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a b s t r a c t

We study a dual-sourcing problem of a firm in the face of supply disruptions from two suppliers: local
and overseas. Under four different scenarios of disruption source and information availability, we
characterize the optimal dynamic policy that simultaneously determines sourcing decisions to minimize
the expected total discounted cost. Different from the previous dual-sourcing models without infor-
mation availability in the literature, we develop a two-dimensional stochastic dynamic programming
model to explicitly address this issue. Further, we analyze the impact of disruption source and infor-
mation availability on cost performance. We find that (i) a supply disruption at the local source may
cause a more remarkable deterioration of cost efficiency than a supply disruption at the overseas source;
(ii) the information about the local source is more valuable than that about the overseas source; (iii)
when a firm orders from both sources, the disruption information can achieve a significant cost saving.
These findings contribute to the theory of strategic sourcing by demonstrating the value of information
available at different sources. Moreover, they can also be used as a valuable guideline for managers to
select an appropriate sourcing strategy in business practices.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

As a result of supply chain globalization, global sourcing has
gained popularity as a way to exploit global efficiencies in the
delivery of a product or service. As Johnson (2006) and Gereffi and
Lee (2012) mention, it is a common business practice for a firm to
have different supply sources that have different grades of relia-
bility in terms of the quantity and quality of orders delivered.
Having diversified suppliers with various supply uncertainties, a
firm has to choose an effective and cost-efficient sourcing strategy
in order to protect itself from potential supply disruptions, such as
fire accidents (Nishiguchi and Beaudet, 1998; Latour, 2001) or
earthquakes (Burrows, 1999). Chopra and Sodhi (2004) stress the
importance of maintaining multiple sourcing opportunities and
acquiring supply information for risk mitigation.

The above situations indicate that dual sourcing offers a solu-
tion for reducing the risk in the procurement process and closely
matching supply with demand, and the information availability
could be highly valuable for the procurement process. Facing dif-
ferent disruption scenarios, how do companies find an effective
way of deciding how to source, when, and fromwhom? In terms of
cost performance, does local disruption always have a more ser-
ious impact than overseas disruption? What is the cost saving of
acquiring disruption information? What disruption information is
more valuable? Those are the key issues faced by firms to manage
supply risk in their supply chains. However, as Tang and Musa
(2011) point out, quantitative models in the field of supply chain
risk management are relatively lacking and information flow risk
has received less attention.

To close the gap in the literature, our paper is the first to
consider the combined impacts of disruption source, information
availability, lead times, and costs for achieving an effective dual
sourcing strategy. We assume that a firm, such as an original
equipment manufacturer, can order a critical material or compo-
nent from two sources: local and overseas. Disruption may occur
at these two sources, i.e., the supply may be disrupted because of
unpredictable emergences, such as political instability, natural
disasters, dock strikes, or poor product quality. Additionally, if a
supplier shares the disruption information with the firm in time,
before the order is placed, then the firm can know whether its
order can be fulfilled.

Besides different scenarios of disruption source and informa-
tion availability, these two sources differ from each other with
different lead times and variable costs. We assume that the local
supply has no lead time while the overseas supply has one-period
lead time. The above assumption is commonly used in the litera-
ture of dual sourcing, such as Anupindi and Akella (1993), and
Yang et al. (2005). In fact, we can extend our results to the model
in which the lead time of the local supply is a constant number
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and the lead time of the overseas supply is one period longer than
that of the local supply. The only difference from the current
model is that we use the inventory position to define the state
variable instead of inventory level. The results of our models can
still hold as long as the difference of the lead times between the
local and overseas sources is one period. When the difference of
lead times from these two sources is more than one period, order
crossovers, i.e., replenishment orders are not received in the
sequence they are ordered, will occur. The occurrence of order
crossovers significantly complicates the analysis of the model. To
achieve analytical tractability, our model focuses on one-period
lead-time difference. We will give recommendations about how to
address a general lead-time difference in the Conclusions section.
Moreover, the variable costs of these two sources may be different.
To survive in the global competition, the overseas supplier may
offer a low variable cost due to low labor cost and relatively low
capital investment.

The contributions of this study are twofold. First, our paper
characterizes the optimal dynamic policy that simultaneously
determines the order quantities from two sources to minimize the
expected total discounted cost under four different scenarios of
disruption source and information availability. We find that when
the disruption information is unavailable, the optimal policy may
be either a threshold type or a modified order-up-to type; when
the information is available, the optimal policy is an order-up-to
type. Second, to understand the impacts of disruption source and
information, we perform both analytical and numerical compar-
ison for those four models. We provide a careful explanation for
these observations, leading to conclusions of managerial interest.

This paper is organized as follows. Section 2 reviews the related
literature. In Section 3, we present a model description. In Section
4, for a situation with potential disruptions at both sources, we
formulate a finite-period model by stochastic dynamic program-
ming and develop the corresponding structure results of optimal
policies. In Section 5, we study four models with different dis-
ruption source and information availability, and explore various
structural properties of the optimal policies for these models. By
numerical experiments, we investigate the impact of disruption
source and information on cost performance in Section 6. We
conclude the paper with discussion of the results and suggestions
for possible future research in Section 7.
2. Literature review

Our work is closely related to three streams of research. The
salient feature of the first stream of research is supply disruption.
With supply disruption uncertainty, a supplier may experience
two situations: if the disruption occurs, the supplier cannot fulfill
any order; otherwise, the supplier can deliver an order in full and
on time. Under the single-supplier scenario, Moinzadeh and
Aggarwal (1997) and Parlar (1997) studied the optimal replen-
ishment policy under the periodic review and continuous review,
respectively. Both Parlar and Perry (1996) and Gürler and Parlar
(1997) considered the dual-sourcing problem with constant
demand. The difference is that Parlar and Perry (1996) assumed
that inter-failure and repair times are exponentially distributed for
both suppliers while Gürler and Parlar (1997) extended to Erlang-k
inter-failure times and general repair time. Recently, under a
newsvendor setting with unreliable supply, Gürler and Parlar
(1997) investigated the influence that resource attributes, firm
attributes, and product-portfolio attributes have on the attrac-
tiveness of various supply-chain structures that differ in their
levels of mix flexibility and diversification. Tomlin (2006) con-
sidered a firm which faces one unreliable and cheap supplier with
fixed capacity and one reliable and expensive supplier with
flexible capacity. However, both suppliers had identical delivery
lead-times. The author characterized the optimal disruption-
management strategies and analyzed the impact of volume flex-
ibility on the performance of the firm. Yu et al. (2009) studied the
impact of supply disruption risk on the decision process of a two-
stage supply chain consisting of two suppliers and a manufacturer.
The authors examine the optimal sourcing strategy under the
situation that the demand is price-sensitive and the market scale
increases when supply disruption occurs. In a decentralized supply
chain, Li et al. (2010) characterized the sourcing strategy of one
retailer and the pricing strategies of two suppliers and studied the
impact of the players' strategies on the supply chain performance.
Altug and Muhammeroglu (2011) considered an inventory system
with uncertain capacity from a single source. Using capacity
forecasts as the advanced supply information, they obtained the
optimal replenishment strategy. Atasoy et al. (2012) investigated
the optimal inventory policy when the disruption information for
the near future from a single supplier is available. Zhu (2013)
studied pricing and inventory-control strategies of a sole-sourcing
model with supply disruption of raw materials. The author
obtained the structure of the optimal polices for raw-material
replenishment, finished-goods production, and pricing. Different
from the above papers, we focus on the impact of the disruption
source on the replenishment strategy and cost performance of the
firm under the dual-sourcing strategy.

There is extensive literature in the second stream of related
research, which assumes either multiple suppliers or multiple
delivery modes. Fukuda (1964) was the first to consider an
inventory model with two delivery modes. The lead times of the
two modes are varied by exactly one period and the faster one is
more expensive. The optimal policy is shown to have the following
form. There are two base-stock levels. If the initial stock level is
below the smaller base-stock level, then an order with the faster
mode is placed to bring the stock level up to that base-stock level.
No order with the faster mode is placed otherwise. The system
stock level is then brought up to the larger base-stock level by
ordering with the slower mode. Anupindi and Akella (1993) stu-
died the optimal replenishment policy for a dual-sourcing model
with uncertain yield. Under the multiple delivery modes, Sethi
et al. (2003) considered an inventory model with a fixed ordering
cost and demand forecast updates. Recently, Yang et al. (2005)
studied the firm's optimal sourcing strategy when the in-house
production capacity is modeled by a Markov process. The authors
proved that both the in-house production and the outsourcing
policy are capacity-dependent. Feng et al. (2006) showed that
when the number of modes is more than two, only the fastest two
modes have optimal base stocks. Veeraraghavan and Scheller-Wolf
(2008) extended the literature by allowing the difference between
the lead times of the two modes to be more than one. Klos-
terhalfen et al. (2011) numerically investigated the cost perfor-
mance of the constant-order policies (COP) and the dual-index
policy for dual sourcing. The authors found that the COP performs
quite well for specific practical situations. Riezebos and Zhu (2015)
generalized theory on material requirements planning ordering by
including the occurrence of dynamic lead-time variation and order
crossovers in a multiple-supplier environment. Zhu (2015) is clo-
sely related to our work. This author studied the problem about
how to use dual sourcing as a strategy to hedge the risk of the
yield uncertainty of the in-house production process by con-
sidering the trade-off among different yields, costs, and leadtimes.
The key insights from Zhu (2015) are the following: (i) the
expected cost of a firm increases when the variation of the yield
becomes large; (ii) cost saving achieved by the dual-sourcing
strategy decreases in the variability of demand and yield. Differ-
ent from Zhu (2015), we focus on the problem about how to
achieve an effective and cost-efficient dual sourcing strategy by
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examining whether/which source to acquire information in face of
potential supply disruptions from multiple suppliers. Note that
none of the above-mentioned papers considers the impact of
supply disruption source and information availability.

The third stream focuses on information sharing within the
context of supply chain risk management. Wakolbinger and Cruz
(2011) developed a supply chain network equilibrium model with
information acquisition and information sharing. The authors also
proposed risk-sharing contracts that distributed disruption risks
among parties and evaluated the supply chain performances.
Atasoy et al. (2012) studied the replenishment decision for a sole-
sourcing periodic-review model with advanced information of
potential supply disruption. Under the assumption of the all-or-
nothing type of supply disruptions, the authors proved that a
state-dependent (s,S) policy is optimal. Tang and Musa (2011)
provided a comprehensive review of the recent research devel-
opment in supply chain risk management between 1995 and 2009.
Interesting readers can refer to Tang and Musa (2011) for more
details.
3. Model description

We consider a single-item, periodic-review inventory model
with two sources of supply: local and overseas. The local supply is
instantaneous, while the overseas supply takes a lead time of one
period for order processing, transportation, etc. Both sources face
potential disruptions. Denote βn and βon as the probability that the
local and overseas disruptions do not occur in period n, respec-
tively. Note that βn and βo

n can be treated as the indicator of supply
reliability in period n. The model is commonly used to model
supply disruptions in the literature, such as Tomlin and Wang
(2005). Further, we assume that the uncertainty of the local dis-
ruption is independent of that of the overseas disruption.

The decision sequence of each period is as follows. At the
beginning of each period, based on the latest inventory level, the
firm has to determine the order quantities from both the local and
overseas sources for the current period. After that, the random
demand is realized and fulfilled. Finally, at the end of each period,
the inventory cost is counted and the unsatisfied demand is fully
backlogged.

We also assume that the planning horizon is finite with N
periods, with 1rNo1. Demands in consecutive periods are non-
stationary and independent. The demand in period n is given by a
random variable Dn. In period n, the unit variable cost from the
local supply is cn and that from the overseas supply is cno. Let Rn(x)
denote the holding and the backlog cost in period n when the
ending inventory is z. We assume that Rn(x) is convex in x, and
RnðxÞ-1 as jxj-1. A list of frequently used notation is given in
Table 1.
Table 1
Frequently used notation.

qn Order quantity for the local source in period n
vn Order quantity for the overseas source in period n

cn Unit variable cost from the local source in period n
cn

o Unit variable cost from the overseas source in period n
Rn(x) The holding and the backlog cost in period n when the ending inventory

is x
x The initial inventory level at the beginning of a certain period
βn The probability that the local disruption does not occur in period n
βn

o The probability that the overseas disruption does not occur in period n
Dn The random demand in period n
α The discount factor
N The length of the planning horizon
4. Structural results of the optimal policies

In this section, we try to characterize the structure of the
optimal policies for both the local and the overseas sources. Since
the firm does not have any information of potential disruption and
has to determine the order quantities before the overseas order
placed in the previous period is realized, we need to define a two-
dimension state space to record system state. Let Vnðx; xoÞ be the
minimal expected total cost from period n to the end of the
planning horizon given that the initial stock is x and the overseas
quantity ordered in period n�1 is xo. Then, from the standard
theory of stochastic dynamic programming, the optimality equa-
tion is given by

Vnðx; xoÞ ¼ min
0rq;0rv

Efð1�βnÞð1�βo
nÞRnðx�DnÞþð1�βnÞβo

nRnðxþxo�DnÞ

þβnð1�βo
nÞRnðxþq�DnÞ

þβnβ
o
nRnðxþxoþqn�DnÞ

þα½ð1�βnÞð1�βo
nÞVnþ1ðx�Dn; vÞ

þð1�βnÞβo
nVnþ1ðxþxo�Dn; vÞ

þβnð1�βo
nÞVnþ1ðxþq�Dn; vÞþβnβ

o
nVnþ1ðxþxoþq�Dn; vÞ�

þβncnqþβo
nc

o
nvg: ð1Þ

Without loss of generality, we assume that there is no cost for
excess stock or shortage in period Nþ1. In other words, the
terminal condition is 0, i.e., VNþ1ðx; xoÞ ¼ 0.

By rewriting (1), we denote

Vnðx; xoÞ ¼ min
0rq;0rv

~Jnðx; xo; q; vÞ:

Lemma 1. ~Jnðx; xo; q; vÞ is jointly convex in ðx; xo; q; vÞ and Vnðx; xoÞ is
jointly convex in ðx; xoÞ.

Because of the joint convexity of ~Jnðx; xo; q; vÞ, we can first
optimize q and then optimize v. Denote y¼ xþq. It is equivalent to
optimize y and v instead of q and v.

Then, we have

Vnðx; xoÞ ¼min
0rv

Jnðx; xo; vÞ�βncnxþð1�βnÞE½ð1�βo
nÞRnðx�DnÞ

þβo
nRnðxþxo�DnÞ�;

where

Jnðx; xo; vÞ ¼ αE½ð1�βnÞð1�βo
nÞVnþ1ðx�Dn; vÞ

þð1�βnÞβo
nVnþ1ðxþxo�Dn; vÞ�þβo

nc
o
nvþGnðx; xo; vÞ;

Gnðx; xo; vÞ ¼min
xry

Efβnð1�βo
nÞRnðy�DN�1Þþβnβ

o
nRnðyþxo�DnÞ

þβncnyþα½βnð1�βo
nÞVnþ1ðy�Dn; vÞ

þβnβ
o
nVnþ1ðyþxo�Dn; vÞ�g:

Lemma 2.

(i) Gnðx; xo; vÞ and Jnðx; xo; vÞ are jointly convex and supermodular in
ðx; xo; vÞ;

(ii) Vnðx; xoÞ is supermodular in ðx; xoÞ.

Define ðynðx; xoÞ; vnðx; xoÞÞ ¼ arg minxry;0rv
~J nðx; xo; y; vÞ.

Theorem 1.

(i) For any given x, vnðx; xoÞ is decreasing in xo.
(ii) For any given xo, ynðx; xoÞ is increasing in x and vnðx; xoÞ is

decreasing in x.

By (i) of Theorem 3, since vnðx; xoÞ is decreasing in xo for
any given x, there exists a threshold In, such that
In ¼ arg inffxo : vnðx; xoÞ ¼ 0g. If xoo In, vnðx; xoÞ40; otherwise,
vnðx; xoÞ ¼ 0. Therefore, the optimal policy for the overseas supply
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is a threshold type for any given x. By following the similar argu-
ment for (ii) of Theorem 3, the optimal policy for the overseas
supply is also a threshold type for any given xo. However, the
structure of the optimal policy for the local supply is more com-
plicated. For instance, although ynðx; xoÞ is increasing in x for any
given xo, it is still difficult to prove the monotonicity of qnðx; xoÞ
with respect to x since qnðx; xoÞ ¼ ðynðx; xoÞ�xÞþ .
(

(

5. Four models with different disruption sources and infor-
mation availability

Based on the general model presented in Section 4, we intend
to investigate the impact of disruption source and information
availability on the optimal replenishment policy and the cost
performance. According to different scenarios of disruption source
and information availability, we study four models, as shown in
Table 2. To distinguish the notation among the four models, we use
the superscripts defined in Table 2. For example, the notation with
superscript ‘LN' is for Model I. However, when no confusion can
arise, we often drop the superscript for simplicity. For Model I, we
assume that the local supply may experience a disruption while
the order from overseas is guaranteed to be delivered. When the
firm places an order from the local supply in the current period, it
is not sure whether the disruption occurs in the same period. For
Model II, we assume that the order from the local source is guar-
anteed to be delivered while the overseas supply may experience a
disruption. When the firm places an order from the overseas
supply in the current period, the firm is not sure whether the
disruption of the overseas order placed in the previous period
occurs. Models III and IV are similar to Models I and II, respectively,
except that the firm knows for certain whether the disruption
occurs.

5.1. Model I: local disruption without information

Here, we assume that the local supply faces potential disrup-
tions and the overseas supply is reliable, i.e., bon ¼ 1. Since the
overseas supply is always reliable, we only need one state variable
instead of two state variables defined by (1). Let Vn(x) be the
minimal expected cost from period n to the end of the planning
horizon given that the initial stock at the beginning of period n is x.

For Model I, the optimality equation is given by

VnðxÞ ¼ min
0rq;0rv

Ef½ð1�βnÞRnðx�DnÞþβnRnðxþq�DnÞ�þβncnq

þconvþα½ð1�βnÞVnþ1ðxþv�DnÞþβnVnþ1ðxþvþq�DnÞ�g:
Define

Jnðx; qÞ ¼ βnERnðxþq�DnÞþβncnqþGnðx; qÞ;
Gnðx; qÞ ¼min

0rv
fconvþαE½ð1�βnÞVnþ1ðxþv�DnÞþβnVn

þ1ðxþqþv�DnÞ�g:

Lemma 3. For n¼1,…,N,

(i) Gnðx; qÞ is jointly convex and supermodular in (x,q);
(ii) Jnðx; qÞ is jointly convex and supermodular in (x,q).
Table 2
Model analysis.

Disruption source &
information availability

Without information With information

Unreliable local Model I (LN) Model III (LI)
Unreliable overseas Model II (ON) Model IV (OI)
Denote ðqLNn ðxÞ; vLNn ðxÞÞ as the optimal quantities in period n. Let
ILNn ¼ inffx : qLNn ðxÞ ¼ 0g, and I

LN
n ¼ inffx : vLNn ðxÞ ¼ 0g.

Theorem 2.

(i) Both qLNn ðxÞ and vLNn ðxÞ are decreasing in x. qLNn ðxÞ ¼ 0 as x-þ1
and vLNn ðxÞ ¼ 0 as x-þ1.

(ii) The optimal policy for the local supply is a threshold policy,
where In

LN is the threshold value: order qLNn ðxÞ40 if xo ILNn , and
do not order qLNn ðxÞ ¼ 0 if xZ ILNn .

iii) The optimal policy for the overseas supply is a threshold policy,
where I

LN
n is the threshold value: order vLNn ðxÞ40 if xo I

LN
n , and

do not order vLNn ðxÞ ¼ 0 if xZ I
LN
n .

Theorem 2 demonstrates that the optimal policies for both
sources are threshold type. Next, let us examine the impact of the
initial stock level on the optimal replenishment decisions.

From now on, for function f(x), we assume that dxf ðxÞ ¼ f 0ðxÞ ¼
df ðxÞ=dx exists everywhere even though in reality there can be a
countable number of points at which the corresponding derivative
does not exist. Similarly, we denote ∂x1 f ðx1; x2Þ ¼ ∂f ðx1; x2Þ=∂x1.

Proposition 1. Under the assumption that ERnðx�DnÞ is continuous
and differentiable almost everywhere, we have

(i) dxvLNn ðxÞA ½�1;0Þ;
(ii) dxqLNn ðxÞA ½�1;0Þ;
iii) when the firm orders from both sources, dx½qLNn ðxÞþvLNn ðxÞ�r�1.

Proposition 1 shows that with the disruption possibility at the
local supply, when the initial stock is increased by one unit, the
decrease in order quantity from both the local and the overseas
supply is less than one unit. As such, the result is different from
the result of the dual-sourcing model without supply uncertainty
by Fukuda (1964), in which the one additional initial stock causes
exactly one unit reduction of order quantity. We conjecture that
the supply uncertainty weakens the impact of initial stock on
order quantity. Consequently, the total amount of the replenish-
ment is reduced by no less than one unit when the firm orders
from both sources.

5.2. Model II: overseas disruption without information

We assume that the local supply is reliable and the overseas
supply faces potential disruption, i.e., βn ¼ 1. Simplifying (1) by
substituting βn ¼ 1, we obtain the optimality equation of Model II
given by

Vnðx; xoÞ ¼ min
0rq;0rv

Efð1�βnÞRnðxþq�DnÞþβnRnðxþxoþq�DnÞ

þα½ð1�βnÞVnþ1ðxþq�Dn; vÞþβnVnþ1ðxþxo

þq�Dn; vÞ�þcnqþβnc
o
nvg: ð2Þ

Since Model II can be treated as a special case of the model
discussed in Section 4, the results by Lemma 1 and Theorem 1 are
still held.

By the joint convexity of Lemma 1, we derive further property
by redefining (2) as

Vnðx; xoÞ ¼min
xry

Jnðy; xoÞ�cnx;

where y¼ xþq and

Jnðy; xoÞ ¼ E½ð1�βnÞRnðy�DN�1ÞþβnRnðyþxo�DnÞ�þcnyþGnðy; xoÞ;
ð3Þ

Gnðy; xoÞ ¼min
0rv

Efαð1�βnÞVnþ1ðy�Dn; vÞ

þαβnVnþ1ðyþxo�Dn; vÞþβnc
o
nvg: ð4Þ



(

S.X. Zhu / Int. J. Production Economics 170 (2015) 191–203 195
Denote

ynðxoÞ ¼ arg min
y

Jnðy; xoÞ;

vnðy; xoÞ ¼ arg min
v

fE½αð1�βnÞVnþ1ðy�Dn; vÞ
þαβnVnþ1ðyþxo�Dn; vÞ�þβnc

o
nvg:

Here, we define that f ðx1; x2Þ is diagonally dominant in x
(DD½x1�) if dx1 f ðx1þδ; x2�δÞ is increasing in δ. Similarly, f ðx1; x2Þ is
DD½x2� if dx2 f ðx1�δ; x2þδÞ is increasing in δ.

Lemma 4.

(i) Both Gnðxo; yÞ and Jnðy; xoÞ are supermodular in ðy; xoÞ, DD½y�, and
DD½xo�.

(ii) Vnðx; xoÞ is supermodular in ðx; xoÞ, DD½x�, and DD½xo�.
iii) dxoynðxoÞA ½�1;0Þ, ∂yvnðy; xoÞA ½�1;0Þ, and ∂xovnðy; xoÞA ½�1;0Þ.

Define ðqONn ðx; xoÞ; vONn ðx; xoÞÞ ¼ arg min0rq;0rv
~J nðx; xo; q; vÞ,

IONn ðxoÞ ¼ ynðxoÞ, and I
ON
n ¼ arg inffx : vONn ðx; xoÞ ¼ 0g.

Theorem 3. IONn ðxoÞ is the order-up-to level for local replenishment
and is decreasing in xo. qONn ðx; xoÞ ¼ ðIONn ðxoÞ�xÞþ .

By Theorem 1, the optimal policy for the overseas supply is a
threshold type. Theorem 3 shows that the optimal policy for the
local supply is a modified order-up-to type and the order-up-to
level depends on the previous overseas order. By part (iii) of
Lemma 4, when the previous overseas order is increased by one
unit, the order-up-to level is decreased by no more than one unit.
The optimal policy for the overseas supply is a threshold type for
any given xo.

Proposition 2. For xZ IONn ðxoÞ, ∂xqONn ðx; xoÞ ¼ ∂xoqONn ðx; xoÞ ¼ 0. ∂xvONn
ðx; xoÞA ½�1;0Þ and ∂xovONn ðx; xoÞA ½�1;0Þ. Further, ∂xvONn ðx; xoÞr∂xo
vONn ðx; xoÞ. For xo IONn ðxoÞ, ∂xqONn ðx; xoÞ ¼ �1, and ∂xoqONn ðx; xoÞA
½�1;0Þ. vONn ðx; xoÞ is independent of x and ∂xovONn ðx; xoÞA ½�1;1�.

Proposition 2 indicates that when xZ IONn ðxoÞ, the firm does not
order from the local source. Thus, the local order quantity is not
affected by the initial stock level and the previous overseas order
quantity. The overseas order quantity in the current period is
decreasing in the initial stock level and the previous overseas
order quantity. Moreover, the increase of either one additional
initial stock or one additional previous overseas quantity causes
the decrease in the current overseas quantity to be less than one
unit because of the supply uncertainty.

When xo IONn ðxoÞ, the firm may order from both the local and
the overseas sources. On the one hand, the increase of one addi-
tional initial stock decreases the local order quantity by one unit
while the increase of one additional previous overseas quantity
decreases the local order quantity by less than one unit, which
shows that the initial stock level has a more significant impact on
the local quantity than the previous overseas quantity. On the
other hand, the current overseas quantity is independent of the
initial stock level since the stock level is raised to the order-up-to
level after the local replenishment under such a circumstance. It is
interesting to find that the firm may either increase or decrease
the size of the overseas order. The reason for this is that when the
initial stock level is quite low, although the amount of the previous
overseas quantity may be large, the firm may still increase the
replenishment from overseas if the supply disruption is more
likely to occur.

5.3. Model III: local disruption with information

Different from Model I, we assume that before the firm places
orders in the current period, the firm is aware of whether the local
disruption has occurred. Therefore, we have to add the other
dimension into the state space of the model to indicate the state of
disruption. We define that if i¼1, the disruption does not occur; if
i¼0, it does. Here, the overseas source is still reliable. Further, we
have βo

n ¼ 1.
Let Vnðx; iÞ be the minimal expected total cost from period n to

N with the initial stock x and the information state i. For this
model, the optimality equation is given by

Vnðx;1Þ ¼ min
0rq;0rv

EfRnðxþq�DnÞþcnqþconv

þα½ð1�βnÞVnþ1ðxþqþv�Dn;0Þ
þβnVnþ1ðxþqþv�Dn;1Þ�g; ð5Þ

Vnðx;0Þ ¼min
0rv

EfRnðx�DnÞþconv

þα½ð1�βnÞVnþ1ðxþv�Dn;0ÞþβnVnþ1ðxþv�Dn;1Þ�g:
ð6Þ

For i¼1, because of the joint convexity, we can firstly optimize
q and then v. Denote y¼ xþq and z¼ yþv, which is equivalent to
optimizing y and z. We can rewrite (5) as

Vnðx;1Þ ¼ �cnxþmin
xry

fERnðy�DnÞþðcn�conÞyþGnðyÞg;

GnðyÞ ¼min
yr z

Efconzþα½ð1�βnÞVnþ1ðz�Dn;0ÞþβnVnþ1ðz�Dn;1Þ�g:

Denote

ILIn ð1Þ ¼ arg min
y

EfRnðy�DnÞþðcn�conÞyþGnðyÞg; ð7Þ

I
LI
n ð1Þ ¼ arg min

z
Efconzþαð1�βnÞVnþ1ðz�Dn;0Þ

þαβnVnþ1ðz�Dn;1Þg; ð8Þ

I
LI
n ð0Þ ¼ I

LI
n ð1Þ: ð9Þ

Denote ðqLIn ðx; iÞ; vLIn ðx; iÞÞ as the optimal solution in period n with
information state i.

Theorem 4. For i¼0, vLIn ðx;0Þ ¼ ðILIn ð0Þ�xÞþ ; for i¼1, qLIn ðx;1Þ ¼
ðILIn ð1Þ�xÞþ , and vLIn ðx;1Þ ¼ ðILIn ð1Þ� ILIn ð1Þ3xÞþ .

Theorem 4 demonstrates that for i¼0, the optimal policy for
the local supply is an order-up-to type with the order-up-to level
given by I

LI
n ð0Þ. For i¼1, when ILIn ð1Þo I

LI
n ð1Þ, if xo ILIn ð1Þ, the firm

first uses the local supply to raise the inventory level to ILIn ð1Þ and
then orders I

LI
n ð1Þ� ILIn ð1Þ from the overseas supply; if

ILIn ð1Þoxo I
LI
n ð1Þ, the firm only orders I

LI
n ð1Þ� ILIn ð1Þ from the over-

seas supply; if xZ I
LI
n ð1Þ, the firm does not place any order; if

ILIn ð1Þ4 I
LI
n ð1Þ, the firm only uses the local supply and orders up to

ILIn ð1Þ and never uses the overseas supply. Therefore, we conclude
that the local replenishment follows an order-up-to policy with
the level given by ILIn ð1Þ and the overseas replenishment also fol-
lows an order-up-to policy with the level given by I

LI
n ð1Þ.

For the model by Fukuda (1964), under the condition that
conZαcn, the firm does not order from the overseas supply in
period n since the overseas supply does not offer any cost saving
and has a long lead time. For Model III, we find that when i¼1,
even if conZαcn, the firm may still order from the overseas supply.
The reason for this is that although this order cannot yield cost and
time advantages, the overseas supply is reliable and the firm may
use the reliability to hedge the disruption risk of the local supply
in future.

Proposition 3. If the disruption distribution is stationary, i.e.,
βn ¼ β, we have:

(i) ILIn ðiÞ, I
LI
n ðiÞ, qLIn ðx; iÞ, and vLIn ðx; iÞ are decreasing in β;

(ii) VLI0
n ðx; iÞ is increasing in β and VLI

n ðx; iÞ is decreasing in β.
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Note that ð1�βÞ=β represents the squared coefficient of varia-
tion of the probability distribution of the disruption and is
decreasing in β. Therefore, Proposition 3 means that (i) when the
supply variability increases, the expected total cost becomes
higher, the cost saving caused by one additional stock increases,
and the firm orders more frequently in order to hedge against the
risk caused by uncertain supply; and (ii) when the supply relia-
bility increases, the expected total cost becomes lower, the cost
saving caused by one additional stock decreases, and the firm
orders less frequently. Compared with Model I, when the firm has
no information of local disruption, the results in this proposition
may not hold. For instance, under the situation that the firm does
not have a sufficient amount of initial stock and the local disrup-
tion occurs with a high probability, the firm may increase the
order quantities from both sources even when β increases.

Next, we compare Model III with Model I to show the value of
the information when the local source faces a potential disruption.

Proposition 4. Under the assumption that ERnðx�DnÞ is continuous
and differentiable almost everywhere, we have:

(i) VLN0
n ðxÞrβnV

LI0
n ðx;1Þþð1�βnÞVLI0

n ðx;0Þ;
(ii) the firm more likely orders from both the local and the overseas

supply in Model I than in Model III, and vLNn ðxÞZvLIn ðx;1Þ.
Proposition 4 indicates that the expected marginal cost of one

additional stock in Model I is lower than that of Model III, which
means that one additional stock can yield a higher cost saving when
the firm has no information about the supply disruption. In other
words, the value of disruption information becomes less when there
is sufficient stock available. This proposition also indicates that when
the firm is not aware of the disruption information, the firm more
likely orders from both the local and overseas supply compared with
the situation that the firm has the disruption information. Moreover,
the overseas order quantity without information is larger than that
with information. The explanation of this is that when the disruption
information is not available, the firmmay order more frequently from
the local and overseas sources in order to avoid stock shortage caused
by the potential disruption.

5.4. Model IV: overseas disruption with information

Different from Model II, we assume that before the firm makes
the replenishment decisions in the current period, it knows
whether the disruption for the overseas order placed in the last
period occurs. If i¼1, the disruption does not occur; if i¼0, it does.
The local source is still reliable. Further, we have βn ¼ 1. Similar to
Model III, we also need to define a two-dimension state space. The
optimality equation for Model IV is given by

Vnðx;1Þ ¼ min
0rq;0rv

EfRnðxþq�DnÞþcnqþconv

þα½ð1�βo
nÞVnþ1ðxþqþv�Dn;0Þ

þβo
nVnþ1ðxþqþv�Dn;1Þ�g;

Vnðx;0Þ ¼min
0rq

EfRnðxþq�DnÞþcnq

þα½ð1�βo
nÞVnþ1ðxþq�Dn;0Þþβo

nVnþ1ðxþq�Dn;1Þ�g:
Noting that y¼ xþq and z¼ yþv, because of joint convexity,

we can first optimize y and then z. Define

IOIn ð0Þ ¼ arg min
y

EfRnðy�DnÞþcny

þαð1�βo
nÞVnþ1ðy�Dn;0Þþαβo

nVnþ1ðy�Dn;1Þg;
IOIn ð1Þ ¼ arg min

y
EfRnðy�DnÞþðcn�conÞyþGnðyÞg;

I
OI
n ð1Þ ¼ arg min

z
Efconzþαð1�βo

nÞVnþ1ðz�Dn;0Þ
þαβo

nVnþ1ðz�Dn;1Þg ð10Þ
where

GnðyÞ ¼min
yr z

Efconzþð1�βo
nÞVnþ1ðz�Dn;0Þþαβo

nVnþ1ðz�Dn;1Þg:

Denote ðqOIn ðx; iÞ; vOIn ðx; iÞÞ as the optimal solution in period n
with information state i.

Theorem 5. For i¼0, qOIn ðx;0Þ ¼ ðIOIn ð0Þ�xÞþ . For i¼1, qOIn ðx;1Þ ¼
ðIOIn ð1Þ�xÞþ and vOIn ðx;1Þ ¼ ðIOIn ð1Þ� IOIn ð1Þ3xÞþ .

Theorem 5 shows that for Model IV, the structure of the opti-
mal policy looks similar to that of Model III. For both sources, the
optimal policies are order-up-to type. Further, we can show that if
conZαcn, vOIn ðx;1Þ ¼ 0. It is clear that when the uncertain overseas
supply is no cheaper than the local supply, the firm has no
incentive to order from it.

Similar to Proposition 3, we can prove that when the yield
distribution is stationary, i.e., βo

n ¼ β, we obtain (i) both IOIn ðiÞ and
I
OI
n ðiÞ are decreasing in β and qOIn ðx; iÞ and vOIn ðx; iÞ are decreasing in β
and (ii) VOI0

n ðx; iÞ is increasing in β and VOI
n ðx; iÞ is decreasing in β.

Next, we compare Model III with Model IV to show the impact
of the disruption source.

Proposition 5. Under the assumption that ERnðx�DnÞ is continuous
and differentiable almost everywhere and βn ¼ βo

n, we have:

(i) βnV
LI0
n ðx;1Þþð1�βnÞVLI0

n ðx;0ÞrβnV
OI0
n ðx;1Þþð1�βnÞVOI0

n ðx;0Þ;
(ii) when the disruption information is available, the firm more likely

orders from both the local and overseas supply in Model III than
in Model IV, and qLIn ðx;1ÞZqOIn ðx;1Þ, vLIn ðx;1ÞZvOIn ðx;1Þ.
Proposition 5 indicates that (i) the expected marginal cost of

one additional stock with local disruption information is lower
than that with the overseas disruption information, which means
that the information of local disruption yields a higher contribu-
tion to cost saving than that of overseas disruption; (ii) compared
with the overseas information, the firm orders more frequently
and more amount from both sources with the local information.
6. Numerical study

In this section, we numerically investigate the impacts of dis-
ruption source and information availability on the cost efficiency.
Demand is assumed to follow a normal distribution with mean
equal to 100 and coefficient of variation (CV) equal to 0.2. We
assume that RnðzÞ ¼ hðxÞþ þbð�xÞþ , where h is the holding cost
per unit and b is the backlog cost per unit. For parameter settings,
we fix h¼ 1, c¼2, b¼8, co¼1, β¼ βo ¼ 0:9, and α¼ 1. Such a
setting may reflect a situation commonly faced by operations
managers, such as component replenishment for automotive and
medical-equipment manufacturers. Experiments are executed in
the MATLAB software environment, version 7.13 (R2011b). During
the computation, the limit of state space is set from �400 to 400.
To avoid a non-zero probability of an actual negative demand, we
use the truncated normal distribution. For the discretization of a
normal distribution with mean μ and standard deviation σ, the
interval around μ is considered, with the endpoints of the interval
0 and μþ3σ.

First, we use a five-period model and compute the order-up-
levels or thresholds of period 1 for four models as shown in
Table 3. Note that for Models III and IV, when i¼0, there is no
order from the local supply and the overseas supply, respectively.
Comparing Model I with Model II, we find that Model I has a lower
threshold for the local supply and a higher threshold for the
overseas supply. Comparing Model III with Model IV, we observe
that if the disruption does not occur (i¼1), the overall target stock



Table 4
Comparison of models I (the benchmark model) and II (the measured model).

b Gapð%Þ co Gapð%Þ c Gapð%Þ β (βo) Gapð%Þ CV Gapð%Þ

10 12.70 2 18.36 3.5 7.39 0.95 5.89 0.25 13.17
8 11.03 1.5 13.81 3 8.23 0.9 11.03 0.2 11.03
6 9.55 1 11.03 2.5 9.33 0.85 16.07 0.15 9.39
4 8.23 0.5 9.17 2 11.03 0.8 21.92 0.1 6.31

Table 5
Comparison of models III (the benchmark model) and IV (the measured model).

b Gapð%Þ co Gapð%Þ c Gapð%Þ β(βo) Gapð%Þ CV Gapð%Þ

10 16.04 2 15.09 3.5 4.41 0.95 6.76 0.25 13.87
8 12.55 1.5 13.57 3 6.57 0.9 12.55 0.2 12.55
6 8.99 1 12.55 2.5 9.22 0.85 17.58 0.15 11.32
4 8.96 0.5 11.52 2 12.55 0.8 21.97 0.1 10.17

Table 6
Comparison of models I (the benchmark model) and III (the measured model).

b Gapð%Þ co Gapð%Þ c Gapð%Þ β Gapð%Þ CV Gapð%Þ

10 6.21 2 3.92 3.5 3.49 0.95 3.67 0.25 6.59
8 6.60 1.5 5.23 3 4.08 0.9 6.60 0.2 6.60
6 6.71 1 6.60 2.5 5.48 0.85 8.97 0.15 6.70
4 6.78 0.5 8.16 2 6.60 0.8 10.93 0.1 6.75

Table 7
Comparison of models II (the benchmark model) and IV (the measured model).

b Gapð%Þ co Gapð%Þ c Gapð%Þ βo Gapð%Þ CV Gapð%Þ

10 9.81 2 0.17 3.5 5.56 0.95 4.57 0.25 6.66
8 8.20 1.5 4.97 3 6.42 0.9 8.20 0.2 8.20
6 6.13 1 8.20 2.5 7.36 0.85 10.61 0.15 9.94
4 3.55 0.5 10.54 2 8.20 0.8 10.99 0.1 11.84

Table 3
Order-up-levels or thresholds for four models.

Model Local supply Overseas supply

I 128.91 96.34
II 143.55 63.21
III (i¼0) Not applicable 237.29
III (i¼1) 155.58 94.34
IV (i¼0) 158.77 Not applicable
IV (i¼1) 152.12 92.81
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level of Model III (i.e., 249.92) is very close to that of Model IV (i.e.,
244.93).

Next, we perform sensitivity analysis with respect to b, co, c, β,
CV, and we only change one parameter at one time. Further, we
change the initial inventory from �50 to 50 with an increment of
1. Each result reported in Tables 4–7 is the average of 101 problems
with different amounts of the initial inventory. For each experi-
ment, we consider a 20-period model and compute the expected
discounted total cost. Here, we use the cost gap as the perfor-
mance measure, i.e., the cost difference between the benchmark
model and the measured model divided by the cost of the
benchmark model. For example, in Table 4, to examine the impact
of different disruption sources, we treat Models I and II as the
benchmark and measured model, respectively.

First, Tables 4 and 5 demonstrate the impact of disruption
source without and with information on cost efficiency, respec-
tively. Both tables show that the total expected cost with the local
disruption is higher than that with the overseas disruption, which
means that the local disruption causes a more significant dete-
rioration of cost performance than the overseas disruption. In
particular, when the supply reliability is low, the gap could be
more than 20%. Further, we observe that (i) the gap is increasing in
both b and co but is decreasing in c; (ii) the gap is decreasing in β;
(iii) the gap is increasing in CV. This can be explained as follows.
For (i), with a large value of the shortage cost or the variable cost
of the overseas supply, a firm prefers to order from the local
supply over the overseas supply. Namely, the same degree of
uncertainty at the local supply results in a more serious increase of
the cost gap. However, when the variable cost of the local supply
increases, the firm intends to order more from the overseas supply,
which reduces the cost gap. For (ii), the smaller the value of β, the
more uncertain the supply becomes, which causes an increase of
the gap. For (iii), when the demand variability becomes higher, the
potential disruption at the local supply has a more significant
impact on the cost performance than that at the overseas supply.

Second, Tables 6 and 7 demonstrate the impact of information
at the local source and the overseas source on cost efficiency,
respectively. Both tables show that the total expected cost without
information is higher than that with information, which means
that the information availability can create a cost saving. In par-
ticular, when the demand variability is high, the gap could be
more than 11%. Further, we observe that (i) the gap is decreasing in
co and c; (ii) for the local supply, the gap is decreasing in b while it
is increasing in b for the overseas supply; (iii) the gap is decreasing
in β; and (iv) the gap is decreasing in CV. This can be explained as
follows. For (i), when co or c becomes small, the firm more likely
orders from both sources. Then, the availability of disruption
information affects the ordering decisions from these two sources,
which results in a larger cost gap. For (ii), on the one hand, in
Models I and III, since the information availability mainly affects
the local order and the local supply is reliable with β¼ 0:9, the
value of information is relatively low, which yields a relatively
stable cost gap. On the other hand, in Models II and IV, since the
firm intends to order more from the overseas supply, the infor-
mation about the overseas disruption helps reduce the risk of
potential shortage, which is more valuable when b is larger. For
(iii), the reason is the same as that for Tables 4 and 5. For (iv),
although the availability of the disruption information results in
the advantage of the reduction of the supply uncertainty, the
increasing demand uncertainty may weaken such an advantage.
7. Conclusions

Our work addresses inventory replenishment strategies from
two sources with different lead times, costs, and supply uncer-
tainties. For four models with different scenarios of disruption
source and information availability, we develop the corresponding
optimal replenishment policies. For the local disruption without
information, the optimal replenishment policies for both sources
are a threshold type; for the overseas disruption without infor-
mation, the optimal replenishment policy for the local source is a
modified order-up-to type with the order-up-to level depending
on the previous overseas order while the policy for the overseas
source is a threshold type. For the other two models with infor-
mation, optimal policies are both order-up-to type. Further, we
investigate the impact of disruption source and information
availability on the optimal policies and cost function by compar-
ison with these models. The findings from numerical experiments
show that (i) the supply disruption at the local source may cause a
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more remarkable deterioration of cost efficiency than that at the
overseas source. For example, when the supply reliability is low,
the cost gap could be more than 20%; (ii) the information of the
local source is more valuable than that of the overseas source. In
particular, when the demand variability is low, the cost gap with
the local information could be half of that with the overseas
information; (iii) when the firm more likely orders from both
sources, the disruption information is quite valuable, namely is
about 9% cost saving on average. Although the above insights are
based on a limited setting of experiments, we believe that they can
be used as a valuable reference for managers to select an appro-
priate sourcing strategy in business practices.

There are several possible extensions for future study. First, one
key assumption of the current model is one unit time difference
between the lead times of the overseas and local supplier. When
the difference of lead times from these two suppliers is more than
one period, order crossovers, i.e., replenishment orders are not
received in the sequence they are ordered, will occur. The occur-
rence of order crossovers significantly complicates the analysis of
the model since a multi-dimensional dynamic programming
model has to been formulated to solve the model. Even if it is
possible, it will be remarkably time-consuming to obtain the
optimal solution. Hence, one possible way to overcome such a
barrier is to develop a near-optimal heuristic. For example, Veer-
araghavan and Scheller-Wolf (2008) propose a dual-index policy
for making ordering decisions from two suppliers without supply
disruption. Riezebos and Zhu (2015) develop some efficient
heuristics to compute replenishment quantities for multiple
sourcing with deterministic demand. Interesting readers may refer
to these two articles as a first attempt and further explore how to
make an extension for a more general scenario.

Second, we can consider the price-sensitive demand for the cur-
rent models and determine the joint pricing and replenishment
strategy under a dual-sourcing scenario. Third, as Wang and Gerchak
(1996) point out that there are many factors that cause production
capacity to be variable, such as unexpected breakdowns and
unplanned maintenance, we can also integrate the variable capacity
into our model and analyze the impact of the capacity uncertainty on
the replenishment policy and the cost-efficiency.
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Appendix A

Proof of Lemma 1. For period N, because of VNþ1 ¼ 0 and the
convexity of RN, it is clear that ~JNðx; xo; q; vÞ is jointly convex in
ðx; xo; q; vÞ. Further, since minimization preserves convexity and
f0rq;0rvg is a convex set, VNðx; xoÞ is jointly convex in ðx; xoÞ.

By induction, suppose that Vnþ1ðx; xoÞ is jointly convex in ðx; xoÞ.
Following the similar argument, we can also show that ~J nðx; xo; q; vÞ is
jointly convex in ðx; xo; q; vÞ and Vnðx; xoÞ is jointly convex in ðx; xoÞ.□
Proof of Lemma 2. First, by Lemma 1, it is clear that Gnðx; xo; vÞ
and Jnðx; xo; vÞ are jointly convex in ðx; xo; vÞ.

Second, we prove the supermodularity by induction. For period
N, it is straightforward that it is true due to the convexity of RN(z).
Next, we will show that it also holds for period n. Denote

~Gnðx; xo; vÞ ¼ Efβnð1�βo
nÞRnðy�DN�1Þþβnβ

o
nRnðyþxo�DnÞ

þβncnyþα½βnð1�βo
nÞVnþ1ðy�Dn; vÞ

þβnβ
o
nVnþ1ðyþxo�Dn; vÞ�g: ð11Þ

Because of the supermodularity of Vnþ1 and the convexity of Rn(z),
it is clear that ~Gnðx; xo; vÞ is supermodular in ðy; xo; vÞ. By following
Lemma 3.2 in Chao et al. (2009), we can show that Gnðx; xo; vÞ is
supermodular in ðx; xo; vÞ. By induction, we obtain that Jnðx; xo; vÞ is
also supermodular in ðx; xo; vÞ. Further, we also have Vnðx; xoÞ is
supermodular in ðx; xoÞ.□

Proof of Theorem 1. By definition, we have vnðx; xoÞ ¼
arg min0rvJnðx; xo; vÞ. By Lemma 2, we have Jnðx; xo; vÞ is super-
modular in ðx; xo; vÞ. By Theorem 2.8.2 in Topkis (1998, p. 77),
vnðx; xoÞ is decreasing in x for any given xo and decreasing in xo for
any given x.

Next, for any xo, due to the supermodularity of ~Gnðx; xo; vÞ by
(11), we have ynðxo; vÞ decreasing in v. Since vnðx; xoÞ is decreasing
in x for any given xo, it is clear that ynðx; xoÞ is increasing in x.□

Proof of Lemma 3. Denote

~Gnðy; qÞ ¼ conyþαE½βnVnþ1ðyþq�DnÞþð1�βnÞVnþ1ðy�DnÞ�: ð12Þ

Since Vnþ1 is convex, ~Gnðy; qÞ is jointly convex in (y,q). By Lemma
2.6.2 in Topkis (1998, p. 50), ~Gnðy; qÞ is supermodular in (y,q). Then,
part (i) is simply an application of Lemma 3.2 in Chao et al. (2009).
For part (ii), since Rnðxþq�DnÞ is jointly convex and supermodular
in (x,q), by part (i), Jnðx; qÞ is jointly convex and supermodular in
(x,q).□.

Proof of Theorem 2. For (i), by part (ii) of Lemma 3, because of
supermodularity, qLNn ðxÞ is decreasing in x. Denote

Ĵ nðx; vÞ ¼ convþαð1�βnÞEVnþ1ðxþv�DnÞ�cnxþgnðx; vÞ;

where gnðx; vÞ is defined by

gnðx; vÞ ¼min
xr z

EfβnRnðz�DnÞþβcnzþαβnVnþ1ðzþv�DnÞg: ð13Þ

Because Vnþ1 is convex and minimization preserves convexity, gn
ðx; vÞ is jointly convex in (x,v). By Lemma 2.6.2 in Topkis (1998, p.
50), gnðx; vÞ is supermodular in (x,v). Because of the convexity of
Vnþ1ðxÞ and the property of gnðx; vÞ, Ĵ nðx; vÞ is jointly convex and
supermodular in (x,v).

Further, since gnðx; vÞ is supermodular in (x,v), vLNn ðxÞ is also
decreasing in x. Since Jnðx; qÞ is joint convex in ðx; qÞ with a finite
minimum, we have Jnðx;0ÞZ Jnðx; qÞ as x-þ1. Thus, qLNn ðxÞ ¼ 0 as
x-þ1. Similarly, we can show vLNn ðxÞ ¼ 0 as x-þ1. (ii) and (iii)
immediately follow by (i).□

Proof of Proposition 1. For (i), vLNn ðxÞ is given the first-order
condition, i.e.,

conþαð1�βnÞEV 0
nþ1ðxþvÞþ∂vgnðx; vÞ ¼ 0; ð14Þ
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where by (13), we have

∂vgnðx; vÞ ¼
αβnEV

0
nþ1ðxþvÞ; ðxZ ILNn Þ;

αβnEV
0
nþ1ðznðvÞþvÞ Otherwise

(

For xZ ILNn , it is clear that dxvLNn ðxÞ ¼ �1.
For xo ILNn , zn(v) is given by

βnEfR0
nðz�DnÞþαV 0

nþ1ðzþv�DnÞgþcn ¼ 0:

For xo Iono In, based on the first-order condition, we have

dvznðvÞ ¼ � αEV ″
nþ1ðzþv�DnÞ

EfR″
nðz�DnÞþαV ″

nþ1ðzþv�DnÞg
:

Under the assumption that Rn is strictly convex, we can show that
Vn is also strictly convex. Then, we have dvznðvÞA ½�1;0Þ. Namely,
we have �1rdvznðvÞo0. Then, we obtain that znðvÞþv is
increasing in v. By the first-order condition (14), we have
�1rdxvLNn ðxÞo0.

For (ii), when xZ ILNn , qLNn ðxÞ ¼ 0, which is independent of x. For
xo ILNn , qLNn ðxÞ ¼ znðvLNn ðxÞÞ�x. Then, we have

dxqLNn ðxÞ ¼ dvznðvÞdxvLNn ðxÞ�1Z�1;

where the inequality is true since �1rdvznðvÞo0 and
�1rdxvnnðxÞo0.

Thus, we have dxqLNn ðxÞA ½�1;0Þ:
For (iii), we need to consider two cases: ILNn Z I

LN
n and Ino I

LN
n .

Case 1: ILNn Z I
LN
n . When xZ ILNn , qLNn ðxÞ ¼ vLNðxÞ ¼ 0. It is clear that

qLNn ðxÞþvLNn ðxÞ is independent of x.

When I
LN
n rxo ILNn , vLNn ðxÞ ¼ 0. Because of

dxqLNn ðxÞA ½�1;0Þ, we obtain that qLNn ðxÞþvLNn ðxÞ is
decreasing in x.

When xo I
LN
n , both qLNn ðxÞ and vLNðxÞ are positive. Then, we

have

dxðqLNn þvLNn Þ ¼ ½dvznðvÞþ1�dxvLNn ðxÞ�1r�1;

where the equality is true since qLNn ðxÞ ¼ znðvLNÞ�x and the
inequality is true since dvznðvÞA ½�1;0Þ. In particular, if dv
znðvÞA ½�1;0Þ and dxvLNn ðxÞA ½�1;0Þ, we have
dxðqLNn þvLNn Þr�1.

Case 2: ILNn o I
LN
n . The proof is similar to the argument in Case 1.□

Proof of Lemma 4. : We prove the lemma by induction. Let us
start from the last period. We have

VNðx; xoÞ ¼min
0rq

E½ð1�βNÞRNðxþq�DNÞþβNRNðxþxoþq�DNÞ�þcNq;

Because of the convexity of RN, it is clear that the optimal policy of
the in-house production follows an order-up-to policy for any
given xo. Thus, we have

VNðx; xoÞ ¼
E½ð1�βNÞRNðx�DNÞþβNRNðxþxo�DNÞ� if xZyNðxoÞ;
E½ð1�βNÞRNðyNðxoÞ�DNÞþβNRNðyNðxoÞþxo�DNÞ�

þcNðyNðxoÞ�xÞ; O:W:

8><
>:

ð15Þ
By (15), it is obvious that VNðx; xoÞ is supermodular in ðx; xoÞ. Fur-
ther, we have

∂xVNðx; xoÞ ¼
E½ð1�βNÞR0

Nðx�DNÞþβNR
0
Nðxþxo�DNÞ� if xZyNðxoÞ;

�cN O:W:

(

ð16Þ
For any given δ, if xþδoyNðxo�δÞ, we have ∂xVnðxþδ;
xo�δÞ ¼ �cN , which is independent of δ. If xþδZyNðxo�δÞ, we
have

∂xVNðxþδ; xo�δÞ ¼ E½ð1�βNÞR0
Nðxþδ�DNÞþβNR

0
Nðxþxo�DNÞ�:

Because of the convexity, ∂xVNðxþδ; xo�δÞ is increasing in δ.
And, we have

∂xoVNðx; xoÞ ¼
βNER

0
Nðxþxo�DNÞ if xZyNðxoÞ;

βNER
0
NðyNðxoÞþxo�DNÞ O:W:

(
ð17Þ

If x�δZyNðxoþδÞ, we have ∂xoVNðx�δ; xoþδÞ ¼ βo
N ER0

Nðxþ
xo�DNÞ, which is independent of δ. Otherwise, we have
∂xoVNðx�δ; xoþδÞ ¼ βo

NER
0
NðyNðxoþδÞþxoþδ�DNÞ.

By the first-order condition, we have

E½ð1�βNÞR0
NðyN�DNÞþβNR

0
NðyNþxo�DNÞ�þcN ¼ 0:

It is clear that dxoyNðxoÞA ½�1;0�. Then, yNðxoÞþxo is increasing in
xo. Namely, ∂xoVNðx�δ; xoþδÞ is increasing in δ.

Now, we try to show that it is also true for period n. Firstly, we
show that Gnðy; xoÞ is supermodular in ðy; xoÞ, where Gnðy; xoÞ is
given by (4). For y1Zy2, we will prove that Gnðy1; xoÞ�Gnðy2; xoÞ is
increasing in xo. By definition, because of the supermodularity of
Vnþ1, vnðy; xoÞ is decreasing in y for any given xo. We have
vnðy1; xoÞrvnðy2; xoÞ. Then, we need to consider three cases.
Case (i): vnðy2; xoÞo0. Then, we have

Gnðy1; xoÞ�Gnðy2; xoÞ ¼ E½ð1�βnÞVnþ1ðy1�Dn;0Þ
þβnVnþ1ðy1þxo�Dn;0Þ�
�E½ð1�βnÞVnþ1ðy2�Dn;0Þ
þβnVnþ1ðy2þxo�Dn;0Þ�:

Because of the convexity of Vnþ1, it is clear that Gnðy1; xo
Þ�Gnðy2; xoÞ is increasing in xo.

Case (ii): vnðy1; xoÞr0rvnðy2; xoÞ. Then, we have

Gnðy1; xoÞ�Gnðy2; xoÞ ¼ E½ð1�βnÞVnþ1ðy1�Dn;0Þ
þβnVnþ1ðy1þxo�Dn;0Þ�
�E½ð1�βnÞVnþ1ðy2�Dn; vnðy2; xoÞÞ

þβnVnþ1ðy2þxo

�Dn; vnðy2; xoÞÞ��βnc
o
nvnðy2; xoÞ:

Denote y1 ¼ y2þδ. Differentiating the above equality
with respect to xo, we have

∂xo ½Gnðy1; xoÞ�Gnðy2; xoÞ� ¼ βnE½∂xoVnþ1ðy1þxo�Dn;0Þ
�∂xoVnþ1ðy2þxo�Dn; vnðy2; xoÞÞ�

ZβnE½∂xoVnþ1ðy1þxo�Dn; vnðy1; xoÞÞ

�∂xoVnþ1ðy2þxo�Dn; vnðy2; xoÞÞ�

ZβnE½∂xoVnþ1ðy2þδþxo

�Dn; vnðy2; xoÞ�δÞ�∂xoVnþ1ðy2
þxo�Dn; vnðy2; xoÞÞ�Z0;

where the first inequality is true since vnðy1; xoÞo0 and
the convexity of Vnþ1. The second inequality is true
since vnðy1; xoÞZvnðy2; xoÞ�δ. The reason is that by
Lemma 3 in Yang and Qin (2007), because Vnþ1ðx; xoÞ is
supermodular in ðx; xoÞ, DD½x�, and DD½xo�, we have
∂yvnðy; xoÞA ½�1;0Þ. Finally, the third inequality is true
since ∂xVnþ1ðxþδ; xo�δÞ is increasing in δ.

Case (iii): vnðy1; xoÞ40. Then, we have

Gnðy1; xoÞ�Gnðy2; xoÞ ¼ E½ð1�βnÞVnþ1ðy1�Dn; vnðy1; xoÞÞ
þβnVnþ1ðy1þxo�Dn; vnðy1; xoÞÞ�
�E½ð1�βnÞVnþ1ðy2�Dn; vnðy2; xoÞÞ

þβnVnþ1ðy2þxo�Dn; vnðy2; xoÞÞ�
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þβnc
o
nvnðy1Þ�βnc

o
nvnðy2; xoÞ:

Differentiating the above equality with respect to xo, we
have

∂xo ½Gnðy1; xoÞ�Gnðy2; xoÞ� ¼ βnE½∂xoVnþ1ðy1þxo�Dn; vnðy1; xoÞÞ

�∂xoVnþ1ðy2þxo�Dn; vnðy2; xoÞÞ�:
By following the similar argument as Case (ii), we can
prove the statement.

In short, we have proven that Gnðy; xoÞ is supermodular in
ðy; xoÞ. Then, we will show that Gnðy; xoÞ is DD½y� and DD½xo�. For
δZ0, if vnðyþδ; xo�δÞo0, we have

∂yGnðyþδ; xo�δÞ ¼E½αð1�βnÞ∂yVnþ1ðyþδ�Dn;0Þþαβn∂yVnþ1ðyþxo�Dn;0Þ�:

Because of the convexity of Vnþ1, ∂yGnðyþδ; xo�δÞ is increasing in
δ.

If vnðyþδ; xo�δÞZ0, we have to consider two cases: vnðy; xoÞ
Z0 and vnðy; xoÞo0.
Case (i): vnðy; xoÞZ0. We have

∂yGnðyþδ; xo�δÞ�∂yGnðy; xoÞ ¼E½αð1�βnÞ∂yVnþ1ðyþδ
�Dn; vnðyþδ; xo�δÞÞ
þαβn∂yVnþ1ðyþxo�Dn; vnðy

þδ; xo�δÞ��E½αð1�βnÞ∂yVnþ1

�ðy�Dn; vnðy; xoÞÞþαβn∂yVnþ1

�ðyþxo�Dn; vnðy; xoÞ�
ZE½αð1�βnÞ∂yVnþ1ðyþδ�Dn;

vnðy; xoÞ�δÞþαβn∂yVnþ1ðy
þxo�Dn; vnðy; xoÞ�δ�
�E½αð1�βnÞ∂yVnþ1ðy�Dn;

vnðy; xoÞÞþαβn∂yVnþ1ðyþxo

�Dn; vnðy; xoÞ�Z0;

where the first inequality is true since vnðyþδ; xo�δÞZ
vnðy; xoÞ�δ and the second inequality is true since ∂xVnþ1

ðxþδ; xo�δÞ is increasing in δ.
Noting that by comparing the corresponding first order
conditions, we have vnðyþδ; xo�δÞZvnðy; xoÞ.

Case (ii): vnðy; xoÞo0. We have

∂yGnðyþδ; xo�δÞ�∂yGnðy; xoÞ ¼E½αð1�βnÞ∂yVnþ1ðyþδ�Dn;

vnðyþδ; xo�δÞÞþαβn∂yVnþ1ðyþxo�Dn; vnðyþδ; xo�δÞ�
�E½αð1�βnÞ∂yVnþ1ðy�Dn;0ÞÞ
þαβn∂yVnþ1ðyþxo�Dn;0Þ�Z0;

where the inequality is true due to the convexity and
supermodularity of Vnþ1.

Thus, we have Gnðy; xoÞ is DD½y�.
Next, we will show that Gnðy; xoÞ is DD½xo�. If vnðy�δ; xoþδÞo0,

we have

∂xoGnðy�δ; xoþδÞ ¼ αβnE∂xoVnþ1ðyþxo�Dn;0Þ:
It is obvious that ∂yGnðy�δ; xoþδÞ is independent of δ. If
vnðy�δ; xoþδÞZ0, we have

∂xoGnðy�δ; xoþδÞ�∂xoGnðy; xoÞ
¼ αβnE½∂xoVnþ1ðyþxo�Dn; vnðy�δ; xoþδÞÞ
�∂xoVnþ1ðyþxo�Dn; vnðy; xoÞ30Þ�;

where vnðy; xoÞ30¼maxfvnðy; xoÞ;0g.
Because of the supermodularity of Vnþ1 and vnðy�δ; xoþδÞZ0,

we have vnðy�δ; xoþδÞZvnðy; xoÞ30. Then, it is clear that
∂xoGnðy�δ; xoþδÞ�∂xoGnðy; xoÞZ0. Thus, Gnðy; xoÞ is DD½y�.
By definition, since Gnðy; xoÞ is SP½y; xo�, DD½y�, and DD½xo�, it is
obvious that Jnðy; xoÞ is also SP½y; xo�, DD½y�, and DD½xo�.

Now, we show that Vnðx; xoÞ is supermodular in ðx; xoÞ. In other
words, for x1Zx2, we try to prove that Vnðx1; xoÞ�Vnðx2; xoÞ is
increasing in xo. By definition, ynðxoÞ is decreasing xo. We need to
consider three cases.
Case (i): ynðxoÞrx2. Then, we have

Vnðx1; xoÞ�Vnðx2; xoÞ ¼E½ð1�βnÞRnðx1�DnÞ
þβnRnðx1þxo�DnÞ��E½ð1�βnÞRnðx2�DnÞ
þβnRnðx2þxo�DnÞ�þcnx1þGnðx1; xoÞ�cnx2�Gnðx2; xoÞ:

Because of the convexity of Rn and the supermodularity
of Gn, it is clear that the statement is true.

Case (ii): x2oynðxoÞox1. Then, we have

Vnðx1; xoÞ�Vnðx2; xoÞ ¼E½ð1�βnÞRnðx1�DnÞþβnRnðx1
þxo�DnÞ��E½ð1�βnÞRnðynðxoÞ�DnÞ
þβnRnðynðxoÞþxo�DnÞ�þcnx1þGnðx1; xoÞ
�cnynðxoÞ�GnðynðxoÞ; xoÞ:

Differentiating the above equation with respect to xo, we
have

∂xo ½Vnðx1; xoÞ�Vnðx2; xoÞ�
¼ βnE½R0

nðx1þxo�DnÞ�R0
nðynðxoÞþxo�DnÞ�

þ∂xoGnðx1; xoÞ�∂xoGnðynðxoÞ; xoÞ:
Because of ynðxoÞox1 and the supermodularity of Gn, we
have ∂xo ½Vnðx1; xoÞ�Vnðx2; xoÞ�Z0.

Case (iii): ynðxoÞZx1. Then, we have Vnðx1; xoÞ�Vnðx2; xoÞ ¼ 0:
Thus, Vnðx1; xoÞ�Vnðx2; xoÞ is independent of xo.

In summary, we have shown that Vnðx; xoÞ is supermodular in
ðx; xoÞ. Now, we show that Vnðx; xoÞ is DD½x� and DD½xo�. For period
n, we have

∂xVnðx; xoÞ ¼
E½ð1�βnÞR0

nðx�DnÞþβnR
0
nðxþxo�DnÞ�þ∂xGnðx; xoÞ if xZynðxoÞ;

�cn O:W:

(

ð18Þ
By (18), if xþδoynðxo�δÞ, we have ∂xVnðxþδ; xo�δÞ ¼ �cn, which
is independent of δ. If xþδZynðxo�δÞ, we have

∂xVnðxþδ; xo�δÞ ¼ E½ð1�βnþ1ÞR0
nþ1ðxþδ�Dnþ1Þ

þβnþ1R
0
nþ1ðxþxo�Dnþ1Þ�þ∂xGnþ1ðxþδ; xo�δÞ:

Since Gnþ1ðx; xoÞ is DD½x� and Rn is convex, ∂xVnðxþδ; xo�δÞ is
increasing in δ. Namely, Vnðx; xoÞ is DD½x�. Similarly, we can prove
that Vnðx; xoÞ is also DD½xo�.

For (iii), the results immediately follow by Lemma 3 in Yang
and Qin (2007).□

Proof of Theorem 3. For (i), the results immediately follow by
part (i) of Lemma 4. For (ii), for any given xo, we need to consider
two cases. For xo IONn ðxoÞ, since the order-up-to level is achieved
and independent of x, vONn ðx; xoÞ is independent of x. For xZ IONn ðxoÞ,
(iii) of Lemma 4, vONn ðx; xoÞ is decreasing in x. Thus, the optimal
policy is a threshold type.□

Proof of Proposition 2. For xZ IONn ðxoÞ, we have qONn ðx; xoÞ ¼ 0.
Thus, ∂xqONn ðx; xoÞ ¼ ∂xoqONn ðx; xoÞ ¼ 0. Further, vONn ðx; xoÞ is obtained
by

min
vZ0

fE½αð1�βnÞVnþ1ðx�Dn; vÞþαβnVnþ1ðxþxo�Dn; vÞ�þβnc
o
nvg:

By part (ii) of Lemma 4, we have ∂xvONn ðx; xoÞA ½�1;0Þ and
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∂xovONn ðx; xoÞA ½�1;0Þ. From the first-order condition, we have
∂xvONn ðx; xoÞr∂xovONn ðx; xoÞ.

For xo IONn ðxoÞ, since IONn ðxoÞ is independent of x,
∂xqONn ðx; xoÞ ¼ �1. By part (iii) of Lemma 4, we have
dxo I

ON
n ðxoÞA ½�1;0Þ. Then, ∂xoqONn ðx; xoÞA ½�1;0Þ.
Further, vONn ðx; xoÞ is also independent of x by

min
vZ0

fE½αð1�βnÞVnþ1ðyðxoÞ�Dn; vÞ

þαβnVnþ1ðyðxoÞþxo�Dn; vÞ�þβnc
o
nvg:

By the first order condition and treating vn as a function of xo, we
have

βnc
o
nþαE½ð1�βnÞ∂vVnþ1ðynðxoÞ�Dn; vnðxoÞÞ
þβn∂vVnþ1ðynðxoÞþxo�Dn; vnðxoÞÞ� ¼ 0:

Because of ynðxoÞA ½�1;0Þ, if xo is increased to xoþδ, ynðxoÞ is
decreased to ynðxoÞ�ϵ, where 0oϵrδ. Then, we have

βnc
o
nþαE½ð1�βnÞ∂vVnþ1ðynðxoÞþδ�ϵ�Dn; vnðxoÞ
�ðδ�ϵÞÞþβn∂vVnþ1ðynðxoÞþxo�Dnþδ�ϵ; vnðxoÞ�ðδ�ϵÞÞ�o0;

where the inequality is true since Vnþ1 is DD½xo�. By the convexity
of Vnþ1, we have

vnðxoþδÞZvnðxoÞ�ðδ�ϵÞ ) vnðxoþδÞ�vnðxoÞ
δ�ϵ

Z�1

) vnðxoþδÞ�vnðxoÞ
δ

Z�1:

Similarly, we can show that 1Z ½vnðxoþδÞ�vnðxoÞ�=
ðδ�ϵÞZ ½vnðxoþδÞ�vnðxoÞ�=δ. In summary, we have
dxovnðx; xoÞA ½�1;1�.□

Proof of Theorem 4. Firstly, we can prove that Vnðx; iÞ is convex in
x by induction. Obviously, it is true for period Nþ1. Assuming that
it holds for period nþ1, we show that it is also true for period n.
For i¼1, by (5), because minimization preserves the convexity and
f0rq;0rvg is a convex set, Vnðx;1Þ is convex in x. For i¼0, it is
clear that Vnðx;0Þ is convex in x by following the similar argument.

Secondly, for i¼0, by (6), because of the convexity of Vnðx; iÞ,
the optimal policy for the overseas supply is an order-up-to type
with the order-up-to level given by (9). Thus, we obtain
vLIn ðx;0Þ ¼ ðILIn ð0Þ�xÞþ .

For i¼1, by (7), because of the convexity of Vnðx; iÞ, it is clear
that the optimal policy for the local supply is an order-up-to type
with the order-up-to level given by (7). Thus, we obtain
qLIn ðx;1Þ ¼ ðILIn ð1Þ�xÞþ .

For the overseas supply, we define

Î n ¼ arg min
y

fERnðy�DnÞþðcn�conÞyg: ð19Þ

Then, we need to consider two cases: Î no I
LI
n ð1Þ and Î nZ I

LI
n ð1Þ,

where I
LI
n ð1Þ is given by (8). If Î no I

LI
n ð1Þ, we have ILIn ð1Þ ¼ Î n. And,

the interior point I
LI
n ð1Þ is a feasible solution to Gn(y). Therefore,

when xZ I
LI
n ð1Þ, vLIn ðx;1Þ ¼ 0. When xo I

LI
n ð1Þ, vLIn ðx;1Þ ¼ I

LI
n ð1Þ� Î n3

x4 0. If Î nZ I
LI
n ð1Þ, by (6), Because of yrz and the convexity, we

have vLIn ðx;1Þ ¼ 0.
By combining these two cases, we obtain vLIn ðx;1Þ ¼

ðILIn ð1Þ� ILIn ð1Þ3xÞþ , where I
LI
n ð1Þ is given by (8).□

Proof of Proposition 3. We prove it by induction. Since it is
straightforward to show that it holds for period N. We need to
show that it still holds for period n. Then, we need to consider two
cases: I

LI
n ð1Þo Î n and I

LI
n ð1ÞZ Î n, where Î n is given by (19).

Case 1: I
LI
n ð1Þo Î n. Note that ILIn ð1Þ is given by

E½R0
nðILIn ð1Þ�DnÞþcnþαβnV

LI0
nþ1ðILIn ð1Þ�Dn;1Þ

þαð1�βnÞVLI0
nþ1ðILIn ð1Þ�Dn;0Þ� ¼ 0: ð20Þ

Since VLI0
nþ1ðx;0ÞrVLI0

nþ1ðx;1Þ, ILIn ð1Þ is decreasing in β. By (8), I
LI
n ð1Þ is

decreasing in β. Note that I
LI
n ð1Þ ¼ I

LI
n ð0Þ I

LI
n ð0Þ is decreasing in β. By

Theorem 4, it is obvious that both qLIn ðx; iÞ and vLIn ðx; iÞ are
decreasing in β.

For Model III, for i¼0, we have

VLI0
n ðx;0Þ ¼

ER0
nðx�DnÞ�con; xo I

LI
n ð0Þ;

E½R0
nðx�DnÞþαβnV

LI0
nþ1ðx�Dn;1Þ

þαð1�βnÞVLI0
nþ1ðx�Dn;0Þ�; xZ I

LI
n ð0Þ:

8>>><
>>>:

ð21Þ

For i¼1, we have

VLI0
n ðx;1Þ ¼

�cn; xo ILIn ð1Þ;
E½R0

nðx�DnÞþαβnV
LI0
nþ1ðx�Dn;1Þ

þð1�βnÞVLI0
nþ1ðx�Dn;0Þ�; xZ ILIn ð1Þ;

8>><
>>: ð22Þ

Since Î nZ ILIn ð1Þ and I
LI
n ð1Þ ¼ I

LI
n ð0Þ, we have ILIn ð1ÞZ I

LI
n ð0Þ. We have

VLI0
n ðx;1ÞZVLI0

n ðx;0Þ. By (21) and (22), it is clear that V 0
nðx; iÞ is

increasing in β. Since Vnðx;1ÞrVnðx;0Þ, we obtain that Vnðx; iÞ is
decreasing in β.

Case 2: I
LI
n ð1ÞZ Î n. We have ILIn ð1Þ ¼ Î n that is independent of β.

By (8), I
LI
n ð1Þ is decreasing in β. By Theorem 4, it is obvious that

both qLIn ðx; iÞ and vLIn ðx; iÞ are decreasing in β.
For i¼0, VLI0

n ðx;1Þ is given by (21). For i¼1, we have

VLI0
n ðx;1Þ ¼

�cn; xo Î n;

ERnðx�DnÞ�con; Î noxo I
LI
n ð1Þ;

E½R0
nðx�DnÞþαβnV

LI0
nþ1ðx�Dn;1Þ

þαð1�βnÞVLI0
nþ1ðx�Dn;0Þ�; xZ I

LI
n ð1Þ;

8>>>>><
>>>>>:

ð23Þ
Noting that I

LI
n ð1Þ ¼ I

LI
n ð0Þ, We have VLI0

n ðx;1ÞZVLI0
n ðx;0Þ. By (21) and

(23), it is clear that V 0
nðx; iÞ is increasing in β. Since

Vnðx;1ÞrVnðx;0Þ, we obtain that Vnðx; iÞ is decreasing in β.□

Proof of Proposition 4. We show this statement by induction. For
period N, for Model I, we have

VLN0
N ðxÞ ¼

ð1�βNÞER0
Nðx�DNÞ�βNcN ; xo ILNN ;

ER0
Nðx�DNÞ; xZ ILNN :

(

For Model III, we have

VLI0
N ðx;1Þ ¼

�cN ; xo ILIN ð1Þ;
ER0

Nðx�DNÞ; xZ ILIN ð1Þ:

(
ð24Þ

and VLI0
N ðx;0Þ ¼ER0

Nðx�DNÞ. Because of ILNN ¼ ILIN ð1Þ and
vLNn ðxÞ ¼ vLIn ðx;1Þ ¼ 0, both (i) and (ii) are true for period N.

Assuming that it holds for period nþ1, we will show that it also
holds for period n. Define Î

o
n ¼ arg minzfconzþαEVnþ1ðz�DnÞg: By

definition, because of the convexity and VLN0
nþ1ðxÞrβnþ1V

LI0
nþ1ðx;1Þ

þ ð1�βnþ1ÞVLI0
nþ1ðx;0Þ, we have Î

o
nZ I

LI
n ð1Þ.

Then, we need to consider three cases: Î nZ Î
o
n, I

LI
n ð1Þo Î no Î

o
n,

Î nr I
LI
n ð1Þ.

Case 1: Î nZ Î
o
n. Since In

LN is uniquely given by E½R0
nðILNn �DnÞþ

cnþαVLN0
nþ1ðILNn �DnÞ� ¼ 0 and ILIn ð1Þ is given by (20), we have ILNn Z

ILIn ð1Þ due to the convexity and VLN0
nþ1ðxÞrβnþ1V

LI0
nþ1ðx;1Þþð1�βnþ1

Þ VLI0
nþ1ðx;0Þ.
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Because Î nZ ILIn ð1Þ, we have vLIn ðx;1Þ ¼ 0. Namely,
vLNn ðxÞZvLIn ðx;1Þ. The firm more likely orders from both supplies in
Model I.

For Model I, noting that I
LN
n r ILNn , we have

VLN0
n ðxÞ ¼

ð1�βnÞER0
nðx�DnÞþβnER

0
nðxþqLNn ðxÞ�DnÞ�con; xr I

LN
n ;

ð1�βnÞE½R0
nðx�DnÞþαVLN0

nþ1ðx�DnÞ��βncn; I
LN
n oxo ILNn ;

E½R0
nðx�DnÞþαVLN0

nþ1ðx�DnÞ�; xZ ILNn :

8>>><
>>>:

ð25Þ

For Model III, for i¼0, we have VLI0
n ðx;0Þ and VLI0

n ðx;1Þ given by
(21) and (22), respectively. Since Î nZ ILIn ð1Þ and I

LI
n ð1Þ ¼ I

LI
n ð0Þ, we

have ILIn ð1ÞZ I
LI
n ð0Þ. Note that for Model I, when xr ILNn , VLN0

n ðxÞr ð1
�βnÞE½R0

nðILNn �DnÞþαVLI0
nþ1ðILNn �DnÞ��βncn due to the convexity.

Then, by (25), (21), (22), we can show that VLN0
n ðxÞr

βnV
LI0
n ðx;1Þþð1�βnÞVLI0

n ðx;0Þ.
Case 2: I

LI
n ð1Þo Î no Î

o
n. Note that ILNn ¼ Î n and ILIn ð1Þ is given by

(20). According to the definition of Î n given by (19), we have
Î nZ ILIn ð1Þ. Thus, ILNn Z ILIn ð1Þ. For this case, because I

LI
n ð1Þo Î n, we

still have vLIn ðx;1Þ ¼ 0. Then, (ii) is also true for this case.
For Model I, we have ILNn ¼ Î n, I

LN
n ¼ Î

o
n, and

VLN0
n ðxÞ ¼

ð1�βnÞER0
nðx�DnÞþβnER

0
nðxþqLNn ðxÞ�DnÞ�con; xr Î n;

ER0
nðx�DnÞ�con; Î noxo Î

o
n;

E½R0
nðx�DnÞþαVLN0

nþ1ðx�DnÞ�; xZ Î
o
n:

8>>><
>>>:

ð26Þ

For Model III, for i¼0 and i¼1, V 0
nðx;0Þ is given by (21) and (22),

respectively.
For Model I, because of the convexity, VLN0

n ðxÞrERnðx�DnÞ�con
for xr Î n. Because of I

LI
n ð1Þo Î n, we have Î nZ ILIn ð1ÞZ I

LI
n ð1Þ. Then, by

(21), (22), (26), we can show that (i) is true.
Case 3: Î nr I

LI
n ð1Þ. For that case, we have ILNn ¼ ILIn ð1Þ ¼ Î n. It is

clear that for xZ Î n, vLNn ðxÞ ¼ ðILNn �xÞþ and vLIn ðx;1Þ ¼ ðILIn ð1Þ�xÞþ .
Because of I

LN
n ¼ Î

o
n, I

LN
n Z I

LI
n ð1Þ. Thus, vLNn ðxÞZvLIn ðx;1Þ.

For Model I, VLN0
n ðxÞ is given by (26). For Model III, for i¼0, VLI0

n

ðx;0Þ is given by (21). For i¼1, VLI0
n ðx;1Þ is given by (23). For Model I,

because of the convexity, VLN0
n ðxÞrERnðx�DnÞ�con for xr Î n. Then,

noting that I
LI
n ð1Þ ¼ I

LI
n ð0Þ, by (21), (26), (23), we can show that

(i) is true.□

Proof of Theorem 5. The proof follows the similar argument of
Theorem 4.□

Proof of Proposition 5. Let us start from period N. For Model III,
we obtain that VLI0

N ðx;1Þ is given by (24) and VLI0
N ðx;0Þ ¼ER0

Nðx�DNÞ.
For Model IV, we have

VOI0
N ðx; iÞ ¼

�cN ; xo IOIN ðiÞ;
ER0

Nðx�DNÞ; xZ IOIN ðiÞ:

(

Because of ILIN ð1Þ ¼ IOIN ðiÞ, we have βNV
LI0
N ðx;1Þþð1�βNÞVLI0

N ðx;0Þr
βNV

OI0
N ðx;1Þþð1�βNÞVOI0

N ðx;0Þ. And, (ii) is also true for period N.
Assuming that it holds for period nþ1, we will show that it also

holds for period n. By definition, because of the convexity and

βnþ1V
LI0
nþ1ðx;1Þþð1�βnþ1ÞVLI0

nþ1ðx;0Þrβnþ1V
OI0
nþ1ðx;1Þ

þð1�βnþ1ÞVOI0
nþ1ðx;0Þ;

we have I
LI
n ð1ÞZ I

OI
n ð1Þ.

We need to consider three cases: Î nZ I
LI
n ð1Þ, I

OI
n ð1Þo Î no I

LI
n ð1Þ,

Î nr I
OI
n ð1Þ.
Case 1: Î nZ I
LI
n ð1Þ. For this case, by definition, ILIn ð1Þ is given by

(20). By (11), IOIn ð1Þ is given by

E½RnðIOIn ð1Þ�DnÞþcnþαβnV
OI0
nþ1ðIOIn ð1Þ�Dn;1Þ

þαð1�βnÞVOI0
nþ1ðIOIn ð1Þ�Dn;0Þ� ¼ 0: ð27Þ

Thus, ILIn ð1ÞZ IOIn ð1Þ: Because qLIn ðx;1Þ ¼ ðILIn ð1Þ�xÞþ and qOIn ðx;1Þ ¼
ðIOIn ð1Þ�xÞþ , we have qLIn ðx;1ÞZqOIn ðx;1Þ. For both models, there is
no overseas order for i¼1. Then, (ii) is true.

For Model III, VLI0
n ðx;0Þ and VLI0

n ðx;1Þ are given by (21) and (22),
respectively.

For Model IV, because of vOIn ðx; iÞ ¼ 0, we have

VOI0
N ðx; iÞ ¼

�cn; xo IOIn ðiÞ;
E½R0

nðx�DnÞþαβnV
OI0
nþ1ðx�Dn;1Þ;

þαð1�βnÞVOI0
nþ1ðx�Dn;0Þ�; xZ IOIn ðiÞ:

8>><
>>: ð28Þ

Noting that IOIn ð1Þ ¼ IOIn ð0Þ, by comparing (21), (22), and (28), we can
show that (i) is true.

Case 2: I
OI
n ð1Þo Î no I

LI
n ð1Þ. For this case, by definition, ILIn ð1Þ ¼ Î n.

And, IOIn ð1Þ is still given by (27). Since I
OI
n ð1Þo Î n, we have Î nZ IOIn ð1Þ.

Thus, ILIn ð1ÞZ IOIn ð1Þ.
For Model III, we have vLIn ðx;1ÞZ0 while vOIn ðx;1Þ ¼ 0 for Model

IV. Thus, (ii) is true.
For Model III, VLI0

n ðx;0Þ and VLI0
n ðx;1Þ are given by (21) and (23),

respectively. For Model IV, VOI0
n ðx; iÞ is still given by (28). Noting

that I
LI
n ð1Þ ¼ I

LI
n ð0Þ and IOIn ð1Þ ¼ IOIn ð0ÞZ I

OI
n ð1Þ. By comparing (21),

(23), and (28), we can show that (i) is true.
Case 3: Î nr I

OI
n ð1Þ. For this case, we have ILIn ð1Þ ¼ IOIn ð1Þ ¼ Î n. And,

we have vLIn ðx;1Þ ¼ ðILIn ð1Þ�xÞþ and vOIn ðx;1Þ ¼ ðIOIn ð1Þ�xÞþ . Because
of I

LI
n ð1ÞZ I

OI
n ð1Þ, it is obvious that vLIn ðx;1ÞZvOIn ðx;1Þ. Then, (ii)

is true.
For Model III, VLI0

n ðx;0Þ and VLI0
n ðx;1Þ are given by (21) and (23),

respectively. For Model IV, we have

VOI0
n ðx;0Þ ¼

�cn; xo IOIn ð0Þ;
E½R0

nðx�DnÞþαβnV
OI0
nþ1ðx�Dn;1Þ

þαð1�βnÞVOI0
nþ1ðx�Dn;0Þ�; xZ IOIn ð0Þ:

8>><
>>: ð29Þ

and

VOI0
n ðx;1Þ ¼

�cn; xo Î n;

ERnðx�DnÞ�con; Î noxo I
OI
n ð1Þ;

E½R0
nðx�DnÞþαβnV

OI0
nþ1ðx�Dn;1Þ

þαð1�βnÞVOI0
nþ1ðx�Dn;0Þ�; xZ I

OI
n ð1Þ;

8>>>>><
>>>>>:

ð30Þ

Since Î nr I
OI
n ð1Þ, IOIn ð1ÞZ I

OI
n ð0Þ. By comparing ((21), (23), (29),

and (30)), we can show that (i) is true.□
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