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efficient summary statistic, the nLTT

Thijs Janzen1*, SebastianH€ohna2 andRampal S. Etienne1

1Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700CCGroningen, theNetherlands; and
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Summary

1. Molecular phylogenies form a potential source of information on rates of diversification, and the mechanisms

that underlie diversification patterns. Diversification models have become increasingly complex over the past

decade, andwe have reached a point where the computation of the analytical likelihood of themodel given a phy-

logeny is either unavailable or intractable. For such models, a likelihood-free approach such as Approximate

Bayesian Computation (ABC) offers a solution. ABC is a Bayesian framework that uses one or more summary

statistics instead of the likelihood function. Crucial to the performance of anABC algorithm is the choice of sum-

mary statistics.

2. Here, we analyse the applicability of three traditional and often-used summary statistics (Gamma statistic,

Phylogenetic Diversity and tree size) within an ABC framework and propose a new summary statistic: the nor-

malized Lineages-Through-Time (nLTT) statistic.

3. We find that the traditional summary statistics perform poorly and should not be used as a substitute of the

likelihood. By contrast, we find that the nLTT statistic performs on par with the likelihood.

4. We suggest to include the nLTT statistic in future ABC applications within phylogenetics. We argue that the

use ofABC in diversification rate analysis is a promising new approach, but that care should be takenwhich sum-

mary statistics are chosen.

Key-words: Approximate Bayesian Computation, Lineages-Through-Time, phylogenetics, sum-

mary statistic

Introduction

To understand present-day biodiversity, it is crucial to study

which processes contribute to biodiversity, and how these pro-

cesses have changed over time. Historically, inferences on the

macro-evolutionary history of species, and more specifically,

inferences of speciation rates and extinction rates, were drawn

using the fossil record and morphological similarity (Gould &

Eldredge 1977; Raup & Sepkoski 1982; Peters & Foote 2002;

Coyne & Orr 2004). Molecular phylogenies have provided a

new source of information on evolutionary histories. A large

array of models that attempt to infer past speciation and

extinction rates from phylogenies has been developed in the

last decade (Morlon 2014), including, but not limited to, the

constant-rate birth–death process (Nee, May & Harvey 1994),

character-state-dependent diversification rates (Maddison,

Midford & Otto 2007; FitzJohn, Maddison & Otto 2009),

time-dependent diversification rates (Morlon, Parsons & Plot-

kin 2011; Stadler 2011; H€ohna 2014), diversity-dependent

diversification rates (Rabosky & Lovette 2008a; Etienne et al.

2012) and protracted speciation (Etienne & Rosindell 2012).

All these models are crude simplifications of the underlying

mechanics causing diversification. This allows these models to

remain mathematically tractable, and exact likelihoods of the

models given the phylogeny can be formulated to infer param-

eter estimates. At the same time, the mathematical tractability

poses a restriction on the complexity of these models; simple

extensions often result in intractable models. Consider for

example, amodel where speciation and extinction rates depend

on geographical change (Pigot et al. 2010; Goldberg, Lancas-

ter & Ree 2011), a model including interactions between popu-

lation size and speciation rate (Jabot & Chave 2009; Davies

et al. 2011) or a model where extinction rates that are heritable

across species (Rabosky 2009). Fortunately, it is often fairly

straightforward to simulate these models. This property can be

exploited in Approximate Bayesian Computation (Tavar�e

et al. 1997; Beaumont, Zhang & Balding 2002; Sunn�aker et al.

2013). Instead of using the likelihood as an indicator of model

fit, Approximate Bayesian Computation (ABC) relies on sum-

mary statistics to obtain a Bayesian posterior distribution for

the model parameters. Specifically, the ‘fit’ of a set of model

parameters is determined by simulating the model for this set*Correspondence author. E-mail: thijsjanzen@gmail.com
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of parameters and then comparing the summary statistics for

the simulated data to the summary statistics of the real data.

Parameter sets which result in a smaller distance between

observed and simulated summary statistics are given higher

probability. So, apart from summary statistics, the method

formally also requires a distance metric. The most common

metrics are the absolute or squared difference.

Approximate Bayesian Computation methods are already

widely used in population genetics to infer demographic

parameters (Tavar�e et al. 1997; Bazin, Dawson & Beaumont

2010; Csill�ery et al. 2010) and are also used in fields beyond

molecular genetics, including epidemiology (Blum & Franc�ois
2009; Blum & Tran 2010) and systems biology (Barnes, Silk &

Stumpf 2011). Within ecology, applications of ABC have been

limited to the estimation of Lotka-Volterra dynamics (Toni

et al. 2009), host–parasite dynamics (Drovandi & Pettitt 2011)

and neutral community ecology (Jabot & Chave 2009). Sur-

prisingly, ABChas only scarcely been applied to diversification

rate analysis. Rabosky (2009) used ABC to estimate the herita-

bility of extinction rates and Bokma (2010) used ABC to

obtain estimates of anagenetic and cladogenetic evolution. Sla-

ter and colleagues used a hybrid approach of ABC to estimate

trait values and traditional likelihoods to obtain diversification

estimates (Slater et al. 2012). Kutsukake & Innan (2013) used

ABC to obtain estimates of phenotypic evolution. These stud-

ies show great potential for future application of ABC within

macro-evolutionary studies.

The choice of summary statistics is crucial to the perfor-

mance of ABC. For diversification rate analysis, no systematic

analysis of available summary statistics has been conducted

yet. Efficient summary statistics for diversification rate analysis

should be able to recover parameter values for a range of diver-

sification models. Here, we analyse three summary statistics

traditionally used in diversification rate analysis: tree size, the

Gamma statistic (Pybus & Harvey 2000) and Phylogenetic

Diversity (Clarke & Warwick 2001). We test the performance

of these summary statistics within anABC framework by com-

paring inferences made with ABC for trees simulated with the

constant-rate birth–death model (Nee,May &Harvey 1994), a

time-dependent speciation model (Rabosky & Lovette 2008b)

and the diversity-dependent speciation model (Etienne et al.

2012) with inferences using the exact likelihood. We show that

under these different scenarios, none of the established sum-

mary statistics is able to reliably recover parameter estimates.

Furthermore, we introduce a novel summary statistic: the

normalized Lineage-Through-Time (nLTT) difference. We

show that this novel summary statistic can be used as a substi-

tute for the likelihood.

Methods

We simulated data using three different models of increasing complex-

ity: the birth–death model (Nee, May &Harvey 1994), the time-depen-

dent speciation model (Rabosky & Lovette 2008b; H€ohna 2014) and

the diversity-dependent speciation model (Rabosky & Lovette 2008a;

Etienne et al. 2012). We inferred the parameters using ABC with three

different summary statistics and with standard Bayesian Computation

using the analytical likelihood. We then compared our obtained esti-

mates with the true parameter values and the likelihood estimates.

Tree size, the Gamma statistic (Pybus & Harvey 2000) and Phyloge-

netic Diversity (Faith 1992; Clarke & Warwick 2001) are commonly

used as summary statistics to capture properties of phylogenies. Addi-

tionally, we introduce a new statistic, the normalized Lineage-Through-

Time statistic (nLTT).

Tree size is simply the number of tips of the phylogeny. The Gamma

statistic (Pybus&Harvey 2000) is given by:

c ¼
1

n�2

Pn�1
i¼2

Pi
k¼2 kgk

� �� �
� T

2

� �
T

ffiffiffiffiffiffiffiffiffiffiffiffi
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12ðn�2Þ
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Xn
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 !

where g2,g3,. . .gn are the internode distances of a reconstructed phylog-

eny with n taxa. A value of γ > 0 indicates that the phylogeny’s internal

nodes are closer to its tips than expected under the pure-birth model,

whilst c < 0 indicates internal nodes closer to the root than expected

under the pure-birth model. We calculated the gamma statistic using

the function GAMMASTAT from the R-package APE (Paradis, Claude &

Strimmer 2004). As Phylogenetic Diversity metric we chose the average

Phylogenetic Diversity, which is independent of the number of taxa in

the tree [in contrast to the traditional Phylogenetic Diversity metric

(Faith 1992)]. Phylogenetic Diversity is defined as the sum of all branch

lengths in the tree, divided by the number of branches (Clarke &

Warwick 2001), that is

PD ¼
P2ðn�1Þ

i¼1 bi

2n� 2

where n is the number of taxa in the tree and bi is the length of branch i

in a tree, thus
P2ðn�1Þ

i¼1 represents the sum of all branches, and PD is

thus the average branch length.

When analysing a phylogeny, or comparing multiple phylogenies

generated by the samemodel, often the Lineages-Through-Time (LTT)

curve of these phylogenies proves to be helpful (Paradis 2011). The

LTT curve shows the number of lineages in the phylogeny over time.

The shape of the LTT curve can reveal periods with high speciation

and can identify signatures of extinction (Nee,May&Harvey 1994). A

potentially powerful way to compare phylogenies lies therefore in the

comparison of their LTT curves. Problems arise however when the two

compared trees are not of the same size or same height. Differences in

number of lineages or differences in the time to the most common

recent ancestor might overshadow the differences in shape that we are

trying to detect. Furthermore, differences in scale between the two com-

pared trees can make it difficult to predict the range of expected differ-

ences between the LTT curves.We therefore normalize the LTT curves

both in number of lineages and in time, that is we divide the number of

lineages by the number of extant tips and the time by the time to the

most recent common ancestor. This yields a function on relative time

span [0,1], and the number of lineages also spans the interval [0,1] The

difference in normalized LTT curves falls consistently within the same

range and facilitates the use of a consistent threshold acceptance value

inABCanalysis. Then, as a distancemetric inABC,we use the absolute

distance between the normalized LTTs, which is given by:

DnLTT ¼
Z 1

0

jnLTT1ðtÞ � nLTT2ðtÞjdt (eqn 1)

where nLTT1(t) is the normalized number of lineages at normalized

time t for phylogeny 1, and nLTT2(t) is the normalized number of lin-

eages at normalized time t for phylogeny 2. Equation (1) thus presents

a natural weighing of the contribution of all nLTT(t)-differences

(hence, we are effectively using a vector of summary statistics) and cap-

tures the surface enclosed between the two normalized LTT curves; this

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 566–575
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surface carries information about similarity between the curves (see

Fig. 1). One could alternatively use the area under the LTT curve, but

the difference between two areas under the LTT curve could be equal

to 0 even if the LTT curves are very different, whereas our distance

metric is equal to 0 if and only if the two LTT curves compared are

identical.

Simulationmodels

In this study, we focus on three different two-parameter diversification

models; the birth–death model, the time-dependent speciation model

(without extinction) and the diversity-dependent speciation model

(without extinction). A full description of these diversification models

and their associated likelihood formulas can be found in the Supple-

mentary Information. The two parameters are speciation and extinc-

tion rate for the birth–death model, initial speciation rate and the rate

of speciation decay in the time-dependent speciation model, and initial

speciation rate and the diversity limit in the diversity–dependent specia-

tion model. We did not include extinction in the time-dependent and

diversity-dependent models to facilitate a fair comparison between the

three different models. In our analysis, we chose a representative set of

parameter values to generate our simulation data (see also Table 1).

We kept the time to the most recent common ancestor constant, and

adjusted the speciation rate such that under the chosen parameteriza-

tion, the expected number of tips was fixed (e.g. with increasing extinc-

tion, we increased the speciation rate), to guarantee sufficiently large

trees and thereby prevent poor estimation just because of little informa-

tion in the data. For the diversity-dependent model, we did not keep

the expected number of tips fixed, but fixed maximum diversity, thus

ensuring that with different speciation rates we capture different

degrees of diversity dependence. The alternative approach, keeping the

number of tips fixed and letting the time to the most recent common

ancestor vary, is not possible except for the birth–death model (Lam-

bert&Stadler 2013; Stadler 2013).Keeping the expected number of tips

fixed may seem to disqualify the tree size statistic as an efficient statistic

from the start, but we note that tree size still varies in simulations with

the same parameter values, so poor performance of the tree size statistic

will be due to the expected lack of information in this statistic. One

could view the tree size statistic as a reference point because it is a

worst-case scenario, a statistic with hardly any information. Inferences

made using the tree size statistic therefore show the results of ABC in

the near-absence of information.

Birth–deathmodel

We set the ratio of the extinction and speciation rates to 0�0, 0�1, 0�3
and 0�9, ensuring trees with both low and very high extinction. Specia-

tion rates were adjusted such that the expected number of species was

always 100. This resulted in corresponding speciation rates of 0�39,
0�42, 0�51 and 1�77. For every parameter combination, 30 trees were

simulated using the package TESS (H€ohna 2013) in R 3.0.1. (R Core

Team 2014).

Time-dependentmodel

Extinction was set to zero to keep the number of free parameters at

two. The speciation rate was chosen to decay in an exponential fashion:

k(t) = k0 exp [�a(t – t0)], where k0 is the initial speciation rate at time

t0 (here: the crown age) and a governs the time-dependent decay. For

a = 0, we recover the standard birth–death model. Values for a were

chosen to be either [0�1, 0�5, 0�9], and k0 values were adjusted to keep

the expected number of tips at 200. This is a larger expected tree size

than in the birth–death model because variation in tree size is relatively

large for the time-dependent speciation model, and hence, we avoided

trees with an extremely low number of tips. Resulting k0 values were
[0�73, 2�32, 4�15], respectively. We simulated 30 trees using the R-pack-

age TESS (H€ohna 2013) inR 3.0.1. (RCore Team 2014).

Diversity-dependentmodel

In the diversity-dependent model, we assumed that extinction is zero

and the speciation rate decreases linearly with increasing diversity: k
(N) = k0 (1 - N/K), where k0 is the speciation rate at low diversity,N is

the current diversity andK is the maximum diversity. AsN approaches

K, the effective speciation rate approaches 0. We chose to adjust k0
whilst keepingK constant, to vary the degree of limitation due to diver-

sity dependence.Kwas chosen to be 200, with k0 values being [0�5, 0�75,
1�0]. Expected tree sizes ranged between 100 and 200, depending on k0.
We simulated 30 trees using the R-package DDD (Etienne et al. 2012)

inR 3.0.1. (RCore Team2014).

Likelihood

To obtain our reference estimates using the analytical likelihood, we

performed a Markov chain Monte Carlo (MCMC) analysis using a

Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings

1970). The MCMC chain was run for 1 000 000 iterations, with a dis-

carded burn-in phase of 10 000 at the beginning and the chain was

thinned out by sampling every 10th iteration. Likelihoods for the

birth–deathmodel and the time-dependentmodelwere calculated using

the package TESS (H€ohna 2013), likelihoods of the diversity-depen-

Fig. 1. Normalized LTT curves for three phylogenetic trees gener-

ated using the pure-birth model with parameters k = 0�4 (red and

green lines) and k = 0�25 (blue line). Time to the most recent com-

mon ancestor was identical for all three trees and set at 10 million

years. Coloured surfaces indicate the nLTT difference between the

respective trees, with the light blue surface the difference between

the blue and red line, and the lightgreen surface the difference

between the green and the red line. Clearly, the surface between the

two trees generated with the same k (k = 0�4, red and green lines)

is smaller than the surface between the two trees generated with dif-

ferent k (k = 0�25 and k = 0�4, blue and red lines).

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 566–575

568 T. Janzen, S. H€ohna & R. S. Etienne



dent model using the package DDD (Etienne et al. 2012). All calcula-

tions were performed usingR 3.0.1. (RCore Team 2014).

ABC

We used an Approximate Bayesian Computation Sequential Monte

Carlo (ABC-SMC) approach (Toni et al. 2009). Within the SMC

approach, particles are first generated from the prior distribution. Par-

ticles are then resampled from the obtained sample, and slightly per-

turbed. From these resampled particles, a new sample is formed, from

which again particles are resampled, etc. The threshold value e for the
summary statistic – belowwhich new particles are accepted – is lowered

with every newly obtained sample. As a result, the acceptance rate

decreases and the acceptance threshold e approaches zero with an

increase in the number of iterations (resamplings). This is in contrast to

the more standard ABC-MCMC approach, where particles are contin-

uously propagated using a fixed threshold e. To get good results within

an ABC-MCMC framework, manual adjustment of e is often neces-

sary, and the chain must often be started multiple times before obtain-

ing the desired balance between a low threshold value and high

acceptance rate. The ABC-SMC approach keeps these manual adjust-

ments to a minimum. In a pilot study, we considered adaptive SMC or

adaptive MCMC (Beaumont 2010; Drovandi & Pettitt 2011; Lenor-

mand, Jabot & Deffuant 2013), where e-values and the jumping distri-

bution are adapted during runtime, but these algorithms proved to be

relatively slow compared to the ABC-SMC algorithm used here (Toni

et al. 2009).

TheABC-SMC scheme proceeds as follows:

1. Initialize e1 . . . eT
Set the population indicator t = 0

2. Set the particle indicator i = 1.

3. If t = 0, sample h** from the prior p
Otherwise sample h* from the previous population hit�1 with weights

wt�1 and perturb the particle to obtain h** such that h** = h* + N

(0, 0�05)
4. If p(h**) = 0, return to 3.

5. Simulate a treeT* ~ h**
6. Calculate summary statisticS for treeT*

7. If |SS(T*) – SS(T0)|> et return to 3.
8. Set hit = h** and calculate the weight for particle hit:

If t = 0;wi
t = 1

If t > 0;wi
t ¼ pðhi tÞPN

j¼1
wj

t�1Nðhj t ;hi tÞ
9. If i < N, set i = i + 1, go to 3.

10. Normalize the weights

11. If t < T, set t = t + 1, go to 2.

where e1 . . . eT are the threshold values for iterations 1. . .T, p is the prior
function, h is a particle with associated parameter values, N (l,r) is a
normal distribution with mean = l and standard deviation = r. N is

the total number of particles per iteration t, andwi
t is the weight of par-

ticle i, of iteration t.

Initial e-values were estimated as follows. We generated 100 trees

with the same age using the package TESS (H€ohna 2013). For these

100 trees, we calculated the four summary statistics and used the stan-

dard deviation of this distribution as the initial epsilon value. This

resulted in initial e0 values of [50, 1, 1, 0�2] for tree size,Gamma statistic,

Phylogenetic Diversity and the normalized LTT statistic, respectively

The e-value was decreased in an exponential fashion as the sequential

ABC scheme progresses, such that the epsilon value was

ɛt = ɛ0 exp (�0�5t), where t is the current sequential step. This expo-

nential decrease follows the progression of e in the adaptive-SMC

scheme of Del Moral et al. (2012). We found that using 5000 particles

per iteration was sufficient. Convergence was assumed when the accep-

tance rate of newly proposed particles had dropped below 1 in 100, and

visual inspection of the interquartile ranges showed no change in the

posterior distribution of the past 3 iterations. We provide code used to

perform the ABC-SMC analysis in the nLTT package for R. As prior

distributions, we chose to use a uniform prior on [0,5] for both parame-

ters of the birth–death model, assuming that both speciation and

extinction cannot become negative and limiting them from becoming

extremely large values, and thus producing unrealistic trees. For the

time-dependent model, we chose a log-normal prior with mean 0 and

standard deviation of 1 for both parameters, such that both the initial

speciation and the time-decay parameter were always positive. For the

diversity-dependent model, we chose a log-normal prior with mean 0

and standard deviation of 1 for k0 and a log-normal prior with mean

4�6 and standard deviation of 1 for K for the diversity-dependent

model. Both these priors are always positive, and the mean for the K is

chosen to be centred around the expected tree size [exp(4�6) = 100].

These priors were used both in the Metropolis–Hastings MCMC

approach and in theABC-SMCapproach.

Convergence analysis

In the limit of ɛ ? 0 and N ? ∞, where N is the number of ABC-

samples, the Approximate posterior distribution converges to the true

posterior distribution (Marjoram et al. 2003), if the summary statistic

is sufficient. In our SMC approach, the threshold e asymptotically

moves towards 0 with an increasing number of iterations of the resam-

pling algorithm. If the summary statistic used is indeed sufficient, then

the mean of the approximate posterior distribution should asymptoti-

Table 1. Parameter values used to simulate the three different models, for speciation rate (k), extinction rate (l), time-dependent decay (a) or maxi-

mumdiversity (K) values. The last three columns show themean (standard deviation between brackets) statistics of the 30 trees used in our analysis

Treatment k l/a/K Number Tips c PD

Birth–Death 0 0�39 0�00 98 (72) 0�07 (0�95) 1�38 (0�29)
0�1 0�42 0�04 85 (67) 0�22 (0�83) 1�37 (0�26)
0�3 0�51 0�15 85 (65) 0�86 (1�00) 1�29 (0�37)
0�9 1�77 1�60 84 (60) 5�15 (1�39) 0�75 (0�23)

Time-dependent 0�1 0�73 0�10 204 (129) �2�42 (0�42) 1�45 (0�10)
0�5 2�32 0�50 202 (150) �13�54 (5�75) 3�07 (0�13)
0�9 4�15 0�90 190 (140) �17�85 (6�53) 3�87 (0�07)

Diversity-dependent 0�5 0�50 200 105 (35) �2�40 (2�27) 1�50 (0�20)
0�75 0�75 200 187 (11) �9�57 (2�11) 2�02 (0�31)
1 1�00 200 198 (2) �14�83 (2�26) 2�60 (0�49)

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 566–575
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cally move towards the true mean, with decreasing e. To test this, we

plotted the natural logarithm of the threshold against the mean of the

obtained posterior distribution using ABC. Furthermore, we plotted

the 95%confidence interval of themeans across the 30 different trees.

Results

TREES

The trees generated with the different models show differ-

ent patterns, depending on the model and the parameteri-

zation of the model. With increasing extinction, we

observed a slight decrease in the average number of tips

(despite correcting the speciation rate) (Table 1 and

Fig. 2), and only for very high levels of extinction (l = 0�9
k), patterns in the LTT plot differ considerably from those

having no extinction at all (Fig. 2). Increasing levels of

extinction leads to an increase in the pull-of-the-present

(Nee, May & Harvey 1994), which is reflected by an

increase in the average Gamma statistic. Higher extinction

also implies lower Phylogenetic Diversity. For the time-

dependent model, LTT plots reveal that trees with an a of

0�1 are still fairly similar to the birth–death model (Fig. 2),

and trees with higher a values show a slowdown in lineage

accumulation. This slowdown is reflected in highly negative

Gamma values (Table 1). Phylogenetic Diversity on the

other hand, increases with an increase in a, possibly

because the initial speciation rate was higher. Diversity-

dependent LTT plots show less speciation-limitation than

the time-dependent plots, and higher k0 values seem to

induce more limitation than lower values; k0 = 0�5 seems

fairly similar to the birth–death model (Fig. 2). Higher k0
values generate larger trees and trees with higher Phyloge-

netic Diversity.

L IKEL IHOOD

Crucial to our comparison between ABC and the likeli-

hood-based estimates is the accuracy of the likelihood esti-

mates, and whether or not patterns in our obtained

likelihood estimates resemble patterns reported in the litera-

ture. Comparing our estimates for the three models with

the parameter values, the trees were generated with, we find

that for the constant-rate birth-death model, both the speci-

ation and extinction parameter are overestimated (Table 2,

Figs 3 and 4), a well-known result (Nee, May & Harvey

1994; H€ohna 2014). Estimates of a for the time-dependent

speciation model are accurate, whilst the initial speciation

rate tends to be slightly underestimated (Table 2, Figs 3

and 4), especially when a is high. For the diversity-depen-

dent model, maximum speciation rates are estimated accu-

rately, and K-values are consistently overestimated (Table 2,

Figs 3 and 4).

TREE SIZE

The tree size statistic performs equally poorly for all three

models (Table 2). Speciation and extinction rates are lar-

gely overestimated for the constant-rate birth–death
model, and estimates do not differ much between different

rates of extinction, suggesting that the tree size statistic

does not detect any signature of extinction in the trees.

Fig. 2. LTT curves of the simulated phylogenetic trees used in our analysis. Shown are the mean LTT curves of the birth–death model, the time-

dependent speciation and the diversity-dependent speciation model. Colours indicate different parameterizations. The number of replicates per

parameterizationwas 30.

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 566–575
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For the time-dependent speciation model, k0 and a are

underestimated. Again, the tree size statistic shows little

variation in estimates across various degrees of time

dependence, indicating that the tree size statistic is unable

to detect time dependence. For the diversity-dependent

model, k0 is overestimated whilst K-values are underesti-

mated. Considering that the net speciation rate becomes

zero once diversity has reached K, it is surprising to see

that estimates of K are smaller than the value with which

the trees were generated, which suggests that the size of

the generated trees was generally much smaller than the

true K value, which is especially true for smaller values

of k0. There is some variation in the estimates across the

various degrees of diversity dependence. However, varia-

tion around the mean estimates is large and for any sin-

gle tree, the tree size statistic will most likely be unable

to detect patterns of diversity-dependent speciation.

GAMMA

The Gamma statistic performs comparably well for all four

parameterizations of the constant-rate birth–death model,

which we expected considering that the Gamma statistic was

devised as a way to detect deviations in the branching pattern

from the pure-birth process (Pybus & Harvey 2000). Bias in

the estimate seems to be comparable to the bias obtained using

a likelihood-based approach (Table 2). Indeed, further inspec-

tion reveals that only when extinction is high (0�9 times the spe-

ciation rate), the Gamma statistic overestimates the speciation

ratemore than the likelihood-based approach (Fig. 3). As with

the likelihood-based approach, the Gamma statistic overesti-

mates the extinction rate, but the bias is comparable to the

likelihood-based approach. The performance of the Gamma

statistic for the time-dependent model is poor: with increasing

time dependence, the Gamma statistic increasingly underesti-

mates k0. Although variance in the a estimate is low, estimates

are inaccurate. For trees generated with the diversity-depen-

dent model, the Gamma statistic also fails to perform on par

with the likelihood-based approach. k0 is overestimated, andK

is underestimated. Estimates forK appear not to differ between

parameterizations, suggesting that the Gamma statistic is

unable to detect signals of diversity dependence.

PHYLOGENETIC DIVERSITY

The performance of Phylogenetic Diversity for the constant-

rate birth–death model is comparable to the tree size statistic

(Table 2). Both speciation and extinction are overestimated,

and variance in the estimate is high. Estimates across varying

degrees of extinction are similar, indicating that Phylogenetic

Diversity is unable to detect patterns of extinction in phyloge-

nies. As with the Gamma statistic, k0 in the time-dependent

model is increasingly underestimated with increasing time

dependence, together with an underestimation of a. k0 esti-

mates for the diversity-dependent model are inaccurate and

similar across degrees of diversity dependence, indicating that
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Phylogenetic Diversity cannot detect patterns of diversity

dependence.

NORMALIZED LTT

Estimates of the speciation and extinction rate for the con-

stant-rate birth–death model are similar to estimates

obtained using the likelihood (Table 2). Estimates for k0
and for a are close to the values used to generate the trees

and are similar to estimates obtained using the likelihood,

both in mean and in variance. Estimates and variance for

both parameters of the diversity-dependent model are gener-

ally similar to estimates obtained using a likelihood-based

approach (Fig. 3). Variance in K estimate appears to be a

Fig. 3. Results of parameter inference using

the likelihood within a Metropolis–Hastings

MCMC method and using either of the four

summary statistics tree size, Gamma, Phyloge-

netic Diversity and nLTT within an ABC-

SMC framework (white background). Plotted

are the residual estimates after subtracting the

parameter value used to generate the tree.
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bit smaller than the variance using the likelihood-based

approach.

CONVERGENCE ANALYSIS

Convergence analysis reveals that the normalized LTT statistic

behaves sufficiently, that is as the threshold approaches zero,

the mean of the obtained posterior distribution approaches the

mean of the likelihood posterior distribution (Figs 4, S1, S2 &

S3). For the diversity-dependent model, uncertainty in the esti-

mate of the carrying capacity increases when approaching a

zero threshold, but themean remains accurate. The other three

summary statistics tend to either not converge at all, or only

converge for a specific model [i.e. the Gamma statistic con-

verges adequately for the constant-rate birth–death model

(Fig. S1) and one parameterization of the time-dependent

model (Fig. S2), but not for the diversity-dependent model

(Fig. S3)].

Discussion

We have compared the ability of three established sum-

mary statistics and one novel summary statistic to substi-

tute the likelihood within an approximate Bayesian

framework. Performances of the summary statistics were

evaluated across three different diversification models: the

constant-rate birth–death model, time-dependent speciation

and diversity-dependent speciation. Across all the scenarios

that we evaluated here, the three established summary sta-

tistics performed much worse than the likelihood. The

Fig. 4. Convergence plots of all four summary statistics for one representative parameterization of each model. On the x-axis the ln(epsilon) of the

ABC-SMC algorithm is plotted, with on the y-axis the residual estimate after correcting for the likelihood-based estimate. Shaded areas indicate the

95%confidence interval across 30 replicates. Chosen parameterizations for themodels were for the birth–deathmodel, l = 0�3k, for the time-depen-

dent model a = 0�5 and for the diversity-dependent model k0 = 0�75. Results for the other parameterizations were similar and can be found in the

supplementarymaterial.
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newly introduced normalized LTT statistic, however, was

able to perform on par with the likelihood across all three

modelling situations. We therefore suggest the nLTT as a

suitable summary statistic for use within an Approximate

Bayesian Computation framework.

In this paper, we have focused on models for which the

likelihood was available (so we could make a comparison)

and on inferring two parameters for each model. Although

we find that the three established summary statistics carry

little to no information about the underlying diversification

model, these findings might not apply to other, novel diver-

sification models. We urge that in future applications, the

effectiveness of the summary statistics is tested before they

are applied to empirical data. Novel applications include

the use of a different diversification model, inference of

more than two parameters or using a combination of sum-

mary statistics. We advocate that for any ABC application

of phylogenetic summary statistics, validation of the sum-

mary statistics for use in parameter inference or model

selection is crucial (Robert et al. 2011). Validation should

be fairly straightforward by confirming the correct inference

of simulation data, generated using a set of parameter com-

binations characteristic for the model at hand.

Whereas the tree size statistic and the Gamma statistic are

connected to a direct interpretation [e.g. observed diversity and

deviation from constant-rate diversification (but see Fordyce

2010)], the nLTT statistic is not directly associated with a clear

interpretation. The nLTT statistic is primarily suited for

comparing trees, rather than informing about a single tree. A

possible application of the normalized LTT statistic could lie

in the comparison of a normalized LTT curve with a standard-

ized curve, such as a standard exponential increase (e.g. a

pure-birth or Yule tree). The Lineage Diversity Index (LDI)

measures something fairly similar: the difference between the

LTT curve of a phylogeny and the LTT curve of a pure-birth

model (Harmon et al. 2003). However, the LDI index com-

pares the log of the number of lineages and as a result overem-

phasizes differences between LTT curves at low diversity,

which the nLTT statistic does not.

The three models we used in our analysis generate only trees

with balance equal to the equal-ratesMarkov expectation, and

the associated likelihood functions are independent of the tree

topology (Lambert & Stadler 2013). Therefore, we have not

tested any metrics for expected balance, such as the Sackin,

Colless or Beta statistic (Sackin 1972; Colless 1982; Blum &

Franc�ois 2006). When performing ABC for a model with

properties that will leave patterns in balance, it will evidently

be beneficial to include one of these statistics during analysis.

Here, we focused on models for which a likelihood formula

was available, in order to make the direct comparison between

the summary statistics and the traditional likelihood approach.

For models that introduce imbalance, unfortunately no likeli-

hoods have been formulated yet (Lambert & Stadler 2013).

The performance of the normalized LTT statistic for models

that create unbalanced trees remains to be investigated, but we

expect that as long as changes in parameters in suchmodels are

not only associated with changes in topology, but also with

changes in the sequence of branching times, the normalized

LTT statistic will be able to distinguish between different

parameterizations.

Phylogenetics has not yet picked up on the possibilities of

ABC. With our systematic analysis of summary statistics, we

are confident that we have provided a step forward towards

the future implementation ofmore complexmodels in diversifi-

cation rate analysis. With the introduction of the normalized

LTT statistic, we have provided a valuable alternative to the

traditional likelihood that will prove to be an important

addition to the Approximate Bayesian’s and phylogeneticists’

toolbox.
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Fig. S1.Convergence plots of all four summary statistics for all param-

eterizations of the birth-death model. On the x-axis the ln(epsilon) of

the ABC-SMC algorithm is plotted, and on the y-axis the residual esti-

mate after correcting for the likelihood-based estimate.

Fig. S2.Convergence plots of all four summary statistics for all param-

eterizations of the time-dependent model. On the x-axis the ln(epsilon)

of the ABC-SMC algorithm is plotted, and on the y-axis the residual

estimate after correcting for theMaximumLikelihood estimate.

Fig. S3.Convergence plots of all four summary statistics for all param-

eterizations of the diversity-dependentmodel. On the x-axis the ln(epsi-

lon) of the ABC-SMC algorithm is plotted, and on the y-axis the

residual estimate after correcting for the likelihood-based estimate.
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