

 University of Groningen

Restarted Hessenberg method for shifted nonsymmetric linear systems with applications to
fractional differential equations
Gu, Xian-Ming; Huang, Ting-Zhu; Yin, Guojian; Carpentieri, Bruno; Wen, Chun

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Gu, X-M., Huang, T-Z., Yin, G., Carpentieri, B., & Wen, C. (2015). Restarted Hessenberg method for
shifted nonsymmetric linear systems with applications to fractional differential equations. (pp. 1-24). (ArXiv).

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 14-02-2023

https://research.rug.nl/en/publications/9cee3df2-9be9-4cf7-9f5e-f556a524ce4e

ar
X

iv
:1

50
7.

08
14

1v
1

 [
m

at
h.

N
A

]
 2

9
Ju

l 2
01

5

Restarted Hessenberg method for shifted nonsymmetric linear

systems with applications to fractional differential equations

Xian-Ming Gua,b∗, Ting-Zhu Huanga†, Guojian Yinc‡,

Bruno Carpentierib§, Chun Wena¶

a. School of Mathematical Sciences,

University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China

b. Institute of Mathematics and Computing Science,

University of Groningen, Nijenborgh 9, P.O. Box 407, 9700 AK Groningen, The Netherlands

c. Shenzhen Institutes of Advanced Technology,

Chinese Academy of Science, Guangdong, Shenzhen, 518055, P.R. China

Abstract

It is known that the restarted full orthogonalization method (FOM) outperforms the restarted
generalized minimum residual method (GMRES) in several circumstances for solving shifted linear
systems when the shifts are handled simultaneously. Variants of them have been proposed to enhance
their performance. We show that another restarted method, restarted Hessenberg method [M. Hey-
ouni, Méthode de Hessenberg Généralisée et Applications, Ph.D. Thesis, Université des Sciences et
Technologies de Lille, France, 1996] based on Hessenberg process, can effectively be employed, which
can provide accelerating convergence rate with respect to the number of restarts. Theoretical analysis
shows that the new residual of shifted restarted Hessenberg reduction method is still collinear with
each other. In these cases where our proposed algorithm needs less enough number of restarts to
converge than the earlier established restarted shifted FOM and weighted restarted shifted FOM, the
associated CPU consuming time is also considerably reduced, as shown via extensive numerical ex-
periments involving the recent popular applications of handling structural dynamics, time-fractional
convection-diffusion equations and space-fractional diffusion equations.

Key words: Shifted linear system; Hessenberg process; Pivoting strategy; Restarted Hessenberg
method; Collinear; Fractional differential equations.

AMSC (2010): 65F10, 65F15, 15A06, 15A18

1 Introduction

Considered a real large sparse n× n nonsymmetric matrix A ∈ Rn×n and the right-hand side b ∈ Rn,
we are interested in simultaneously solving the shifted nonsingular linear systems

(A− σiI)x = b, σi ∈ R, i = 1, 2, . . . , ν, (1)

where I denotes the n× n identity matrix. Such shifted systems arise in many scientific and engineering
fields, such as control theory [1, 2], structural dynamics [3, 4], eigenvalues computation [5, 6], numerical
solutions of time-dependent partial/fractional differential equations [7–10], QCD problems [11, 12] and

∗E-mail: guxianming@live.cn, x.m.gu@rug.nl
†Corresponding author. E-mail: tingzhuhuang@126.com. Tel: +86 28 61831608, Fax: +86 28 61831280.
‡E-mail: guojianyin@gmail.com
§E-mail: bcarpentieri@gmail.com
¶E-mail: wchun17@163.com

1

http://arxiv.org/abs/1507.08141v1

other simulation problems [13–18]. Among all the systems, when σi = 0, the system Ax = b is often
treated as the seed system.

It is well known that Krylov subspace methods are widely used for the solution of linear systems (see
e.g. [19]). Denoting the k-dimensional Krylov subspace with respect to A and b by

Kk(A,v) := span{v, Av, . . . , Ak−1v}, (2)

we can observe that the relation, so-called shift-invariance property, described below always holds for the
shifted matrices in

Kk(A,v) := Kk(A− σiI,v), i = 1, 2, . . . , ν, (3)

which shows that the iterations of (1) are the same Krylov subspace as the iterations of seed systems.
This implies that if we choose initial vectors x0 properly (for example, all initial guesses are zero), once a
basis has been generated for one of these linear systems, it could also be used for all other linear systems.
Therefore, if we employ a Krylov subspace method to solve (1) simultaneously, a certain amount of
computational efficiency can be maintained if the Krylov subspace is the same for all the shifted systems
each time. This happens when the generating vectors are collinear, for the basis and the square Hessenberg
matrix are needed to be evaluated only once; refer to e.g. [14, 16, 17, 20–22].

Several techniques have been proposed in the past few years that attempt to tackle this kind of linear
systems (1). For shifted nonsymmetric (non-Hermitian) linear systems, iterative methods such as the
shifted BiCGStab(ℓ) [23], the shifted (TF)QMR [4,24], shifted QMRIDR(s) [25] and shifted IDR(s) [26,27]
methods have been developed. Shifted algorithms of short-term recurrence methods of CG [28], CR [29],
BiCG [30], BiCR [31], BiCGStab [32] and BiCRStab [33] were discussed in [21,34]. For the case of shifted
(complex) symmetric linear systems, the shifted COCG and shifted COCR methods have been proposed
in [18,35], respectively. The shifted QMR SYM(B) method with the weighted quasi-residual minimization
strategy was introduced in [36]. Although the above-mentioned short-term recurrence methods have been
successfully generalized to solve the shifted linear systems (1) from many practical applications, most of
them are not numerically stable and often happen to (serious) break-down if the look-ahead techniques
are not exploited, see [37] for instance.

On the other hand, the restarted GMRES-type methods are widely known and appreciated to be
effective on (1), see [4, 38–42] for details, the computed GMRES shifted residuals are not collinear in
general after the first restart so that it loses the computational efficiency mentioned above. Consequently,
certain enforcement has to be made to guarantee the computed GMRES shifted residuals collinear to
each other in order to maintain the computational efficiency; see e.g. [4, 38]. Note that in this case,
only the seed system has the minimum residual property, the solution of the other shifted systems is not
equivalent to GMRES applied to those systems, refer to [4, 22, 38]. In contrast, it is more natural and
more effective for restarted FOM to be applied to shifted linear systems simultaneously handled, for all
residuals are naturally collinear [16, 43, 44]. As a result, the computational efficiency can be maintained
because the orthonormal basis and the Hessenberg matrix are required to be calculated only once each
time. Jing and Huang in [20] further accelerated this method by introducing a weighted norm. In 2014,
Yin and Yin have studied restarted FOM with the deflation technique [46] for solving all shifted linear
systems simultaneously. Due to restarting generally slows the convergence of FOM by discarding some
useful information at the restart, the deflation technique can remedy this disadvantage in some sense by
keeping the Ritz vectors from the last cycle, see [22] for details.

However, as we know, both the restarted GMRES and FOM methods for shifted linear systems are
derived by using the Arnoldi procedure [19, pp. 160-165], which turns to be expensive when m (dimension
of the Krylov subspace) becomes large because of the growth of memory and computational requirements
as m increases. So it is still meaningful for finding some cheaper iterative solvers for shifted linear systems
(1). Here, we consider to use the Hessenberg reduction process [47–50] because it generally requires less
operations and storage than Arnoldi process and is thus favorable for generating a linear system solver.
Moreover, it has been proved that we can establish two families of Krylov subspace methods, namely
Hessenberg method [50] and CMRH method [47, 48, 50, 51], by using the basic principles behind the
(restarted) FOM method and GMRES method, respectively, refer to [50, 52] for this discussion. Some

2

recent developments concerning the CMRH method, which is very similar to the GMRES method, and the
Hessenberg process can be found in [47,51,53,54]. Since the restarted FOM method is built via combining
the Arnoldi process and Galerkin-projection idea [19, pp. 165-168], so it is natural to extend the restarted
FOM method for solving shifted linear systems (1), refer to [43]. Meanwhile, the restarted Hessenberg
method is also established via combining the Hessenberg process with Galerkin-projection philosophy.
Moreover, as mentioned earlier, the Hessenberg process has many similar algorithmic properties of the
Arnoldi process. To sum up, the framework of restarted FOM method for shifted linear systems gave us
a simple and natural problem: Does there exist a variant of the original restarted Hessenberg method
for shifted linear systems? Our major contribution is to answer this question. The answer is yes, and
it requires a similar but efficient idea from that used in restarted shifted FOM method. As a result,
a feature of the resulting algorithm is that all residuals are naturally collinear in each restarted cycle;
and the computational efficiency can be maintained because the (non orthogonal) basis and the square
Hessenberg matrix are required to be calculated only once each time. Our method indeed may provide
the attractive convergence behavior with respect to the less number of restarts and CPU time elapsed,
which will be shown by the numerical experiments in Section 4. Moreover, our algorithm is able to
solve certain shifted systems which both Restarted Shifted FOM and Restarted Weighted Shifted FOM
methods cannot handle sometimes.

The remainder of the present paper is organized as follows. In Section 2, we briefly review the
Hessenberg process and the restarted Hessenberg method for nonsymmetric linear systems. Section 3
discuss the naturally collinear property of residual during each cycle of the restarted Hessenberg method.
Then, we show how to generalize the restarted shifted Hessenberg method for solving the shifted linear
systems. Implementation details will be described. In Section 4, extensive numerical experiments are
reported to illustrate the effectiveness of the proposed method. Finally, some conclusions about this
method are drawn in Section 5.

2 The restarted Hessenberg method

In order to extend the restarted Hessenberg method for solving the shifted linear systems well, we
should recall the restarted Hessenberg method, which is established from the Hessenberg process. Ac-
cording to Refs. [50, 53], it is not hard to conclude that the restarted Hessenberg method is greatly
close to the restarted FOM method, which is derived from the well-know Arnoldi process. Although
the restarted Hessenberg method has been proved to be cheaper than the restarted FOM method, the
restarted Hessenberg method is often not popular in the field of Krylov subspace methods. However, we
want to revive the restarted Hessenberg method to solve the shifted linear systems (1) here.

2.1 The Hessenberg process

Starting point of the algorithms derived in this paper is the Hessenberg process for reducing the
nonsymmetric matrix to a Hessenberg decomposition [47,49]. In [55], the Hessenberg process is described
as an algorithm for computing the characteristic polynomial of a given matrix A. This process can also
be applied for the reduction to the Hessenberg form of A and is presented as an oblique projection in [49].
For ease of notation we will assume that the matrix and the vectors involved in the solution algorithms
are real, but the results given here and in other sections are easily modified for a complex matrix and
complex vectors.

Let v be a column vector of Rn and A an n × n real matrix. The Hessenberg reduction process
(without pivoting strategy) computes a unit trapezoidal matrix Lm = [l1, . . . , lm] whose columns form a
basis of the Krylov subspace Km(A,v) by using the following formulas:

β = (v)1, l1 = v/β,

hk+1,klk+1 = Alk −
k
∑

j=1

hj,klj , for k = 1, 2, . . . ,m.
(4)

3

The parameters hj,k are determined such that

lk+1 ⊥ e1, . . . , ek and (lk+1)k+1 = 1. (5)

Assume that {li}i=1,...,k have been computed such that the i−1 first components of li equal zero and the
i-th component equals one. To obtain lk+1, we first compute u = Alk and then we subtract multiples of

l1, . . . , lk in order to annihilate the components 1, . . . , k of the u to obtain the w = Alk −∑k
i=1 hi,kli.

Finally we choose hk+1,k = (w)k+1 and take lk+1 = w/hk+1,k.
In addition, it is important that the entry hk+1,k never becomes zero. If this occurs-such situation

is called a breakdown-the Hessenberg process cannot proceed. In addition, small values of hk+1,k can
cause severe loss of accuracy. To avoid such a breakdown and also ensure numerical stability, the process
can be modified to include a pivoting strategy such as in Gaussian elimination method. This is done by
replacing the orthogonality condition (5) with the following one:

lk+1 ⊥ ep1
, . . . , epk

and (lk+1)pk+1
= 1, (6)

where pj ∈ {1, 2, . . . , n}. To compute pk+1, we follow the practical procedure described in [49]. We
suppose that p1, . . . , pk have already been obtained, then we compute u = Alk and subtract multiples
of l1, . . . , lk in order to annihilate the k components p1, . . . , pk of the vector u to obtain a vector w =
Alk −∑k

i=1 hi,kli. Then we set pk+1 = i0, where i0 satisfies ‖w‖∞ = |(w)i0 |. Finally we normalize the
vector lk+1 by taking hk+1,k = (w)i0 and lk+1 = w/(w)i0 .

Notice that if ‖w‖∞ = 0 at step k, then, in exact arithmetic, the minimal polynomial with respect to
the vector v has the degree k which means that we have constructed an invariant subspace and the process
must be stopped. Using the pivoting strategy described above, the Hessenberg process is reproduced in
Algorithm 1.

Algorithm 1 The Hessenberg procedure with pivoting strategy

1: p = [1, 2, . . . , n]T and determine i0 such that |(v)i0 | = ‖v‖∞
2: Compute β = (v)i0 , then l1 = v/β and p(1) ↔ p(i0)
3: for j = 1, 2, . . . , k, do
4: Compute u = Alj
5: for i = 1, 2, . . . , j, do
6: hi,j = (u)p(i)
7: u = u− hi,jli
8: end for

9: if (j < n and u 6= 0) then
10: Determine i0 ∈ {j + 1, ..., n} such that |(u)p(i0)| = ‖(u)p(j+1):p(n)‖∞;
11: hj+1,j = (u)p(i0); lj+1 = u/hj+1,j; p(j + 1) ↔ p(i0)
12: else

13: hj+1,j = 0; Stop
14: end if

15: end for

Letting Lk be the n×k matrix with column vectors l1, . . . , lk, H̄k be the (k+1)×k upper Hessenberg
matrix whose nonzero entries are the hj,k and by Hk the matrix obtained from H̄k by deleting its last
row. Then it is not hard to demonstrate that these matrices given either by Algorithm 1 satisfy the
well-known formulas

ALk = Lk+1H̄k,

= LkHk + hk+1,klk+1e
T
k

(7)

and PkLk is lower trapezoidal where PT
k = [ep1

, ep2
, . . . , epn

] and the pi’s (for i = 1, . . . , n) are de-
fined in Algorithm 1, refer to [47, 48] for details. In [47], it was interesting to note that Heyouni and

4

Sadok introduced the Hessenberg process with over-storage to deal with the dense matrix for saving the
computational storage, but here we will not pursue it in details.

At the end of this subsection, it is remarkable to mention that the earlier work1 of Howell and
Stephens [56] and Stephens’s Ph.D. dissertation [57] have really made some further progress on the
backward error analysis for Hessenberg process. They had obtained the following theorem, which can be
regarded as a slight improvement on Wilikinson’s results [49]. For a proof, one can consult Stephens’s
Ph.D. dissertation [57].

Theorem 2.1 Let Hk be the first k columns of H̄k computed in floating point arithmetic by the Hessenberg
algorithm. Then assume that Ã is a permutation of A from which Hk is produced. If the (i, j)-th entry
of Ã is aij and denote |Ã| as the matrix with entries |aij |.

(Ã+△A)Lk = Lk+1H̄k, |△A| ≤ γn(|Ã||Lk|+ |Lk+1||H̄k|),

where γn = nǫ/(1− nǫ) and ǫ is the smallest number such that 1 = fl(1 + ǫ) in which “fl(·)” indicates
correctly rounded floating-point arithmetic.

According to Theorem 2.1, the Hessenberg process with pivoting strategy is not backward stable in
finite precision arithmetic. However, in practice for most of the test problems that we considered in
our study, it showed to be numerically accurate. We give an insight on the quality of the Krylov basis
computed by Algorithm 1 by plotting in Fig. 1 the four smallest singular values of the matrices Lk and
Vk generated after k steps of the Hessenberg and the Arnoldi process, respectively, for different values
of k. We use a normalized random vector as initial vector for both algorithms. A singular value close
to zero indicates near-singularity, and consequently loss of linear dependence of the basis vectors. The
experiments refer to four test matrices extracted from Tim Davis’s matrix collection at the University
of Florida [58]. As we can see, for low to moderate values of k, the Krylov basis computed by the
Hessenberg process maintain linear independence very well as four smallest singular values of Lk are far
from zero. The Arnoldi process ensures in addition vectors orthogonality for the first three test matrices,
but this comes at the price of higher computational cost. Moreover, for the last test problem, when the
k increases, the Arnoldi algorithm starts to loose linear independence of the basis, in contrast to the
Hessenberg method.

It is well known that the convergence of Ritz values plays an important role in the rate of convergence
of Krylov methods (see e.g. the analyses presented in [59] for the CG method and in [60] for the GMRES
method). An improvement of the speed of Krylov methods (the so-called superlinear convergence) seems
to appear in the iterative procedure due to a modest degree of convergence of the Ritz values. In Fig.
2, for some problems we compare the Ritz values of the matrix Hk after k = 40 steps of the Hessenberg
and Arnoldi procedures against the eigenvalues of the coefficient matrix. The Ritz values generated by
both procedures are good approximation of (part of) the spectrum of the test matrices. The Hessenberg
process can capture the spectral information effectively, sometimes even better than the Arnoldi process.

Based on these observations, Algorithm 1 can be accurate and thus represent a cost-effective alterna-
tive to the Arnoldi method in iterative solutions of some systems of linear equations.

2.2 The restarted Hessenberg method

As we know, we derive the restarted FOM method from the specified Hessenberg decomposition like
(7), which is generated by Arnoldi process. Here we follow this framework of restarted FOM method to
derive the restarted Hessenberg method via combining the Hessenberg decomposition with the Galerkin-
projection idea. Given an initial guess x0 to the seed linear system Ax = b, we now consider an orthogonal
projection method [19], which takes L = Km(A, r0) in which r0 = b−Ax0. Then we seek an approximate

1A short note for describing the relations between their ELMRES method [56, 57] and Sadok’s CMRH method [48] are
available at http://ncsu.edu/hpc/Documents/Publications/gary_howell/contents.html#codes.

5

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

1

2

3

4
Test matrix: utm3060.mat

σ
i
 (i = 1,2,3,4)

k = 40

k = 30

k = 50

k = 60

k = 20

0 1 2 3 4 5 6
0

1

2

3

4
Test matrix: epb1.mat

σ
i
 (i = 1,2,3,4)

k = 60

k = 50

k = 40

k = 30

k = 20

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4
Test matrix: memplus.mat

σ
i
 (i=1,2,3,4)

k = 60

k = 50

k = 40

k = 30

k = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4
Test matrix: vfem.mat

σ
i
 (i = 1,2,3,4)

k = 20

k = 30

k = 50

k = 40

k = 60

Fig. 1: Four smallest singular values of the matrices Lk and Vk with different k. 1) Arnoldi process (red stars);

2) Hessenberg process (blue pentagrams).

6

−10 −5 0 5 10 15
−500

−400

−300

−200

−100

0

100

200

300

400

500
Test matrix: mhd1280a.mat

Eigenvalues of A
Ritz Arnoldi
Ritz Hessenberg

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5

x 10
4

−400

−300

−200

−100

0

100

200

300

400
Test matrix: west2021.mat

Eigenvalues of A
Ritz Arnoldi
Ritz Hessenberg

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
Test matrix: psmigr_3.mat

Eigenvalues of A
Ritz Arnoldi
Ritz Hessenberg

0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Test matrix: poli.mat

Eigenvalues of A
Ritz Arnoldi
Ritz Hessenberg

Fig. 2: Ritz values generated by Arnoldi and Hessenberg procedures. The approximations of the eigenvalues.

7

solution xm from the affine subspace x0+Km of dimension m, i.e., we can express it as xm = x0+Lmym

for some vector ym. Furthermore, the residual vector can be computed

rm = b−Axm = b−A(x0 + Lmym)

= r0 −ALmym

= r0 − LmHmym − hm+1,mlm+1e
T
mym

= Lm(βe1 −Hmym)− hm+1,mlm+1e
T
mym.

(8)

So if we want to make the residual close to zeros, we can enforce the “local” solution condition:

Hmym = βe1. (9)

As a result, the approximate solution using the above m-dimensional subspaces is given by

xm = x0 + Lmym, where ym = H−1
m (βe1). (10)

Finally, an iterative solver based on Algorithm 1 and called the Hessenberg method (Hessen) is
obtained, but for practical implementation, here we give the pseudo-codes of the restarted Hessenberg
method as Algorithm 2.

Algorithm 2 The restarted Hessenberg method (referred to as Hessen(m))

1: Start: Choose x0 ∈ Rn, the restarting frequency m ∈ Z+. Compute r0 = b − Ax0 and set
p = [1, 2, . . . , n]T and determine i0 such that |(r0)i0 | = ‖r0‖∞

2: Compute β = (r0)i0 , then l1 = r0/β and p(1) ↔ p(i0), where ↔ is used to swap contents.
3: Hessenberg process: Generate the Hessenberg basis and the matrix Hm using the Hessenberg

process (i.e. Algorithm 1) starting with l1.
4: Approximate the solution: Solve y = H−1

m (βe1) and update xm = x0 + Lmym, where Lm =
[l1, l2, . . . , lm].

5: Restart: If converged then stop; otherwise set x0 := xm and goto 1.

The above algorithm depends on a parameter m which is the dimension of the Krylov subspace. In
practice it is desirable to select m in a dynamic fashion. This would be possible if the residual norm of
the solution xm is available inexpensively (without having to compute xm itself). Then the algorithm
can be stopped at the appropriate step using this information. The following proposition gives a result
in this direction.

Proposition 2.1 The residual vector of the approximate solution xm computed by the Hessenberg Algo-
rithm (without restarting) is such that

rm = b−Axm = −hm+1,meTmymlm+1

and therefore,
‖b−Axm‖2 = hm+1,m|eTmym| · ‖lm+1‖2, (11)

Proof. We have the relation,

rm = b−Axm = b−A(x0 + Lmym)

= r0 −ALmym

= r0 − LmHmym − hm+1,mlm+1e
T
mym

= Lm(βe1 −Hmym)− hm+1,mlm+1e
T
mym.

By the definition of ym, Hmym = βe1, and so r0 − LmHmym = 0 from which the result follows. ✷

8

At the end of this subsection, it follows that

rm = b−Axm = b−A(x0 + Lmym)

= r0 −ALmym

= −hm+1,m[ym]mlm+1,

(12)

where [ym]m represents the last element of ym. Denote βm = −hm+1,m[ym]m, then we have rm =
βmlm+1, which indicates that rm is collinear with βmlm+1.

Without considering the restarting strategy, just like analyzing the convergence relations between
CMRH method and GMRES method, we can also follow the analogous idea of Sadok and Szyld [53]
to present the specified analysis which explains why Hessenberg method can have the good convergence
behavior. But this is not the emphasis we pursue here.

3 The shifted variant of restarted Hessenberg method

Based on the above mentioned, we follows Simoncini’s framework [43] about deriving the restarted
shifted FOM method to establish the shifted variant of restarted Hessenberg method. Consider now the
shifted system (1). Shifting transforms (7) into

(A− σiI)Lm = Lm(Hm − σiIm) + hm+1,mlm+1e
T
mym, (13)

where Im is the identity matrix of size m. Due to (13), the only difference in Hessenberg method is that
ym is computed by solving the reduced shifted system (Hm − σiIm)y = βe1. Therefore, the expensive
step of constructing the non-orthogonal basis Lm is performed only once for all values of σ of interest,
i ∈ {1, . . . , ν}, whereas ν reduced systems of size m need be solved. This is the case if the right-hand sides
are collinear. In the following, we shall assume that x0 = 0 so that all shifted systems have the same
right-hand side. Restarting can also be employed in the shifted case. The key fact is that the Hessenberg
method residual rm is a multiple of the basis vector lm+1, see Eq. (12) for details. The next proposition
shows that collinearity still holds in the shifted case when the Hessenberg method is applied.

Proposition 3.1 For each i = 1, 2, . . . , ν, let x
(i)
m = Lmy

(i)
m be a Hessenberg method approximate solution

to (A − σiI)x = b in Km(A − σiI, b), with Lm satisfying (13). Then there exists β
(i)
m ∈ R such that

r
(i)
m = b− (A− σiI)x

(i)
m = β

(i)
m lm+1.

Proof. for i = 1, 2, . . . , ν, we have

r(i)
m = b− (A− σiI)x

(i)
m = r0 − (A− σiI)Lmy(i)

m

= r0 − Lm(Hm − σiIm)y(i)
m − hm+1,mlm+1e

T
my(i)

m

= Lm

[

βe1 − (Hm − σiIm)y(i)
m)

]

− hm+1,m[y(i)
m]mlm+1.

Setting β
(i)
m = −hm+1,m[y

(i)
m]m, i = 1, 2, . . . , ν, we obtain r

(i)
m = β

(i)
m lm+1. ✷

It is observed that all the residuals r
(i)
m are collinear with lm+1, and thus they are collinear with each

other. This property is excellent so that we could restart the shifted Hessenberg method by taking the
common vector lm+1 as the new initial vector, and the corresponding approximate Krylov subspace is

Km(A, lm+1). Just as the first cycle, all the new residuals still satisfy the formula r
(i)
m = β

(i)
m lm+1, and

the restarted Hessenberg process can be repeated until convergence. This leads to the shifted restarted
FOM method for simultaneously solving shifted linear systems (1). We described this final algorithm in
detail as following Algorithm 3.

Similarly, it was shown in [43] that the information sharing does not cause any degradation of conver-
gence performance, and the convergence history of shifted Hessenberg method on each system is the same

9

Algorithm 3 The restarted shifted Hessenberg method

1: Given A, b,x
(i)
0 = 0, {σ1, . . . , σν}, I = {1, 2, . . . , ν} and the restarting frequency m ∈ Z+.

2: Set r0 = b and take p = [1, 2, . . . , n]T and determine i0 such that |(r0)i0 | = ‖r0‖∞
3: Compute β

(i)
0 = (r0)i0 , then l1 = r0/β

(i)
0 and p(1) ↔ p(i0), where ↔ is used to swap contents.

4: for ℓ = 1, 2, . . ., do
5: Compute Hessenberg decomposition ALk = LkHk + hk+1,klk+1e

T
k by Algorithm 1.

6: Solve y
(i)
m = (Hm − σiIm)−1(β

(i)
ℓ−1e1), i ∈ I.

7: Update x
(i)
m,ℓ = x

(i)
m,ℓ−1 + Lmy

(i)
m , i ∈ I.

8: Update I. If I = ∅, exit. EndIf
9: Set β

(i)
ℓ = −hm+1,m[y

(i)
m]m, i ∈ I.

10: Set l1 = lm+1.
11: end for

as that of the usual restarted Hessenberg method applied individually to each shifted system. We should
point out that an outstanding advantage of this approach is that the non-orthogonal basis {l1, . . . , lm}
is only required to be computed once for solving all shifted systems in each cycle, so that a number of
computational cost can be saved. In addition, Algorithm 3 is also attractive when both A are real while
the shifts {σi}’s are complex. Indeed, at each cycle after restarting, all the complex residuals are collinear
to the (m+1)-st real basis vector Lm+1, and the expensive step for constructing the non-orthogonal basis
Lm+1 can be performed in real arithmetics, see Section 4 for this issue.

Here, we shall analyze the computational cost of implementing the restarted shifted Hessenberg
method, the restarted shifted FOM method, and the weighted restarted shifted FOM method. It is
known from Section 3 and Refs. [20,43] that the difference of arithmetic operations of these three methods
comes from processes in generating the basis vectors. Other operational requirements, like solving ν linear

sub-systems defined as line 6 in Algorithm 3 and the update of y
(i)
m , are similar for the three mentioned

methods. Therefore, it makes sense to only consider the computational cost of the Hessenberg, Arnoldi
and weighted Arnoldi processes which underpin the implementation of Algorithm 3, restarted shifted
FOM and weighted restarted shifted FOM methods. Let us denote by Nz the number of nonzero entries
of A in (1). The cost of an inner product is assumed to be 2n flops. Since the first j−1 elements of lj are
zero, then some arithmetic operations can be saved. For instance, the cost of updating the vector lj (the j-

loop in Algorithm 1) in Hessenberg process reduces to
∑m

i=1

∑i
j=1 2(n−(j−1)) = m(m+1)(n−(m−1)/3)

flops instead of 2m(m+1)n and 5
2m(m+1)n flops in the Arnoldi and weighted Arnoldi processs, respec-

tively. If we neglect the cost of computing the maximum of the vector lj in the Hessenberg process, then
we obtain the number of operations per restart (i.e., m steps) by the Hessenberg process, the Arnoldi
process and the weighted Arnoldi process (see [20] for instance) as following Table 1.

Table 1: Comparison of the Arnoldi, weighted Arnoldi, and Hessenberg procedures
Process Number of operations Orthogonal basis

Arnoldi 2mNz + 2m(m+ 1)n Yes
Weighted Arnoldi 2mNz + 5

2
m(m+ 1)n D-orthogonal

Hessenberg 2mNz +m(m+ 1)n− 1

3
m(m− 1)(m+ 1) No

In Table 1, m is the restarting frequency; and the definition of “D-orthogonal” basis can be found
in [20, Algorithm 2]. Firstly, it is remarkable that the restarted shifted Hessenberg method, the restarted
shifted FOM method, and the weighted restarted shifted FOM method have the similar implementations
of lines 6-10 of Algorithm 3. As seen from Table 1, when the computational cost of (similar) lines 6-10 in
these three mentioned shifted iterative solvers are comparable, e.g., the required number of restarts are
similar, the computational cost of the restart shifted Hessenberg methods can be less than that of both
restarted shifted FOM and weighted restarted shifted FOM methods, also refer to Section 4 for futher

10

discussion.
At the end of this section, it is still worth noting that the preconditioning techniques can be often

exploited to accelerate the Krylov subspace methods for solving the linear systems Ax = b. However,
the development of particular preconditioners for the iterative methods, which are used to solve shifted
linear systems, is not prosperous in most of cases. It is chiefly because most of preconditioning techniques
cannot make the preconditioned systems maintain the shift-invariance property, i.e. Eq. (3), of the Krylov
subspace. As far as we know, the particular preconditioning techniques in current research concerning
shifted linear systems can be almost classified into the following cases:

1. Shift-and-invert preconditioners: The main idea of these preconditioners is to transform the
original shifted linear systems into a new shifted linear systems. More precisely, from [2, 3, 14, 61],
it is well-known that the shift-and-invert preconditioner P = A − τI applied to the shifted linear
systems (1) leads to:

(A− σiI)(A− τI)−1(A− τI) =
[

(A− τI)− (σi − τ)I
]

(A− τI)−1(A− τI)

= [I − (σi − τ)(A − τI)−1](A− τI),

=
[1

σi − τ
I − (A− τI)−1

]

(σi − τ)(A − τI),

so we define the following auxiliary vectors,

y(i) = (τ − σi)(A − τI)x(i) ⇔ x(i) =
1

τ − σi

(A− τI)−1y(i),

the preconditioned shifted problem can be rewritten as the new unpreconditioned shifted linear
systems

[

(A− τI)−1 − ηiI
]

y(i) = b, ηi =
1

σi − τ
, x(i) =

1

τ − σi

(A− τI)−1y(i).

As a result, solving systems with the preconditioner P only involves the matrix A − τI; only
one LU-decomposition of the matrix A − τI has to be computed that can be used for both the
preconditioning operations and for computing the solutions of the unpreconditioned shifted systems.
The shift-and-invert preconditioner described above has, however, some significant disadvantages.
The preconditioner is very effective for shifted systems with σi close to τ , but is much less effective
for shifts further away from τ . Another disadvantage is that computing the LU decomposition of
A− τI may still be prohibitively expensive for large 3D problems, [2, 14].

2. Polynomial preconditioner: Generally speaking, we apply a preconditioning polynomial Pn(z)
and solve the system of linear equations Pn(A)Ay = b, x = Pn(A)y. Pn(z) will generally depend
on the shift σi, so we are looking for polynomials Pn,σi

(z) which satisfy

Pn,σi
(A− σiI)(A− σiI) = Pn,0(A)A − ηiI

and which are good preconditioners. Suitable polynomials can for example be constructed from
Chebychev-, Leja- or GMRES-polynomials, refer to [21]. Recently, Ahmad et al. have designed
an efficient Chebychev-polynomial preconditioner [2] for two shifted linear systems arising from
H2-optimal model reduction, their numerical results shown the effectiveness of the proposed pre-
conditioner for accelerating the shifted BiCG for solving two shifted linear systems simultaneously.
In 2012, Wu et al. also proposed an efficient polynomial preconditioner for accelerating shifted
restarted GMRES algorithms to handle the PageRank problems, see [15] for details. Although the
polynomial preconditioner is easier to established and more efficient than those of the shift-and-
invert preconditioners, the polynomial preconditioners are always not popular among the research
of preconditioning techniques.

11

3. Flexible preconditioner: This preconditioning idea was firstly introduced by Gu and Zhou in [44].
Then it was successfully used to solve the shifted linear systems coming from some interesting
practical applications [16, 17]. They began to use the flexible Arnoldi process with some suitable
parameters τk to generate the basis of Krylov subspace, then the flexible FOM and GMRES (in-
cluding their restarted versions) for shifted linear systems can be derived directly. In general, we
think it still belongs to the shift-and-invert preconditioner techniques, the difference is just using
some variable (approximation) shifted parameters τk during the each preconditioned step. Although
many numerical results had been done for illustrating the effectiveness of the flexible precondition-
ers, they still suffer the similar difficulties of shift-and-invert preconditioners: (i) need to call the
LU-decomposition for solving k sub-linear systems in the flexible Arnoldi process, which turns to
be prohibitively expensive for large 3D problems; (ii) Moreover, we still require to select the ap-
proximation shifted parameters τk (although only two or three different {τk}’s) carefully according
to the clustered distributing of the shifts σi.

4. Nested iterative techniques: In order to remedy the mentioned difficulties of above different
preconditioning techniques, Baumann and Gijzen [14] recently made full use of the collinear property
of residual and Krylov subspace to establish a new family of nested iterative techniques. The
proposed techniques do not need to select the approximation shifted parameters. Meanwhile, we
only need to use a inner Krylov subspace method (such as shifted FOM and shifted IDR(s) methods)
to solve sub-shifted linear systems roughly but the outer Krylov subspace methods (such as shifted
GMRES and shifted QMRIDR(s) methods) for shifted linear systems (1) can still converge to the
desired approximation solutions very well. From the numerical results presented in [14], the nested
iterative techniques are very useful to accelerate the iterative solvers for shifted linear systems
arising in the (numerical) solutions of the elastic wave equations.

Finally, it is remarkable to mention that all these four frameworks of preconditioning techniques can
be employed to accelerate the proposed restarted shifted Hessenberg method for solving the shifted linear
systems (1). For instance, we can derive the flexible Hessenberg process [54] by following the framework
of flexible Arnoldi process, which will be similar to the Hessenberg decomposition in [44], then the flexible
(restarted) shifted Hessenberg method is not hard to construct via following the philosophy of flexible
(restarted) shifted FOM method for handling the shifted linear systems (1). But for the sake of simplicity,
we will not pursue the specified preconditioning techniques for the restarted shifted Hessenberg method
proposed in this paper for shifted linear systems.

4 Numerical examples

Far from being exhaustive, in order to show the attractive convergence behavior with respect to both
the number of restarts (abbreviated as Rests), CPU time elapsed2 (abbreviated as CPU) and the final
true relative residual 2-norms of ν linear systems (i.e. TRRi := log10(‖b − (A − σiI)xk‖2/‖b − (A −
σiI)x0‖2), i = 1, 2, . . . , ν) using Algorithm 3 to solve (1) simultaneously, some numerical experiments
have been reported in this section. In addition, we define the “mean value” of TRRi as follows,

TRRi =
TRR1 + TRR2 + . . .+ TRRν

ν
, i = 1, 2, . . . , ν.

The dimension of approximation subspace is chosen to be different m. We will compare the proposed
method (referred to as sHessen(m)) with the restarted shifted FOM method (referred to as sFOM(m))
proposed by Simoncini in [43] and the restarted weighted shifted FOM method (referred to as wsFOM(m))
introduced by Jing and Huang in [20].

Unless otherwise noted, the initial guess solution x0 and the right-hand side vector b are taken as
x0 = [0, 0, . . . , 0]T and b = [1, 1, . . . , 1]T respectively. Suppose xk is the approximate solution in the k-th

2All timings are averages over 10 runs of our algorithms.

12

cycle, we stop the procedure if xk satisfies

‖b− (A− σiI)xk‖2
‖b− (A− σiI)x0‖2

< tol = 10−8, i ∈ I

or the maximal number of restarts, e.g., 500, is reached. All experiments were performed on a Windows
7 (64 bit) PC-Intel(R) Core(TM) i5-3740 CPU 3.20 GHz, 8 GB of RAM using MATLAB 2014a with
machine epsilon 10−16 in double precision floating point arithmetic.

Example 1. In the first example, we consider a classical test problem: let the test matrix A be
a 800 × 800 upper bidiagonal matrix, with entries 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 10, 11, . . . , 802 on
the main diagonal and all ones on the super diagonal. In our numerical experiments, two sets of shifted
values I1 = {σ1 = −0.5, σ2 = 0.5} and I2 = {σ1 = −1, σ2 = 1}, for shifted systems are considered.
The numerical results of different shifted iterative solvers for handling the shifted linear systems (1) are
displayed in Tables 2-3.

Table 2: Comparison for Example 1 in terms of the Rests, CPU and TRRi (i ∈ I1).

sHessen(m) sFOM(m) wsFOM(m)

m Rests CPU TRRi Rests CPU TRRi Rests CPU TRRi

20 24 0.0782 -8.7680 † † † † † †

-8.2676 † †

30 17 0.0805 -8.2224 † † † 22 0.1142 -8.0110
-8.2676 † -8.0417

40 14 0.0824 -8.4611 † † † 19 0.1168 -8.5784
-9.8259 † -8.0907

50 13 0.0848 -8.5224 50 0.3099 -8.9028 † † †

-10.2510 -8.9778 †

Table 3: Comparison for Example 1 in terms of the Rests, CPU and TRRi (i ∈ I2).

sHessen(m) sFOM(m) wsFOM(m)

m Rests CPU TRRi Rests CPU TRRi Rests CPU TRRi

20 19 0.0728 -8.0473 † † † 49 0.1218 -8.2434
-8.3069 † -8.6141

30 14 0.0751 -8.7570 35 0.1336 -8.6597 19 0.1013 -8.0891
-8.6746 -8.9933 -8.8851

40 10 0.0787 -9.0297 33 0.1616 -8.0348 12 0.0917 -8.1719
-8.1725 -8.0140 -8.2135

50 10 0.0841 -8.4248 27 0.1667 -8.9799 12 0.1196 -9.2894
-9.0494 -9.5218 -8.9802

As seen from Tables 2-3, our proposed iterative solvers (sHessen(m)) with different m can be success-
fully employed to solve the shifted linear systems (1), whereas sFOM(m) and wsFOM(m) solvers can not do
it in some cases. More precisely, the proposed method, sHessen(m), is more efficient and cheaper than
both sFOM(m) and wsFOM(m) solvers for shifted linear systems (1) in terms of the number of restarts
and CPU time elapsed. At the same time, apart from wsFOM(50) in Table 2, the weighted strategy for
Arnoldi process behind the shifted iterative solvers of Jing and Huang improves indeed the convergence
behavior of restarted shifted FOM method, which is constructed by classical Arnoldi process. When all
these shifted iterative solvers converge to the desired approximation solutions of shifted linear systems,
they almost lead to the similar accuracy of solutions in aspects of TRRi. In conclusion, the proposed
sHessen(m) method can be viewed as the best solvers for shifted linear systems in Example 1.

13

Example 2. Here, we still consider a classical test problem [22]: the test matrix A ∈ R2000×2000 is
defined as following form

A =

1 0.21 1.2 0 0.13 1.42
0.45 2 0.21 1.2 0 0.13 1.42
0 0.45 3 0.21 1.2 0 0.13

0.12 0 0.45 4 0.21
. . .

0.11 0.12 0 0.45
. . . 0.13 1.42

0.11 0.12
. . . 1.2 0 0.13

. . . 1997 0.21 1.2 0
. . . 0 0.45 1998 0.21 1.2

0.11 0.12 0 0.45 1999 0.21
0.11 0.12 0 0.45 2000

.

Similarly, in our numerical experiments, only one set of shifted values I1 = {σ1 = −0.5, σ2 = 0.5} for
shifted linear systems is considered.

Table 4: Comparison for Example 2 in terms of the Rests, CPU and TRRi (i ∈ I1).

sHessen(m) sFOM(m) wsFOM(m)

m Rests CPU TRRi Rests CPU TRRi Rests CPU TRRi

20 91 0.2622 -8.0328 63 0.1957 -8.0073 † † †

-8.1289 -8.0830 †

30 86 0.3498 -8.7528 25 0.1417 -8.0121 † † †

-8.3199 -8.4126 †

40 18 0.1253 -8.2803 16 0.1288 -8.2030 † † †

-10.0432 -8.4805 †

50 16 0.1563 -8.2780 13 0.1489 -8.7887 † † †

-8.6143 -8.4539 †

According to the results reported in Table 4, sFOM(m) outperforms the others two shifted iterative
solvers, sHessen(m) and sFOM(m), in terms of the number of restarts. Even apart from sFOM(40) and
sHessen(40), the performance of sFOM(m) is much better than that of sHessen(m) for solving shifted
linear systems (1) in terms of CPU time elapsed. However, it is remarkable that sHessen(40) needs
more Rests but still slightly less CPU to converge for solving shifted linear systems (1) with compared
to sFOM(40). That is because the Hessenberg process is often slightly cheaper to implement than the
Arnoldi process, especially when the number of restarts of these two algorithms are similar, refer to [47,48]
for this discussion. Unfortunately, all kinds of wsFOM(m) solvers fail to solve the shifted linear systems
(1) in Example 2 completely. Similarly, when all these shifted iterative solvers converge to the desired
approximation solutions of shifted linear systems, they almost lead to the same accuracy of solutions
in terms of TRRi. In conclusion, our proposed algorithm (sHessen(m)) still can be regarded as an
acceptable alternative considerably.

Example 3. In this example, we consider a large set of publicly available test matrices arising from
several application areas and having increasing levels of difficulty. These test matrices are extracted from
Tim Davis’s matrix collection at the University of Florida. We summarize in Table 5 the characteristics
of these shifted linear systems that were solved.

From the results reported in Table 6, the proposed sHessen(40) can solve the first, sixth and eighth
test problems very well, whereas both sFOM(m) and wsFOM(m) are not at all able to converge to the
desired approximation solutions of shifted linear systems (1). Besides, the proposed algorithm is more

14

Table 5: Set and characteristics of test matrices in Example 3 (listed in increasing matrix size).

Matrices Size Field nnz(A) Set of shifts
bfwa782 782 Electromagnetics 7,514 {σ1 = −0.003, σ2 = 0.003}
orsirr 2 886 Oil reservoir modeling 5,970 {σ1 = −0.5, σ2 = 0.5}
orsirr 1 1,030 Oil reservoir modeling 6,858 {σ1 = −0.5, σ2 = 0.5}
rdb1250l 1,250 Chemical engineering 7,300 {σ1 = −0.2, σ2 = 0.2}
orsreg 1 2,205 Oil reservoir modeling 14,133 {σ1 = −1, σ2 = 1}
cavity16 4,562 Finite element modeling 137,887 {σ1 = −0.1, σ2 = 0.1}
shyy41 4,720 Computational fluid dynamics 20,042 {σ1 = −1, σ2 = 1}
memplus 17,758 Circuit simulation 303,468 {σ1 = −0.01, σ2 = 0.01}
matrix 9 103,430 Semiconductor device problem 1,205,518 {σ1 = −0.9, σ2 = 0.9}

Table 6: Results of different solvers for Example 3 with different m in terms of the Rests, CPU and TRRi.
sHessen(m) sFOM(m) wsFOM(m)

Matrix m Rests CPU TRRi Rests CPU TRRi Rests CPU TRRi

bfwa782 40 98 0.3706 -8.0955 † † † † † †

-8.5808 † †

orsirr 2 20 146 0.2637 -8.4626 210 0.3534 -8.6617 † † †

-8.0278 -8.0666 †

orsirr 1 30 100 0.3068 -8.0730 137 0.4222 -8.0538 † † †

-8.0601 -8.0404 †

rdb1250l 40 18 0.0914 -8.0377 17 0.0956 -8.8174 † † †

-9.0494 -9.4118 †

orsreg 1 50 12 0.1271 -8.6118 9 0.1332 -8.3282 † † †

-8.5994 -8.0713 †

cavity16 40 90 1.5435 -8.2723 † † † † † †

-8.0371 † †

shyy41 20 16 0.0922 -8.1014 125 0.7497 -8.3370 71 0.5035 -8.2818
-8.2407 -8.0434 -8.1367

shyy41 30 11 0.1061 -8.0967 11 0.1839 -8.9070 13 0.2405 -8.6073
-8.6036 -8.1820 -8.0881

shyy41 40 7 0.0981 -8.4446 16 0.3519 -9.1335 9 0.2635 -9.2537
-8.0639 -8.9935 -8.0711

shyy41 50 6 0.1172 -8.5789 7 0.2472 -8.6861 6 0.2541 -8.8901
-8.6889 -8.4041 -8.8895

memplus 40 35 1.8512 -10.3687 † † † † † †

-8.6259 † †

matrix 9 40 1 0.4634 -15.6015 1 0.6390 -15.3415 1 0.7054 -15.2871
-15.6400 -15.0908 -15.3918

15

efficient than both sFOM(m) and wsFOM(m) in terms of the number of restarts and CPU time elapsed,
when these three shifted iterative solvers are applied to solve test problems: orsirr 2, orsirr 1 and
shyy41 (m = 20, 30, 40, 50). Moreover, although sHessen(m) need more number of restarts for solving
rdb1250l and orsreg 1 than those required by sFOM(m), sHessen(m) still needs slightly less CPU time
elapsed to converge than those needed by sFOM(m). For rdb1250l, orsreg 1, matrix 9 and shyy41

(m = 30, 50), these three shifted iterative solvers require the similar number of restarts to converge, but
the proposed sHessen(m) still needs slightly less CPU time elapsed than other shifted iterative solvers.
Especially, for matrix 9, our proposed sHessen(m) method can achieve more accurate solution than
other two iterative methods in terms of TRRi. In fact, we had given an explanation to these phenomena
in Example 2. That is because the Hessenberg process is often cheaper to implement than the Arnoldi
process, especially when the number of restarts of these two algorithms are similar. The wsFOM(m)

solvers fail to solve the shifted linear systems (1) in Example 3 except shyy41 (m = 20, 30, 40, 50). We
also note that when all these shifted iterative solvers converge to the desired approximation solutions
of shifted linear systems, they almost lead to the similar accuracy of solutions in aspects of TRRi. In
conclusion, our proposed algorithm (sHessen(m)) still can be regarded as a highly recommend choice
for shifted linear systems (1) with compared to other two mentioned shifted iterative solvers.

Example 4. In this example, we consider test problems stem from a structural dynamics engineering
problem, whose algebraic formulation was discussed in detail in [3]. Direct frequency analysis leads to
the solution of the following algebraic linear system

[(−ω2
jM +K) + ι(ωjCV + CH)]x = b, ι =

√
−1, (14)

where ωj, j = 1, 2, . . . , ν are the driving circular frequencies, M and K are the inertia and the stiffness
matrices, CV and CH are the viscous and the hysteretic damping matrices, respectively. We take M =
I, CV = 10I, CH = µK with µ = 0.02 a damping coefficient, and K the five-point centered difference
matrix approximating the negative Laplacian operator with homogeneous Dirichlet boundary conditions
on an uniform mesh h = 1/(p + 1) in the unit square [0, 1] × [0, 1]. The matrix K ∈ Rn×n possesses
the tensor-product form K = Bp ⊗ I + I ⊗ Bp, with Bp = h−2 · tridiag(−1, 2,−1) ∈ R

p×p. Hence, K
is an n × n block-tridiagonal matrix, with n = p2 = 642. We set the right-hand side vector b to be
b = e1160 + e2298, with ei being the i-th column vector of identity matrix. As before, we normalize the
system by multiplying both sides through by h2; see [43,62] for details. Due to M = I, then linearization
yields the algebraic system (14),

[

(

ιh2CV h2(K + ιCH)
h2(K + ιCH) 0

)

− ωj

(

h2M 0
0 h2(K + ιCH)

)

]

[

y

x

]

=

[

h2b

0

]

⇔ (T − ωjS)z = f

⇔
[

(

ιCV I
K + ιCH 0

)

− ωj

(

I 0
0 I

)

]

ẑ = f ,

[

h2M 0
0 h2(K + ιCH)

]

z = ẑ.

Whenever S is nonsingular, we can write the problem above as in (1), namely (TS−1 − ωjI)ẑ = f and
Sz = ẑ. For the sake of simplicity, we only report results for two parameters ω1 = 2π and ω2 = 6π. The
linearized problem has dimension 8192.

As observed from Table 7, our proposed sHessen(m)methods outperform both sFOM(m) and wsFOM(m)

methods in terms of the number of restarts and CPU time elapsed. Especially, it is remarkable that
sHessen(40) almost needs only half of the number of restarts and CPU time elapsed with compared to
sFOM(40). Again, the wsFOM(m) methods still fail to solve the resulting shifted linear systems (1) in
Example 4. Again, when all these shifted iterative solvers converge to the desired approximation solu-
tions of shifted linear systems, they almost lead to the same accuracy of solutions in terms of TRRi. In
conclusion, the proposed sHessen(m) method is the best solver among these mentioned shifted iterative
methods for handling the resulting shifted linear systems in Example 4.

Example 5. In this example, we consider the semi-discretization by finite difference method of
the following three dimensional time-fractional convection-diffusion problems, which are modified from

16

Table 7: Comparison for Example 4 in terms of the Rests, CPU and TRRi.
sHessen(m) sFOM(m) wsFOM(m)

µ m Rests CPU TRRi Rests CPU TRRi Rests CPU TRRi

µ = 0.02 40 27 2.2267 -8.4181 59 5.2156 -8.0859 † † †

-8.0418 -8.2960 †

50 19 2.2042 -8.8472 24 3.3261 -8.1201 † † †

-8.3296 -8.0489 †

µ = 0.04 40 22 1.8625 -8.0957 55 4.8742 -8.1618 † † †

-8.2702 -8.2534 †

50 18 2.0801 -8.0754 23 2.9937 -8.2278 † † †

-8.0704 -8.3017 †

Ref. [63].

Dλ
t u−∆u + τ1ux1

+ τ2ux2
= 0, on (0, 1)3 × (0, T),

u(x, t) = 0, ∂(0, 1)3 for all t ∈ [0, T],

u(x, 0) = u0(x), x ∈ (0, 1)3.

(15)

The operator Dλ
t is Caputo’s fractional derivative, defined for 0 < λ < 1 by

Dλ
t f(t) =

1

Γ(1− λ)

∫ t

0

f ′(s)

(t− s)λ
ds,

where Γ(·) is the Gamma function. As λ → 1, the fractional derivative approaches the ordinary derivative,
and (15) reduces to the standard partial differential equation, the PDE is classified as sub-diffusive [63].
Discretizing the Laplacian by the usual five/seven-point stencil and the first-order derivatives, ux1

and
ux2

, by central differences on a uniform grid with step size h = 1/(n + 1) leads to an ordinary initial
value problem

{

dλ
u(t)
dtλ

= Au, t ∈ (0, T),

u(0) = u0

(16)

with the matrix

A = In ⊗ In ⊗ C1 + [B ⊗ In + In ⊗ C2]⊗ In ∈ R
N×N , N = n3,

where In is the identity matrix of order n, and

B =
1

h2
tridiag(1,−2, 1), Cj =

1

h2
tridiag(1 + µj ,−2, 1− µj), j = 1, 2

with µj = τjh/2. The nonsymmetric matrix A is a popular test matrix because its eigenvalues are
explicitly known: If |µj | > 1 (for at least one j), they are complex; more precisely (cf. [45]),

Λ(A) ⊂ 1

h2
[−6− 2 cos(πh)Re(θ),−6 + 2 cos(πh)Re(θ)]× 1

h2
[−2ι cos(πh)Im(θ), 2ι cos(πh)Im(θ)

with θ = 1 +
√

1− µ2
1 +

√

1− µ2
2. As in [45], we choose T = 1, h = 1/20, τ1 = 80, τ2 = 120 which leads

to µ1 = 2, µ2 = 3, respectively. Then the analytical solution to the semi-discrete problem (16) can be
expressed in terms of the Mittag-Leffler function [8, 65]

u(t) = Eλ,1(At
λ)u0 = u0 + tλEλ,λ+1(At

λ)Au0, where Eλ,ς(z) =

∞
∑

k=0

zk

Γ(λk + ς)
.

As λ → 1, this reduces to u(t) = exp(At)u0, which is the matrix exponential solution to the semi-
discrete differential equations. According to the numerical method introduced in [7], we require to solve

17

the shifted linear systems (A − σiI)x = v0, σi ∈ C. Here refer to [8] for choosing the complex shifts
σi. For simplicity, here we set v0 = Au0

‖Au0‖2
, u0 = b and the set of complex shifts {σ1, σ2, . . . , σ8} can be

drawn as Fig. 3.

0 0.5 1 1.5 2 2.5 3 3.5
−6

−4

−2

0

2

4

6

α = 0.2
α = 0.4
α = 0.6
α = 0.8

Fig. 3: Poles localization of the Carathéodory-Fejér (CF) approximation [8] to Eα,α+1 for ν = 8.

Table 8: Comparison for Example 5 in terms of the Rests, CPU and TRRi (t = 1, h = 1/20, τ1 = 80, τ2 = 120).

sHessen(m) sFOM(m) wsFOM(m)

λ m Rests CPU TRRi Rests CPU TRRi Rests CPU TRRi

0.2 20 12 0.1967 -8.6435 7 0.1548 -8.0349 † † †

30 5 0.1276 -8.6894 5 0.1675 -8.1463 † † †

40 4 0.1348 -10.5550 4 0.1948 -9.2291 † † †

50 3 0.1339 -14.6137 3 0.2047 -12.5138 † † †

0.4 20 12 0.1958 -8.6581 7 0.1561 -8.0435 † † †

30 5 0.1253 -8.6981 5 0.1682 -8.1553 † † †

40 4 0.1352 -10.5638 4 0.1957 -9.2383 12 0.5513 -8.4688
50 3 0.1344 -14.6183 3 0.2079 -12.5220 5 0.3548 -8.4630

0.6 20 12 0.1963 -8.6661 7 0.1553 -8.0483 † † †

30 5 0.1248 -8.7028 5 0.1669 -8.1602 † † †

40 4 0.1325 -10.5686 4 0.2010 -9.2433 12 0.5429 -8.7063
50 3 0.1317 -14.6042 3 0.2025 -12.5267 5 0.3556 -8.7585

0.8 20 12 0.1889 -8.6682 7 0.1534 -8.0495 † † †

30 5 0.1199 -8.7040 5 0.1659 -8.1614 † † †

40 4 0.1278 -10.5698 4 0.1898 -9.2445 11 0.4958 -8.7903
50 3 0.1269 -14.6271 3 0.2006 -12.5278 5 0.3399 -8.6269

As observed from Tables 8, the sFOM(20) method outperforms both wsFOM(20) and sHessen(20)
methods in terms of the number of restarts and CPU time elapsed for different cases of λ. However,
it is remarkable that our proposed sHessen(30) method is preferable to both sFOM(30) and wsFOM(30)
methods in terms of CPU time elapsed and TRRi for different λ. Moreover, both sHessen(40) and
sHessen(50) methods are also two good alternatives in aspects of CPU time elapsed and TRRi for the

18

various cases of λ. Again, the wsFOM(m) methods often are expensive and easily fail to solve the shifted
linear systems (1) in Example 5, such as the case of λ = 0.2. In conclusion, the proposed sHessen(m)

method, rather than the sFOM(m) method, can be regarded as a highly recommend choice for handling
shifted linear systems in Example 5 with compared to other two mentioned shifted iterative solvers.

Example 6. From the methods introduced in [7], the numerical evaluation of matrix exponential plays
a fundamental role in solving linear differential equations. In this example, we consider the computation
of the product of a matrix exponential with a vector, which arises from the numerical solution of the
following fractional diffusion equation [64]

∂u(x,t)
∂t

= d(x)aD
α
xu(x, t) + f(x, t), (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = x3, x ∈ [0, 1],

u(0, t) = 0, u(1, t) = e−t, t ∈ [0, 1]

(17)

with the coefficient

d(x) =
Γ(4− α)

6
x1+α.

and the source term f(x, t) = −(1 + x)e−tx3. Here 1 < α < 2 and for the definition of the fractional
order derivative, we refer to [65].

After the spatial discretization by the second-order numerical scheme proposed in [66], the equation
(17) reduces to a semi-discretized ordinary differential equations of the form

{

du(t)
dt

= Au+ b(t), t ∈ (0, 1),

u(0) = u0,
(18)

where A = DQ
hα with h being the grid size, D is a diagonal matrix arising from the discretization of the

differential coefficient d(x), and Q is a lower Hessenberg Toeplitz matrix generated by the discretization
of the fractional derivative. In addition, it mentioned that the matrix A is very ill-conditioned and it is
not a Toeplitz matrix; see [64, 66] for the details of the discretization. The vector b(t) = e−tb̃, where be
consists of the discretization of f(x, t)/e−t and boundary conditions, and it is independent of t. By the
variation-of-constants formula, the solution of (18) at time t can be expressed as

u(t) = etAu0 +

∫ t

0

e(t−ε)Ae−εb̃dε

= etA[u0 + (A+ I)−1b̃]− e−t(A+ I)−1b̃,

(19)

provided that A+I is invertible. In this example, we consider two different discretized gird nodes N = 512
and N = 1024. In light of (19), to compute the solution u(t), we have to approximate the product of the
matrix exponential etA with the vector

b̂ = u0 + (A+ I)−1b̃,

which is the major computational cost for this problem. From the numerical treatments introduced
in [10], we need to solve several shifted linear systems

(A− zjI)x = b̂, zj ∈ C j = 1, 2, . . . , ν.

More details and choosing ν = 14 complex shifts can be found in [10] and references therein. For
simplicity, we plot these 14 complex shifts (i.e., poles localization of CF approximation) in Fig. 4.

As observed from Tables 9-10, our proposed sHessen(m) methods considerably outperform both
sFOM(m) and wsFOM(m) methods in terms of the number of restarts, TRRi and CPU time elapsed.
Especially for the case of α = 1.3, it is remarkable that sHessen(40) and sHessen(50) almost needs
only 30% of the number of restarts and CPU time elapsed with compared to sFOM(40) and sFOM(50).

19

−10 −8 −6 −4 −2 0 2 4 6
−20

−15

−10

−5

0

5

10

15

20

z

j
, j = 1,2,…,14

Fig. 4: Poles localization of the CF approximation to ex with ν = 14.

Table 9: Comparison for Example 6 in terms of the Rests, CPU and TRRi (N = 512).

sHessen(m) sFOM(m) wsFOM(m)

α m Rests CPU TRRi Rests CPU TRRi Rests CPU TRRi

1.3 20 48 0.8447 -8.1742 † † † † † †

30 14 0.4618 -8.5087 † † † † † †

40 10 0.3492 -8.2594 92 1.4897 -8.1044 † † †

50 8 0.2978 -8.2864 29 0.6620 -8.1839 † † †

1.7 20 39 0.9092 -8.1705 † † † † † †

30 28 0.8468 -8.4024 † † † † † †

40 23 0.7453 -8.3276 70 1.4605 -8.0964 † † †

50 17 0.5686 -8.6098 35 0.9918 -8.1551 † † †

Table 10: Comparison for Example 6 in terms of the Rests, CPU and TRRi (N = 1024).

sHessen(m) sFOM(m) wsFOM(m)

α m Rests CPU TRRi Rests CPU TRRi Rests CPU TRRi

1.5 20 46 5.8556 -8.1449 † † † † † †

30 28 4.0957 -8.2141 † † † † † †

40 24 3.8067 -8.2320 † † † † † †

50 16 2.7466 -8.0921 † † † † † †

1.8 20 128 16.6387 -8.2001 † † † † † †

30 59 8.7667 -8.1602 † † † † † †

40 46 7.7286 -8.2009 † † † † † †

50 31 5.7586 -8.4335 † † † † † †

20

Again, the wsFOM(m) methods still fail to solve all the shifted linear systems (1) in Example 6. Again,
when all these shifted iterative solvers converge to the desired approximation solutions of shifted linear
systems, they almost lead to the same accuracy of solutions in terms of TRRi. However, our proposed
method still can archive the slightly better accuracy of final solutions in aspects of TRRi. Moreover,
for the case of N = 1024, the sFOM(m) methods are also not able to solve any resulting shifted linear
systems. In conclusion, the proposed sHessen(m) method is the best solvers among these mentioned
shifted iterative methods for handling the shifted linear systems in Example 6.

5 Conclusions

Based on the results of numerical experiments we conclude that our proposed algorithm-the Restarted
Shifted Hessenberg method-indeed can show considerably attractive convergence behaviors with respect
to CPU time elapsed compared to the Restarted Shifted FOM proposed in [43], the Restarted Weighted
Shifted FOM introduced in [20] and the shifted restarted FOM method with deflation established in [22].
Moreover, in some cases where sHessen(m) requires less enough number of restarts to converge, this
algorithm can significatively reduce the CPU consuming time. In addition, since the Hessenberg process
often needs slightly less computational storage than the classical Arnoldi process, so the sHessen(m)

method seems to be preferable to the other Arnolid-based shifted iterative solvers (sFOM(m), wsFOM(m)

and dsFOM(m)) especially if the number of restarts of these four shifted iterative solvers is similar. Besides,
sHessen(m) is able to handle certain shifted linear systems while sFOM(m) and wsFOM(m) cannot.

However, the body of theoretical evidence is not available recently for the fact that sHessen(m) has
advantage over sFOM(m) in terms of convergence analysis. The numerical and computational efficiency of
sHessen(m) in respects of restarting number and CPU time elapsed is just illustrated on a set of prob-
lems arising both from extensive academic and from industrial applications. Furthermore, convergence
analysis is also under consideration. In addition, as earlier mentioned, the preconditioning techniques
are meaningful for accelerating the Krylov subspace methods to solve the shifted linear systems (1). We
will develop the suitable and efficient preconditioning framework, such as Baumann and van Gijzen’s
idea [14] and our recent work [67], to enhance the convergence behavior of the proposed iterative solvers
for shifted linear systems (1) in the future work.

Acknowledgements

The authors are grateful to Prof. Jun-Feng Yin, Dr. Ke Zhang and Dr. Jing Meng for their construc-
tive discussions and insightful comments. Moreover, the author also would like to thank Dr. Roberto
Garrappa and Prof. J.A.C. Weideman for suggesting them to choose the practical complex shifts in Ex-
amples 5-6, respectively. This research is supported by 973 Program (2013CB329404), NSFC (61170309,
61170311, 11301057, and 61402082) and the Fundamental Research Funds for the Central Universities
(ZYGX2013J106, ZYGX2014J084, and ZYGX2013Z005).

References

[1] B.N. Datta, Y. Saad, Arnoldi methods for large Sylvester-like observer matrix equations, and an associated
algorithm for partial spectrum assignment, Linear Algebra Appl., 154-156 (1991), pp. 225-244.

[2] M.I. Ahmad, D.B. Szyld, M.B. van Gijzen, Preconditioned multishift BiCG for H2-optimal model reduction,
Report 12-06-15, Department of Mathematics, Temple University, Revised March 2013 and June 2015, 21
pages. Available online at https://www.math.temple.edu/~szyld/reports/IRKA.BICG.report.rev2.pdf.

[3] V. Simoncini, F. Perotti, On the numerical solution of (λ2A+ λB + C)x = b and application to structural
dynamics, SIAM J. Sci. Comput., 23 (2002), pp. 1875-1897.

[4] A. Feriani, F. Perotti, V. Simoncini, Iterative system solvers for the frequency analysis of linear mechanical
systems, Comput. Methods Appl. Mech. Eng., 190 (2000), pp. 1719-1739.

21

[5] T. Sakurai, H. Sugiura, A projection method for generalized eigenvalue problems using numerical integration,
J. Comput. Appl. Math., 159 (2003), pp. 119-128.

[6] T. Ikegami, T. Sakurai, U. Nagashima, A filter diagonalization for generalized eigenvalue problems based on
the Sakurai-Sugiura projection method, J. Comput. Appl. Math., 233 (2010), pp. 1927-1936.

[7] J.A.C. Weideman, L.N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral,
Math. Comp., 76 (2007), pp. 1341-1356.

[8] R. Garrappa, M. Popolizio, On the use of matrix functions for fractional partial differential equations, Math.
Comput. Simulat., 81 (2011), pp. 1045-1056.

[9] R. Garrappa, A family of Adams exponential integrators for fractional linear systems, Comput. Math. Appl.,
66 (2013), pp. 717-727.

[10] H.-K. Pang, H.-W. Sun, Fast numerical contour integral method for fractional differential equations, J. Sci.
Comput., in press, 19 March 2015. Available online at https://dx.doi.org/10.1007/s10915-015-0012-9.

[11] A. Frommer, B. Nockel, S. Gusken, T. Lippert, K. Schilling, Many masses on one stroke: Economic compu-
tation of quark propagators, Int. J. Mod. Phys. C, 6 (1995), pp. 627-638.

[12] J.C.R. Bloch, A. Frommer, B. Lang, T. Wettig, An iterative method to compute the sign function of a non-
Hermitian matrix and its application to the overlap Dirac operator at nonzero chemical potential, Comput.
Phys. Comm., 177 (2007), pp. 933-943.

[13] S. Olver, Shifted GMRES for oscillatory integrals, Numer. Math., 114 (2010), pp. 607-628.

[14] M. Baumann, M.B. van Gijzen, Nested krylov methods for shifted linear systems, Tech. Report 14-01, Delft
University of Technology, 36 pages, 2014, The Netherlands.

[15] G. Wu, Y.-C. Wang, X.-Q. Jin, A preconditioned and shifted GMRES algorithm for the PageRank problem
with multiple damping factors, SIAM J. Sci. Comput., 34 (2012), pp. A2558-A2575.

[16] A.K. Saibaba, T. Bakhos, P.K. Kitanidis, A flexible Krylov solver for shifted systems with application to
oscillatory hydraulic tomography, SIAM J. Sci. Comput., 35 (2013), pp. A3001-A3023.

[17] T. Bakhos, A.K. Saibabab, P.K. Kitanidis, A fast algorithm for parabolic PDE-based inverse problems based
on Laplace transforms and flexible Krylov solvers, J. Comput. Phys., to appear, 10 July 2015. Available
online at http://dx.doi.org/10.1016/j.jcp.2015.07.007.

[18] R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function
for large-scale electronic structure theory, Phys. Rev. B, 73, 165108 (2006), pp. 1-9.

[19] Y. Saad, Iterative Methods for Sparse Linear Systems (second ed.), SIAM, Philadelphia, PA (2003).

[20] Y.-F. Jing, T.-Z. Huang, Restarted weighted full orthogonalization method for shifted linear systems, Com-
put. Math. Appl., 57 (2009), pp. 1583-1591.

[21] B. Jegerlehner, Krylov space solvers for shifted linear systems, arXiv preprint, hep-lat/9612014, 15 December
1996, 16 pages. Available online at http://arxiv.org/abs/hep-lat/9612014.

[22] J.-F. Yin, G.-J. Yin, Restarted full orthogonalization method with deflation for shifted linear systems, Numer.
Math. Theor. Meth. Appl., 7 (2014), pp. 399-412.

[23] A. Frommer, BiCGStab(ℓ) for families of shifted linear systems, Computing, 70 (2003), pp. 87-109.

[24] R.W. Freund, Solution of shifted linear systems by quasi-minimal residual iterations, L. Reichel, A. Ruttan,
R.S. Varga (Eds.), Numerical Linear Algebra, de Gruyter, Berlin, Germany (1993), pp. 101-121.

[25] M.B. van Gijzen, G.L.G. Sleijpen, J.-P. M. Zemke, Flexible and multi-shift induced dimension reduction
algorithms for solving large sparse linear systems, Numer. Linear Algebra Appl., 22 (2015), pp. 1-25.

[26] L. Du, T. Sogabe, S.-L. Zhang, IDR(s) for solving shifted nonsymmetric linear systems, J. Comput. Appl.
Math., 274 (2015), pp. 35-43.

[27] S. Kirchner, IDR-Verfahren zur Lösung von Familien geshifteter linearer Gleichungssysteme, Diplomarbeit,
Bergische Universität Wuppertal, Fachbereich Mathematik, Germany, Mai, 2011. (In German)

[28] M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur.
Stand., 49 (1952), pp. 409-436.

[29] E. Stiefel, Relaxationsmethoden bester Strategie zur Lsung linearer Gleichungssysteme, Comment. Math.
Helv., 29 (1955), pp. 157-179.

22

[30] R. Fletcher, Conjugate gradient methods for indefinite systems, Lecture Notes in Math., vol. 506, Springer-
Verlag, Berlin, Heidelberg, New York (1976), pp. 73-89.

[31] T. Sogabe, M. Sugihara, S.-L. Zhang, An extension of the conjugate residual method to nonsymmetric linear
systems, J. Comput. Appl. Math., 226 (2009), pp. 103-113.

[32] H.A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 631-644.

[33] K. Abe, G.L.G. Sleijpen, BiCR variants of the hybrid BiCG methods for solving linear systems with non-
symmetric matrices, J. Comput. Appl. Math., 234 (2010), pp. 985-994.

[34] X.-M. Gu, T.-Z. Huang, J. Meng, T. Sogabe, H.-B. Li, L. Li, BiCR-type methods for families of shifted linear
systems, Comput. Math. Appl., 68 (2014), pp. 746-758.

[35] T. Sogabe, S.-L. Zhang, An extension of the COCR method to solving shifted linear systems with complex
symmetric matrices, East Asian J. Appl. Math., 1 (2011), pp. 97-107.

[36] T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the
QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal., 31 (2008),
pp. 126-140.

[37] B.N. Parlett, D.R. Taylor, Z.A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices, Math.
Comp., 44 (1985), pp. 105-124.

[38] A. Frommer, U. Glässner, Restarted GMRES for shifted linear systems, SIAM J. Sci. Comput., 19 (1998),
pp. 15-26.

[39] K.M. Soodhalter, D.B. Szyld, F. Xue, Krylov subspace recycling for sequences of shifted linear systems,
Appl. Numer. Math., 81 (2014), pp. 105-118.

[40] G. Gu, Restarted GMRES augmented with harmonic Ritz vectors for shifted linear systems, Int. J. Comput.
Math., 82 (2005), pp. 837-849.

[41] G. Gu, J. Zhang, Z. Li, Restarted GMRES augmented with eigenvectors for shifted linear systems, Int. J.
Comput. Math., 80 (2003), pp. 1037-1047.

[42] D. Darnell, R.B. Morgan, W. Wilcox, Deflated GMRES for systems with multiple shifts and multiple right-
hand sides, Linear Algebra Appl., 429 (2008), pp. 2415-2434.

[43] V. Simoncini, Restarted full orthogonalization method for shifted linear systems, BIT, 43 (2003), pp. 459-466.

[44] G.-D. Gu, X.-L. Zhou, L. Lin. A flexible preconditioned Arnoldi method for shifted linear systems, J. Comput.
Math., 25 (2007), pp. 522-530.

[45] I. Moret, P. Novati, An interpolatory approximation of the matrix exponential based on Faber polynomials,
J. Comput. Appl. Math., 131 (2001), pp. 361-380.

[46] R.B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix Anal. Appl.,
16(1995), pp. 1154-1171.

[47] M. Heyouni, H. Sadok, A new implementation of the CMRH method for solving dense linear systems, J.
Comput. Appl. Math., 213 (2008), pp. 387-399.

[48] H. Sadok, CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction
algorithm, Numer. Algorithms, 20 (1999), pp. 303-321.

[49] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, UK, 1965.

[50] M. Heyouni, Méthode de Hessenberg Généralisée et Applications, Ph.D. Thesis, Université des Sciences et
Technologies de Lille, France, 1996.

[51] S. Duminil, M. Heyouni, P. Marion, H. Sadok, Algorithms for the CMRH method for dense linear sys-
tems, Numer. Algorithms, in press, 20 May, 2015. Available online at http://dx.doi.org/10.0.3.239/

s11075-015-9997-2.

[52] H. Sadok, Méthodes de projections pour les systèmes linéaires et non linéaires, Habilitation thesis, University
of Lille1, Lille, France, 1994.

[53] H. Sadok, D.B. Szyld, A new look at CMRH and its relation to GMRES, BIT, 52 (2012), pp. 485-501.

[54] K. Zhang, C. Gu, A flexible CMRH algorithm for nonsymmetric linear systems, J. Appl. Math. Comput., 45
(2014), pp. 43-61.

23

[55] K. Hessenberg, Behandlung linearer Eigenwertaufgaben mit Hilfe der Hamilton-Cayleyschen Gleichung, Nu-
merische Verfahren, Bericht 1, Institut für Praktische Mathematik (IPM), Technische Hochschule Darm-
stadt (1940). The scanned report and a biographical sketch of Karl Hessenberg’s life are available at
http://www.hessenberg.de/karl1.html.

[56] G. Howell, D. Stephens, ELMRES, an oblique projection method for solving systems of sparse linear equa-
tions, Technical Report, Florida Institute of Technology, March 24, 2000, 18 pages. Available online at
http://ncsu.edu/hpc/Documents/Publications/gary_howell/elmres320.ps.

[57] D. Stephens, ELMRES: an oblique projection method to solve sparse non-symmetric linear systems, Ph.D.
Dissertation, Florida Institute of Technology, USA, August 1999. Available online at http://ncsu.edu/hpc/
Documents/Publications/gary_howell/stephens.pdf.

[58] T. Davis, Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans. Math. Softw., 38 (1)
(2011), Article 1, 25 pages. Available online at http://www.cise.ufl.edu/research/sparse/matrices/.

[59] A. van der Sluis, H.A. van der Vorst, The rate of convergence of conjugate gradients, Numer. Math., 48
(1986), pp. 543-560.

[60] H.A. van der Vorst, C. Vuik, The superlinear convergence behaviour of GMRES, J. Comput. Appl. Math.,
48 (1993), pp 327-341.

[61] K. Meerbergen, The solution of parametrized symmetric linear systems, SIAM J. Matrix Anal. Appl., 24
(2003), pp. 1038-1059.

[62] Z.-Z. Bai, M. Benzi, F. Chen, Modified HSS iteration methods for a class of complex symmetric linear
systems, Computing, 87 (2010), pp. 93-111.

[63] S. Zhai, X. Feng, Y. He, An unconditionally stable compact ADI method for three-dimensional time-fractional
convection-diffusion equation, J. Comput. Phys., 269 (2014), pp. 138-155.

[64] G. Wu, H.-K. Pang, J.-L. Sun, Preconditioning the restarted and shifted block FOM algorithm for matrix
exponential computation, arXiv preprint, 24 pages, 4 May 2014. Available online at http://arxiv.org/abs/
1405.0707.

[65] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, USA, 1999.

[66] E. Sousa, C. Li, A weighted finite difference method for the fractional differential equation based on the
Riemann-Liouville derivative, Appl. Numer. Math., 90 (2015), pp. 22-37.

[67] W.-H. Luo, T.-Z. Huang, L. Li, Y. Zhang, X.-M. Gu, Efficient preconditioner updates for unsymmetric shifted
linear systems, Comput. Math. Appl., 67 (2014), pp. 1643-1655.

24

