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a b s t r a c t

This paper studies the disturbance decoupling problem for multi-agent systems with single integrator
dynamics and a directed communication graph.We are interested in topological conditions that imply the
disturbance decoupling of the network, and more generally guarantee the existence of a state feedback
rendering the system disturbance decoupled. In particular, we will develop a class of graph partitions,
which can be described as a ‘‘topological translation’’ of controlled invariant subspaces in the context
of dynamical networks. Then, we will derive sufficient conditions in terms of graph partitions such that
the network is disturbance decoupled, as well as conditions guaranteeing solvability of the disturbance
decoupling problem. The proposed results are illustrated by a numerical example.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Analysis and design of multi-agent systems and networks of
dynamical agents have turned to an extremely popular research
target in the last decade. Studying consensus/synchronization and
designing feedbackprotocols to achieve consensus/synchronization
have perhaps been the most popular framework in this direction;
see e.g. [1–4].

Motivated by the fact that agents are subjected to external dis-
turbances in practice, consensus analysis in the presence of dis-
turbance has been carried out in the literature, and consensus
protocols which are robust against external disturbances have
been proposed; see e.g. [5,4]. Another example of dynamical net-
works in which one seeks for disturbance rejection is balancing
demand–supply in distribution networks; see e.g. [6,7]. In this
framework, storage variables correspond to vertices, flow inputs
corresponding to edges, disturbances amount for inflows and out-
flows at certain vertices, and the objective is to achieve load bal-
ancing, that is convergence of storage variables to the same value
by regulating the flow inputs.

It is well-known that relative information of the agents play a
crucial role in the context of distributed control. In fact, reaching
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consensus and achieving a desired formation heavily relies on the
efficient and accurate transmission of relative information. In this
paper, we investigate the conditions under which communication
in certain channels is not affected by the external disturbances
acting on some of the agents. To achieve this, we consider the
possibility of applying state feedback controllers to some agents,
called leaders.

An important issue in studying networks of dynamical agents
is to deduce certain network properties from the ‘‘network topol-
ogy’’ which is typically given in terms of the so-called ‘‘commu-
nication graph’’ of the network. For instance, it is well-known that
connectivity of the communication graph plays a crucial role in the
consensus problem (see e.g. [1]). Recently, studying network prop-
erties from a topological perspective has attracted the attention of
many researchers see e.g. [8–11]. A notable instance is controllabil-
ity analysis; see e.g. [12,11,13,10,14,15]. In this framework, agents
are labeled as leaders and followers. Leaders are agents through
which external input signals are injected to the network, and the
rest of the agents are called followers. Then, controllability analysis
amounts to investigate the possibility of deriving the states of the
agents to arbitrary values by appropriate input signals applied to
the leaders. Graph partitions, and in particular ‘‘almost equitable
partitions’’, has been proven to be a useful tool in controllability
analysis [12] and also model order reduction [16]. These partitions
can be considered as a topological translation of L-invariant sub-
spaces, with L denoting the Laplacian matrix of the network com-
munication graph; see e.g. [17,12].

In this paper,we study the ‘‘disturbance decoupling problem’’ of
diffusively coupled leader–follower networks, where each vertex
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has single integrator dynamics and some agents are affected by
external disturbances. As mentioned earlier, roughly speaking, the
disturbance decoupling problem (DDP) for a classical linear system
with inputs and outputs, amounts to find a feedback (typically,
state feedback) such that the output of the closed-loop system
is not affected by disturbance signals acting on the states of the
system, see e.g. [18]. If such a feedback exists, then we say the DDP
for the system is solvable.

Despite being potentially attractive, only very few problems
have been formulated in terms of disturbance decoupling problem.
An exception is [19], where DDP has been related to formation con-
trol of nonholonomic mobile robots. The notion of disturbance de-
coupling problemhas also been studied in the context of a dynamic
game contest; see [20].

Our contribution comes from but goes beyond the disturbance
decoupling solution in the geometric approach for linear systems.
The geometric approach to linear system synthesis was inaugu-
rated by the recognition of controlled invariant subspaces, due
independently to Basile and Marro [21] and to Wohnam and
Morse [22]. Disturbance decoupling problem is in fact an immedi-
ate application of the controlled invariance property, see e.g. [23].
To the authors’ best knowledge, the current manuscript is the first
attempt to study the disturbance decoupling problem for networks
of dynamical agents from a topological perspective. Studying net-
work properties such as controllability and DDP from a topological
perspective provides valuable insights into the structure/behavior
of the network, and it will facilitate the design.

In this paper, we introduce a new class of partitions, namely al-
most equitable partitions with respect to a cell, in order to provide
an appropriate topological translation for controlled invariant sub-
spaces in the context of dynamical networks. Then, by using this
extended notion of almost equitability, we derive sufficient (topo-
logical) conditions for the network to be disturbance decoupled.
More precisely, we consider both open loop and closed loop dis-
turbance decoupling problem. In the first case, we investigate if the
network is already disturbance decoupled without applying input
signals to the leaders. In the latter case, we consider the solvability
of the DDP for the network that amounts to find (if possible) a state
feedback controller rendering the network disturbance decoupled.
In particular, we establish sufficient topological conditions guaran-
teeing the network to be disturbance decoupled (open loop) aswell
as conditions guaranteeing the solvability of DDP (closed loop). A
crucial point in the context of distributed control is to exploit the
relative (local) information of the states of the agents rather than
absolute (global) information of the states. As desired, it will be
observed that in case the DDP for the network is solvable then the
controller rendering the network disturbance decoupled is indeed
using relative information of the states of the agents.

The structure of this paper is as follows. In Section 2, some pre-
liminarymaterials are provided, and the open loop and closed loop
disturbance decoupling problems for multi-agent systems are for-
mulated. In Section 3, the notion of almost equitabilitywith respect
to a cell is proposed and characterized in terms of controlled in-
variant subspaces. In Section 4, we establish sufficient conditions
guaranteeing the network to be disturbance decoupled as well as
conditions guaranteeing the solvability of DDP. A brief discussion
on algorithms verifying the proposed topological conditions is pro-
vided in Section 5. To illustrate the proposed results, a numerical
example is provided in Section 6. Finally, the paper ends with a
summary in Section 7.

2. Diffusively coupled multi-agent systems and disturbance
decoupling

2.1. Leader–follower diffusively coupled multi-agent systems with
disturbance

In this paper, we consider a multi-agent system consisting of
n > 1 agents labeled by the set V = {1, 2, . . . , n}. We assign three
subsets of V as follows: VL = {ℓ1, ℓ2, . . . , ℓm} where m 6 n, VF =

V \ VL and VD = {w1, w2, . . . , wr} where r 6 n.
We associate the dynamics

ẋi(t) =


zi(t) + uk(t) + dl(t) if i = wl ∈ VD

zi(t) + uk(t) otherwise
(1)

to each agent i = ℓk ∈ VL, and

ẋi(t) =


zi(t) + dl(t) if i = wl ∈ VD

zi(t) otherwise
(2)

to each agent i ∈ VF, where xi ∈ R represents the state of agent
i ∈ V , zi indicates the coupling variable of agent i ∈ V , uk ∈ R is
an external control input signal received by agent i = ℓk ∈ VL, and
dl ∈ R is taken as an external disturbance signal influencing agent
i = wl ∈ VD.

Considering the roles of the defined subsets of V , we refer to VL
as the leader set, VF as the follower set, and VD as the disturbance set.
Correspondingly, we say i is a leader if i ∈ VL, and i is a follower if
i ∈ VF .

We consider a simple directed graph G = (V , E), where V is the
vertex set and E ⊆ V×V is the arc set ofG. For the sake of simplicity
and clarity of the presentation,we restrict ourselves to unweighted
graphs. For two distinct vertices i, j ∈ V , we have (i, j) ∈ E if there
is an arc from i to j with i being the tail and j being the head of
the arc. Then i is said to be a neighbor of j. The coupling variable zi
admits the following diffusive coupling rule:

zi(t) = −


(j,i)∈E

(xi(t) − xj(t)). (3)

By defining x(t) = col(x1(t), x2(t), . . . , xn(t)), u(t) = col
(u1(t), u2(t), . . . , um(t)) and d(t) = col(d1(t), d2(t), . . . , dr(t)),
we write the above leader–follower diffusively coupled multi-
agent system (1)–(3) into a compact form as follows:

ẋ(t) = −Lx(t) + Mu(t) + Sd(t) (4)

where L is the in-degree Laplacian of the simple directed graph G
(see e.g. [8, p. 26]), the matrixM ∈ Rn×m is defined by

Mik =


1 if i = ℓk

0 otherwise
(5)

and the matrix S ∈ Rn×l is defined by

Sil =


1 if i = wl

0 otherwise.
(6)

To introduce the output variables, we consider another simple
directed graph Gy = (V , Ey) and define the output y(t) of the sys-
tem (4) as follows:

y(t) = R⊤x(t) (7)

where R is the incidence matrix of Gy (see e.g. [8, p. 23]). Observe
that the output variables (7) capture the differences between the
state components of certain pairs of agents determined by the arc
set Ey of Gy. In particular, an arc from i to j in Gy corresponds to the
output variable xi − xj in (7).

In this paper, we study the so-called disturbance decoupling
problem for multi-agent system (4) by establishing graph topologi-
cal conditions. Roughly speaking, our aim is to investigate the effect
of the disturbance signal d on the output y, given by (7).

For a formal description of the problem and discussing the pro-
posed results, we first review the disturbance decoupling problem
and its solution for ordinary linear systems.
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2.2. Review: disturbance decoupling problem of linear systems

Consider the linear system

ẋ(t) = Ax(t) + Ed(t) (8a)
y(t) = Cx(t) (8b)

where x ∈ Rn is the state, d ∈ Rr is the disturbance, y ∈ Rq is
the output, and all involved matrices are of appropriate sizes. We
denote the state trajectory of the system (8) for the initial state
x(0) = x0 and the disturbance d by xx0,d and the corresponding
output trajectory by yx0,d. We quote the following definition for
later use.

Definition 1. The linear system (8) is said to be disturbance decou-
pled if yx0,d1(t) = yx0,d2(t) for all x0 ∈ Rn, all locally-integrable
disturbances d1, d2, and all t ∈ R. Due to linearity, this is equiv-
alent to the condition y0,d1(t) = y0,d2(t) for all locally-integrable
disturbances d1, d2, and all t ∈ R.

To further illustrate the notion of disturbance decoupling, note
that for any given initial x0 and locally integrable disturbance dwe
have yx0,d(t) = yx0,0(t) + y0,d(t) where yx0,0(t) = CeAtx0, and
y0,d(t) = C

 t
0 eA(t−τ)Ed(τ ). Hence, disturbance decoupling of (1)

means that the forced response of the system to the disturbance d
is zero, i.e. y0,d(t) = 0.

In what follows, we quickly review the geometric approach for
DDP. For more details, we refer to [18,24].

Let ⟨A | im E⟩ denote the controllable subspace corresponding
to the matrix pair (A, E), that is ⟨A | im E⟩ = im E + A im E +

· · · + An−1im E. As it is well-known, the subspace ⟨A | im E⟩ is the
smallest A-invariant subspace that contains im E. Note that we call
a subspace V ⊆ RnA-invariant if AV ⊆ V where A : Rn

→ Rn. For
the matrix pair, (A, C), the unobservable subspace is denoted by
⟨ker C | A⟩, that is ⟨ker C | A⟩ = ker C∩A−1 ker C∩· · ·∩A−n+1 ker C .
Here, for a given subspaceX, A−1X denotes the subspace {x : Ax ∈

X}. It is well-known that the unobservable subspace ⟨ker C | A⟩ is
the largest A-invariant subspace that is contained in ker C .

Necessary and sufficient conditions for the system (8) to be
disturbance decoupled is well-known and are recapped in the
following lemma.

Lemma 2. The following conditions are equivalent.

(1) The system (8) is disturbance decoupled.
(2) There exists an A-invariant subspace V such that im E ⊆ V ⊆

ker C.
(3) The inclusion im E ⊆ ⟨ker C | A⟩ holds.
(4) The inclusion ⟨A | im E⟩ ⊆ ker C holds.

Note that the equivalence between the first three statements is
quite standard and can be, for instance, found in [18, Ch. 4]. The
fourth statement immediately follows from the first two and will
be employed in the context of multi-agent systems later.

Now, suppose that the linear system (8) is not disturbance de-
coupled. Then, one may think of applying control inputs to manip-
ulate the system dynamics such that the closed loop systemwill be
disturbance decoupled. This is discussed next.

Consider the linear system

ẋ(t) = Ax(t) + Bu(t) + Ed(t) (9a)
y(t) = Cx(t) (9b)

where u ∈ Rm is the input and B ∈ Rn×m. The disturbance
decoupling problem by state feedback is defined as follows.

Definition 3. The disturbance decoupling problemby state feedback
for the system (9) amounts to finding a state feedback of the form
u = Kx such that the resulting closed loop system
ẋ(t) = (A + BK)x(t) + Ed(t) (10a)
y(t) = Cx(t) (10b)

is disturbance decoupled. Moreover, if such a state feedback exists,
then we say the disturbance decoupling problem for system (9) is
solvable.

Necessary and sufficient conditions for solvability of distur-
bance decoupling problem are among the classical results of the
geometric approach. In order to state these classical results, we
need to review a fewmore notions of geometric approach. We say
a subspaceV ⊆ Rn is controlled invariant for the pair (A, B) if there
exists K such that (A + BK)V ⊆ V . Moreover, we have
V is controlled invariant for (A, B) ⇔ AV ⊆ V + im B. (11)
For the pair (A, B), we denote the set of all controlled invariant sub-
spaces which are contained in ker C by V(A, B, C). Let V∗(A, B, C)
denote the maximal element of the set V(A, B, C) with respect to
the partial order induced by the subspace inclusion, that is V ⊆

V∗(A, B, C) for all V ∈ V(A, B, C). The existence and uniqueness
of such an element immediately follow from finite-dimensionality.
It is well-known that V∗(A, B, C) ∈ V(A, B, C). Now, the following
lemma states the necessary and sufficient condition for the solv-
ability of the disturbance decoupling problem for system (10).

Lemma 4. Considering the system (10), the following statements are
equivalent:
(1) The disturbance decoupling problem for system (10) is solvable.
(2) There exists a controlled invariant subspace V for the pair (A, B)

such that im E ⊆ V ⊆ ker C.
(3) The inclusion im E ⊆ V∗(A, B, C) holds.

2.3. Problem formulation

In this subsection,we formally state the disturbance decoupling
problem for multi-agent systems, which we will study in this pa-
per. Now, recall the multi-agent system (4) together with the out-
put (7). Similar to Section 2.2, we first consider the open loop case
where no external control input is applied to the agents. Conse-
quently, we propose the following problem.

Problem 5. Consider the input/state/output system given by

ẋ(t) = −Lx(t) + Sd(t) (12a)

y(t) = R⊤x(t) (12b)

where the matrices L, S, and R are defined as before. Determine
(topological) conditions under which the system (12) is distur-
bance decoupled.

Note that if the system (12) is disturbance decoupled, then we
have yx0,d(t) = yx0,0(t) for any given initial state x0 and locally
integrable disturbance d. This means that the output trajectories
of the system, which correspond to relative information of certain
states of the system, are not influenced by disturbance signals in
this case.

This problem together with the proposed solutions will be dis-
cussed in detail in Sections 4.1 and 5. In case the system (12) is
not disturbance decoupled, similar to the idea in Section 2.2, we
investigate the possibility of rendering the system disturbance de-
coupled by choosing some agents as leaders and apply appropriate
inputs to these agents. This leads us to the following problem.

Problem 6. Consider the input/state/output system given by

ẋ(t) = −Lx(t) + Mu(t) + Sd(t) (13a)

y(t) = R⊤x(t) (13b)

where the matrices L,M, S, and R are defined as before. Determine
(topological) conditions under which the disturbance decoupling
problem for system (13) is solvable in the sense of Definition 3.
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The corresponding results and discussions for Problem 6 are
provided in Sections 4.2 and 5.

3. Graphpartitions andalmost equitabilitywith respect to a cell

Before discussing solutions for the aforementioned problems, in
this section we review some notions from graph theory, including
graph partitions and, in particular, almost equitable partitions.
Moreover, we define an extended version of almost equitability.
This new notion together with the results established in this
section provides the main foundation for the subsequent results
which will be developed in Section 4.

Let G = (V , E) be a simple (unweighted) directed graph where
V = {1, 2, . . . , n}, E ⊆ V×V , and (i, i) ∉ E. By L(G), we denote the
in-degree Laplacian of G (see [8, p. 26]). We simply use L to denote
the Laplacian matrix when the underlying graph is clear from the
context.

We call any subset of V a cell of V . We call a collection of cells,
given by ρ = {C1, C2, . . . , Ck}, a partial partition of V if Ci ∩ Cj = ∅
whenever i ≠ j. In addition, we call ρ a partition of V if it is a partial
partition and∪i Ci = V . In someoccasions, to clarify the underlying
graph we say ρ is a (partial) partition of G = (V , E), or shortly G,
meaning that ρ is a (partial) partition of V .

For a cell C ⊆ V , we define the characteristic vector of C as

pi(C) =


1 if i ∈ C
0 otherwise. (14)

For a partial partition ρ = {C1, C2, . . . , Ck}, we define the
characteristic matrix of π as P(ρ) =


p(C1) p(C2) · · · p(Ck)


.

Finally, the notion of partial ordering for partitions is defined as
follows. We say that a partition π1 is finer than another partition
π2, or alternativelyπ2 is coarser thanπ1, if each cell ofπ1 is a subset
of some cell of π2 and we write π1 6 π2. Also we write as π1 ≰ π2
meaning that π1 is not finer than π2. It is a direct consequence of
the definition that

π1 6 π2 ⇐⇒ im P(π2) ⊆ im P(π1). (15)

3.1. Almost equitable partitions

Here, we adopt the notion of almost equitability (see e.g. [17])
for directed graphs. For a given cell C ⊆ V , we write

N(j, C) = {i ∈ C : (i, j) ∈ E}.

We call a partition π = {C1, C2, . . . , Ck} an almost equitable
partition (AEP) of G if for each i, j ∈ {1, 2, . . . , k} with i ≠ j there
exists an integer dij such that |N(v, Cj)| = dij for all v ∈ Ci, where
|N| denotes the cardinality of N .

For a given matrix A, we denote its (i, j)th element by Aij. Then,
associated to an almost equitable partition π = {C1, C2, . . . , Ck},
we define the matrix Lπ as:

(Lπ )ij =


−dij if i ≠ j
si otherwise (16)

where si =


j≠i dij.
For undirected graphs, characterization of almost equitable

partitions in terms of invariant subspaces has been provided in [17,
12]. In particular, it is shown that a partition is almost equitable if
and only if the image of its characteristic matrix is L-invariant. This
result can be extended to the case of directed graphs as stated in
the following lemma.

Lemma 7. A partition π = {C1, C2, . . . , Ck} is an AEP of G if and
only if im P(π) is L-invariant.

Proof. See [25, Lem. 7.2.2]. �
Note that, if π is an AEP, then based on the proof of Lemma 7
we have

LP(π) = P(π)X (17)

for X = Lπ where Lπ is given by (16). Moreover, X = Lπ is the
unique solution of (17) as P(π) has full column rank.

3.2. Almost equitability with respect to a cell

Next, we define almost equitability with respect to a given cell
as follows. Given a cell C and a partition π = {C1, C2, . . . , Ck}, we
call π an AEP with respect to C if for each i, j ∈ {1, 2, . . . , k} with
i ≠ j there exists an integer dij such that |N(v, cj)| = dij for all
v ∈ Ci\C .

Observe that if π is an AEP, then the number of neighbors that
a vertex in Ci has in Cj is independent of the choice of the vertex
in Ci, for all i, j ∈ {1, 2, . . . , k} with i ≠ j. The notion of almost
equitability with respect to a cell C is obtained by exempting
the nodes in C from satisfying neighborhood constraints of the
ordinary almost equitability. Clearly, π is an AEP of G if and only
if it is an AEP with respect to the empty cell. Moreover, if π is an
AEP of G, then it is an AEP with respect to any arbitrary cell of V .

Note that if π is an almost equitable partition with respect to C ,
then, similar to ordinary almost equitable partitions, we can define
the matrix Lπ as in (16). In this case we use the notation LC

π to
distinguish with the case of ordinary almost equitability.

Our aim, here, is to characterize the property of almost equi-
tability with respect to a cell. To state this characterization, we
need some additional notation and auxiliary results.

For a given matrix M ∈ Rm×m, let Mα with α ⊆ {1, 2, . . . ,m}

denote the submatrix of M obtained by collecting the rows of M
indexed by α. Then, the following result holds.

Lemma 8. A partition π is an AEP with respect to cell C if and only if

Lα im P(π) ⊆ im Pα(π) (18)

where α = V\C.

Proof. The proof is analogous to that of Lemma 7 by restricting the
rows of L and P to those indexed by α. �

Note that, if π is an AEP with respect to C , we have

LαP(π) = Pα(π)LC
π (19)

where α = V\C , and LC
π is given by (16) with the elements dij

obtained from the definition of almost equitability with respect
to C . Now, we have the following characterization for almost
equitability with respect to a cell.

Theorem 9. Let C = {ℓ1, ℓ2, . . . , ℓm} be a cell of V and π =

{C1, C2, . . . , Ck} be a partition of G. Then the following statements
are equivalent:
(1) The partition π is an AEP of G with respect to C.
(2) Lim P(π) ⊆ im P(π) + im P(ρ) where ρ = {{ℓ1}, {ℓ2}, . . . ,

{ℓm}}.
(3) There exists a simple (unweighted) directed graph H = (V , F)

obtained from G = (V , E) by adding some non-existing or
removing some existing arcs from a vertex in V to a vertex in C
such that π is an almost equitable partition of H.

Proof. First we show that the first two statements are equivalent.
It is easy to observe that the second statement is equivalent to:
Lᾱ

Lα


im P(π) ⊆ im


P ᾱ(π)
Pα(π)


+ im


Im
0


, (20)

where α = V\C and ᾱ = C . This holds if and only if Lα im P(π) ⊆

im Pα(π), which is equivalent to almost equitability of π with
respect to C by Lemma 8.
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Now, by assuming that the first two statements hold, we prove
the third statement as follows. Since π is an AEP with respect to
C , the equality (19) holds. Let the matrices X and Y be defined as
X = LC

π and Y = LᾱP(π) − P ᾱ(π)LC
π . Then, clearly, we have

Lᾱ

Lα


P(π) =


P ᾱ(π)
Pα(π)


X +


Im
0


Y .

Now, for each i = {1, 2, . . . ,m}, let ri be an integer such that
ℓi ∈ Cri . Then, it is easy to observe that the matrix Y is obtained as

Yij = −|N(ℓi, Cj)| − (LC
π )rij (21)

for each i ∈ {1, 2, . . . ,m}, j = {1, 2, . . . , k}, and j ≠ ri. The
remaining m elements of Y are such that Y11 = 0. By (16), the
equality (21) can be rewritten as

Yij = −|N(ℓi, Cj)| + drij

where drij are obtained from the definition of almost equitability
with respect to C .

Now, we construct the graph H = (V , F) by adding some non-
existing arcs or removing some existing arcs of G as follows. For
each i ∈ {1, 2, . . . ,m} and j = {1, 2, . . . , k}, we add a total num-
ber of Yij arcs from some available nodes in Cj to ℓi if Yij > 0. Note
that multiple arcs between two vertices is not allowed. This is al-
ways possible since drij 6 |Cj|, and hence Yij 6 |Cj| − |N(ℓi, Cj)|.
Similarly, if Yij < 0, we remove a total number of |Yij| existing arcs
which are from some nodes in Cj to ℓi. This is also always imple-
mentable, as −Yij 6 |N(ℓ, Cj)|. Denoting the arc set obtained in
this way by F , it is easy to observe that the partition π is an AEP of
H = (V , F) by construction.

It remains to show that the third statement implies either of the
other two. Assume that there exists a simple graph H = (V , F) ob-
tained from G = (V , E) by adding some non-existing or removing
some existing arcs from some vertices in V to vertices in C such
that π is an almost equitable partition of H . Let L(H) denote the
Laplacian matrix of H . Then, by Lemma 7, we have

L(H)P(π) = P(π)X (22)

for some matrix X . Hence, Lα(H)P(π) = Pα(π)X for α = V\C .
Now, since the head of all arcs which are added or removed from
G are all in C , we have Lα(H) = Lα(G). Consequently, π is an AEP
of Gwith respect to C by Lemma 8. �

4. Solution to the disturbance decoupling problem of multi-
agent systems

In this section, we propose solutions for Problems 5 and 6.
Recall that VD = {w1, w2, . . . , wr}. We assume without loss of
generality that leaders are not affected by the disturbance signals,
i.e.VL∩VD = ∅. Indeed, it is easy to show that ifVL∩VD is nonempty
then one can redefine the leader set as V ′

L = VL\(VL∩VD), and solve
the DDP with respect to the leader set V ′

L . Now, let the partition πS
of V be defined as

πS = {{w1}, {w2}, . . . , {wr}, V \ VD}. (23)

Obviously, we have

im S ⊆ im P(πS). (24)

Moreover, it is easy to observe that there exists a partition of G, say
πR such that

im P(πR) = ker R⊤. (25)

Then, the following result holds.

Lemma 10. The multi-agent system (12) is disturbance decoupled
only if πR 6 πS . Similarly, the disturbance decoupling problem for
system (13) is solvable only if πR 6 πS holds.
Proof. Suppose that the system (12) is disturbance decoupled, or
the DDP for system (13) is solvable. Then by Lemmas 2 and 4, it
follows that im S ⊆ ker R⊤

= im P(πR). Hence, by (23) and the
structure of S in (6), we have πR 6 πS . �

Next, we discuss the open loop and the closed loop disturbance
decoupling, and establish sufficient conditions for Problems 5 and
6.

4.1. Open loop disturbance decoupling

The following theorem gives a sufficient (topological) condition
for multi-agent system (12) to be disturbance decoupled.

Theorem 11. Let πS and πR be given by (23) and (25), respectively.
Then the multi-agent system (12) is disturbance decoupled if there
exists a partition π such that both of the following conditions hold:

(1) π is an AEP of G
(2) πR 6 π 6 πS .

Proof. Suppose that conditions 1 and 2 hold. Then, by Lemma 7
and (15), we obtain that im P(π) is L-invariant and im S ⊆

im P(π) ⊆ ker R⊤. Hence, it follows from Lemma 2 that (12) is
disturbance decoupled. �

Based on Theorem 11, the DDP for (12) is solvable if there exists
an almost equitable partition which is finer than πS and coarser
than πR. In principle, this requires searching for all almost eq-
uitable partitions of G to find one which satisfy the partial or-
dering constraint of Theorem 11. However, similar to the idea of
largest/smallest invariant subspaces for ordinary linear systems
(see Section 2.2), one may try to find a partition, say π∗, which
is extremal in certain sense. Then, providing that such a partition
exists and can be efficiently computed, disturbance decoupling of
(12) can be guaranteed upon a satisfaction of a single and easily
verifiable condition. This will be discussed in Section 5.

4.2. Closed loop disturbance decoupling

Now suppose that the DDP is not solvable for (12). Then, similar
to the case of general linear systems in Section 2.2, one may try
to make the system (12) disturbance decoupled by applying a
control input. This brings us to Problem 6, the solution of which
is discussed in this subsection.

Recall the notion of controlled invariant subspaces in Sec-
tion 2.2. As we are dealing with graph topological conditions, we
are not interested in all subspaces but only those which can be
written as an image of a partition. As observed in the previous
subsection, almost equitable partitions corresponds to L-invariant
subspaces. Now, the following Lemma establishes the relationship
between almost equitability with respect to a cell and controlled
invariance of the pair (L,M).

Lemma 12. For a given graph G, let VL,M, and L be defined as before.
Let π be a partition of G. Then im P(π) is controlled invariant for
the pair (L,M) if and only if π is an almost equitable partition with
respect to VL.

Proof. Recall that VL = {ℓ1, ℓ2, . . . , ℓm}. Note that im M =

im P(ρ) where ρ = {{ℓ1}, {ℓ2}, . . . , {ℓm}}. The result now
immediately follows by using (11) together with Theorem 9. �

Nowwe are at the position to apply the results of Section 3.2 to
disturbance decoupling problem of multi-agent system (13). This
is discussed in the following theorem.

Theorem 13. Let VL, πR, and πS be defined as before. Then the dis-
turbance decoupling problem for multi-agent system (13) is solvable
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if there exists a partition π of G such that both of the following con-
ditions hold:

(1) π is almost equitable with respect to VL
(2) πR 6 π 6 πS .

Proof. Suppose that the conditions 1 and 2 hold. Then, by
Lemma 12, im P(π) is controlled invariant for the pair (L,M).
Moreover, we have im P(πS) ⊆ im P(π) ⊆ im P(πR). Hence,
by (24) and (25), we obtain that im S ⊆ im P(π) ⊆ ker R⊤.
Consequently, the DDP for system (13) is solvable by Lemma 4. �

Suppose that the conditions of Theorem 13 hold, and hence the
DDP for system (13) is solvable. Thismeans that there exists a state
feedback u(t) = Kx(t) such that the resulting closed loop system is
disturbance decoupled. To see the structure of the controller, note
that π is an AEP of G = (V , E) with respect to the leader set VL.
Hence, π is an AEP of H = (V , F) where H is obtained from G
by adding or removing arcs from vertices in V to vertices in VL, as
discussed in the proof of Theorem 9. These adding and removing
of the arcs are indeed associated with the state feedback controller
whichmakes the system (13) disturbance decoupled. In particular,
it is easy to observe that adding an arc from a vertex in V , say i, to a
vertex in VL, say ℓk, corresponds to the control signal xi(t) − xℓk(t)
which is to be applied to the leader vertex ℓk. Similarly, removing
an arc from i to ℓk corresponds to the term xℓk(t) − xi(t) in the
control signal. Consequently, the controller can be expressed as

uk(t) =


(j,ℓk)∈F\E

(xj(t) − xℓk(t)) −


(j,ℓk)∈E\F

(xj(t) − xℓk(t)) (26)

for each k = {1, 2, . . . ,m}. This shows that, as demanded in the
context of distributed control, the controller only uses the relative
information of the states of the agents to achieve disturbance de-
coupling for system (13). Observe that, by applying the controller
(26) to system (13), we obtain the following input/state/output
system:

ẋ(t) = −L(H)x(t) + Sd(t) (27a)

y(t) = R⊤x(t), (27b)

where L(H) denotes the Laplacian matrix of the graph H = (V , F).
The system (27) is indeed disturbance decoupled by Theorem 11,
as π is an AEP of H and πR 6 π 6 πS . This is in accordance with
the fact that the DDP for system (13) is solvable.

Remark 14. It is worth mentioning that, in general, a full charac-
terization of geometrical/structural properties of dynamical net-
works in terms of graph partitions is very unlikely. The reason lies
in the gap between invariant subspaces and image of graph parti-
tions. For instance, as illustrated by the example provided in [12,
Rem. 2], the controllable subspace of a multi-agent system with
Laplacian-based dynamics cannot always be associated to an im-
age of a partition. Likewise, we postulate that the existence of a
necessary and sufficient condition for solvability of the disturbance
decoupling problem is very unlikely in terms of ordinary graph
partitions, and it would require an appropriate extended notion of
graph partitions.

5. Algorithms

LetΠ denote the set of all partitions of V . With the partial order
‘‘6’’, the setΠ becomes a complete lattice [26], meaning that every
subset of Π has both its greatest lower bound and least upper
bound within Π . We use ∨Π ′ to denote the least upper bound of
a subset Π ′

∈ Π . By definition, ∨Π ′ has the following property:

∨ Π ′ > π, for all π ∈ Π ′ (28a)

∃π̃ ∈ Π s.t. π 6 π̃ for all π ∈ Π ′
H⇒ ∨Π ′ 6 π̃ . (28b)
Let ΠAEP denote the set of all almost equitable partitions of G.
For a given partition π0 of G, we define

ΠAEP(π0) = {π ∈ ΠAEP : π 6 π0}. (29)

Then, the following result holds.

Lemma 15. Let πR and πS be given as before. Then the following two
statements are equivalent.
(1) There exists a partition π ∈ ΠAEP such that πR 6 π 6 πS
(2) πR 6 ∨ΠAEP(πS).

Proof. Suppose that the first statement holds. Then,π ∈ ΠAEP(πS).
Hence, by definition, π 6 ∨ΠAEP(πS) which yields πR 6
∨ΠAEP(πS).

Conversely, suppose that the second statement holds. Then,
obviously πR 6 ∨ΠAEP(πS) 6 πS . Besides, it is shown in [12]
that ∨ΠAEP(π0) ∈ ΠAEP(π0) for any given partition π0. Therefore,
∨ΠAEP(πS) serves as a partition satisfying the conditions in
Statement 1 of the lemma. �

By Lemma 15 and Theorem 11, we obtain the following result.

Corollary 16. The multi-agent system (12) is disturbance decoupled
if πR 6 ∨ΠAEP(πS).

As observed, verification of the conditions provided in Theo-
rem 11 boils down to the computation of∨ΠAEP(πS). An algorithm
to compute ∨ΠAEP(πS) is provided in [12].

In Theorem 13, sufficient condition in terms of graph topologi-
cal conditions have been provided for the multi-agent system (13)
to be disturbance decoupled. In principle, one needs to perform an
exhaustive search to find a promising partition satisfying the pro-
posed constraints. Hence, it is of interest to have an efficient al-
gorithm to verify the conditions provided in Theorem 13. Again an
idea herewould be to try to compute an extremal partition, and de-
rive a similar result to that of Corollary 16. However, unfortunately,
one can show that the semi-lattice structure of (29) is lostwhen or-
dinary almost equitability is replaced by almost equitability with
respect to a cell. Therefore, additional assumption/treatments are
needed for extending the result of the previous subsection to the
case of almost equitability with respect to a cell. It turns out that
under an additional assumption on the structure ofπR, namely that
each cell of πR contains at least one follower, i.e. one vertex in VF ,
we can construct an extremal partitionπ∗ such that the conditions
proposed in Theorem 13 boil down to πR 6 π∗ 6 πS . We refer the
interested reader to [25, Ch. 7] for further details.

6. A numerical example

To illustrate the proposed results, consider the multi-agent
system (4) with the communication graph G as shown in Fig. 1
(left). For this system, let black vertices denote the leaders, i.e. VL =

{2}. Also let the square vertices correspond to the agents affected
by disturbance signals, i.e. VD = {3, 5}. We are interested in
decoupling the outputs x1(t) − x2(t) and x4(t) − x6(t) from the
disturbance. Hence, the output variables in this case are given by
y = R⊤xwhere

R⊤
=


1 −1 0 0 0 0 0 0
0 0 0 1 0 −1 0 0


and x ∈ R8. Then πR and πS are given by:

πR = {{1, 2}, {3}, {4, 6}, {5}, {7}, {8}}
πS = {{1, 2, 4, 6, 7, 8}, {3}, {5}}.

By [12], the partition ∨ΠAEP(πS) in Lemma 15 is obtained as

∨ΠAEP(πS) = {{1}, {7, 8}, {4, 6}, {2}, {3}, {5}}.

Now since πR ≰ ∨ΠAEP(πS), the disturbance decoupling of the
open loop system (12) is not guaranteed by Corollary 16.
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Fig. 1. The simple directed graph G (left) and H (right) of a diffusively coupled multi-agent system.
Next, we consider solvability of the disturbance decoupling
problem for this system. Let the partition π∗ be given as

π∗
= {{1, 2}, {7, 8}, {4, 6}, {3}, {5}}.

It is easy to see that π∗ is an almost equitable partition of G with
respect to VL. In fact, π∗ becomes almost equitable in the graph H
by removing the arc from vertex 8 to 2, and adding an arc from 3 to
2. Now, since πR 6 π∗ 6 πS , the disturbance decoupling problem
in this case is solvable by Theorem 13. Consequently, by (26), the
state feedback which renders the system disturbance decoupled is
given by

u(t) = (x3(t) − x2(t)) − (x8(t) − x2(t)) = x3(t) − x8(t).

7. Conclusions

Wehave studied the disturbance decoupling problem formulti-
agent systems. By extending the notion of almost equitability to
almost equitability with respect to a cell, an appropriate topolog-
ical translation for controlled invariant subspaces is provided. We
have considered disturbance decoupling of both the open loop and
the closed loop system. In the open loop case, we have established
sufficient conditions ensuring the system is disturbance decoupled
with no input applied to the leaders. In the case of closed loop, we
have derived sufficient conditions guaranteeing the solvability of
the disturbance decoupling problem. The proposed sufficient con-
ditions are in terms of existence of certain almost equitable par-
titions with respect to a cell containing leaders. In case the DDP
is solvable, an admissible controller rendering the system distur-
bance decoupled has been provided. As desired, this controller uses
the relative information of the states of the agents.
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