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Abstract: Logical reasoning is crucial in science, but we know that this is not something that humans are 
innately good at. It becomes even harder to reason logically about data when there is uncertainty, because 
there is always a chance of being wrong. Dealing with uncertainty is inevitable, for example, in situations in 
which the evaluation of sample outcomes with respect to some population is required. Inferential statistics is a 
structured way of reasoning rationally about such data. One could therefore expect that using well-known 
statistical techniques protects its users against misinterpretations regarding uncertainty. Unfortunately, this 
does not seem to be the case. Researchers often pretend to be too certain about the presence or absence of an 
effect, and data are analysed in a selective way, which impacts the validity of conclusions that can be drawn 
from the techniques that are used. In this paper, the concept of risk is used to explain why unwanted behaviour 
may not be as unreasonable as it seems, once the risks that researchers face are taken into account. 

Keywords: risk, inference, statistics, questionable research practices, uncertainty. 
 

Prelude 
Risk may not be the first thing that comes to mind when trying to explain how researchers 

deal with uncertainty in their papers when talking about their data. Nevertheless, I think it may play a 
larger role than one might expect. For this paper, I will use Kaplan and Garrick’s (1981) quantitative 
interpretation of risk, in which they present risk analyses as an answer to a set of three questions:  

(i) What can happen? 
(ii) How likely is it that this will happen? 
(iii) If it does happen, what are the consequences? 
In explaining how researchers deal with uncertainty, the concept of risk is relevant from two 

different angles. First, interpreting inferential statistical outcomes necessarily involves uncertainty. 
Every now and then, one happens to end up with a relatively atypical and therefore not representative 
sample outcome, and the consequence could be that future studies on the same issue will find 
something quite different from what you have found, which could cause the earlier conclusions to be 
called into question. In this paper, however, the focus will be mainly on risk from a second angle. 
From this angle, the focus is on the personal risks that might impact publication of a scientific paper 
and the reputation of a researcher when making certain choices regarding the reporting and 
interpretation of the outcomes. Once the likeliness of undesirable consequences resulting from these 
choices is taken into account, seemingly unreasonable behavior like presenting data too certainly, 
becomes more understandable. In this paper, I will argue that understanding risk aversion may be an 
important step for being able to improve what some refer to as a crisis in the social sciences.  

  
Reasoning with uncertainty 

It is well known that human reasoning is far from optimal, and it becomes even harder when 
uncertainty is involved. Tversky and Kahneman (1974) showed that when dealing with uncertainty, 
we often rely on a relatively small number of heuristics to come up with an answer. Gigerenzer 
(2008) argues that it is important to take the context in which conclusions are drawn into account, to 
understand why interpretational mistakes that seem illogical at first sight, may make sense once the 
context is understood. 
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Some situations that involve a human interpretation under uncertainty require an answer as 
rational as possible given the data at hand. For example, one would expect a counsellor with 
expertise regarding a certain illness to be able to interpret results of tests for that illness. Gigerenzer, 
Hoffrage and Ebert (1998) showed for a sample of AIDS counsellors in Germany that this was not 
the case. False positives (testing positive on a test when you do not have the disease that is tested for) 
were often not taken into account, and positive results were sometimes presented as conclusive 
evidence that the one who was tested had the disease. We also expect judges to make sound 
judgements about the likeliness or unlikeliness of the accused being guilty. Unfortunately, this is also 
not always true. In a famous English case from 1999, Sally Clark was convicted for murder of two of 
her sons, who had been found dead in their beds. The sudden infant death syndrome (a residual 
category in case all other explanations have been excluded) was ruled out as highly unlikely, but the 
unlikeliness of a mother killing two of her sons was not taken into account (Manktelow, 2012). In 
2003, a Dutch nurse called Lucia de Berk was convicted on the basis of only circumstantial evidence 
for the murder of four patients and attempted murder of three others, because it was ruled to be too 
coincidental that she was on duty when the patients died (Buchanan, 2007). Again, the unlikeliness 
of a nurse killing or trying to kill several patients was not taken into consideration. Eventually, de 
Berk was imprisoned for 5 years, and after being released in 2008 pending a higher court decision, 
the court ruled in 2010 that the defendant was not guilty. The examples above show that in some 
cases, the misinterpretation of uncertainty can have an enormous impact. 

As from counsellors and judges, we expect scientific researchers to draw justified 
conclusions based on the data at hand. In a scientific context, a researcher who tries to answer a 
certain research question often has a limited amount of data to make valid inferences. When 
researchers want to know something about a certain group (the population), they are often restricted 
to information of only a small number of people from this population (the sample). This implies that 
the eventual outcomes are only based on a small subset of the entire group in which the researcher is 
interested. In these cases, uncertainty is intrinsically connected to any statement that is made about 
the population. For example, if a researcher wants to study which proportion of the population that is 
entitled to vote would vote for candidate C if the election would be held today, it is practically 
impossible to ask everyone in the population. Instead, one would aim at selecting a random sample 
of participants from the population, and try to estimate the value in the population one is interested in 
(which is called the parameter). Assuming a completely random sample, and assuming completely 
cooperative and honest participants, the best possible estimate based on the sample would be the 
proportion of people within the sample that would indicate voting for C. But it is still unsure what the 
exact value for the parameter is: Despite random selection, the sample might not show exactly the 
same proportion as the population. Intuitively, if the sample were relatively large, one would expect 
the sample outcome to be close to the parameter, but it is unclear how close. How can we make a 
reasonable interpretation of the parameter based on the outcome, knowing how hard it is for people 
to reason with uncertainty? To overcome the human deficits with respect to reasoning about data 
with uncertainty, a systematic approach of analysing data seems necessary.  

Inferential statistics are designed to provide a structure to reason rationally about sample data, 
in order to make an inference about the parameter. Given that statistics is a means to deal with 
uncertainty in a structured way, one could expect that when researchers use statistics for their 
inferential statements, reasoning with uncertainty is done without too many problems. The question 
is whether this is really the case in practice. 

 
Two inferential statistical frameworks 

For reasons of clarity, it is necessary to present the two most commonly used inferential 
statistical frameworks in the social sciences: Frequentist statistics (which is sometimes also referred 
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to as classical statistics, or frequentism) and Bayesian statistics. The former is by far the most 
frequently used framework, whereas the latter seems to gain momentum in the last couple of 
decades, and some even refer to it as a Bayesian revolution (e.g., Brooks, 2003; Zyphur & Oswald, 
2015). 

Frequentism defines probability as a long-term relative frequency (Dienes, 2008). The two 
frequentist techniques that are most often used are the null hypothesis significance test (hereafter 
referred to as significance test) and the confidence interval (CI). In the social sciences, biology, and 
the medical sciences, significance tests can be found in a large majority of the published papers. A 
significance test, as it is most often used, calculates the probability of finding the outcome found in 
the sample or more extreme, under the assumption that a specific test-value you are interested in 
equals a certain value (often null, hence null-hypothesis significance testing). If this probability, the 
p-value, is smaller than a certain criterion value called the significance level (which is often chosen 
to equal 5%), the outcome is called “significant”, and if it is larger, the outcome is considered “not 
significant”. The significance level indicates the risk of incorrectly rejecting the null hypothesis (also 
referred to as Type I error). Note that “significant” in this context is only a statistical term: It does 
not refer to the practical importance of the finding, but it merely indicates how likely the outcome or 
more extreme is given a certain value of the parameter. In order to say something about practical 
relevance, power calculations could indicate how “powerful” (strong) the procedure at hand is. This 
depends on, amongst others, the sample size, and the homogeneity of the group at hand. The power 
indicates how likely it is to find a significant effect under the assumption that in reality a certain 
value for the parameter were true. The complement of this probability is called the Type II error. 

A second technique within the frequentist framework is the confidence interval. The idea 
behind CIs is that you construct a certain interval around the value you found in your sample in such 
a way, that, if an infinite number of independent samples were taken from the same population and a 
confidence interval was constructed for each sample, a certain percentage (for example 95%) of 
these intervals would include the parameter. CIs are often endorsed as an alternative for the 
significance test, since they are assumed to give an indication of precision of the parameter estimate, 
and since they give a direct indication of the size of the effect (Cumming, 2012).  

To complicate matters even further, the standard way of using these techniques in practice 
deviates from theory, and there are at least two theories about which techniques should be used, and 
how they should be interpreted. Historically, Fisher (e.g., Fisher, 1925) considered drawing 
conclusions as an essential part of inference, and according to him p-values are to be considered as 
measures of evidence. In his model, no alternative hypotheses are considered. Neyman and Pearson 
extended his model, but they argued that frequentist inference is to be used for decisions, and not for 
drawing conclusions. They also stressed the importance of keeping long-term error rates low, thus 
focusing on the importance of the significance level and power. The debates between these two 
camps were far from friendly. Ironically, the current model that is typically used seems a hybrid 
version of Fisher’s and Neyman and Pearson’s view on frequentist statistics (Gigerenzer, 1993), and 
it would probably have been rejected by both sides, although on different grounds (Kline, 2013). 
Because of its prevalence, I will focus on the hybrid version that was introduced before. The reader 
should keep in mind, however, that depending on the position one has, the interpretations that are 
considered correct and not correct may differ. 

Probability is defined differently within the Bayesian framework. The core idea of Bayesian 
statistics is that it quantifies how a rational person would change his or her prior beliefs about a 
parameter based on the data at hand. That is, contrary to frequentist statistics, Bayesian statistics 
require a specification of one’s belief about plausible values of the parameter before looking at the 
data. Within Bayes, there are several ways of analysing data. First of all, you can update the prior 
beliefs by means of the data. That is, given a quantification of your prior idea of the position of the 
parameter, Bayesian statistics tell you how you should update your belief based on the data if you 
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were a completely rational person. An alternative way is to contrast two models of the data, and 
compare the likelihood of both models given the data. This ratio of likelihoods is called the Bayes 
Factor (Dienes, 2011). 

Now that the two main inferential frameworks (frequentism and Bayesianism) have been 
introduced, the question is whether they are usable for researchers to draw sound conclusions. How 
do researchers in practice deal with uncertainty when making inferential claims? What do we know 
about their use of statistical methods? Do the statistical techniques they use protect them from 
making reasoning errors? Or do they evoke reasoning errors themselves? In the sequel, it will be 
discussed how people use inferential statistics to reason about data. In a second step, it will be 
explored how the definition of “risk” as it was introduced earlier, may play an important role in 
explaining why people use statistics as they do. 

 
The use of inferential techniques in practice 

Analysing and interpreting data by means of inferential techniques involves many aspects. 
For the purpose of this paper, we focus on the following two questions: 

1) How do researchers acknowledge the uncertainty that is inextricably connected to 
inference in their conclusions? 
2) Does the way people analyse the data justify the use of the technique at hand? 
For answering the first question, I will focus on our knowledge of how people report and 

interpret their statistical outcomes. For the second question, I will show that given how many 
researchers analyse their outcomes selectively, the conclusions based on the techniques are often 
invalid. Since a majority of the studies that are presented had researchers in the social sciences as 
participants, the scope of the eventual conclusions is limited to the social sciences as well.  

Numerous articles have been written about the usability (or the lack thereof) of frequentist 
and Bayesian techniques (for an overview, see for example Kline, 2013). The debates between 
frequentists and Bayesians have been (and are to this very day) typically rather fierce, but also within 
both frameworks quite some disagreement can be found. Despite the attention for the usability of 
both techniques, few studies have focused on their use in practice.  

As stated before, significance testing is by far the most frequently used technique within the 
social sciences, medical sciences, biology and beyond (Bakker, van Dijk, & Wicherts, 2012; Fidler 
& Loftus, 2009; Hoekstra, Finch, Kiers, & Johnson, 2006; Hubbard & Ryan, 2000; Kline, 2013; 
Sterling, Rosenbaum, & Weinkam, 1995). Unfortunately, despite the earlier mentioned “Bayesian 
revolution”, I am not aware of any study on the use in practice of Bayesian techniques. In the sequel, 
the focus will therefore be on the use of frequentist statistics, which should by no means be 
interpreted as if frequentism were the only way to analyse data. In the absence of information about 
the use of Bayesian methods, however, I cannot draw any conclusion about its use. In the conclusion 
section I will return to this by discussing to what extent Bayesian statistics might be a solution for the 
presented problems.  

As to how uncertainty is acknowledged in interpretations (the first question), it is known that 
the conclusions that are drawn from NHST are often not without errors. Significant results are often 
interpreted as if it is indisputable that the null hypothesis is false, thus ignoring the risk of making a 
Type I error, and non-significant results are often presented as if they reflect the null hypothesis 
being true, thus ignoring the risk of making a Type II error (Hoekstra et al., 2006). In Hoekstra et 
al.’s paper, interpretational errors were defined leniently. That is, frequentists who adhere to the 
Neyman-Pearson interpretation of frequentist statistics could argue that only decisions but no 



TME, vol. 12, no. 1,2&3, p. 107 

	  

conclusions are justified given frequentist outcomes. From that perspective, any conclusion would be 
unwarranted, but in this paper, only overly rigid conclusions were counted.  

When possible interpretations of p-values are presented to researchers, very few are able to 
correctly indicate which conclusions are justified (Falk & Greenbaum, 1995; Oakes, 1986). Haller 
and Kraus (2002) showed that even statisticians endorsed incorrect statements about p-values. 
Similar findings have been found for statisticians at pharmaceutical companies (Lecoutre, 
Poitevineau, & Lecoutre, 2003) and doctors and dentists (Scheutz, Andersen, & Wulff, 1988; Wulff, 
Andersen, Brandenhoff, & Guttler, 1987). 

Confidence intervals, on the other hand are seldom reported (Cumming, 2012; Fidler & 
Loftus, 2009; Hoekstra et al., 2006), and researchers seem to have great difficulty with interpreting 
them correctly as well (Hoekstra, Morey, Rouder, & Wagenmakers, 2014). When the same data are 
presented by means of significance testing or CIs in an experimental setting, it was found that both 
are interpreted differently (Hoekstra, Johnson, & Kiers, 2012). Since the presented techniques 
conveyed exactly the same information, it was only presented differently, logical reasoning should 
have led to exactly the same conclusion. Belia, Fidler, Williams, and Cumming (2005) also showed 
that researchers were relatively bad in showing awareness of the relation between significance 
testing and CIs.  

The second question deals with the way data are treated before the analysis that is used in the 
version that is eventually submitted for publication in a journal. John, Loewenstein and Prelec (2012) 
showed that when analysing data, researchers often selectively adjust their analyses based on the 
significance of their findings. That is, in case of a significant effect they write down their conclusions 
without further ado, whereas non-significant findings may lead to adjustments like increasing the 
sample size, or leaving out one of the conditions or dependent variables, amongst others. They 
dubbed such adjustments questionable research practices (QRPs). Another QRP is presenting a 
significant outcome as if it were predicted beforehand, whereas it actually was an unexpected 
finding. By means of simulations, Simmons, Nelson, & Simonsohn (2011) found that using such 
QRPs selectively (that is, only or mainly in case of non-significant findings) inflates the Type I error 
rate unacceptably. As a result, the interpretation of a p-value or the significance of the outcome is 
practically impossible, and we have shown earlier that researchers find this already difficult enough 
without QRPs. The most extreme QRP is fabricating data, which is obviously wrong. Some of the 
QRPs, however, are so generally accepted that most researchers are not even aware that these 
practices are questionable. Note that this implies that the researcher who exhibits QRPs does not 
necessarily have to be aware that this is problematic. All in all, there are strong indications that QRPs 
are part of the routine of researchers. This has serious implications for the interpretation of the 
results, since the outcomes do no longer mean what they originally mean. In fact, outcomes like p-
values and CIs are almost impossible to interpret if we would allow the use of QRPs. 

In summary, frequentist inferential statistical outcomes are often interpreted incorrectly (even 
when using lenient standards), and in papers effects or the alleged lack of an effect are often 
presented with more certainty than is justifiable. Moreover, the apparent frequent use of QRPs 
impacts the interpretability of the outcomes even further. Apparently, despite the fact that inferential 
statistics have been designed to prevent interpretational errors from occurring, they are no guarantee 
for the absence of such mistakes in the published literature. 

 
Risk as an explanatory factor 

In this paragraph, I will try to show how the previously mentioned use and interpretation of 
inferential outcomes can be partially explained by risk aversion behaviour. In order to assess 
researchers’ considerations with respect to the aforementioned choices, I will use Kaplan and 
Garrick’s (1981) risk analysis by answering the set of three questions: What can happen?, How likely 
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is it that this will happen?, and If it does happen, what are the consequences?. Although I am fully 
aware of the fact that researchers are part of a community in which behaviour of one person 
influences the behaviour of someone else, the focus in this paragraph will be on the choices that the 
individuals make within the scientific system. These choices are subsequently related to the context 
in which they are made.  

The idea that risk aversion may explain why the unwanted behaviours (intentionally or not) 
like misinterpreting statistical outcomes and using QRPs occur is not a completely new insight. 
Many have argued that the incentive structure in academia is at the core of the problem that we are 
having in psychology and beyond (e.g., Asendorpf et al., 2013; Nosek, Spies, & Motyl, 2012; Nosek 
& Lakens, 2014; Open Science Collaboration, 2012). Avoiding risks can be considered 
complementary to following incentives. With respect to risks, two things are of crucial importance 
for being a successful researcher: Having a decent amount of publications, and having a solid 
scientific reputation.  

Let’s first focus on the risks involved with one of the types of unwanted behaviour discussed 
in this paper: Using one or more QRPs when the original finding, after analysing the data as was 
originally planned, was not significant. In the current scientific publication system (and assuming the 
use of frequentist statistics), a significant finding seems a requisite for a publishable paper. As a 
result, researchers are typically disappointed when their effects happen to be non-significant. At this 
point, QRPs may be tempting. When not using them in case of a non-significant finding (and 
according to Cohen (1994), non-significant findings should be found regularly, since power is 
typically low), the risk of not publishing the article is high. Nevertheless, non-significant findings 
could be indicative of interesting findings. For example, in case of many studies with low power, a 
series of low-powered studies could result in a very clear effect in a meta-analysis, in which 
outcomes of several studies are combined. If papers with non-significant effects are not presented, 
however, we will end up with a so-called file-drawer problem (non-significant findings disappear in 
a file-drawer), which makes it hard to get a good estimate of the parameter. There are published 
papers to be found for which findings were non-significant, but this is relatively rare. The use of 
QRPs does definitely increase the probability of an article getting published, since the probability of 
finding a significant effect is artificially increased (and significant results have a higher probability 
of being published). Thus, avoiding QRPs might lead to a paper not being published, and it 
consequently might hamper a researcher’s career and reputation. The probability of that reputation 
being hampered in case a researcher decides to use QRPs, on the other hand, is negligible, because 
the probability of getting caught when doing so is practically zero: Typically, a researcher is not 
being observed when analysing the data. And even if someone happens to get caught, the 
reputational damage is limited: The argument “Everybody else is doing it, so why can’t I?” can 
easily be used as a defence. Of course, this does not hold for the use of QRPs like fabricating data. If 
this comes out, the researchers’ reputation will be irreparably damaged, but many other QRPs seem 
to be considered acceptable. 

A second choice a researcher has to make considers acknowledging uncertainty. Within the 
context of significance testing, ignoring uncertainty results in interpreting a significant effect as 
definite proof that the null-hypothesis is untrue (thus ignoring the possibility of a Type I error), and a 
non-significant effect as if there is definite proof that the null-hypothesis is true (thus ignoring the 
possibility of a Type II error). A pragmatic researcher would base this choice at least partly on the 
impact it might have on the publishability of the paper and on his or her reputation. If uncertainty is 
acknowledged, the paper is somewhat more honest, but also harder to read, and arguably less 
convincing. It is, for example, easier to understand “A is explained by B, but not by C” than a more 
truthful “A may be explained by B, and we don’t know yet whether C plays a role”. The culture in 
academia seems to require novel and groundbreaking research, and questioning oneself could be seen 
as a sign of weakness. In that sense, acknowledging uncertainty can decrease the probability of a 
paper being published, and if it is published, it can be seen as if the results are not very strong, which 
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can impact the reputation of the researcher negatively, although the latter risk is most likely smaller 
than the former. Presenting the results in a way that implies more certainty than is justified, on the 
other hand, does not seem risky at all. The likeliness of being accused of being too certain is slim, 
since it is common practice among behavioural scientists, and since the papers become slightly more 
difficult the read when uncertainty is acknowledged. If someone would point it out though, the 
implications for the reputation are most likely negligible.  

In summary, we have seen that mistreating data (QRPs) and a misinterpretation of outcomes 
(ignoring uncertainty) are observed regularly. Although unwanted, this behaviour can be considered 
rational once the scientific context in which the researcher works including the risks within that 
context is taken into account. The risks of not publishing an article or of a damaged reputation seem 
higher when QRPs are not used, and, arguably, the risks are also higher when uncertainty is 
acknowledged. 

  
Conclusion and Discussion 

Researchers have difficulties to reason soundly about their inferential outcomes. Although we 
know that people are generally bad in reasoning with uncertainty (see e.g., Gigerenzer, 2008; 
Tversky & Kahneman, 1974), one would hope that inferential techniques, which are designed to 
assist people in reasoning in a structured way, would prevent these problems, but clearly that is not 
the case. Not only do researchers often seem to ignore the amount of uncertainty that is inextricably 
connected to every conclusion that is drawn about a population based on a sample outcome, but the 
regular use of QRPs makes it almost impossible to draw valid conclusions from the frequentist 
outcomes that are typically used. QRPs and pretending certainty are two different issues, but they are 
connected: With QRPs the probability of finding a Type I error are artificially inflated, and when 
uncertainty is not acknowledged Type I and Type II errors are basically ignored. 

The findings that QRPs are regularly used and that uncertainty is often not acknowledged are 
non-trivial outcomes: In some papers the current status of the use of inferential methods in 
psychology is referred to as a “crisis” (e.g., Pashler & Wagenmakers, 2012), and replication studies 
show that many significant outcomes are not significant in exact replications of the studies (e.g., 
Galak, LeBoeuf, Nelson, & Simmons, 2012; Harris, Coburn, Rohrer, & Pashler, 2013), which could 
be indicative for a regular use of QRPs in the original articles. Unfortunately, knowing that QRPs are 
sometimes used also impacts the trustworthiness of those papers for which they were not used, since 
it is almost impossible for a reader to distinguish between the two. 

As stated before, the explanation for this undesirable behaviour can most likely not be 
reduced to one factor only. Time constraints, lack of knowledge of the finesses of the statistical 
techniques that are used, the inclination to adjust to the behaviour of others and the power of habit, 
amongst others, all play a role in this process. In this paper, however, the focus is on the role of risk 
in the choices that individual researchers seem to make. From the perspective of risk aversion, the 
unwanted behaviour may not be as illogical as it seems. If one wants to minimize both the risk of a 
hampered reputation and the risk of not publishing a sufficient amount of papers, presenting 
outcomes as clear as possible, -even if this impacts the formally correct interpretation somewhat-, 
and using some QRPs in case the key outcomes happen to be non-significant seem in fact rational 
choices.  

If we, as a scientific community, consider such behaviour unacceptable, a viable solution 
should lead to an increased risk of not publishing the paper at hand, or reputational damage in case 
such behaviour is identified. As long as these risks remain low, the chances for a rigorous change 
might be slim. Below, a few possible solutions will be discussed with respect to the implications for 
risk. First, a relatively easy solution (e.g., Nosek et al., 2012; Nosek & Lakens, 2014) is to install a 
system of preregistration. In such a system, studies are submitted before they are conducted, and only 
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the theoretical part and a description of the method are reviewed, and the decision whether to publish 
the article is conditional on the quality of these parts only. Thus, accepting or rejecting a paper does 
no longer depend on the results. If such a system would be implemented, there is no longer a direct 
need for QRPs or presenting the outcomes with certainty. It could be argued, however, that even 
when preregistration would be implemented, the risks of using QRPs or presenting data with 
certainty for hampering the publication or the researchers’ reputation would remain small. It is not 
inconceivable that researchers would keep doing displaying those, because this was common practice 
for a long time, and old habits die hard. Therefore, preregistration alone may not be sufficient to 
unlearn such behaviour. A second solution is to require authors to make their data publically 
available (Wicherts, Bakker, & Molenaar, 2011). Bakker and Wicherts (2014) even claim that not 
sharing your data should be considered a QRP. If all the available data are shared after publishing an 
article, some of the QRPs are detectable, and thus the likelihood of reputational damage in case of 
the use of QRPs may increases. I expect that making all the data available, maybe in combination 
with preregistering the research questions would increase the risks of using QRPs substantially. 
Preregistration and making data available would, however, not necessarily prevent a too rigid 
interpretation of significance testing.  

A third solution is to require researchers to use Bayesian instead of frequentist techniques. 
Although this may seem drastic, recently the journal of Basic and Applied Psychology published an 
editorial (Trafimow & Marks, 2015), in which frequentist techniques were banned from the journal, 
whereas Bayesian techniques are “neither required nor banned” (p. 1). Apparently, these drastic 
measures are implemented in practice, although this is an exception. Philosophical debates about the 
usability of Bayesian techniques and frequentist techniques have been going on for decades, in which 
both sides claim that the framework they adhere to has clear advantages over the other (see e.g., 
Kline, 2013; Wagenmakers, 2007) . Whether one is better than the other with respect to dealing with 
uncertainty is beyond the scope of this paper. I do want to stress, however, that the rigid frequentist 
cut-off values for significance (and it could be argued that the clear limits of CIs can be used equally 
rigid (Abelson, 1997)) are not intrinsically connected to Bayesian techniques. In that sense, using 
QRPs in order to reach a certain outcome do not make sense since there are no values that need to be 
reached in order to have a publishable paper. Jeffreys (1961) did propose some interpretations for 
Bayes factors, though, and as soon as they would be implemented as criteria for the publishability of 
an article, QRPs would probably be used just like they are now used with frequentist techniques. 
With respect to acknowledging uncertainty, Bayesian techniques explicitly deal with what a rational 
person should believe, assuming a certain starting position. Thus, pretending more certainty than is 
justified is taking an enormous risk, because every reader who understands the techniques at hand 
can see that the claim is unwarranted.  

Most of the suggestions that are discussed above require rigorous changes on the level of 
editors, reviewers, and university management. If we want to solve the problems that are discussed, 
however, such systemic changes are probably inevitable. Nevertheless, the individual researcher does 
have a responsibility as well, and given the amount of attention for this issue it gets more and more 
dubious to maintain a waiting position. As Gigerenzer (2008) puts it: “It takes some measure of 
courage to cease playing along in this embarrassing game. This may cause friction with editors and 
colleagues, but in the end it will help them enter the dawn of statistical thinking” (p. 171). When 
researchers would take more risks, and the scientific community would take the risks researchers 
face into account, inferential techniques may become what they were originally designed for: Tools 
to reason about uncertainty, instead of tools to publish suboptimal papers.  
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