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Some Alternatives to PLS 
Qualche Alternativo di PLS 

 

Henk A.L. Kiers, 
Heymans Institute, University of Groningen, Grote Kruisstraat 2/1,  

9712 TS Groningen, The Netherlands, e-mail: h.a.l. kiers@ppsw.rug.nl 

 

Riassunto: In questo articolo vengono presentati alcuni metodi per un caso particolare 

di regressione in cui le variabili indipendenti sono sintetizzate prima di essere utilizzate 

come predittori. In tale contesto, infatti, l’obiettivo non è semplicemente spiegare le 

variabili risposta, ma anche sintetizzare le variabili indipendenti. A questo proposito, il 

metodo maggiormente utilizzato è il PLS, sebbene ne esistano anche altri, come il 

PcovR. Nostro obiettivo è sviluppare un ulteriore metodo, denominato “Power 

Regression”, che verrà discusso in dettaglio anche in riferimento agli aspetti 

computazionali. 
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1. Introduction 
 

Multiple regression aims at finding an optimal rule for predicting scores on a criterion 

variable (dependent variable) on the basis of scores on a number of predictor variables 

(independent variables). The prediction rule is obtained by analyzing data on a training 

sample, for which scores on both the predictor variables and the criterion variable are 

available, and finding that linear combination of variables that approximates most 

closely the scores on the criterion variable. The regression weights (i.e., the weights 

used to form the optimal linear combination) then define the prediction rule, which is 

meant to be useful in situations where it is desired to estimate the unknown scores on a 

criterion variable, while only the scores on the predictor variables are available. Such 

situations are very common, since they arise as soon as a variable of much practical 

relevance is hard or even impossible to measure, whereas other variables that can be 

used to predict it are easily available. A common example is the situation where the 

criterion variable refers to future sales of a product (which by definition cannot be 

measured now), that could be predicted by known attributes of the product or the 

prospective buyers. Obviously, the usefulness of a prediction rule does not reside in its 

performance for the data on the basis of which it was obtained, but in its performance on 

other (e.g., future) data. In other words, a regression rule should primarily have good 

generalizability properties.  

It is well known that the prediction rule resulting from ordinary multiple 

regression is rather prone to lack of generalizability, as will be explained in Section 2. 

For this reason, various alternatives to regression, sometimes called biased regression 

techniques, have been proposed. The best known of these are PLS (Partial Least 

Squares, e.g., see Wold, 1966, Wold et al. 1984, Martens & Naes, 1989) and PCR 

(Principal Component Regression, see Coxe, 1986, Martens & Naes, 1989), but several 

other methods have also been developed (e.g., ILS by Frank, 1987; Continuum 



Regression by Stone & Brooks, 1990; The Curds and Whey procedure by Breiman & 

Friedman, 1997, and various recent, more specialized procedures, e.g. see Esposito 

Vinzi et al, 2001). As will also be explained in Section 2, an important improvement of 

the performance of the prediction rule can be expected if it is based on a method that not 

only optimizes variance explained in the criterion variable(s), but also in the predictor 

variables. This idea seems to underly the success of PLS, even though in PLS this is not 

explicitly. Here, I will focus on alternatives to PLS that explicitly optimize a 

compromise between explained variance in the predictor variables and explained 

variance in the criterion variables. The first such method is PCovR (Principal 

Covariates Regression, De Jong & Kiers, 1992). A second method is a new one 

(although already anticipated by De Jong & Kiers, 1992, pp. 160-161), which will be 

called Power Regression. This combines the principles underlying PCovR in a different, 

possibly more robust way. First, however, a comparison of PCovR to some other 

techniques, among which PLS will be given in Section 3. Power Regression is 

introduced in Section 4, and it is indicated what will be the relative advantages and 

disadvantages of this method. Section 5 is devoted to some three-way extensions of 

biased regression techniques. Finally, the paper is finished with a conclusion in Section 

6.  

 

2. How to avoid ungeneralizable prediction rules 
 

As mentioned above, a prediction rule should not only perform well for the data on the 

basis of which it was obtained (the “training data”), but also for other data. In practice, 

however, it frequency happens that the prediction rule works well only for the training 

data, and not for other data. This happens when the number of predictor variables is 

large relative to the number of observation units, and the predictor variables are 

correlated. In such cases, the sheer multitude of predictor variables will often guarantee 

that regression weights can be found that lead to good prediction rules, simply because 

the large number of vectors with scores on predictor variables span a high dimensional 

space that is likely to capture most of the information in the vector of scores on the 

criterion variable(s). Indeed, when there are at least as many predictor variables as 

observation units, then it is practically guaranteed that regression weights can be found 

that lead to a prediction rule that ‘predicts’ the criterion scores in the training data 

perfectly. This clarifies that regression is a greedy technique, capitalizing on 

peculiarities in the training data, that need, however, not hold for any other data. This 

problem of regression is aggravated when the correlation between the predictor 

variables is high, because then, in principle, using several predictor variables cannot be 

expected to improve the prediction of a criterion variable much over using only of them, 

because they all convey largely the same information. However, the regression 

technique finds regression weights that work optimally for the training data, and for this 

purpose, it then exploits and inflates minimal differences between the predictor 

variables to get optimal predictions of the criterion variable(s). This leads to what is also 

called the ‘bouncing beta’ problem, where regression weights become very large due to 

multicollinearity of the predictor variables.  

The bouncing beta problem received much attention in the literature, and has 

been approached directly by techniques that explicitly aim at ‘shrinkage’ of the 

regression weights. An example is ridge regression (Hoerl & Kennard, 1970), which can 



easily be seen as a method that fits the regression model in the least squares sense with a 

penalty on the size of the regression weights. However, a mere shrinkage by itself may 

not solve the problem of poor performance in data other than the training data. 

Obviously, no guaranteed solution can be given to this problem, because the relation 

between predictor variables and criterion scores in such other data is not known. 

However, considering that the use of many predictor variables may easily lead to 

capitalizing on peculiarities in the training data, an approach that could help here is to 

reduce the number of predictor variables by combining predictor variables that convey 

more or less the same information, into summarizers. According to the above idea, 

techniques have been developed that aim at optimal prediction of the criterion 

variable(s) by means of preliminarily or simultaneously found summarizers of the 

predictor variables. The quality of the prediction of the criterion variable(s) (usually 

denoted as Y) is often expressed as the proportion of explained variance RY
2
, while the 

quality of the summary of the predictor variables (denoted by X) is often expressed as 

the proportion of explained variance RX
2
. The present paper focuses on techniques that 

implicitly or explicitly aim to maximize a compromise of RX
2
 and RY

2
.  

 

 

3. PCR, PLS, PcovR and related techniques 
 

3.1. Notation 

 

The training data set consists of scores on predictor variables and one or more criterion 

variables. The notation used here is:  

X = np matrix X with scores of n observation units on p predictor variables, 

Y = nm matrix with scores of n observation units on m criterion variables, 

y = n1 vector with scores on the criterion variable (in case there is only one). 

It should be noted that X and Y or y are assumed to be centered columnwise.  

In the various regression methods we will encounter the following matrices: 

T = nr matrix with scores of n observation units on r summarizers, with T = XW, 

W = pr matrix with component weights, 

B (b) = pm (p1) matrix of weights for regression of Y (or y) on X, 

PY (py) = rm (r1) matrix of weights for regression of Y on T, 

PX = rp matrix of weights for regression of X on T. 

 

3.2. PCR  

 

The most straightforward implementation of the idea of finding good summarizers, and 

finding a good prediction of criterion scores on the basis of these summarizers is PCR. 

In PCR the predictor variables are summarized by means of a limited number of 

principal components (with component weights collected in W, and component scores 

in T), and next these principal components are used as predictors in a regression of the 

criterion variable(s) on the principal components, by minimizing ||YTPY||
2
 = 

||YXWPY||
2
. Thus, the regression weights resulting from PCR are given by B = WPY, 

and these are the weights that define the prediction rules to be used with other data as 

well. Because PCR uses principal components, the components T maximize RX
2
 = 



1||XTPX||
2
/||X||

2
, where PX = (TT)

-1
TX. Given the components in T, next RY

2
 = 

1||YTPY||
2
/||Y||

2
 is maximized over the regression weights PY, hence PY = (TT)

-1
TY. 

 

3.3. PLS  

 

PLS aims at simultaneously, rather than sequentially, summarizing the predictor 

variables and performing regression on the summarizers. In case of more than one 

criterion variable, PLS also summarizers these criterion variables. It finds in total r pairs 

of summarizers (each pair consisting of one summarizer for X and one for Y), and finds 

each pair by a separate iterative procedure. For the first pair of summarizers, this 

procedure is as follows: 

 

Step 0.Initialize a weights vector u 

Step 1. w = Xu / || Xu || 

Step 2. t = Xw 

Step 3. q = Yt / || Yt || 

Step 4. u = Yq. 

Repeat Steps 1 through 4, until convergence. 

 

In case Y has only one column, Steps 3 and 4 can be dropped, and u can be set equal to 

y. It can be shown (e.g., see Manne, 1987) that the solution for vectors w and q (which 

are both normalized to unit length) maximizes wXYq = tu over all unit length vectors 

w and q, hence subject to this constraint, the first PLS summarizers maximize the 

covariance between them, and hence also its square. In case of a single criterion variable 

(y), it hence maximizes cov
2
(y,t) = cor

2
(y,t)var(t) = cor

2
(y,Xw)var(Xw) = 

Ry
2
var(Xw). Hence, the first PLS solution maximizes the product of the proportion of 

explained variance in y and the variance of the summarizer of X. Relatively high 

variance of Xw may often accompany a high RX
2
 (proportion of explained variance of 

X), but does not necessarily do so, hence the PLS criterion only indirectly aims at 

optimizing explained variance of X.  

Subsequent pairs of summarizers are obtained after first deflating the data 

matrices X and Y by subtracting the predictions on the basis of the previous 

summarizers  of the predictor variables, and then applying the same procedure to these 

deflated matrices. An alternative to this approach for finding subsequent summarizers is 

offered by the SIMPLS algorithm (De Jong, 1993), which avoids the deflations and 

replaces these by a procedure that ensures the summarizers of the predictor variables to 

be mutually uncorrelated, which leads to slightly different solutions than PLS gives.  

 

3.4. PCOVR  

 

As has been seen above, PCR uses principal components of X and hence the 

components T maximize RX
2
 = 1||XTPX||

2
/||X||

2
. These predictor variables were 

summarized in an attempt to reduce the number of predictor variables and to avoid 

finding regression weights that overexploit subtle differences in the scores on the 

predictor variables in the training data. However, by reducing the information in the 

predictor variables, one might possibly have thrown away also some information in the 



predictor variables that is (also outside the training data set) relevant in the prediction of 

criterion scores. Therefore, rather than finding summarizers (‘components’) that focus 

on maximizing RX
2
 (as in PCR), PcovR aims at finding components that not only 

summarize the scores on the predictor variables well, but also predict the scores on the 

criterion variables well. Specifically, PcovR maximizes RX
2
+(1)RY

2
, where  is a 

parameter that has to be chosen by the user. Equivalently, it can be said that PcovR 

minimizes  

 

 f(W) = || X  TPX ||
2
 + (1|| Y  TPY ||

2
  

 

         = || X  XWPX ||
2
 + (1|| Y  XWPY ||

2
,                    (1) 

 

where PX = (WXXW)
-1

WXX and PY = (WXXW)
-1

WXY. Clearly, when =1, we 

focus entirely on summarizing X, which gives us PCR. When =0, we focus entirely on 

predicting Y, which gives us reduced rank regression, or, when the number of 

components is at least as large as the number of criterion variables, ordinary regression. 

The more interesting cases are those where  is in between the extremes, because then 

the method finds components that aims at finding components T that simultaneously 

summarize X well and predict Y well.  

The solution for the minimization of (1) can be obtained noniteratively. For 

identification, the nonrestrictive constraint TT=WXXW=I is imposed. Let HX denote 

the projector X(XX)
+
X, and let E contain the first r eigenvectors of 

 

G = XX + (1 HXYYHX,                       (2) 

 

then the solution is given by W=X
+
E, and hence T = E; here the superscript 

+
 denotes 

the Moore-Penrose inverse. Next PY can be computed as PY = TY. The regression 

weights matrix B then is B = WPY = X
+
EEY. 

The main problem with PcovR is that it is difficult to make a choice for . De 

Jong and Kiers (1992) suggested to use cross-validation to choose , but practical 

experience with this approach has not met with unequivocal success. One reason for this 

may be that the solution depends on the size of the data values. That is, an overall 

scaling of matrix X will change the solution by more than a proportional change of the 

regression weights, because it affects the contents of the matrix G in (2) in a 

nonproportional way. Actually, rescaling the data, has the same effect as using a 

different value of . Hence, the scale of the data, and the choice of  are confounded, 

and this choice of  should be made after one has decided on a proper way of scaling the 

data. The problem then is that it is not a priori clear what should be a proper scale of the 

data, and finding a good value of  becomes somewhat cumbersome. This problem does 

not occur with methods that are ‘scale free’, that is for which the results are not affected 

by rescaling the data (except for trivial rescalings of the regression weights). Ordinary 

regression, PCR and PLS are all scale free methods, but none of them simultaneously 

optimizes RX
2
 and RY

2
. The method to be described in the next section is also scale free, 

and does simultaneously optimize RX
2
 and RY

2
. 

 

 



4. Power Regression 
 

In Section 3.3 it has been mentioned that PLS finds components that (sequentially) 

maximize the product of the explained variance of y and the variance of the component 

itself. If one searches components that account well for the information in both X and y 

(or, if more than one criterion variable is available, Y), the above criterion seems 

somewhat inconsistent: As mentioned, the criterion involves explained variance of Y, 

whereas it uses the variance of Xw (rather than the variance of X explained by Xw). In 

an attempt to find components that both explain well the variance of X and that of Y, 

PCovR has been proposed. PCovR maximizes a weighted sum of RX
2 

and Ry
2
. As 

mentioned above in Section 3.4, a problem in the application of PCovR is to choose the 

weights in this weighted sum. In the present section, a different approach to maximizing 

a compromise of RX
2
 and RY

2
 is offered (extending on a proposal by De Jong & Kiers, 

1992, pp.160-162). This is based on maximizing the product of RX
2
 and RY

2
 (or a sum of 

such products).  

The rationale for maximizing the product of RX
2
 and RY

2
 rather than the sum is 

that this will imply that both RX
2
 and RY

2
 will be reasonably high. This is because one 

small value can strongly decrease the value of the product criterion, whereas in PcovR, 

maximizing the sum of RX
2
 and RY

2
, a small value of the one can more easily be 

compensated by a high value of the other. Because of this, it can be expected that, when 

taking the product of RX
2
 and RY

2
, no weightings of RX

2
 and RY

2
 are needed to avoid that 

either RX
2
 or RY

2
 becomes too small. Moreover, because this method employs only the 

products of R
2
 values, which do not depend on the scale of the data, the method is scale 

free, and, again, no weightings of RX
2
 and RY

2
 are needed to compensate for scale 

differences that unduly affect the solution. This is not to say that it is impossible to 

implement such weights: Indeed, in a similar way as in continuum regression (Stone & 

Brooks, 1990), we could take different powers of the terms in the product. So a general 

formulation of the criterion could be (see De Jong & Kiers, 1992) to maximize 

(RX
2
)


(RY
2
)


, over component weights W and hence components T. However, here 

we will only deal with the case where =½, hence maximizing the product RX
2
RY

2
, 

because we expect that this will suffice for most practical purposes.  

Using a product criterion actually follows the implicit rationale behind PLS. It 

differs, however, from PLS in that the product involves explained variances for Y and 

X. In this way, we combine the good features of PLS (using the product criterion) and 

PCovR (using explained variances), and thus hope to get the best of both worlds. We 

dubbed the method Power Regression because of its power to explain variance in both 

Y and X.  

As mentioned above, this approach was first proposed by De Jong and Kiers 

(1992), but then further ignored, maybe because their algorithm for maximizing this 

product was somewhat ad hoc, and not known to converge. Moreover, they proposed 

only an approach where RX
2
 and RY

2
 are based on all components simultaneously, 

whereas here also a criterion will be considered where the sum of the products of RX
2
 

and RY
2 

computed per component will be maximized. This can be expected to better 

avoid solutions in which some components contribute very little to explaining variance 

in either X or Y.  
 



4.1. Power Regression using one component  

 

We first describe the Power Regression criterion when only one component is used. The 

variances of X and Y explained by a single component Xw are given by  

 

XwXw

wXXw
XwPXX

P ''

)'('
 min

2
22

            (3) 

and  

XwXw

XwYYXw
XwbYY

b ''

'''
'min

22

 ,            (4) 

 

respectively. The proportions of explained variance RX
2
 and RY

2
 are obtained by division 

of (3) and (4) by, respectively, ||X||
2
 and ||Y||

2
. Then Power Regression using only one 

component is defined by the regression of y on Xw, where w is found by maximizing  

 

XwXw

XwYYXw

XwXw

wXXw

YX
ww

''

'''

''

)'('1
)()(

2

22

2 2
YX RR          (5) 

 

over w. It should be noted that (5) does not depend on the sum of squares of w, hence, 

we do not have to impose a constraint like ww =1 (as done in PLS) to obtain a sensible 

solution. As a consequence, we can arbitrarily fix the scale in whichever way we like, 

and, if desired, choose a different scaling after the solution has been found. For 

convenience, we choose wXXw=1, which simplifies the criterion into  

 

p(w) = (w(XX)
2
w)(wXYYXw).            (6) 

 

To maximize (6) over w, subject to wXXw=1, we consider two cases:  

 

Case a. The columns of X do span the full 
p
 (which is usually the case when np) 

Case b. The columns of X do not span the full 
p 

(e.g., when n>p) 

 

Case a. When X spans the full 
p
, any vector t can be written as Xw, hence, we can 

replace Xw by an arbitrary vector t. Then criterion (6) can be written as  

 

p(t)= (tXXt)(tYYt),             (7) 

 

which is to be maximized over arbitrary t, subject to tt=wXXw=1. An algorithm for 

this maximization problem is described below. Once the optimal t is found, we can 

obtain the optimal w as w=(XX)
-1

Xt. 

 

Case b. When X does not span the full 
p
, we define wXXt

2/1)'(
~
 . It should be noted 

that any vector t
~

 can be written as (XX)
1/2

w for a certain vector w provided that the 

inverse of (XX)
1/2

 exists, namely by choosing w=(XX)
-1/2

t
~

. If the inverse does not 

exist, we can use the Moore-Penrose inverse and we have w=((XX)
1/2

)
+

t
~

, because, as 



will be seen later, the optimal t
~

 is in the column space of (XX)
1/2

, hence indeed 

(XX)
1/2

((XX)
1/2

)
+

t
~

 = t
~

; therefore, we will use the Moore-Penrose inverse generally 

instead of the ordinary inverse. With the above definition of t
~

, the criterion (6) reduces 

to  

 

p( t
~

) = ( t
~
((XX)

1/2
)
+
(XX)

2
((XX)

1/2
)
+

t
~

)( t
~
((XX)

1/2
)
+
XYYX((XX)

1/2
)
+

t
~

) 

 

               = ( t
~
XX t

~
)( t

~
((XX)

1/2
)
+
XYYX((XX)

1/2
)
+

t
~

),   (8) 

 

which is to be maximized over arbitrary t
~

, subject to t
~
 t
~

= wXXw = 1. An 

algorithm for this maximization problem is described below. 

 

Clearly, the optimization problems in (7) and (8) have the same shape, and can be 

written generally as the maximization of  

 

h(u) = uSuuTu,              (9) 

 

subject to uu=1, where S and T are both positive semi-definite matrices. Upon 

substituting the appropriate vectors for u and matrices for S and T, we reobtain (7) and 

(8), and it can be seen that in both cases the matrices to be substituted for S and T are 

positive semi-definite. To maximize (9), we use the following iterative algorithm: 

 

Step 1. Initialize u
i
 (i=0) (e.g., as random vector with unit sum of squares) 

Step 2. Compute h(u
i
) 

Step 3. Compute u
i+1

 as the first eigenvector of Su
i
u

i
T+Tu

i
u

i
S 

Step 4. Compute h(u
i+1

);  if h(u
i+1

)  h(u
i
) > h(u

i
) for some prespecified small 

value  (e.g., =10
-6

), then go to Step 3; else consider the algorithm 

converged.  

 

The above algorithm increases h(u) monotonically, and because h(u
i
) is bounded, the 

algorithm converges to a stable function value. A proof for the monotonicity of the 

algorithm (i.e., the fact that h(u
i+1

)  h(u
i
)) is given in the Appendix. It should be noted 

that the above algorithm can be used for maximizing (7) and (8). If it is used for 

maximizing (8), at any stage of the algorithm, t
~

 is an eigenvector of  

 

XX t
~

t
~
((XX)

1/2
)
+
XYYX((XX)

1/2
)
+  

+ ((XX)
1/2

)
+
XYYX((XX)

1/2
)
+

t
~

t
~
XX,      (10) 

 

the column space of which is a subspace of that of spanned by ((XX)
1/2

)
+
 , hence t

~
 will 

always lie in this column space, as was required (see above).  

 Using the above algorithm, we solve for t or t
~

, and can next obtain w, and the 

component scores in t=Xw. Next, the criterion scores in Y are regressed onto these 

component scores, which gives the vector with weights PY. Finally, the regression 

weights matrix B is computed as B = WPY, thus yielding the prediction rule for 

estimating the scores on Y from those on X.  



4.2. Using more than one component  

 

The above method can be generalized to situations where r (r>1) components are used 

in various ways. Here two approaches are considered. The first is the one proposed by 

De Jong and Kiers (1992), which consist of maximizing RX
2
(W)RY

2
(W), where RX

2
(W) 

and RY
2
(W) denote the proportions of explained variance using all components jointly. 

De Jong and Kiers mentioned a simple ad hoc algorithm for maximizing this, but, as has 

been found in simulations now, this algorithm does not necessarily converge. However, 

a minor adjustment to this algorithm can be constructed that does lead to a 

monotonically convergent algorithm. This modification is obtained via a relatively 

complex derivation based on the majorization approach described by Kiers (1990), 

which for reasons of space is not given here. The algorithm itself, however, is still fairly 

simple.

The second approach to handle more than one component consists of 

maximizing  
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over wl, l=1,...,r, subject to the constraint wlXXwl =0 if ll. Thus, the components 

Xw1,..., Xwr are mutually orthogonal. For convenience, again we scale them such that 

wlXXwl =1, l=1,...,r. In this criterion we chose to maximize the sum of the products of 

componentwise R
2
-values. This alternative to the approach of maximizing 

RX
2
(W)RY

2
(W) is suggested here, because in the latter criterion nothing prevents that 

some components have hardly any explanatory power in X or Y, which may in fact lead 

to poor components after all. In the present approach, the optimality of the sum of 

products should ensure that all components account reasonably well for both X and Y 

variance.  

To maximize (11) over w1,..., wr, we again consider the two cases:  

 

Case a. The columns of X do span the full 
p
 (which is usually the case when np) 

Case b. The columns of X do not span the full 
p 

(e.g., when n>p) 

 

Case a. When X spans the full 
p
, we define tlXwl, with tltl=0 and tltl=1, and we 

have to maximize  

 

p(t1,..., tr)= 


r

1l
llll tYYttXXt '''' .          (12) 

 

After the optimization of t1,...,tr, we can obtain w1,...,wr as wl =(XX)
-1

Xtl , l=1,...,r 

 

Case b. When X does not span the full 
p
, we define ll wXXt
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In both cases we have to optimize a function of the form 

 

h(U) = 


r

1l

llll TuuSuu '' ,           (14) 

 

subject to ulul =0 and ulul =1, hence u1,...,ur can be seen as the columns of a 

columnwise orthonormal matrix U. To maximize (14) we can use the following iterative 

algorithm: 

 

Step 1. Initialize U
i
 (i=0) (e.g., as random columnwise orthonormal matrix) 

Step 2. Compute h(U
i
) 

Step 3 

a. Compute Gl = Sul
i
ul

i
T+Tul

i
ul

i
S, l=1,...,r.  

b. Compute a matrix F with columns Glul
i
-lul

i
, where l

 
is the smallest 

eigenvalue of Gl  

c. Compute the SVD F=PDQ, and compute U
i+1

=PQ  

Step 4. Compute h(U
i+1

); if h(U
i+1

)h(U
i
) > h(U

i
) for some prespecified small 

value  (e.g., =10
-6

), then go to Step 3; else consider the algorithm 

converged.  

 

The above algorithm increases h(U) monotonically, and because h(U
i
) is bounded, the 

algorithm converges to a stable function value. A proof for the monotonicity of the 

algorithm is not given here, but is based on the majorisation algorithm offered by Kiers 

(1990). It should be noted that the above algorithm can be used for maximizing (12) and 

(13). If it is used for maximizing (13), it can be proven that lt
~

 remains in the columns 

space of XX. 

 Using the above algorithm, we solve indirectly for wl, l=1,...,r, subject to the 

constraint wlXXwl =0 if ll. Thus, we can obtain the mutually orthogonal components 

Xw1,..., Xwr and regress the criterion scores in Y onto these components; note that, due 

the mutual orthogonality of these predictors, this can be done for each component 

separately, yielding the matrix of regression weights PY. Finally, the regression weights 

matrix B is computed as B = WPY, thus yielding the prediction rule for estimating the 

scores on Y from those on X.  

 The above algorithm can be used for r1. For r=1, this algorithm is not identical 

to the one given in Section 4.1. The latter is easier to program.  

 

 

5. Three-way Extensions of PcovR and Power regression 
 

In the last decade, there has been a growing interest in more complex data types, like 

three-way data sets and multi-block data sets. If a three-way array of data is to be used to 

predict outcomes of a (set of) criterion variable(s), one could consider the three-way 



data set as a big two-way data set with scores of observation units on combinations of, 

for instance, variables and conditions. Then, obviously, the wish to summarize all these 

predictor variables becomes rather strong. Smilde (1997), see also Smilde and Kiers 

(1999) proposed a variant of PCovR to summarize the three-way array of predictor 

variables by a three-way model, combined with the prediction of criterion variables. 

With Power Regression, in principle a similar approach could be followed, but 

algorithms for maximizing the ensuing criteria still remain to be developed. 

 

 

6. Conclusion 
 

In the present paper several regression methods have been presented that do not only 

aim at explaining a large amount of variance of the criterion variable(s), but also of the 

predictor variables. The rationale for this approach is that by aiming at explaining a 

large amount of variance of the predictor variables (in addition to that of the criterion 

variable(s)) will lead to regression weights that are not only optimal for the training data 

set, but will also work well for other data sets. One of the first methods that aimed 

(implicitly) at this goal was PLS, which indeed tends to perform well in practice. The 

alternatives presented here are aimed explicitly at this goal of explaining variance of the 

criterion and the predictor variables. It has been seen in test analyses that these methods 

can give solutions that explain more variance in both the criterion and the predictor 

variables than PLS does. Also, it has been found in a simulation that such methods can 

give weights that are closer to the ‘true’ regression weights than PLS does. However, 

experience with these methods is still limited, and little can be said, as yet, on the 

performance of the methods in actual practice. Clearly, further research is needed to test 

the new methods and compare them to each other and to PLS.  

 

 

7. Appendix: proof for the monotonicity of the algorithm in 4.1 
 

It is to be proven that for h defined in (9), we have h(v)  h(u) when v is chosen as the 

first eigenvector of SuuT+TuuS, and uu = vv =1. From the fact that v is the first 

eigenvector of SuuT+TuuS, we have 2(vSu)(vTu) = vSuuTv + vTuuSv  

uSuuTu + uTuuSu = 2uSuuTu. Furthermore, we have (vSv)
1/2

(uSu)
1/2

  vSu 

from the Cauchy-Schwarz inequality, and, analogously, (vTv)
1/2

(uTu)
1/2

  vTu. 

Combining these inequalities, we have 2(vSv)
1/2

(vTv)
1/2

(uTu)
1/2

(uSu)
1/2 

 

2(vSu)(vTu)  2uSuuTu, hence (vSvvTv)
1/2

(uSuuTu)
1/2 

 uSuuTu. From this 

it follows that (vSvvTv)
1/2 
 (uSuuTu)

1/2
, hence h(v) = vSvvTv

 
 uSuuTu = h(u). 
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