/ (100-RO50)). This model assumed that there was 
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no CAT severity in the absence of D2RO. The response variable, R, is an observed 
response which is a function of D2RO. RO50 is the receptor occupancy at which the 
production of CAT response is 50% of the maximal Kin. RO50 was estimated by fitting 
this model to the D2RO and CAT score data.

Severity of CAT is an ordered categorical variable that can take a value of 0 (ab-
sence of catalepsy), 1 (a mild catalepsy) or 2 (severe catalepsy). Hence, the prob-
ability of each severity was modeled with a logistic regression model (19,20). This 
model is intended to describe the relationship between D2RO and severity of CAT in 
rats. Simulated D2RO were used to sequentially fit this model to CAT score data. The 
mixed effects logistic regression model was implemented as explained in the follow-
ing equation:

logit[P(CATij ≥ m|CATi, ηi)] =  
m

∑
k = 1

 βk + R + ηi

where CATij denotes the CAT severity score for the ith individual at time j; logit[P(CATij 
≥ m|CATi, ηi)] denotes the logit function of the cumulative probability that the CAT 
severity score is ≥ m (m = 1 or 2) for rat i at time tj given the rat has a CAT event at 
some time point during the study; βk specifies the baseline set of logit probabilities of 
the various degrees of CAT severity; For example, β1 specifies the baseline set of prob-
abilities for the CAT score to be ≥ 1. R is an observed response which is a function 
of D2RO; and ηi is a random individual effect determining the individual sensitivity 
assumed to be 0. The time course of CAT was investigated for the drug effect. 

Indirect response – Markov model
The CAT severity scores were observed every hour during the animal experiments. 
Therefore, there may be a correlation between neighboring observations within a rat. 
This model estimates the cumulative probabilities of having a certain CAT score giv-
en the previous observation:

logit[P(CATij ≥ m|CATi, CATij–1 = h, ηi)] =  
m

∑
k = 1

 βkh + R + ηi

where CATij denotes the CAT severity score for the ith individual at tj, and CATij–1 
is the CAT severity for that rat at tj–1 (the previous CAT score), the βkh specifies the 
baseline set of logit probabilities of the various degrees of CAT severity, given the 
previous state of CAT (h). For example, β10 specifies the baseline set of probabilities 
for the CAT score to be ≥ 1, given the previous observation is 0. R is the outcome of 
IDR model, which describes the effect of D2RO on CAT response; and ηi is a random 
individual effect determining the individual sensitivity assumed to be 0. 
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Model building 
Model fitting was performed using a population analysis approach as implemented 
in NONMEM (version VII level 2.0) (21). Diagnostic graphics, post processing of 
NONMEM output and data simulations were performed using R (version 2.10) (22).

During the model building, the goodness-of fit of different models to the data 
was evaluated using change in objective function relative to the change in the number 
of parameters, assuming a chi-square distribution.

Model Evaluation
Standard visual predictive check (VPC) was performed to check the adequacy of the 
models. If the model provides an adequate description of the data, then the simulated 
data should mimic the important features of the real data. To evaluate the integrity of 
the model, 95% confidence intervals (CIs) were calculated by a log-likelihood profil-
ing (LLP) method. VPC and LLP were done as implemented in PsN (version 3.2.4) 
(23).

The performance of the IDR and IDR-Markov model for explaining the differ-
ent transition was evaluated by a predictive check based on the simulations obtained 
from these models. Transition refers to the change of CAT severity from one state to 
other state. One hundred datasets with identical design to the original dataset were 
used to simulate the distribution of the number of the transitions using the param-
eters obtained from both the IDR and the IDR-Markov models and compared with 
the original number of transitions.

Extrapolation to other drugs
The performance of the IDR and IDR-Markov models were evaluated by simulating 
CAT severity scores for two other antipsychotics, CLZ and HAL. This simulation 
was done as described below. Initially, D2RO for CLZ and HAL was predicted using 
an empirical PKPD model (16, 17). The IDR and IDR-Markov model parameters 
were used in this simulation study to simulate CAT severity over time for CLZ 
and HAL. One hundred datasets with identical design to the original design were 
simulated using both models and the simulations were graphically compared with 
observations.

EPS and Catalepsy
The secondary objective of this study was to relate the rat CAT scores with the human 
EPS scores at steady-state conditions. To simulate the CAT scores at steady-state con-
ditions, the IDR-Markov model estimated parameters were used. Since the Markov 
model accounts for the correlation with previous observations, the probability of 
severity at the given time-point is conditioned on the previous observation, hence, 
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P0 = P’0 * (P00) + P’1 * (P10) + P’2 * (P20), where P00, P10, P20 are the probabilities of being at 
0, when their previous observation was 0, 1 and 2 respectively. At steady state condi-
tions, P’0 is assumed to be equal to P0. Similar equations can be written for P1 and P2. 
The probability of each severity was plotted against D2RO.

Pilla Reddy et al (24) described the relationship between human D2RO obtained 
from different antipsychotics and EPS using PKPD modeling with a Markov ap-
proach. This model was used to simulate the probability of EPS as absent, mild and 
moderate in steady-state conditions after 6 weeks of drug treatment. The relationship 
between D2RO and probability of CAT in rats was related to the D2RO-EPS relation-
ship in human using a polynomial equation. 

Results

Pharmacodynamic model
Indirect response models with and without Markov elements were used to describe 
the drug effect on the severity of CAT in rats. The IDR with proportional odds mod-
el for ordered categorical data provided a good fit of the model to the olanzapine, 

Table 6.2: Parameter estimates for IDR model 

Parameters Description Population Mean 
(SE)

95% CI  
(Lower … Upper)

β1
Baseline probability (logit) 

for CAT ≥ 1 -5.17 (0.275) -5.74 … -4.66

β2
Baseline probability (logit) 

for CAT ≥ 2 -1.74 (0.118) -1.98 … -1.52

Kin (h-1) zero-order rate constant 
for the production of response 4.70 (0.251) 4.22 … 5.20

Kout (h-1) first-order rate constant 
for the loss of response 0.249 (0.0229) 0.206 … 0.297

RO50 (%)
Receptor occupancy 

at which the production 
of CAT response is 50% 

of the maximal production Kin

95.7 (0.007) 94.0 … 96.9

SE – standard error as obtained from the COVARIANCE option of NONMEM
CI – confidence interval estimated using likelihood profiling
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paliperidone and risperidone data; Kin, Kout, RO50 and baseline probabilities were 
estimated with good precision (Table 6.2). Model parameter estimates obtained 
from the IDR-Markov model are presented in Table 6.3. Both these models estimat-
ed baseline probabilities for the severity of CAT. Kin, Kout and RO50 were estimated 
with good precision. We also estimated separate RO50 for each drug, which turned 

Table 6.3: Parameter estimates for IDR-Markov model

Parameters Description Population Mean 
(SE)

95% CI  
(Lower … Upper)

β10

Baseline probability 
(logit) for CAT ≥ 1, when 
the previous CAT was 0

-5.14 (0.378) -6.00 … -4.49

β20

Baseline probability 
(logit) for CAT ≥ 2, when 
the previous CAT was 0

-1.46 (0.188) -1.86 … -1.12

β11

Baseline probability 
(logit) for CAT ≥ 1, when 
the previous CAT was 1

-0.926 (0.382) -1.74 … -0.213

β21

Baseline probability 
(logit) for CAT ≥ 2, when 
the previous CAT was 1

-3.43 (0.297) -4.03 … -2.87

β12

Baseline probability 
(logit) for CAT ≥ 1, when 
the previous CAT was 2

-0.019 (0.552) -1.11 … 1.09

β22

Baseline probability 
(logit) for CAT ≥ 2, when 
the previous CAT was 2

-2.50 (0.386) -3.36 … -1.83

Kin (h-1) zero-order rate constant 
for the production of response 6.41 (0.987) 4.94 … 8.85

Kout (h-1) first-order rate constant 
for the loss of response 0.818 (0.213) 0.493 … 1.28

RO50 (%)
Receptor occupancy 

at which the production 
of CAT response is 50% 

of the maximal production Kin

94.5 (0.021) 89.1 … 97.4

SE – standard error as obtained from the COVARIANCE option of NONMEM
CI – confidence interval estimated using likelihood profiling
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out to be similar between OLZ, PAL and RIS and the objective function was not 
significantly (P<0.01) decreased when compared to the model with common RO50 
for all these drugs (Table 6.4). Inter-rat variability was assumed to be equal to zero 
in both models.

Model Evaluation
For both IDR and IDR-Markov models, 95% CI obtained using LLP were within ac-
ceptable limits for all the parameters, except for the baseline probability estimate β12 
(Table 6.2 & 6.3). VPC plots demonstrated that the model fits obtained by both IDR 
and IDR-Markov models were similar (Figure 6.2). The time-dependent transition 
from one state of catalepsy to other state of catalepsy is depicted in Figure 6.3. Both 
IDR and IDR-Markov models predicted the transition states equally well.

Extrapolation to other drugs
For CLZ and HAL, IDR-Markov model performed slightly better than IDR model in 
predicting CAT severity score (Figure 6.4). 

CAT and EPS relationship
The relationship between D2RO and side effect scores in rat and human is depicted in 
Figure 6.5. Excessive D2RO (>80%) changed the probability towards mild and severe 
CAT in rats, whereas in human a similar type of change was not observed. The rela-
tionship between CAT and EPS scores is shown in Figure 6.6. A polynomial function 
was used to quantitatively relate the CAT and EPS scores.

Table 6.4: Objective function values and different RO50 estimates of IDR-Markov Model

Model Description Objective function value Estimated RO50 (%)

Common RO50 for OLZ, 
PAL and RIS 1037 94.5

Separate RO50 for OLZ, 
PAL and RIS 1030

OLZ – 95.9
PAL – 94.2
RIS – 96.2

OLZ – Olanzapine 
PAL – Paliperidone
RIS – Risperidone
RO50 is the receptor occupancy at which the production of CAT response is 50% of the 
maximal production Kin
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Figure 6.2: Plot rep-
resents the visual pre-
dictive checks for the 
adequacy of indirect 
response (IDR) and 
indirect response with 
Markov (IDR-Markov) 
model. Shaded area 
depicts the 90% pre-
diction interval for the 
simulated probabilities 
and the red solid line 
represents the median 
probability from the 
original data.
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Figure 6.3: Predictive check results for the distribution of transitions in catalepsy severity. Red 
dotted lines represent the observed median for the proportion of transitions and shaded areas 
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the 90% prediction interval from the indirect response (IDR) and indirect response with Markov 
(IDR-Markov) model simulations.
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(a) IDR Model − Clozapine
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   (b) IDR−Markov Model − Clozapine
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Figure 6.4: Plot represents the simulated probabilities of catalepsy for clozapine and haloperidol. 
Red dotted lines represent the observed median probability and shaded areas the 90% prediction 
interval from the indirect response (IDR) and indirect response with Markov (IDR-Markov) 
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(c) IDR Model − Haloperidol
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   (d) IDR−Markov Model − Haloperidol
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model simulations. (a) and (b) show the prediction probabilities of catalepsy for clozapine using 
IDR and IDR-Markov models, respectively. (c) and (d) show the probabilities of catalepsy for 
haloperidol using IDR and IDR-Markov models, respectively.
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Figure 6.5: Plot represents the relationship between D2 receptor occupancy and side-effects. 
Panel (a) represents the probability of catalepsy (CAT) scores in rats at steady state conditions. 
Solid, dashed and dotted lines depict the probabilities of CAT severity as absent, mild and severe, 
respectively. Panel (b) represents the probability of extrapyramidal symptom (EPS) scores in hu-
mans at steady state conditions. Solid, dashed and dotted lines depict the probabilities of CAT 
severity as absent, mild and moderate to severe, respectively. 
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Discussion

The objective of our PKPD analysis was to utilize the information on CAT in rats to 
describe the relationship between D2RO and CAT and to extrapolate this relationship 
to other drugs to predict CAT scores. We also linked the CAT in rat to EPS in human 
using PKPD modeling and simulation approaches. 

Several studies seem to indicate that the dopaminergic pathway involved in the 
mediation of CAT in rats and EPS in humans could be similar (7). Moreover, it was 
reported that CAT in rats is a reliable indicator of gradual dissociation of the an-
tipsychotic agent from D2 receptors (6). Hence, our approach to relate D2RO and 
CAT severity is substantiated. Moreover, using D2RO-CAT relation rather than drug 
exposure-CAT relation gives the way to introduce a compound independent vari-
able, which may be used to extrapolate the D2RO-CAT relationship to other drugs 
and also to scale this relationship between different species. In general, proportional 
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Figure 6.6: Panel (a) represents the relationship of side-effects between rat and humans. The 
blue dotted line is obtained by fitting a polynomial model to the probability of side effects in rats 
(CAT) and humans (EPS). In panel (b), the dots with dropped lines depict the relationship be-
tween catalepsy in rats and the probability of extrapyramidal symptoms in humans for respective 
D2 receptor occupancies.

(b)
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odds models, introduced in the field of PKPD modeling by Sheiner et al (20) have 
been proven to describe the ordered categorical data well. In our data analysis, the 
proportional odds model was used to explain the probability of the degree of CAT.

It is evident that D2RO and CAT severity scores are not directly related with time 
(Figure 6.1). So, it is appropriate to use an IDR model to explain the relationship be-
tween D2RO and CAT scores rather than a direct response model (e.g., Emax model). 
The semi-mechanistic nature of IDR models allows for distinguishing the drug-spe-
cific parameters (RO50) and system-specific parameters (Kin and Kout). It is acceptable 
to assume that these system-specific parameters could be the same for different an-
tipsychotic drugs. This characteristic of the IDR model is used as a base to extrapo-
late the D2RO-CAT relationship to other drugs (discussed later). In our analysis we 
assumed a common RO50 to determine the receptor occupancy to produce a half-
maximal effect. This assumption allows for considering RO50 as a “system” parameter, 
which can be used for extrapolating the D2RO-CAT relationship to other drugs.

It was expected that for frequently measured categorical type data, there might 
be correlation between neighboring observations. The standard proportional odds 
model with IDR model may not be able to account for these correlations. These series 
of probable transitions between states can be described with Markov modeling (19, 
25). Zingmark et al (25) modeled spontaneously reported side-effects using a Markov 
approach which is a hybrid between the proportional odds model and the transition 
model. We adapted this approach in our modeling work in combination with the IDR 
model. 

Markov models have been reported to describe frequently observed and corre-
lated scores better than the models without Markov elements (19, 25). However, we 
did not observe any significant difference in the predictions of the probability of CAT 
obtained from the IDR and IDR-Markov models. The VPC plots representing the 
probability at the three states of CAT were also similar between these two models. It 
was also reported that Markov models predict the number of transitions much bet-
ter than non-Markov models (19, 25). In our modeling, both these models predicted 
the transition states adequately. Precision of the predictions was limited by the fact 
that the D2RO was not observed for individual rats, but predicted based on previ-
ously developed models. For this same reason, inter-rat variability was assumed to be 
zero in these models. One of the baseline probabilities (β12) was estimated with lower 
precision and wide confidence intervals were seen in likelihood profiling. It is com-
mon that Markov models are over-parameterized to handle the correlation between 
adjacent observations (25). 

Dopamine D2 receptor occupancy was simulated using previously developed 
PBPKPD models. These models are available only for OLZ, PAL and RIS. So, we 
used the CAT scores from OLZ, PAL and RIS to develop the IDR and IDR-Markov 
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models. However, we intended to extend the D2RO-CAT relationship to CLZ and 
HAL. Since we do not have PBPKPD models for CLZ and HAL, we utilized empiri-
cal PKPD models to simulate D2RO for CLZ and HAL and to predict CAT severity 
in rats. Using both IDR and IDR-Markov model structure and parameter estimates, 
CAT scores were predicted for CLZ and HAL. IDR-Markov models performed slight-
ly better than the IDR models in predicting CAT scores for CLZ and HAL. Moreover, 
the unique feature of the Markov model to account for the correlation between adja-
cent observations may be responsible for its good predictions. However, it should be 
noted that this approach had not been tested on antipsychotics, which have a differ-
ent mechanisms of action than D2 antagonism (e.g. Aripiprazole). 

The relationship between CAT scores in rat and EPS scores in humans was elu-
cidated in a quantitative manner. Severity and occurrence of side effects and their 
relation with D2RO are not same between these species. The probability for having 
any EPS event is less than 40% in clinical studies, even for very high D2RO, whereas 
the probability of any CAT event is close to 1 for very high D2RO in rats. Interestingly 
in humans, the probability of having EPS for 0% D2RO is approximately 5%, which 
shows the effect of placebo on EPS. This tool may be used in drug discovery to pre-
dict the risk of EPS in humans from D2RO and CAT scores in rats using the fitted 
polynomial function. For example, a risk of EPS does not exceed 10% over placebo 
may be predicted from 86% D2RO and less than 30% probability of CAT events in 
rats (Figure 6.5 and Figure 6.6).

We have developed and evaluated an indirect relationship between D2RO and 
CAT scores using PKPD modeling tools. However, this IDR-Markov modeling ap-
proach did not take into account for the involvement of endogenous dopamine and 
serotonin (5HT2A) receptor occupancy on CAT severity. Furthermore, we previously 
developed a physiology-based PKPD model structure to predict the D2RO in hu-
man, which is also applicable in preclinical scenarios (14, 15). This combination tool 
will be useful to design optimal studies with adequate doses using fewer animals. 
Moreover, these results imply that EPS events in human can be predicted from CAT 
events and D2RO data in rats.

Conclusion

The relationship between D2RO and CAT scores was elucidated using IDR and IDR-
Markov models. The IDR-Markov model predicted the severity of CAT for CLZ and 
HAL better than the IDR model. The outcome of our simulations directed towards 
a link between CAT as observed in rats and EPS as observed in humans in a quantita-
tive manner. 
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In pharmaceutical industry, translational research refers to those activities conduct-
ed to bridge the gap between drug discovery in animals and drug development in 
human patients (1). Translational research activities, in a pharmaceutical industry 
context, aim to predict the biomarker or drug effects in clinical situations based on 
in vitro or preclinical information. In this thesis we aimed to develop a translational 
pharmacokinetic and pharmacodynamic (PKPD) modeling framework by integrat-
ing in vitro, and in vivo preclinical data with mechanism-based models to predict the 
effects of drugs in humans. In this thesis, the translational PKPD models are devel-
oped specifically to the schizophrenia indication. 

Schizophrenia is a severe and disabling mental disorder, associated with dopamine 
dysregulation in brain and the blockade of D2 receptors is the key to the antipsychotic 
efficacy (2, 3). Hence, dopamine D2 receptor occupancy (D2RO) is considered as a po-
tential biomarker in antipsychotic treatment (4). We aimed to build a translational 
framework to predict D2RO in human using in vitro and preclinical information. 

Even though it is evident that D2 receptor blockade is crucial for antipsychotic 
efficacy, the degree and duration of D2 antagonism required for effective treatment 
is not clear. Several studies suggested that blockade of 65% to 80% of D2 receptors is 
the key to antipsychotic efficacy (2, 3, 5). Some antipsychotics, for example clozapine, 
show antipsychotic activity at a lower receptor blockade (20-67%) than other antip-
sychotics (6). Aripiprazole, an atypical antipsychotic, has been shown to be a partial 
agonist on the D2 receptors, suggesting that for this drug even high receptor occu-
pancy may be optimal (7). Kapur et al (8) reported that the rate of dissociation of an-
tipsychotics from the D2 receptors drives their efficacy and safety. These studies show 
that little is known about the degree of target occupancy and the role of the dynamic 
interactions between the drugs and the D2 receptor in schizophrenia treatment. In 
addition, one of the other challenges in this translation process is the lack of proper 
understanding of the passive and active drug transport into the brain and the influ-
ence of drug distribution to the target site on the receptor binding. 

In translational drug research, understanding and learning the physiology and 
the mechanisms involved in drug distribution and drug-receptor binding processes 
at a preclinical level are helpful to scale those processes to human. In recent years, 
mechanism-based PKPD models are increasingly used to understand drug distribu-
tion and binding processes (9). Moreover, these models explicitly express and sepa-
rate the drug- and system- specific components contributing to the drug effects and 
thereby provide an opportunity to scale parameters between species (10). 

Hence, we aimed to build a translational framework using mechanism-based 
PKPD modeling tools with a physiological basis. This framework would help to scale 
information from in vitro binding studies and preclinical receptor occupancy studies 
to predict human D2RO. 
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PKPD Modeling and Target Site Distribution

The distribution of drug to the site of action is an important determinant of the time 
course and intensity of drug effects in CNS drug therapy. The drug distribution at 
the site of action may be different from the distribution in the plasma compartment, 
because of the passive permeability process and the efflux transporters present at the 
luminal surface of the blood-brain barrier (BBB). In drug development, free plasma 
concentration and cerebrospinal fluid (CSF) concentrations may be used as a reflec-
tion of the target site (brain) concentration to predict the effect of a drug. However, 
for drugs that show a heterogeneous distribution due to active transport, it was con-
cluded that the value of CSF concentrations in predicting the effect of drug acting on 
central nervous system (CNS) is limited (11). Hence, it is necessary to know the drug 
exposure in the brain. 

Brain drug concentrations are seldom measured in humans. Hence, it is not pos-
sible to study the drug exposure in brain and its relationship with effects in humans. 
However, understanding the exposure-effect relationship in animals using PKPD 
modeling tools will allow translating this relationship from one species to other 
species. 

A number of PKPD models developed to study the drug distribution to the brain 
using empirical and mechanistic approaches have been reported in literature. PKPD 
modeling for oxycodone was performed using compartmental modeling approaches. 
The transport across the BBB was modeled as an active influx process to explain the 
higher unbound concentrations in brain compared to that in blood (12). This active 
influx phenomenon of oxycodone was important to interpret the pharmacodynamic 
data and facilitated to explain discrepancies in the in vivo potencies between oxyco-
done and morphine (13). 

Groenendaal et al (14) explained the influence of biophase distribution and 
P-glycoprotein (P-gp) on drug distribution and effect using an extended catenary 
biophase distribution model. The influence of active transport was studied using the 
co-administration of a P-gp inhibitor. The brain distribution of morphine and its 
metabolites to brain was studied by fitting compartmental models to the free drug 
concentration in brain and extracellular fluid (ECF) obtained using the microdialy-
sis technique in rats. A mechanistic model including passive diffusion, active influx 
and efflux transport was also applied to describe non-linear distribution of morphine 
and fluvoxamine (15, 16). These mechanistic models explain the drug distribution 
to brain in a quantitative manner. However, the translatability of these models to the 
human system has not yet been elucidated. 

Physiology-based pharmacokinetic (PBPK) models have been used to explain the 
drug distribution to brain. Liu et al (17) proposed a hybrid PBPK model with passive 
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drug transport across the BBB to explain the time to reach equilibrium between brain 
and plasma. This PBPK model was extended to explain the drug distribution to the 
site of action and receptor binding while retaining the physiological basis (18, 19). 
An important feature of a PBPK modeling approach is that allows using species-
specific data on tissue structure, volume and blood flows for the extrapolation from 
pre-clinical animal models to humans. Moreover, for drug transport involving active 
transporters, a physiological basis allows to account for the interspecies differences 
in the expression and function of these transporters (10). It has been reported that 
drugs that are P-gp substrates in rats are likely to also be P-gp substrates in higher 
species (20). Hence, considering differential expression and functionality of drug 
transporters (21) and structural differences of the BBB between species (11) will be 
helpful to translate target site kinetics from rat to human. Thus, a translation of the 
target site kinetics for CNS active drugs from rat to human would require a proper 
understanding of drug transport at the BBB. 

PKPD Modeling and Target Binding 

PKPD models utilize non-linear mathematical expressions, often a hyperbolic func-
tion, to explain the in vivo plasma drug concentration (C) and receptor occupancy 
(RO) relationship (22-24). 

RO = ROmax * C/ (RC50 + C)

ROmax represents the maximum receptor occupancy. ROmax is expected to be 
100%. However, due to experimental constraints and inevitable measurement errors 
in receptor occupancy measurements, ROmax is estimated as less than 100% and varies 
between drugs (4, 22, 24). This makes this parameter dependent on data and lacks the 
translatability of this parameter from one species to other species. 

In addition, RC50 represent the plasma drug concentration required to obtain 
50% of ROmax. For translational research purposes, RC50 derived based on the un-
bound plasma drug concentration may be considered as equivalent to drug-specific 
in vitro Ki values obtained from binding assays. However, for drugs acting on CNS, 
drug distribution to the site of action involves complex transport mechanisms at 
BBB. Hence, the unbound drug concentration at the site of action may be different 
from the unbound drug plasma concentration. So, the RC50 obtained by fitting this 
empirical model to drug plasma concentration may not represent the drug affinity 
(i.e. Ki) to the receptor. 

Moreover, in vivo drug-receptor interaction is a dynamic process, which in-
volves association and dissociation processes that are governed by the drug-specific 
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properties. Hence, it is appropriate to describe the time course of receptor occupancy 
data using association and dissociation constants as explained in the equation:

d(RO/dt) = kon*Cfree*(Bmax – Cbound) – koff*Cbound

This approach utilizes second order association (kon) and first order dissociation 
(koff) rate constants for the binding of the drug to the receptor and the receptor den-
sity (Bmax) to explain the in vivo drug brain concentration (Cfree) and receptor occu-
pancy (RO) relationship. It has been proposed that drug specific parameters like kon, 
koff and target affinity (Kd = koff/kon) are species independent and thus, identical drug 
specific parameters can be used for rat and human (10). 

Hence, a mechanistic understanding of target binding is a prerequisite to build 
a translational framework. 

Translational PKPD Modeling

Mechanism-based PKPD modeling in rats
In chapters 3 & 4, we started building the translational framework with the develop-
ment of a mechanism-based pharmacokinetic-pharmacodynamic model to predict 
the time course of receptor occupancy following administration of antipsychotic 
drugs in rats. Mechanism-based PKPD models combined with physiological param-
eters have the ability to predict human PKPD properties using prior information 
from in vitro and preclinical studies. So, we aimed at a physiology-based model to 
explain the drug transport at the BBB. Moreover, it is essential to have sufficient in-
formation about the cascade of processes (distribution to and in the brain, receptor 
occupancy as a net result of association and dissociation) to develop a PKPD model. 
In schizophrenia drug discovery research, the information on drug distribution into 
brain and the time course of receptor occupancy is rather sparse. So, a population-
based approach was utilized to integrate information from different sources. We used 
a hybrid (7) approach to combine a classical compartmental model for plasma phar-
macokinetics and a physiology-based model to describe the drug disposition and 
receptor binding in the brain. 

In chapter 3, a hybrid physiology-based pharmacokinetic and pharmacodynamic 
(PBPKPD) model was developed to characterize the D2 receptor binding of the atypi-
cal antipsychotic drug olanzapine in the striatum in rats. We found a good agreement 
between the estimated association and dissociation rate constants and the in vitro 
values reported in literature (25). 

Drug transport to brain is a complex process involving both passive and active 
transport. So, we extended this PBPKPD model to account for drug distribution 
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involving both passive permeability and active efflux transport mechanisms at the 
BBB. Risperidone and its active metabolite paliperidone were used in this model 
extension. Risperidone and paliperidone show similar binding properties and also 
a similar clinical profile. Therefore, to properly describe the D2 receptor occupancy 
of risperidone, it is necessary to take into account the formation of paliperidone and 
its distribution to brain and its binding to receptors. In addition, risperidone and 
paliperidone have affinity for the serotonin 5-HT2A receptor (and for other recep-
tors) and demonstrated antipsychotic efficacy with less affinity towards D2 recep-
tors than 5-HT2A receptors. So, we extended this PBPKPD model to predict the time 
course of the brain concentration and the D2 and 5-HT2A receptor occupancy in rats. 
In Chapter 4, the PBPKPD model was expanded by including metabolite kinetics, 
active efflux from brain and binding to 5-HT2A receptors in frontal cortex. The ex-
tended PBPKPD model described 5-HT2A RO well. Inclusion of binding to 5-HT2A 
receptors was necessary to describe the observed brain-to-plasma ratios accurately. 
Simulations showed that the receptor affinity strongly influences the brain-to-plasma 
ratio pattern. We concluded that binding to both D2 and 5-HT2A receptors influences 
brain distribution of risperidone and paliperidone. This may stem from their high 
affinity for D2 and 5-HT2A receptors.

In conclusion, we have developed PBPKPD models to explain the time course of 
RO in rats. The distribution of drug to brain was described using passive and active 
transport processes in a physiological manner and a mechanistic approach was used 
to explain the dynamic drug-receptor binding process by means of association and 
dissociation constants of the drugs to the receptor. 

Translation of RO: Concepts 
The main objective of our translational framework was to assess the ability of the 
PBPKPD model to predict the receptor occupancy in humans following administra-
tion of antipsychotic drugs. In chapter 5, three different approaches were used to 
predict the drug transport across the human blood brain barrier (BBB) and the bind-
ing to D2 receptors in striatum.

In Approach A, we used the minimal in vitro binding assay information to predict 
human D2RO. Apparent permeability values were scaled based on human brain en-
dothelial surface area to predict the passive drug transport across BBB and active efflux 
clearance was scaled from in vitro system to in vivo human based on their expression in 
in vitro assay systems and in human brain. In vitro Ki values and in vitro koff values for 
binding at the dopamine D2 receptor were used to predict the human D2RO in striatum. 

In Approach B, PBPKPD model estimates (based on preclinical in vivo informa-
tion) describing drug distribution to the brain and binding to receptors in the brain 
were utilized to translate D2RO from rat to human. The parameter describing the 



Concepts and Challenges in translation of rO

157

7

passive drug transport across the BBB in rats was normalized to rat brain endothelial 
surface area to obtain apparent permeability values and these values were used in 
a similar fashion to approach A to obtain human CLbev values, which characterize the 
passive drug transport across the BBB in human. Active efflux transport was scaled 
from rat to human based on the MDR1 expression in both the species. In vivo (model 
estimated) Kd and koff values were used to predict human D2RO in striatum.

Finally, in the exploration of the minimal information required to be used in this 
translational model, we derived approach C. This approach uses the methods of ap-
proach A to scale information regarding drug transport across the BBB. It has been 
suggested that the drug specific parameters (target affinity – Ki or Kd) may be con-
sidered identical between different systems (in vitro, rat and human). However, we 
observed differences in the target affinity between in vitro and in vivo systems. This 
difference between the in vivo and in vitro scenarios could arise from the assump-
tions used in both in vitro calculations and model estimations. Additionally, radio-
ligand selection and disturbances in assumed equilibrium conditions in in vitro and 
in vivo systems could lead to biased or inappropriate Ki calculations (26). Hence, in 
approach C, we applied a correction between systems to obtain in vivo Kdhuman values. 

The predictive power of this physiology-based approach was determined by com-
paring the D2RO predictions with the observed human D2RO of seven antipsychotics 
at clinically relevant doses. In general, human D2RO was predicted well, when only 
in vitro information (Approach A) was used in the simulations. The correction as ap-
plied in approach C might help with the normalization of the scaling from an in vitro 
to an in vivo system for different species. Finally, this model was extended to success-
fully predict 5-HT2ARO in human cortex.

Translation of RO: Challenges
Physiology-based modeling unwraps ways to translate drug distribution and bind-
ing in rat brain to human conditions. However, difference in rat and human brain in 
terms of anatomy and physiology, and differential expression of transporters at the 
BBB, make this task challenging. The uncertainty in the available physiological val-
ues, pathological conditions, and different experimental conditions for D2RO meas-
urements are complementing to this challenge.

Physiological differences 
Westerhout et al (11) reviewed the physiological and anatomical differences between 
rat and human BBB. The endothelial surface area of human BBB was estimated to 
be 20 m2 (27), which is approximately 100 times larger than that of rat BBB. In addi-
tion, it has been reported that the contribution of brain-cerebrospinal fluid-barrier 
(BCSFB) to drug transport to brain is relatively larger in rats than in human (11). 
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Furthermore, with the evident P-gp function in BSCFB as both efflux and influx 
transporter, BSCFB might play different roles in rat than in human in relation to drug 
distribution to brain (11). These differences between rat and human BBB should be 
considered while translating brain distribution of antipsychotics from rat to human.

Occupancy measurement
Receptor occupancy in human brain is measured using imaging techniques like posi-
tron emission tomography (PET) and single-photon emission computed tomogra-
phy. Measuring drug-related receptor occupancy using these techniques is discussed 
elsewhere (28). Briefly, receptor occupancy is calculated based on the binding po-
tential (BP) of the drug to the receptor which is defined as Bmax/Kd, where Bmax is the 
receptor density and Kd is the drug concentration required to occupy 50% of the 
maximum available receptors (29). PET scans of the brain are obtained, at baseline 
and after treatment with a drug, by injecting a radioligand (for e.g.  [11C]raclopride). 
Time activity curves are obtained for the region of interest (high expression of recep-
tor) and a region of reference (no receptors present). PET kinetic modeling is used to 
calculate the binding potential of the region of interest.  Receptor occupancy is then 
calculated as the percentage reduction of receptor binding potential with drug treat-
ment relative to baseline.

% Receptor Occupancy = 100 * 

It is not possible to obtain a true estimate of BPbaseline (binding potential before 
drug treatment) from all individual patients due to the procedural constraints and 
due to the fact that all patients are treated previously with antipsychotics (30). Hence, 
most human occupancy measurement studies used a baseline reference value ob-
tained from other subjects. It has been reported that the lack of patients with indi-
vidual baseline introduces a random error which varies from 3-12% depending on 
the measured occupancy (30). 

D2 dopamine receptor density varies several folds between individuals (31). 
Seeman et al. (32) have reported that estimates of D2 receptor density were dependent 
on the brain region (cerebellum or basal ganglia) used for normalization of nonspe-
cific binding. Both these individual and measurement levels differences could change 
the BP and thereby RO to a great extent.

It is usually assumed that RO is measured at equilibration conditions when the eleva-
tions of endogenous dopamine levels are stable rather than dynamic. It has been report-
ed that administration of 0.2 mg/kg amphetamine elevated the endogenous dopamine 
levels 5 times and reduced radioligand (tracer) binding to approximately 10% (33). 
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Hence, these measurement errors can lead to discrepancies between the observed 
and predicted human D2RO.

Drug-specific properties
Danhof et al (9) proposed that the values of drug-specific parameters such as target 
affinity are likely to be identical between species and individuals. Yassen et al (34) 
extrapolated pharmacodynamic effects of buprenorphine from rats to humans by us-
ing identical drug-specific parameters between species. This would imply that the 
binding rate constants estimated in rats could be used in extrapolation from rat to 
human. However, several other studies showed differences  in receptor affinity be-
tween species (35). Notwithstanding divergent reports on the species independence 
of drug-specific parameters, an integration of allometric principles (36-38), in vitro 
information, and a physiological basis to PKPD modeling would increase the pro-
spective of translating effects. We also suggest that normalization of in vitro Ki for in 
vivo conditions in lower species, and applying this correction to in vitro human Ki 
would improve the prediction of receptor occupancy.

PKPD modeling helps to understand the different processes involved in drug 
distribution and effects. In addition, PKPD modeling also brings forth drug-specific 
transport process (15). Despite of this usefulness of PKPD models, unique transport 
property like active influx are not translatable in a quantitative manner till date be-
cause of lack of information on this unique process. For example, D2RO predictions 
of haloperidol (HAL) were lower than the observations. This may be related to the 
high ratio of unbound concentrations of HAL in brain and plasma, which is close 
to 4 in rats (39). This high brain to plasma ratio may indicate a unique active influx 
transport to the brain. In addition, it has been documented that the metabolism of 
HAL involves a conversion of HAL to reduced haloperidol, and back-conversion of 
reduced haloperidol to HAL (40) in the brain of guinea pigs. Accounting for this me-
tabolism and/or active influx transport may help to improve predictions. However, 
due to the lack of relevant quantitative data describing these processes, we did not 
include these components in the translational model. 

Uncertainty in parameter estimates 
In translational PKPD modeling, the PKPD model structure developed for preclini-
cal species is used to predict the PKPD relationship in human. The precision of the 
parameter estimates (regarding drug distribution and receptor binding) obtained 
from the rat PKPD model might also play a role in the accuracy of the predictions 
of effects in human. Hence, it is suggested to use optimally designed studies in the 
preclinical level for precise parameter estimation to allow appropriate predictions in 
human. 
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Uncertainty in physiological values 
We proposed to translate the passive permeability from rat to human by normalizing 
the drug distribution to the brain-endothelial surface area (BES). Hence, BES values 
play a role in the translation of drug transport from rat to human. However, rat BES 
values reported in literature range from 100 to 240 cm2 per g brain tissue (41, 42). The 
choice of these values for the calculation of passive transport across the BBB might 
play a role in the accuracy of predictions. 

Hence, we proposed to use in vitro apparent permeability (Papp) values to predict 
the passive permeability across the BBB by taking the product of Papp and human 
brain endothelial surface area (18). In vitro effective permeability of compounds with 
various characteristics across human primary brain endothelial cells was comparable 
to those obtained with bovine and rat capillary endothelial cells (43). Hence, it is ex-
pected that ability to passively cross the BBB could be similar between species. This 
approach has the advantage of using in vitro values to predict the pharmacokinetics 
in brain and consequently reduce the need of animal experiments to measure brain 
concentrations. Hence, we suggest using Papp values to predict passive permeability of 
drug across the BBB using this in vitro based approach. 

Extensions to the translational framework
This translational framework has been developed based on data for antipsychotic 
drugs binding to the dopamine D2 receptor and the serotonin 5-HT2A receptor. 
We selected this specific class of drugs since it is a relatively well-developed area of 
research in which data are available on a range of drugs. Moreover, strong indica-
tions have been found for links between receptor occupancy and treatment effects. 
However, the question remains on the application of translational models developed 
for this class of drugs to other drugs. Grimwood et al (44) emphasized that similar 
occupancy requirements were observed for other GPCR antagonists. Hence, a simi-
lar translational approach may be also applicable for other GPCR antagonists such as 
neurokinin NK1 antagonists (emesis), dopamine D1 antagonists (akithisia), and mu-
opiate antagonists (drug-abuse). Hence, the extension of this translational frame-
work to other receptor types is feasible. 

Catalepsy and Extrapyramidal Symptoms

In addition to the development of the predictive model, we also utilized PKPD mod-
eling tools to scale the severity of drug-induced side effects from rat to human. In 
schizophrenia, extrapyramidal symptoms (EPS) in human are caused by excessive 
D2RO (>80%) of antipsychotic drugs and this applies to rat catalepsy (CAT) side 
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effects as well (45). Although a clear relationship between D2RO and side effects ex-
ists, quantitative information on the relationship between catalepsy and EPS is lack-
ing. In chapter 6, we used PKPD modeling tools to relate CAT with D2RO in rats and 
to elucidate a relationship between CAT scores in rat and EPS scores in humans, in 
a quantitative manner. Interestingly in humans, the probability of having EPS for 0% 
D2RO is approximately 5%, which shows the effect of placebo on EPS. A risk of EPS 
not exceeding 10% over placebo may be predicted when 86% D2RO results in less 
than 30% probability of CAT events in rats. This tool may be used in drug discovery 
to predict the risk of EPS in humans from D2RO and CAT scores in rats.

Conclusion

Applications of this modeling framework as a predictive tool include predicting receptor 
occupancy and side effects during early drug discovery. This tool may also be applied for 
the selection of appropriate first-in-human doses based on pharmacodynamics. Due to 
the mechanism- and physiology-based approach, it is likely that this framework can be 
extended to other CNS indications. Nevertheless, inclusion of more mechanistic com-
ponents like effect endogenous dopamine on drug binding to receptor, and correction 
for radio-ligand binding across species, would help to improve the predictions. 

However, it is not anticipated that predictive tools will completely replace the 
need for clinical studies, though it is plausible that this tool can help to design more 
informative and more efficient clinical studies.
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Translational research, in a pharmaceutical industry context, aims to predict drug ef-
fects in clinical situations based on in vitro and preclinical information from studies 
in laboratory animals. In this thesis we aimed to develop a translational pharmacoki-
netic and pharmacodynamic (PKPD) modeling framework for the prediction of drug 
effects in schizophrenia. This was pursued by integrating in vitro and in vivo pre-
clinical data with mechanism-based PKPD models to predict the target occupancy of 
antipsychotic drugs in humans. The prediction of extrapyramidal side effects on the 
basis of preclinical in vivo information was an additional objective. 

Schizophrenia is a severe and disabling disorder, associated with a marked social 
and occupational dysfunction, a tenfold increase in suicidal risk, an intensive use of 
healthcare resources, and a poor prognosis. It is now widely accepted that excessive 
dopamine release in the striatum plays a central role in the pathophysiology of schiz-
ophrenia. Several studies suggest that blockade of D2 receptors is the key to antipsy-
chotic efficacy for both conventional neuroleptics and novel antipsychotics. Hence, 
dopamine D2 receptor occupancy (D2RO) is considered as a potential biomarker for 
anti-schizophrenic treatment. Estimation of target occupancy is important both in 
early drug discovery, where accurate knowledge of the degree of occupancy could 
help to determine the suitability of a drug candidate for further development, as well 
as later in the drug development process, where target site occupancy measurements 
can guide dose selection. The development of a translational tool to predict human 
D2RO (based on PKPD models) involves scaling of information from rat to human. 
Drug distribution to brain is a key factor in this respect. Drug distribution to the brain 
involves complex passive and active transport processes and drug binding to recep-
tor is also a dynamic mechanism. Hence, we used mechanism-based PKPD models 
to predict the time course of target occupancy and pharmacodynamic responses in 
rats and human. These models contain separate expressions to parameterize biophase 
kinetics and receptor association–dissociation kinetics to describe the drug binding 
to receptors. The important feature of these mechanistic models is their ability to 
distinguish the system- and drug- specific parameters, which has been proven to be 
useful in the extrapolation of treatment effects from rat to human. 

In chapters 3 & 4, we started building the translational framework with the de-
velopment of a mechanism-based PKPD model to predict the time course of recep-
tor occupancy following administration of antipsychotic drugs in rats. In this regard 
we aimed at developing a physiology-based model to explain the drug transport at 
the blood-brain barrier (BBB) in conjunction with a receptor model to describe the 
kinetics of association and dissociation at the dopamine D2 receptor. In the develop-
ment of antipsychotic drugs, the information on drug distribution into brain and the 
time course of receptor occupancy is rather sparse. So, a population-based approach 
was utilized to integrate information from different sources. 
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In chapter 3, a hybrid physiology-based pharmacokinetic-pharmacodynamic 
(PBPKPD) model was developed to characterize the D2 receptor binding of the atypi-
cal antipsychotic drug olanzapine in the striatum of rats. To this end, data on the 
time course of the olanzapine plasma concentration, brain concentration and the D2 
receptor occupancy following different routes of administration in rats was analyzed. 
In this model the distribution to the brain was described as a simple passive diffusion 
process. In addition drug association to the D2 receptor was described as a second-
order process and drug dissociation from the D2 receptor was described as a first-
order process. We found a good agreement between the estimated association (kon) 
and dissociation (koff) rate constants, and the in vitro values reported in literature. 

In chapter 4 the modeling of the time course of dopamine D2 receptor occupancy 
in rats was extended to the atypical antipsychotics risperidone and its metabolite 
paliperidone. Specific features of this modeling were i) the modeling of complex non-
linear brain distribution kinetics, ii) the competitive interaction of the binding of ris-
peridone and its active metabolite paliperidone and iii) the modeling of the binding 
at two receptor subtypes (i.e. the dopamine D2 and the serotonin 5-HT2A receptor). 
Risperidone is metabolized to paliperidone and both compounds show similar bind-
ing properties and clinical profile. Therefore, to properly describe receptor occupan-
cy of risperidone, it is necessary to take into account the formation of paliperidone, 
and its distribution to brain and binding to receptors. 

A pertinent feature of both risperidone and paliperidone is that active efflux 
mechanisms govern, at least in part, the distribution to the brain. To account for this, 
the PBPKPD model was expanded by including active efflux from brain. In addition, 
risperidone and paliperidone have shown affinity for the serotonin 5-HT2A recep-
tor (and other receptors) and demonstrated antipsychotic efficacy with less affinity 
towards D2 receptors than towards 5-HT2A receptors. So, risperidone and paliperi-
done binding to 5-HT2A receptors in frontal cortex was described using association 
and dissociation processes. The extended PBPKPD model described the observed 
brain concentrations and D2RO and 5-HT2ARO well. Inclusion of binding to 5-HT2A 
receptors was necessary to describe the observed brain-to-plasma ratios accurately. 
Simulations showed that the receptor affinity (Kd or Ki) strongly influences brain-
to-plasma ratio pattern. Hence, chapter 4 concluded that binding to both D2 and 
5-HT2A receptors influences brain distribution of risperidone and paliperidone. This 
may stem from their high affinity for D2 and 5-HT2A receptors. Receptor affinities and 
brain-to-plasma ratios may need to be considered before choosing the best PKPD 
model for centrally active drugs.

The main objective of this translational framework is to assess the ability of the 
PBPKPD model to predict the receptor occupancy in humans following administra-
tion of antipsychotic drugs. In chapter 5, three different approaches were used to 
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predict the drug transport across the human blood brain barrier (BBB) and the bind-
ing to D2 receptors in striatum.

In Approach A, we used the minimally required in vitro assay information to pre-
dict human D2RO. Apparent permeability values (Papp) were scaled based on human 
brain endothelial surface area to predict the passive drug transport across BBB. Active 
efflux clearance was scaled from in vitro system to in vivo human based on expression 
of drug transporters in in vitro assay systems and in human brain. In vitro Kihuman val-
ues and in vitro koff-rat values were used to predict the human D2RO in striatum. 

In Approach B, the PBPKPD model estimates which were parameterized to de-
scribe drug distribution and binding to receptor in rat brain were utilized to translate 
D2RO from rat to human. The parameter describing the passive drug transport across 
the BBB in rats (rCLbev) was normalized to rat brain endothelial surface area to obtain 
apparent permeability values and these values were used in a similar fashion to ap-
proach A to obtain human CLbev values, which characterize the passive drug trans-
port across the BBB in human. Active efflux transport was scaled from rat to human 
based on the MDR1 expression in both species. In vivo (model estimated) Kdrat and 
koff-rat values were used to predict human D2RO in striatum.

Further, in the exploration of the minimal information required to be used in this 
translational model, we derived approach C. Basically, approach C uses the methods 
of approach A to scale information regarding drug transport across the BBB. Danhof 
et al proposed that the drug specific parameters (target affinity – Kd or Ki) may be 
considered identical between different systems (in vitro, rat and human). However, 
we observed differences in the target affinity between in vitro and in vivo systems. 
This difference between the in vivo and in vitro scenarios could arise from the as-
sumptions used in both in vitro calculations and model estimations. Additionally, ra-
dio-ligand selection and disturbances in assumed equilibrium conditions in in vitro 
and in vivo systems could lead to biased or inappropriate Ki calculations. Hence, in 
approach C, in vivo Kdhuman parameters were corrected for the differences between in 
vitro and in vivo scenarios by normalizing model estimated in vivo Kdrat and in vitro 
Ki values for rat and human.

The predictive power of this physiology-based approach was determined by com-
paring the D2RO predictions with the observed human D2RO of six antipsychotics at 
clinically relevant doses. In general, human D2RO was predicted well, when only in 
vitro information (Approach A) was used in the simulations. The correction as ap-
plied in approach C might help with the normalization of the scaling from an in vitro 
to an in vivo system for different species. Finally, this model was extended to success-
fully predict 5-HT2ARO in human cortex. 

Several aspects of this translational modeling are discussed in chapter 7. The 
list of challenges includes the physiological differences between rat and human, 
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methodological issues in receptor occupancy measurements, uncertainty in preclini-
cal PKPD parameters estimates and lack of information on drug-specific parameters. 
For example, D2RO predictions of haloperidol were lower than the observations. 
Drug-specific parameters like metabolism and active influx transport at BBB may 
play a role in the under predictions of D2RO for haloperidol. However, due to the lack 
of information related to these processes, we did not include these components in the 
translational model. Notwithstanding to limitations and challenges, a general trans-
lational framework was developed which is based on a mechanism-based approach 
and accounts for the different processes involved in the transport of drug to the brain.

In schizophrenia, extrapyramidal symptoms (EPS) are caused by excessive D2RO 
(>80%) of antipsychotic drugs and this applies to rat catalepsy (CAT) side effects as 
well. Even though a clear relationship between D2RO and side effects exists, the rela-
tionship between catalepsy and EPS is lacking. In chapter 6, the relationship between 
CAT scores in rat and EPS scores in humans was elucidated in a quantitative manner. 
Interestingly in humans, the probability of having EPS for 0% D2RO is approximately 
5%, which shows the effect of placebo on EPS. A risk of EPS not exceeding 10% over 
placebo, may be predicted when 86% D2RO results in less than 30% probability of 
CAT events in rats. This tool may be used in drug discovery to predict the risk of EPS 
in humans from D2RO and CAT scores in rats.

Concluding remarks
Applications of this modeling framework as a predictive tool include predicting re-
ceptor occupancy and side effects during early drug discovery. This tool may also 
be applied for the selection of appropriate first-in-human doses based on pharma-
cokinetics and pharmacodynamics. Due to the mechanism- and physiology-based 
approach, it is likely that this framework can be extended to other indications in 
the central nervous system. Nevertheless, inclusion of more mechanistic components 
like effect of endogenous dopamine on drug binding to receptors, and a correction 
for radio-ligand binding across species, would help to improve the predictions. 

However, it is not anticipated that predictive tools will completely replace the 
need for clinical studies, though it is plausible that this tool can help to design more 
informative and more efficient clinical studies.
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Translationeel onderzoek in de farmaceutische industrie is gericht op het voorspel-
len van de effecten van geneesmiddelen in klinische situaties, gebaseerd op in vi-
tro metingen en preklinische gegevens uit studies bij proefdieren. Het doel van het 
onderzoek beschreven in dit proefschrift was om een translationeel farmacokine-
tisch-farmacodynamisch (PKPD) model voor het voorspellen van de effecten van 
geneesmiddelen bij schizofrenie te ontwikkelen. Dit doel werd bereikt door de inte-
gratie van in vitro en in vivo preklinische gegevens met mechanistische PKPD mo-
dellen om de receptorbezetting van antipsychotica bij de mens te voorspellen. Een 
tweede doelstelling was het voorspellen van extrapiramidale bijwerkingen op basis 
van preklinische in vivo informatie.

Schizofrenie is een ernstige en invaliderende aandoening, die gepaard gaat met 
een duidelijke sociale en beroepsmatige dysfunctie, een vertienvoudiging van het su-
icidale risico, een intensieve aanspraak op de beschikbare middelen in de gezond-
heidszorg en een slechte prognose. Het is nu algemeen aanvaard dat overmatige 
dopamine-afgifte in het striatum een   centrale rol speelt in de pathofysiologie van schi-
zofrenie. Verschillende studies suggereren dat blokkade van D2-receptoren de sleutel 
is tot de antipsychotische werking van conventionele neuroleptica en nieuwe anti-
psychotica. Daarom wordt de dopamine D2-receptor bezetting (D2RO) beschouwd 
als een potentiële biomarker voor het succes van een anti-schizofrenie behandeling. 
Het bepalen van de receptorbezetting is belangrijk, zowel in de beginfase van de ont-
dekking van geneesmiddelen, waar nauwkeurige kennis van de bezettingsgraad zou 
kunnen helpen om de geschiktheid van een kandidaat-geneesmiddel voor verdere 
ontwikkeling te bepalen, maar ook later in het ontwikkelingsproces, waar metingen 
van de receptorbezetting kunnen helpen bij de keuze van de dosering. De ontwikke-
ling van een translationele methode om de D2RO in de mens te voorspellen op basis 
van PKPD modellen impliceert het vertalen van informatie van de rat naar de mens. 
De verdeling van het geneesmiddel naar de hersenen is in dit opzicht een belangrijke 
factor. Deze verdeling wordt bepaald door complexe passieve en actieve transport-
processen. Daarnaast is de binding van het geneesmiddel aan de receptor ook een 
dynamisch proces. Daarom hebben we mechanistische PKPD modellen gebruikt om 
het tijdsverloop van de receptorbezetting en de farmacodynamische respons bij de 
rat en de mens te voorspellen. Deze modellen bevatten afzonderlijke vergelijkingen 
voor de biofase-kinetiek, de kinetiek van associatie aan en dissociatie van de receptor 
om de binding van geneesmiddelen aan receptoren te beschrijven. Het belangrijkste 
kenmerk van deze mechanistische modellen is hun vermogen om de systeem- en 
geneesmiddel-specifieke parameters te onderscheiden, wat nuttig is gebleken bij de 
extrapolatie van de behandelingseffecten van de rat naar de mens.

In de hoofdstukken 3 en 4 zijn we begonnen met de bouw van het translationele 
kader door het ontwikkelen van een mechanistisch PKPD model om het tijdsverloop 
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van de receptorbezetting na toediening van antipsychotica bij ratten te voorspellen. 
In dit verband hebben we ons gericht op het ontwikkelen van een model gebaseerd 
op de fysiologie om het transport van het geneesmiddel over de bloed-hersen-barri-
ère (BBB) te beschrijven, in combinatie met een receptormodel om de kinetiek van 
associatie aan en dissociatie van de dopamine D2-receptor te beschrijven. Bij de ont-
wikkeling van antipsychotica is de informatie over de verdeling van geneesmiddelen 
in de hersenen en het tijdsverloop van de receptorbezetting vrij schaars. Dus werd 
een populatie-gebaseerde methode gebruikt om informatie uit verschillende bron-
nen te integreren.

In hoofdstuk 3 werd een hybride fysiologie-gebaseerd farmacokinetisch- farma-
codynamisch (PBPKPD) model ontwikkeld om de D2-receptor binding van het atypi-
sche antipsychoticum olanzapine in het striatum van ratten te karakteriseren. Hiertoe 
werden gegevens over het tijdsverloop van de plasmaconcentratie, hersenconcentra-
tie en D2-receptorbezetting van olanzapine via verschillende toedieningswegen in 
ratten geanalyseerd. In dit model werd de verdeling naar de hersenen beschreven als 
een eenvoudig passief diffusieproces. De associatie met de D2-receptor werd beschre-
ven als een tweede-orde proces en de dissociatie van de D2-receptor werd beschreven 
als een eerste-orde proces. We vonden een goede overeenkomst tussen de geschatte 
associatie- en dissociatie-snelheidsconstanten (kon en koff) en de in vitro waarden 
in de literatuur. 

In hoofdstuk 4 wordt de modellering van het tijdsverloop van de D2-
receptorbezetting bij ratten uitgebreid met de atypische antipsychotica risperidon en 
zijn metaboliet paliperidon. Specifieke kenmerken van deze modellen zijn: i) de mo-
dellering van complexe niet-lineaire verdeling in de hersenen, ii) de competitieve in-
teractie van de receptorbinding van risperidon en de actieve metaboliet paliperidon, 
en iii) het modelleren van de binding op twee receptoren, in dit geval de dopamine D2 
en de serotonine 5-HT2A-receptor. Risperidon wordt omgezet in paliperidon en bei-
de verbindingen vertonen vergelijkbare bindingseigenschappen en klinische profiel. 
Daarom moet voor een goede beschrijving van de receptorbezetting van risperidon 
rekening worden gehouden met de vorming van paliperidon, en de verdeling in de 
hersenen en de binding aan receptoren.

Een relevant kenmerk van zowel risperidon als paliperidon is dat actieve efflux-
mechanismen, althans ten dele, de verdeling naar de hersenen bepalen. Om hiermee 
rekening te houden is het PBPKPD model uitgebreid met een actieve efflux vanuit 
de hersenen. Bovendien hebben risperidon en paliperidon affiniteit voor de seroto-
nine 5-HT2A-receptor (en andere receptoren) en hebben een antipsychotisch effect 
met minder affiniteit voor D2-receptoren dan voor de 5-HT2A-receptoren. Daarom 
werd de binding van risperidon en paliperidon aan 5-HT2A-receptoren in de fron-
tale cortex beschreven met behulp van associatie- en dissociatie-processen. Het 
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uitgebreide PBPKPD model beschrijft de in proefdierexperimenten waargenomen 
hersenconcentraties, D2RO en 5-HT2ARO goed. Het opnemen van de binding aan 
5-HT2A-receptoren in het model was nodig om de waargenomen verhouding van 
de concentraties in hersenen en plasma nauwkeurig te beschrijven. Uit simulaties 
is gebleken dat de affiniteit voor de receptor (Kd of Ki) het patroon van de hersen-
plasma-ratio sterk beïnvloedt. Daarom wordt in hoofdstuk 4 de conclusie getrokken 
dat de binding aan zowel de D2 als de 5-HT2A-receptoren de verdeling van risperidon 
en paliperidon in de hersenen beïnvloedt. Dit kan het gevolg zijn van hun hoge af-
finiteit voor D2 en 5-HT2A-receptoren. Het is dus nodig rekening te houden met de 
receptoraffiniteit en de hersen-plasma-ratio bij het kiezen van het beste PKPD model 
voor geneesmiddelen die werken op het centraal zenuwstelsel.

Het belangrijkste doel van dit translationele kader was om te beoordelen of het 
PBPKPD model de receptorbezetting bij de mens na toediening van antipsychotica 
betrouwbaar kan voorspellen. In hoofdstuk 5 worden drie verschillende methoden 
gebruikt om het transport van het geneesmiddel over de bloed-hersen-barrière (BBB)   
en de binding aan D2-receptoren in het striatum van de mens te voorspellen.

Methode A gebruikt de minimaal vereiste in vitro informatie om de D2RO in 
de mens te voorspellen. De waarden voor de schijnbare permeabiliteitscoëfficiënt 
(Papp) werden geëxtrapoleerd van proefdier naar mens op basis van het endotheliale 
oppervlak van de hersenen om het passieve geneesmiddeltransport over de BBB te 
voorspellen. De actieve effluxklaring werd geëxtrapoleerd van het in vitro systeem 
naar de mens in vivo, gebaseerd op de expressie van de geneesmiddel-transporters in 
de in vitro systemen en in de hersenen van de mens. Humane in vitro Ki waarden en 
in vitro koff waarden voor de rat werden gebruikt om de D2RO in het striatum van de 
mens te voorspellen. 

In methode B werden de schattingen van de parameters van het PBPKPD model 
voor de verdeling van geneesmiddelen en binding aan receptoren in de hersenen 
van de rat gebruikt om de D2RO te vertalen van rat naar de mens. De parameter die 
het passieve geneesmiddeltransport over de BBB bij ratten beschrijft (rCLbev) werd 
genormaliseerd naar het endotheliale oppervlak van de hersenen in de rat om de 
schijnbare permeabiliteitscoëfficiënten te berekenen en deze waarden werden ge-
bruikt op dezelfde manier als in methode A voor berekening van de CLbev waarden 
die het passieve geneesmiddeltransport over de BBB bij de mens karakteriseren. De 
actieve efflux werd geschaald van rat naar de mens op basis van de MDR1 expressie 
in beide soorten. De in vivo Kd en koff waarden voor de rat, geschat met het model, 
werden gebruikt om de D2RO in het striatum van de mens te voorspellen.

In het onderzoek naar de minimale informatie die nodig is voor dit translati-
onele model is methode C ontwikkeld. In principe maakt methode C gebruik van 
de methode A om informatie met betrekking tot transport over de BBB te schalen. 
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Danhof et al. hebben voorgesteld dat de geneesmiddel-specifieke parameters (recep-
toraffiniteit – Kd of Ki) kunnen worden beschouwd als identiek tussen verschillende 
systemen (in vitro, rat en mens). Wij hebben echter verschillen waargenomen in de 
receptoraffiniteit tussen in vitro en in vivo systemen. Dit verschil tussen de in vivo en 
in vitro scenario’s zou kunnen ontstaan   door de aannames die gebruikt worden in 
de in vitro berekeningen en modelschattingen. Bovendien kunnen de keuze van het 
radio-ligand en verstoringen in het veronderstelde evenwicht in de in vitro en in vivo 
systemen leiden tot onjuiste Ki berekeningen. Daarom werden in methode C de in 
vivo Kd parameters voor de mens gecorrigeerd voor het verschil tussen in vitro en in 
vivo scenario’s door het normaliseren van de in vivo Kd, voor de rat, geschat door het 
model, en de in vitro Ki waarden voor de rat en de mens.

De voorspellende kracht van deze fysiologie-gebaseerde methode werd bepaald 
door het vergelijken van de D2RO voorspellingen met de bij de mens waargenomen 
D2RO van zes antipsychotica bij klinisch relevante doses. In het algemeen werd de 
D2RO in de mens goed voorspeld, wanneer alleen in vitro informatie (methode A) 
werd gebruikt in de simulaties. De in methode C toegepaste correctie zou kunnen 
helpen bij de vertaling van een in vitro naar een in vivo systeem voor verschillende 
diersoorten. Tot slot werd dit model met succes uitgebreid om de 5-HT2ARO in de 
cortex van de mens te voorspellen.

Verschillende aspecten van deze translationele modellen worden besproken in 
hoofdstuk 7. De lijst van problemen omvat de fysiologische verschillen tussen rat en 
mens, methodologische kwesties in de meting van de receptorbezetting, onzekerheid 
in de schattingen van de preklinische PKPD parameters en een gebrek aan informa-
tie over geneesmiddel-specifieke parameters. Bijvoorbeeld, de voorspellingen van de 
D2RO van haloperidol waren lager dan de waarnemingen. Geneesmiddel-specifieke 
parameters, zoals metabolisme en actieve influx over de BBB kunnen een rol spelen 
in de te lage voorspellingen van de D2RO voor haloperidol. Vanwege het gebrek aan 
informatie over deze processen hebben we deze componenten niet in het translati-
onele model opgenomen. Ondanks de beperkingen en problemen is een algemeen 
translationeel kader ontwikkeld, dat is gebaseerd op de onderliggende mechanismen 
en rekening houdt met de verschillende processen die betrokken zijn bij het trans-
port van geneesmiddelen naar de hersenen.

In schizofrenie worden extrapiramidale symptomen (EPS) veroorzaakt door te 
hoge D2RO (> 80%) van antipsychotica en dit geldt ook voor catalepsie (CAT) als 
bijwerking in de rat. Hoewel er een duidelijke relatie tussen D2RO en bijwerkingen 
bestaat, is er geen relatie tussen catalepsie en EPS beschreven. In hoofdstuk 6 wordt 
de relatie tussen CAT scores in de rat en EPS-scores bij de mens op een kwantitatieve 
manier beschreven. Interessant is dat bij de mens de kans van het optreden van EPS 
voor 0% D2RO ongeveer 5% is, wat het effect van placebo op de EPS laat zien. Er kan 
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worden voorspeld dat het risico op het optreden van EPS niet meer dan 10% hoger is 
dan voor placebo, wanneer 86% D2RO resulteert in minder dan 30% kans op CAT in 
ratten. Deze methode kan worden gebruikt bij de ontwikkeling van geneesmiddelen 
om het risico van EPS bij mensen te voorspellen op basis van D2RO en CAT scores 
in ratten.

Slotopmerkingen
Toepassingen van dit kader voor modellering omvatten het voorspellen van de re-
ceptorbezetting en de bijwerkingen tijdens de beginfase in de ontdekking van ge-
neesmiddelen. Deze methode kan ook worden toegepast voor de selectie van een 
geschikte eerste dosis in de mens gebaseerd op de farmacokinetiek en farmacodyna-
miek. Als gevolg van de mechanistische en fysiologische basis is het waarschijnlijk 
dat deze methode kan worden uitgebreid tot andere indicaties in het centraal ze-
nuwstelsel. Toch zou het opnemen van meer mechanistische componenten, zoals het 
effect van endogeen dopamine op de binding van geneesmiddelen aan receptoren, en 
de correctie voor de binding van het radio-ligand tussen verschillende diersoorten, 
kunnen helpen om de voorspellingen te verbeteren.

Het is echter niet te verwachten dat voorspellende methoden de noodzaak van 
klinische studies volledig zullen vervangen, al is het aannemelijk dat deze methode 
kan helpen om meer informatieve en meer efficiënte klinische studies te ontwerpen. 
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