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Chapter 1

Introduction

This thesis is dedicated to the study of Constrained Differential Equations (CDEs)
and of Slow Fast Systems (SFSs). A SFS is a singularly perturbed ordinary differ-
ential equation of the form

(1) = F(o(t), 2(1). ) )
ex(t) = g(a(t), 2(1), ),
where z € R™, z € R"; where ¢ is a small positive parameter, i.e.,, 0 < ¢ < 1, and
where we assume that the functions f and g are of class C*° (all partial derivatives
exist and are Continuousﬂ. The over dot denotes the derivative with respect to
the time parameter ¢.

In some applications (see e.g. section[L.T), z(t) represents states or measurable
quantities of a process while x(¢) denotes control parameters. The small para-
meter ¢ models the difference of the rates of change between z and «, and that is
why systems like are often used to model phenomena with two time scales.
Observe that the smaller ¢ is, the faster z evolves with respect to x. Therefore =
(resp. z) is called the slow (resp. fast) variable. The time parameter ¢ is named as
the slow time and then (1.1) is known as the slow equation. Whenever € # 0, a new
time parameter 7 is defined by 7 = 1¢. With this new time parametrization
becomes

o'(r) = ef(2(r),2(7),€)
2'(1) = g(a(r), 2(1), €),
1Along this document, smooth means of class C°°. Whenever we refer to a finite class of differen-

tiability (in a well chosen neighborhood of a point) we shall write C¢ instead, with £ < oo but as large
as necessary.

1.2)




where the prime denotes the derivative with respect to 7. In contrast to (1.1),
the system is known as the fast equation. We remark that is not a
singular perturbation problem anymore, but is an e-parameter family of smooth
vector fields. Since only autonomous systems are considered, we omit to indicate
the time dependence of the variables. Observe that as long as ¢ # 0 and f
is not identically zero, the systems and are equivalent up to time
re-parametrization.

A good strategy to understand the qualitative behavior of SFSs is to study
and in the limit £ — 0. Accordingly, when ¢ = 0, the slow equation

becomes
&= f(z,2,0)

0= g(z,2,0). (1.3)

A system of the form is called constrained differential equation (CDE), see
chapter 2l where a detailed description of CDEs is provided. An important
geometric object to consider is “the set of constraints”. To be more precise, the set
S, defined as

S ={(z,z) e R™ x R" | g(z,2,0) = 0}

serves as the phase space of (I.3). For generic CDEs (by generic we mean “almost
all”, but we formalize this notion in chapter [2) this set is an m-dimensional
smooth manifold and is called the constraint manifold [39]]. Note that if the matrix
w is regular on S, then S can be expressed as a graph z = h(x). Then,
under this condition, the motion along the constraint manifold S is given by

& = f(z, h(z),0).
On the other hand, when ¢ = 0 the fast equation becomes

=0

2 =g(z,2,0), (14)

which is called the layer equation [46]]. In this case, the constraint manifold S serves
as the set of equilibrium points of (T.4). A point p € S which is a hyperbolic
equilibrium point of is called regular; and it is called singular otherwise. A
qualitative description of the dynamics of a SFS can be obtained from the CDE
and from the layer equation as follows.

Qualitative description. The constrained differential equation (1.3) is an ap-
proximation of the slow dynamics (I.1), while the layer equation (1.4) approx-
imates the fast dynamics (1.2). Far away from the manifold S, the trajectories of
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the SFS closely follow those of the layer equation (I.4). Observe that, due to
z’ = 0, the phase space of the layer equation is a family of n-dimensional planes
parametrized by x = constant. Such a family is called the fast foliation. On the
other hand, sufficiently close to S, the trajectories of closely follow those of
the CDE (L.3). The trajectories of have to satisfy the constraint g = 0.
Suppose that an initial condition (zo, 29) does not lie in S. In that case there
is an infinitely fast transition towards a regular point of S (either in forward
or in backward time) along the fast foliation according to (T.4). If the trajectory
arrives at S, then its dynamics are now governed by the CDE along the
manifold S. If a trajectory of the CDE arrives at a singular point, then such a
trajectory follows again the layer equation either indefinitely or until arriving
again at a regular point of S. This description is shown in fig. In the present
document, we are interested in studying the flow of slow fast systems near a
singular point as described above. That is, in the situation where a sudden change

of the trajectories’ behavior occurs.
S \\L\ S _\Lk

AL AL

IS

fast foliation

; L
N

Figure 1.1: Qualitative description of the dynamics of a slow fast system from the
corresponding constrained differential equation and layer equation. The manifold S
is defined by a constraint g(z, z) = 0. Far away from S, the flow goes along the fast
foliation according to the layer equation. Near S, the flow follows the constrained
dynamics of the CDE. Note that depending on the geometry of the manifold S, there
may be sudden changes on the flow’s behavior.

I8




Constrained differential equations were thoroughly studied by Takens [39].
One of his main results in this context, is the topologica]E] classification of gen-
eric CDEs with two or less parameters. In such a classification, the following
argument becomes important.

Remark 1.0.1. We assume that the vector field 2’ = g(x, z,0) is conservative. This
means that there exists an m-parameter family of functions V,, : R™ — R such that

oV
90(55,2) = 0z (2)7

where go(x, z) = g(z, z,0). This allows us to consider CDEs of the form

z = f(z,2,0)
ov
OZE(Z‘,Z),

where V : R™ x R™ — R is a smooth function with V;(z) = V(z, z), and thus the
constraint manifold is the critical set of the family V. Accordingly, the classification of
critical points of smooth functions [3,4,[10] shall play an important role in our studies.
Recall that for few parameters, i.e. m < 4, such a classification yields a finite number of
equivalence classes, where the preferred representatives are called elementary catastrophes,

see appendix

Motivated by Takens’s studies [39], our first contribution is a classification of
generic CDEs where the potential function V' is related to singularities of type Ay,
Df,and Dy [3)4]. Once this classification is obtained, the next natural question
is to study SFSs given as e-perturbation of these generic CDEs. More specifically,
we study SFS given by

i = f(z,2,0) +ef(z, 2¢)

. Voo
€= o +eg(z, 2,¢€),
where f and § are smooth maps and where the corresponding CDE is a member
of the aforementioned classification.
To motivate our studies, let us now recall two classical examples of biological
phenomena which were modeled by a SFS and where elementary catastrophe
theory plays an important role.

2Two CDEs are topologically equivalent if there exists a continuous function that maps solutions
of one into solutions of the other, see deﬁnitionm
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1.1 Zeeman’s Examples

In this section we review two classical examples of natural phenomena modeled
by a slow fast system and where elementary catastrophe theory plays an import-
ant role. These applications were studied by Zeeman [48]. His interest for using
this theory was that it enables a qualitative description of the local dynamics of
a biological system instead of modeling the complicated biochemical processes
involved.

1.1.1 Zeeman’s heartbeat model

The simplified heart is considered to have two (measurable) states. The diastole
which corresponds to a relaxed state of the heart’s muscle fiber, and systole which
stands for the contracted state. When a heart stops beating it does so in relaxed
state, an equilibrium state. There is an electrochemical wave that makes the heart
contract into systole. When such a wave reaches a certain threshold, it triggers
a sudden contraction of the heart fibers: a catastrophe occurs. After this, the
heart remains in systole for a certain amount of time (larger in comparison to the
contraction-relaxation time) and then rapidly returns to diastole. A mathematical
local representation of the behavior just explained is given by

i1 =2z— 2",

3

€z = —(z —z—i—xl) (15)

where z1, z € R. Observe the similarity of (1.5) with the Van der Pol oscillator

with small damping [43]]. The variable z models the length of the muscle fiber, x;
corresponds to an electrochemical control variable and z* > % represents the
threshold. In the limit ¢ = 0 we obtain the CDE

T =z— 2", (1.6)
0=—(%—z2+4mz) '

The critical points of the potential function V (z1, z) = 2% — 32+ 2 (compare

with the cusp catastrophe in appendix|A.1) form the S-shaped constraint manifold
Sy ={(z1,2) ERxR|2*— 2 +2, =0}.
Observe that there are two singular points of Sy defining the singularity set

B={(z1,2) € Sy |32 —1=0}

()}
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At points of B, the solution of (1.6) suffer a sudden change of behavior, a jump
occurs. A schematic of the dynamics of (1.6) is shown in fig.

Z (length of the muscle fiber)
Diastole ¢4

.——fold point
relaxation 4

= 1 (electrochemical control)
- contraction
et
fold point

Systole ----

Figure 1.2: Dynamics of the simplified heartbeat model in the limit e = 0. In this
limit the S-shaped constrained manifold Sy is the phase space of the solutions. The
singularity set B is the union of the two fold points. The interpretation is as follows:
a pacemaker controls the value of the parameter x; changing its value from z7 up to
an adequate threshold, beyond the fold point, such that the action of contraction is
triggered. Then, the heart remains in a contracted state for a while until the value of
x1 triggers the relaxation action. Contractions and relaxations are modeled by a fast
transition between the two stable branches of the curve Sy.

For sufficiently small e > 0, the trajectories of are close to those of (T.6).
See fig. It is one of the goals of the theory of slow fast systems to make
precise the notion of closeness mentioned above, especially in the neighborhood
of singular points (see chapter[8|and e.g., [13, 16} 27]).

> 2

T

Figure 1.3: Dynamics of the simplified heartbeat model (1.5) for sufficiently small e.
The trajectory shown is a small perturbation of the solution curve of the corresponding

CDE in .
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1.1.2 Zeeman’s nerve impulse model

This model qualitatively describes the local and simplified behavior of a neuron
when transmitting information through its axon, see [48] for details and compare
also with the Hodgkin-Huxley model [20]. Qualitatively speaking, there are
three important components in this process: a) the concentration of sodium (Na)
around the walls of the axon, b) the concentration of potassium (K) around the
walls of the axon, and c) the electric potential, or voltage (V), around the wall of
the axon. As information is being transmitted, through an electric signal, there is
a slow and smooth change of the voltage and of the concentration of potassium
but a rather sudden change in the concentration of sodium. Another local charac-
teristic is that the return to the equilibrium state, when there is no transmission
of information, is slow and smooth. The three variables aforementioned behave
qualitatively as shown in fig.

A L Catastrophic behavior’

---V
..K
—Na

g

Figure 1.4: A qualitative picture of the three variables involved in the local model
of the nerve impulse [48]. The signal V represents the potential around the axon’s
wall. The signals of Na and K represent the conductance of sodium and potassium
respectively. Observe that a characteristic property is the sudden and rapid change
of the sodium conductance followed by a smooth and slow return to its equilibrium
state. See [48], where a qualitatively similar graph is plotted from measured data.

A mathematical model that roughly describes the nerve impulse process is
given by
=—-1-b
=-2(b+2)
et = —(2° + bz +a),

S
\

where a, b, and z stand for the concentration of potassium, the voltage and
the concentration of sodium respectively [48]]. The corresponding constrained
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differential equation reads as

b=—-2(b+2) (1.7)

The defining potential function is given by the cusp catastrophe V = 1z* +
3b2? + az. The constraint manifold is defined as

Sy ={(a,b,z) ER* xR | 2° +bz+a =0},

and is the critical set of the 2-parameter family V, ;)(2) = V (a, b, z). Recall that
Sy serves as the phase space of the flow of (L.7). The singular set, points of Sy at
which Sy is tangent to the z-direction, is defined by

B={(b2) €Sy |3z +b=0}.

The attracting part of the manifold Sy, denoted by Sy, i, is given by points
where D2V > 0, i.e. by

SV,min = {(a,b,Z) € SV‘322 +b> 0} .

Let us now describe a procedure under which a smooth vector field, whose
solutions are equivalent (in a sense specified below) to the solutions of (1.7), can
be obtained. Let m denote the projection 7 : (a, b, z) = (a,b). Note that 7|g,\ 5 is
a local diffeomorphism, which means that we can also project solutions curves
on Sy onto the parameter space. To be more precise, if we restrict the coordinates
to Sy, the projection 7|g,, reads as

(a,b,2) = (=2 — bz,b),

which allows us to rewrite (1.7) as the planar system

b=-2(b+2)
. 14+b+2(00+2)2 (18)
T ey

The vector field (1.8) is not smooth everywhere; in particular, it is not well
defined at the singular set B = {322 + b = 0}. However outside B, the function
h(z,b) = 32% + b is nonzero and smooth. Furthermore, h(z,b) > 0 for all points
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in Sv.min. Therefore, we can multiply by h. Thus, whenever h > 0, we have
that (1.8) is smoothly equivalentﬂ to

' 2
l.) = —2(32"+b)(b+2) (1.9)
2=1+b+2(b+ 2)z.

The vector field is called the desingularized vector field. Note that is
smooth and is defined for all (b, z) € R?. The importance of lies in the fact
that we obtain the solutions of the CDE from the integral curves of (1.9). The
general reduction process through which we obtain the desingularized vector
field is described in section 2.2

It is straightforward to show that has equilibrium points (b, z) as follows:

® po = (—1,1) € Sy min, which is a regular equilibrium point,
* ps = (—3,1) € B, which receives the name folded singularity.

Furthermore, p; is a saddle point, whence it is called a folded-saddle singu-
larity. Refer to fig. [L.5|for the phase portrait of and note the smooth return of
some trajectories and compare with the heartbeat model where this effect does
not occur.

Once is better understood, we can give a qualitative picture of the flow of
taking back the operations performed above. We show in fig.[L.5|the phase
portraits of desingularized vector field and of the CDE (L.7).

Remark 1.1.1. Figure|1.5|graphically shows all the important elements in the theory of
constrained differential equations.

® The constraint manifold Sy is the phase space of the CDE.

® Themap 7 : R™ xR"™ — R™ is a projection from the total space onto the parameter
space. The vector field induced in this space is denoted by X.

* The smooth vector field X is obtained by desingularization, which is denoted by
D. In the previous example such a process is as follows: first a restriction of
the coordinates to Sy allows the change of coordinates a = —z3 — bz. Then the
projection  restricted to Sy is performed, that is (a, b, z)| s, = (=22 —bz,b,2)
(—23—bz,b). By a smooth re-parametrization the smooth vector field X is obtained.
Observe that for points in Sy, min, the desingularization process D can be seen as a
one-to-one map between the solution curves of X and those of the CDE . The
details of the desingularization procedure are given in section

3Two vector fields, X and Y, on a manifold M are smoothly equivalent if there exists a smooth
map ® : M — M such that D® - X () =Y.
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z
Sy

X{b =232 +b)(b+ 2)
2 =1+b+2(b+2)z.

b T a =-1-b,

. b =—-2(b+2)
' Satisfying
0 =2+bz+a

Figure 1.5: Top right: phase portrait of the CDE . The manifold Sy serves as the
phase space of the corresponding flow. The shaded region is the attracting part of
the constraint manifold, that is Sv,min. Top left: phase portrait of the desingularized
vector field . In this picture, and in the rest of the document, the symbol D denotes
the desingularization process, to be detailed in section Observe that although
the vector field X is defined for all (b, z) € R? we are only interested in the region of
(b, z)-values corresponding to Sy, min. When the trajectories reach the singular set B,
they jump to another attracting part of Sv,min. Bottom right: projection of the phase
portrait of onto the parameter space. The map = is a projection of the total space
(a,b, z) € R? onto the parameter space (a,b) € R”.

* The solutions of the CDE are obtained from the integral curves of the desingularized
vector field X.

Remark 1.1.2. From the examples presented above, it is possible to conclude that un-
derstanding CDEs is a good preliminary step in order to study SFSs. Howeuver, this is
not enough, since we cannot expect that a complete description a singular perturbation
problem is obtained from the limiting behavior. In particular, we want to describe the
way the solutions of a SFS depend on the small parameter € as € — 0. This problem is
well understood, e.g. by Geometric Singular Perturbation Theory [16| 12524, 47]] in the
case where the manifold S is a set of hyperbolic equilibrium points of the layer equation;
in other words, when S is reqular. In this document we are interested in studying SFSs
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near singular points of the manifold Sy.

1.2 Outline of this thesis

In chapter 2] we extend Takens’s list of singularities of CDEs [39] by obtaining the
following classifications.

1. A topological classification of singularities of generic CDEs with three parameters.
That is, the possible potential functions are given by the Swallowtail, the
Hyperbolic and the Elliptic Umbilical catastrophes, and the possible vector
fields are given up to topological equivalence. This result is also reported
in [22].

2. A topological classification of generic CDEs with one fast variable. In this classi-

fication the potential functions are given by the A, catastrophes. A corres-
ponding normal form is given by

- (1.10)

where j = 2,3,...,k— 1. The constraint manifold of (1.10) may be regarded
as the critical set of an Ay, catastrophe. Hence we call (1.10) Ax-CDE.

In Chapter 3, we embed the A;-CDEs into the theory of SFSs. That is, we
study SFSs of the form

wp =e(l+eq(z,z9)

r, =e%g;(z,2,¢)

P o 111
2 == (zk +yM xiz“1> +egr(z, z,€) -
EI = Oa

wherek >2,j=2,3,...,k—1, 2= (21,...,7_1) € RF1, 2 € R,0 < e < 1;and
where g,;’s are smooth functions vanishing at the origin. Our investigations are
focused on understanding the flow of in a small neighborhood of the origin,
which is a degenerate equilibrium point of X. The first step in our program is
to normalize . In such a context, we show that there exists a near identity
formal diffeomorphism @ : R*+1 — R**! that conjugates to a polynomial
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vector field F' defined by

331 =&
pod% =0 (1.12)
Ny =_ (zk + Zi:ll xizi—l) .
e =0.

In this sense, we say that F is (formally) stable under e-perturbations. This result
has been reported in [21].

Next, by means of the Borel’s lemma [10]], the formal normal form F' can be
realized as a smooth vector field X* of the form

XN =F+teH,

where H = Zf;ll hi(m,z,s)a%i + hi(x,2,6) & + 02 is a smooth vector field
and where all the functions h; are flat at (z,z,¢) = (0,0,0) € RF¥T!. Next, we
conveniently choose two sections X" and ¥°* which are transversal to the flow
of X* within a small neighborhood of 0 € R**1. According to these sections and
induced by the flow of X¥, the transition map II : £°" — £ is defined. With
this transition map we are able to describe the solution curves of X V.

Our principal contribution, in the context of A slow fast systems, is that
we provide a general methodology by which the local flow of can be
understood by means of transition maps. The frequent use of normal form theory
allows us to specify the differentiability of IT as ¢ — 0. This follows the program
of Geometric Singular Perturbation Theory developed for slow fast systems near
degenerate singularities, e.g., [8,[13} 14}, 26} 27].

In Chapter 4, we show how the program developed in Chapter 3 works for
the A, (fold), A3 (cusp, see [23]) and A4 (swallowtail) cases. We also digress on
the Ay, for k > 4, case.

Finally, in Chapter 5, concluding remarks and future research direction are
discussed.

For readability purposes, the long proofs are gathered at the end of the
respective chapter. In the appendix, relevant and supplementary information
used along this thesis is provided.



Chapter 2

Constrained Differential
Equations

2.1 Definitions

Let us start with the important definitions. Many of these are intrinsic. However,
since our studies are local, whenever necessary the corresponding local model is
given.

Definition 2.1.1 (CONSTRAINED DIFFERENTIAL EQUATION (CDE)). Let £ and
B be C*°-manifolds, and © : € — B a C*-projection. A constrained differential
equation on & is a pair (V, X), where V : £ — R is a C*°-function, called potential
function, that has the following properties:

CDE.1 V restricted to any fiber of € (denoted by V|n=! (r(e)), e € ) is proper and
bounded from below,

CDE.2 the set Sy = {e € &:V|r~! (n(e))has a critical point in e}, called the con-
straint manifold, is locally compact in the sense: for each compact K C B, the set
Sy N7 (K) is compact,

and X is such that:
CDE3 X :& — TBisaC>®-map covering m: & — B.
Remark 2.1.1.

* Sy is a smooth manifold of the same dimension as 3 39} l5]].

13
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* The covering property of X means that for all e € £, the tangent vector X (e) is
an element of T(.)B, the tangent space of BB at the point w(e). TB denotes the

tangent bundle of B. The covering property of X defines a vector field X:B—
TB,X =Xorn L

Now, recall from chapter|[I|that the solutions of the CDE are defined in the
attracting region of the constraint manifold, thus we have the following.

Definition 2.1.2 (THE SET OF MINIMA). The set of minima of V' is denoted by Sv min
and is defined by

Svrmin = {e €& Vi (n(e)) has a critical point in e where the Hes—}

sian is positive semi-definite

Once that we have defined the region where solutions may exists, let us give
the formal definition of what we mean by a solution of a CDE.

Definition 2.1.3 (SOLUTION). Let (V, X) be as in definition2.1.1] A curve~y : J — &,
J an open interval of R, is a solution of (V, X) if

S1 v (t§)=limyys, v and v (tg) = limyqy, v exist for all to € J, satisfying

o m(v(ty)) =7 (v(ts)),
* 7 (tg),7(to) € Svimin.

S2 Foreacht € J, X (v (t7)) (resp. X (v (¢tT))) is the left (resp. right) derivative of
() at t.

S3 Whenever v (t7) # v (tT), t € J, there is a curve in w—* (m (v (tT))) from
v (t7) to~y (tT) along which V is monotonically decreasing.

Remark 2.1.2.

* Solutions are also defined for closed or semiclosed intervals. A curvey : [a, B] — &
(v: (o, 0] = & ory:|a,B) — &) isasolution of (V, X) if, for any oo < o/ <
B' < B, the restriction v|(a, 8') is a solution and if -y is continuous at o and
(at 8, or at &) or if there is a curve from ~y (c) to v (o) and from v (57) to v (B)
(from ~ (B~ ) to v (B), or from ~y () to v (o)) as in property S3 above.

* The projection (v) is continuous.

* The property S3 above describes the jumping process. It basically says that if a
jump occurs, it happens along some fiber 1= (m(e)). A jump is an infinitely fast
transition along a fiber passing through a singular point of Sy
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The concept of singularity, as in the context of vector fields, is defined for
CDE:s as follows.

Definition 2.1.4 (SINGULARITY). We say that a CDE (V, X) has a singularity af
eclif

1. X(e)=0,o0r
2. V|r=t (n(e)) has a degenerate critical point at e.

In the rest of this chapter, we are interested in singularities of CDEs defined
by degenerate critical points of the potential function V. Thus we shall assume
in the following that X (e) # 0, which is a generic property.

From definition[2.1.4] we see that the classification of critical points of smooth
functions plays an important role in the classification of singularities of CDEs.
Let us now recall some useful definitions.

Definition 2.1.5 (JET SPACE). Let w : £ — B be a fiber bundle as before. We define
JE(E,R) as the space of k—jets of functions V : € — R. Similarly J%(E,TB) is
defined to be the space of k—jets of smooth maps X : € — TB covering w. Finally
JE(E) = JE(E,R) @ J% (£, TB) is the space of k—jets of constrained equations. For
a given (V, X), the smooth map j*(V,X) : & — J*(&) assigns to each e € & the
corresponding k—jets of V and X at e.

Remark 2.1.3. The elements of J (£, R) are equivalence classes of pairs (V,e), V €
C>®(E,R), e € & where (V,e) ~ (V' ¢') if e = € and all partial derivatives of (V — V)
up to order k vanish at e. The same idea holds for J% (£, TB) and thus for J*(€). This
equivalence relation is independent of the choice of coordinates.

Definition 2.1.6 (THE SET X!). Let I = (iy,is,...,ix) be a sequence of positive
integers such that iy > iy > -+ > iy. The set X1 C JY(&) (¢ > k) is the set of CDEs
(V, X)) for whose restriction V|n—! (n(e)) has in e a critical point of Thom Boardman
symbol I (see appendix[A.2)for details).

The following statements are shown, for example, in [4]:
* JY(&) can be stratified since the closure of >/ is an algebraic subset of J*(€),
e ! is a submanifold of J*(&).

It is useful now to state Thom’'s transversality theorem in the context of
constrained differential equations.

Theorem 2.1.1 (THOM’S STRONG TRANSVERSALITY THEOREM [41]]). Let Q C

JF(E) be a stratified subset of codimension p. Then there is an open and dense subset
Og C C=®(&,R) x C=(&, TB) such that for each (V, X) € Oq, j*(V, X) is transversal
to Q. Therefore (7*(V, X)) ! (Q) is a codimension p stratified subset of €.
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Definition 2.1.7 (GENERIC CDE). Let I = (i1, 12, ...,1x) be a sequence of positive
integers such that iy > iy > - -+ > 4. We say that a CDE (V, X) is generic if j*(V, X)
is transversal to X1 C J4(E), with (¢ > k).

In the rest of this document, the term generic refers to definition

Remark 2.1.4. The analysis of the present document is local. Therefore, we identify the
fibre bundle 7 : £ — B with the trivial fibre bundle m : R™ x R™ — R™. Moreover, by
definition let e € R™ x R™ be a point such that V|x~'(m(e)) has a degenerate
critical point at e. Then, for m < 4, there are local coordinates such that V can be
written as one of the seven elementary catastrophes of table[A.1} Hence, let without loss of
generality e = 0. A generic CDE is a pair (V, X) where V' is an elementary catastrophe
and the constraint manifold is indeed a smooth manifold. Furthermore, the local normal
form of the pair (V, X') can be given as a polynomial expression.

Definition 2.1.8 (THE SINGULARITY AND CATASTROPHE SETS). The singularity
set, also called bifurcation set, is locally defined as
%
B = {(x,z) €Sy | detaazz:0}.

The projection of B into the parameter space m(B) is called the catastrophe set, and
shall be denoted by A.

As can be seen from the definitions of this section, many of the topological
characteristics of a generic CDE are given by the form of the potential function
V. It is especially important to know how the critical set of V' is stratified. The
following example is intended to give a qualitative idea of the geometric objects
that we have to consider.

Example 2.1.1 (STRATA OF THE SWALLOWTAIL CATASTROPHE). Consider a CDE
(V, X) where the potential function V is given by the swallowtail catastrophe, that is

1 1 1
Ve, 2) =25+ ez + 51)22 +az.

) 3
See appendix[A.1|and table[A.|for more details. Then we have the following sets:
s B = R Xx)) T ()
L Sy
PR B, the singularity set
»i10 The set of only fold points
xi1.1,0 The set of only cusp points
yiiil The swallowtail point
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The sets ¥'(V') above are formed as follows (see appendix or the generalization)

SHV) = {(z,2) e R'| D,V =0}
PN V) ={(z,2) e R*| D,V = D2V =0}

The strata are manifolds of certain dimension formed by points of the same degeneracy.
In our particular example we have

SLOWV) =L (V)\SLL(V) A 3-dim. manifold of reqular points of Sy
yLLO(Y) = LY V)\BLLL(V) A 2-dim. manifold of fold points
yLLLO(Y) = sbbl(y)\stLLi(v) A 1-dim. manifold of cusp points

Note the inclusion Sy D B D LU o SLLLL which is a generic situation [4,[17].

Following example the critical set of the codimension 3 catastrophes are
stratified as shown at the end of this section in figures[2.1} 2.2]and [2.3|respectively.

Definition 2.1.9 (TOPOLOGICAL EQUIVALENCE [39]]). Let (V,X) and (V', X') be
two constrained differential equations. Let e € Sy mn and ¢ € Sys min. We say
that (V, X) at e is topologically equivalent to (V', X') at ¢’ if there exists a local
homeomorphism h form a neighborhood U of e to a neighborhood U’ of €/, such that if
~v is a solution of (V, X)) in U, h o~y is a solution of (V', X') in U’.

Observe that definition does not require preservation of the time para-
metrization, only of direction.
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Figure 2.1: Stratification of the swallowtail catastrophe. Top: The total space is R,
therefore, we show some representative tomograms, in particular we show the strat-
ification of the set of critical points of the swallowtail catastrophe (refer to example
. For various constant values of ¢, (1) represents the 3-dimensional set of regular
points of Sy, this is Sy'\ B. (2) indicates a 2-dimensional surface of folds. (3) denotes
a 1-dimensional curve of cusps. (4) represents the central singularity (at the origin)
which is the swallowtail point. Note that with this notation B = (2)U(3)U(@). By =
we represent the projection onto the parameter space. In the bottom picture we present
the projection of the singularity set, this is A = 7(B). The same numbered notation is
used to indicate the different strata.
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Figure 2.2: Stratification of the hyperbolic umbilic catastrophe. We follow the same

numbered notation as in figure (1) The 3-dimensional manifold of regular points
of Sy, this is Sy \ B. (2) 2-dimensional surface of folds. (3) 1-dimensional curve of
cusps. (4) The central singularity corresponding to the hyperbolic umbilic.
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Figure 2.3: Stratification of the elliptic umbilic catastrophe. We follow the same
numbered notation as in ﬁguresand (D) The 3-dimensional manifold of regular
points of Sy, this is Sy \ B. (2) 2-dimensional surface of folds. (3) 1-dimensional curve
of cusps. (4) The central singularity corresponding to the elliptic umbilic.
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Remark 2.1.5. Figures and [2.3|play an important role in understanding the
behavior of the solutions of generic C DE's with potential function corresponding to
a codimension 3 catastrophe. In each figure, the solution curves are contained in the
attracting part of Sy. By the generic conditions of X, we have that for each point p € A,
the tangent vector X (p) is transverse to A at p. When a solution curve reaches a point
in B we generically expect to see a catastrophic change in the behavior of the solutions.

2.2 Desingularization

In the context of constrained differential equations (CDEs), desingularization is
a process in which one obtains a smooth vector field which is related to the
CDE. This process plays a key role when finding topological normal forms of
CDEs. The desingularized vector field X of a CDE (V, X) is constructed in such
a way that we can relate its integral curves to the solutions of (V, X). Recall the
example given in section[I1.1.2} The general process to obtain such a vector field
is described in the following lines.

Lemma 2.2.1 (DESINGULARIZATION [39]]). Consider a constrained differential equa-
tion (V, X)) with V one of the elementary catastrophes. Then the induced smooth vector
field, called the desingularized vector field is given by

X = det(dn)(d7) ' X (7, 2), (2.1)

where 7 = 7t|Sy. Furthermore, given the integral curves of the vector field X and the
map 7, it is possible to obtain the solution curves of (V, X).

For a proof and details see section2.5.1} Once the desingularized vector field
(2.1) is well understood, the solutions of (V, X) are obtained from the integral
curves of X. Note that in the case where det(d7) < 0, the solutions of X and the
corresponding solutions of the CDE go in opposite directions.

Remark 2.2.1. Let (V, X) and (V', X") be topologically equivalent CDEs. From defin-
ition the homeomorphism h also maps Sy ymin t0 Sv' min. On the other hand, it
is straightforward to see that right equivalent functions have diffeomorphic critical sets.
This means that we can choose and fix a representative of generic potential functions. The
natural choice for a low number of parameters is one of the seven elementary catastrophes.
Thus, our problem reduces to study the topological equivalence of CDEs (V,X) and
(V, X"), that is with the same (up to right equivalence) potential function. Denote by X
and X' the corresponding desingularized vector fields. Then if X and X' are topologically
equivalent, so are the CDEs (V, X ) and (V, X').
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Now, let us write the CDEs with three parameters in local coordinates. Fol-
lowing the list of catastrophes in appendix we have the following list of
desingularized vector fields.

Corollary 2.2.1. Let (a,b,c, z1,22) € R? x R? be local coordinates. The parameters
correspond to (a, b, ¢) while the state variables are (21, z2). Let (V, X) be a constrained
differential equation with the potential function V' given by a codimension 3 catastrophe
(see table[A.T). Let the map X : € — TB be given in general form as

X = fa% +fb% +fc%7

where fq, fo, fo are smooth functions on the total space £. Then the corresponding
desingularized vector fields X read as

e Swallowtail:

X :(2;2fC +z2fo+ fa) 0 423 4+ 2¢z + b)fb% — (4z3 +2cz + b)fcag.
c

5

e Elliptic Umbilic:
— ) 9 0
X = (1221 — daz; = 129%) fo + (621 — 20) fy — 622f) 5—+
1
0

0
(—4za(a+621)fa — 622fp — (2a + 621) fo) =— + (4a2 - 362% - 3625) fa=—
029 Oa

* Hyperbolic Umbilic:

— 0 0
X = (362122 — GQ)fa% + ((az1 — 623) fo — 6225 + afc)£+

)
((azz — 622) fo +afy, — 621fe) pr
Proof. Straightforward computations following lemma[2.2.1} O

The desingularized vector fields of corollary are to be used later to
compute the list of topological normal forms of CDEs with three parameters.

We end this section with Takens’s theorem on normal forms of constrained
differential equations with two parameters.
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Theorem 2.2.1 (TAKENS’S NORMAL FORMS OF CDES [39]). Let 7w : £ — B beas in
definition and let dim(B) = 2. Then there are 12 normal forms (under topological
equivalence, definition of generic constrained differential equations, which are
given by

Regular Fold
V(a,b,2) | X(a,b,z2) V(a,b,z) X(a,b,z)
9 9
da da
1 o 9 o
2 a— +b— 14 _ -
da ab §Z +az da
Is] o 0 o
= _p= = 4 =
“9a b (4325 * o
0 16) 16) 4]
—a— —b— _ = 4 =
“9a b (@=3)5.+
2.0
da  Ob
0 0
b = 4 =
R T
Cusp
V(a7 b’ Z) X(a7 b’ Z)
224 +b22 +az %
— (iz4+b22+az) %

Remark 2.2.2.

* In the cusp case, a distinction between V and —V is made. This is due to the fact
that the corresponding phase portraits are topologically different. This does not

happen in the reqular and fold cases. See for reference figs.[2.12a)[2.12b| 2.13} 2. 74}
2.15[2.16and 2.17]

* In the fold case of theorem[2.2.1} one extra parameter is considered (see the cata-
strophes list in section |A.1). Due to this fact, instead of having a fold point at
(z,a) = (0,0), there is a fold line given by {(z,a,b) = (0,0,b)}. In contrast, if €

is 2-dimensional, this is, (V, X) = (? +az, f(a, z)%), then there are only two

topological normal forms which read as

3
V(z,a):%—&—az , X:%,

23 0
V(z,a)—g—&—az ) X——%.
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 Although the classification under topological equivalence may seem too coarse, it
is the simplest one. Recall the well-known fact [2),9] that there is no topological
difference between the phase portraits shown in figure

x x x

Figure 2.4: Topologically equivalent sources.

2.3 Normal form of CDEs with three parameters

In this section we provide our first result phrased in theorem We give
16 local normal forms of generic constrained differential equations with three
parameters. Thereby, we extend the existing Takens’s list [39].

For clarity purposes, before stating the main result of the present chapter, we
provide a geometric description of the constraint manifold Sy and how a generic
vector field would look like. After this, the results stated in theorem 2.3.1 will
seem natural.

2.3.1 Geometry of the codimenion 3 catastrophes.

In this section we review some of the geometrical aspects of the codimension 3
catastrophes to have an idea of what is their influence in the type of the generic
desingularized vector fields.

The Swallowtail

We recall that the swallowtail catastrophe is given by the potential function

1 1 1
Via,b,c.z) = 525 + 5023 + 5b22 + az. (2.2)

The constraint manifold, this is the phase space of the constrained differential
equation (V, X') with potential function given by (2.2), is the critical set of V.

Sy = {(a,b,c,z) € R*| 2* + ¢z® + bz + a = 0}. (2.3)
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Within the constraint manifold, there are two important sets. The set Sy in
is the attracting region of Sy. The set B consists of singular point of Sy, that is
where Sy is tangent to the one dimensional fast foliation. The previous sets read
as

SV min = {(a,b,c,z) € Sy |42 +2cz+b> O},
and
B ={(a,b,c,z) € Sy |42° + 2cz+b=0}.

The projection of the singular set B into the parameter space is the catastrophe
set, denoted by A, and given by A = 7(B). As it is readily seen, the set Sy is
3-Dimensional. In figure 2.5/ we show tomographies of Sy as well as sections of
A (see also figure 2.1]for the stratification of the swallowtail catastrophe).

Recall also from corollary [2.2.T|that the desingularized vector field reads as

— 9 0
X =(z fc+xfb+fa)az

Note that we have the generic condition X (0) = fa(O)% # 0. This is, we
expect that X is given by a flow-box in a neighborhood of the central singular-
ity. From figure [2.6| we can see that a flow-box in the direction of the a-axis is
transversal to A in a neighborhood of the swallowtail point.

On the other hand, the fast fibers are parallel lines to the z-axis. If a trajectory
jumps, it does so along such a fiber. A jump of a trajectory from a singular point
of S to a stable branch of Sy is expected only when ¢ < 0 as this is the only case
where may have more than two distinct real roots. We show in figure[2.7]the
projections of the singular set B into the manifold Sy, representing the possible
jumps to be encountered.

B 0
3 o9 3
(42 +2¢z+b)fbab (4z —|—202+b)fcac.

The Hyperbolic Umbilic

We proceed as in the previous section with a geometric description of the hyper-

bolic umbilic singularity. The corresponding catastrophe (see table[A.1I) reads
V(z1,29,a,b,¢) = — (zi” + zg 4+ aziz9 + bz + 022) .

Now we have two constraint variables (z1, z2) (as opposed to the swallowtail
singularity where the constraint variable is z). This means that the fast foliation
is a family of planes parallel to (z1, 22,0, 0,0) € R°. The critical set of V is given
by

Sy = {(21,22,a,b,c) €R® | b= =327 —az, c=—323 +az}.
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c<0 c=0 c>0
B
z
b b b
™
c=0 c>0

Yve

Figure 2.5: From left to right we show a tomography of the 3-dimensional manifold
Sy for different values of a and parametrized by different coordinates. Compare with
figure 2.1} The shaded region represents the stable part of Sy, that is Sv,min. In each
figure the thick curve represents the 2-dimentional set of folds. For a < 0 the dots
stand for the 1-dimensional set of cusps. For a = 0 the dot represents the central
singularity, the swallowtail point. Note that for a > 0 the only singularities of Sy are
fold points. The projection 7 occurs along a one dimensional fast foliation.

c<0 c=0 c>0
a
Z N\ ! !
b b b

Figure 2.6: The thick curve represents section of the catastrophe set A. We show some
tangent planes to A in a neighborhood of the Swallowtail point. A generic condition
of the map X is to be transversal to A. So, observe that a flow-bow in the direction of
the c-axis would have this property.
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Figure 2.7: For values of ¢ < 0 a trajectory may jump. A jump is an infinitely fast
transition from a singular point of the manifold Sy to a stable part of Sy . The transition
occurs along a one dimensional fiber. The thick lines represent the singularity set
B, and the thin lines represent the projection of B into Sy. Such lines represent
possible arriving points when a jump occurs. We show also a possible jump situation
represented as an arrow starting in B and arriving at the projection of B in to Sv,min
(the attracting part of Sv/).

There are attracting points within Sy defined as

zZ

SV,min = {(zlv 22, a7b7 C) € SV | |:6§1 6a2:| 2 0} .

The singular set of Sy is formed by all the points which are tangent to the fast
fibers. Such a singular set reads

B = {(Zl,ZQ,CL,b,C) S SV | 362,’12:2 —0,2 = O} X

We show in figure [2.8)some tomographies of the constraint manifold Sy as

well as sections of the singular set B.
Now, recall from corollary that the desingularized vector field reads

— 9 P
X =(362122 — a2)fa% + ((—62% +az1) fa — 622fy +afe) Bizl—’_

(=627 + az2) fa +afy, — 621 1) ai
Z2

The vector field X has generically an equilibrium point at the origin. It can
also be shown that such a point is isolated within a sufficiently small neigh-
borhood of the origin. Therefore, in contrast with the swallowtail case, we
do not expect that a generic vector field X has the form of a flow-box. Note
however, from the Jacobian of X evaluated at the origin, that the hyperbolic
eigenspace is two dimensional and the center eigenspace is one dimensional (see
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a<0 a=0 a>0

B
2o
21
a<0 a=0 a>0
7T(Bl)
c i
b

b b

Figure 2.8: From left to right we show a tomography of the 3-dimensional manifold
Sy for different values of a and parametrized by different coordinates. Compare with
figure The shaded region represents the stable part of Sy, that is Sv,min. For
reference purposes, the singularity set B is divided into two components B; and B..
In each figure the thick curve represents the 2-dimentional set of folds. For a # 0 the
dots stand for the 1-dimensional set of cusps. For a = 0 the dot represents the central
singularity, the hyperbolic umbilic point, which correspond to the intersection of the
cusp lines. Recall that 7 is a projection from the total space to the parameter space,
and occurs along the two dimensional fast foliation.
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section[2.5.2)for details). So, we expect to have a 1-dimensional center manifold
and a 2-dimensional hyperbolic invariant manifold intersecting at the origin.
Such manifolds arrange the whole dynamics in a small neighborhood of the the
hyperbolic umbilic point. Moreover, we expect that X meets transversally the set
m(B), this means that X is also transversal to B. Such transversality property is

depicted in figure

a<0 a=0 a>0

%)

21 Z1 Z1

Figure 2.9: The transversality property of X with respect to B means that the integral
curves of X are tangent to the thin lines depicted. Recall that if X is transversal
to B|(a = 0) (center picture), then X is also transversal to a small perturbation of
B|(a = 0) (left and right pictures).

It is worth to take a closer look at figure specially at the case ¢ < 0.
Observe, in the parameter space (a, b, ¢), that within the shaded region Sy, in,
there appear to be a set of singularities 7(B2). However this is only a visual effect
due to the projection map 7. We can note from the the same picture in the space
(21, 22, a), that the trajectories in Sy, ,,,;» cannot meet the set Bs.

The jumping behavior is now more complicated. Mainly because a jump may
occur along a plane parallel to the (z1, 22,0, 0,0) space. However, two important
facts can be seen from ﬁgure First, the set Sy, is one connected component.
Second, as explained in the previous paragraph, we can see that there is no
superposition (along the fibers) of points in Sy ., and points in B (compare
with the diagram of the swallowtail given in figure[2.5). This means that along
the projection it is not possible to join a point in B with a point in Sy, min.
These facts lead us to conjecture that there are no jumps for generic CDEs with a
hyperbolic umbilic singularity. Such an idea is proved in section[2.3.4]

The Elliptic Umbilic

Now we provide some insight on the geometry of the elliptic umbilic catastrophe,
which is given by

V(z1,22,a,b,¢) = 23 — 32125 4+ a(23 4 23) + bzy + c2o.
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As in the hyperbolic umbilic case, the fast fibration is now two dimensional.
The constraint manifold, the set of critical points of V, reads as

Sy = {(zl,z'g,a,b, ¢) ER® | b= —327 — 322 — 2az;, c = —62120 — 2a22}.

As before, within Sy there is a set of attracting points and a set of singular
points. So we have that the set of regular points reads as

621 + 2a 622
SV.min {(21732,a,b7 c) € Sy | det 62, 621+ 2a} > 0} ,

which is equivalent to the condition 3627 + 36235 — 4a® > 0 and a > 0. The set of
singular points is given by

B = {(21,22,a,b,c) € Sy | 3627 + 3625 — 4a® = 0} .

We show in figure some tomographies of the constraint manifold Sy as
well as sections of the singular set B.
The desingularized vector field in this case reads as

_ 0
X :(4@2 — 362% — 3623)]0‘187—’_
a

0
((122:% —daz — 122;)fa + (621 - 2a)fb - 622fc> 8721—"_

(—4z2(a +621) fo — 622 fp — (20 + 621)fc)8i227

and as in the Hyperbolic Umbilic case, there is generically an equilibrium point
at the origin. Similar arguments as before then apply. Namely, we expect that
the vector field has a 1-dimensional center manifold and 2-dimensional hyper-
bolic invariant manifold intersecting at the origin. A qualitative picture of the
transversality of X with respect to B is shown in figur

Regarding the jumps, the same arguments as for the hyperbolic umbilic
catastrophe apply. Observe from figure that it is not possible to join points
in B with points in Sy,mi» along the fibers.

2.3.2 Classification of CDEs with three parameters

In this section we provide a list of generic CDEs with three parameters. In contrast
with Takens’s list of normal forms [39], the result in this sections includes CDEs
with two dimensional fast fibers. As it was mentioned in section2.T] folds and
cusps (lower codimension singularities) also appear as generic singularities of
CDEs with three parameters. However the qualitative behavior of the solutions,
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a<0 a=0 a>0
10 -le
Z1 z1 z1
JW
a<0 a=20 a>0
C 4 L ° i
b b b

Figure 2.10: From left to right we show a tomography of the 3-dimensional manifold
Sy for different values of a and parametrized by different coordinates. Compare with
figure[2.3] The shaded region represents the stable part of Sy, that is Sy,mi,. In each
figure the thick curve represents the 2-dimentional set of folds. For a # 0 the dots
stand for the 1-dimensional set of cusps. For a = 0 the dot represents the central
singularity, the hyperbolic umbilic point, which correspond to the intersection of the
cusp lines. Recall that 7 is a projection from the total space to the parameter space.

a<0 a=0 a>0
22_ O | | * 1 _*_
z1 Z1 Z1

Figure 2.11: The transversality property of X with respect to B means that the integral
curves of X are tangent to the thin lines depicted in the right picture.
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in a small neighborhood of folds and cusps, can be understood from Takens’s
list [39]. The novelty of theorem is that it provides an understanding of
the solutions of generic CDEs in a small neighborhood of the swallowtail, of the
elliptic and of the hyperbolic umbilical singularities.

Theorem 2.3.1. Let (V, X) be a generic constrained differential equation with three
parameters. Then (V, X) is topologically equivalent to one of the following 16 polynomial
local normal forms.

Regular
V(z,a,b,c) X(z,a,b,c) Type
0
% Flow-box
1o} 1o} 0

- a% + b% + c& Source
—z
2 9,0 _ 0 :

as + bab ch Saddle-1

1o} 1o} 1o}
a% — b% — C% Saddle-Z
o} 1o} 0 .
—a% — b% — c% Sink
Fold

2 Flow-box-1

da

_ﬁ Flow-box-2
1 da
ng +az 9

1 1
(3:5 + 5b+ 50) %0 + P(p,0,a,b) Source
(—3:c + %b + %c) % + P(p,d,a,b) Sink
1 1y 0
_ (§b + §c) 3 + P(p,d,a,b) Saddle
where
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Remark 2.3.1. If b = c, these fold normal forms reduce to those of theorem [2.2.1}

Cusp

V(z,a,b,c) X(z,a,b,c) Type
iz‘l +b2% +az % Flow-box

1, 9 0
— (fz + bz" + az) — (Dual) Flow-box

4 Oa

Swallowtail
V(z,a,b,c) X(z,a,b,c) Type

%25 + %cz3 + %sz + az 88(1 Flow-box

Hyperbolic Umbilic

V(z1,22,a,b,c) X (z1,22,a,b,¢) Type
4]
6‘I>(a)£—
23 4+ 23 +az 9 9
1t 23 122 +bz1 +cz2 | U= 4 —) Center-Saddle
ob  Oc

o2 2]
a —6 — Center
6 2122) Bb+

Where



2.3. Normal form of CDEs with three parameters 34

a? da’
P(a) =+— + —, deR
(@) =£3* 376

2
v = (@(a)(621 + 622 —a) — 62122 + a6)

k2=t
063" F s
=2 5=0
2j=¢ 2j+1=¢ P
Z((Gzl +a—622) Zpg]Ag]Jr Z ( ) Aeng,j> %+
=2
2j+1=¢ 1 P
Z<(622+a621 Zpg]A[]+ Z ( ) Ag}ngJ) &
=2

L—j .
Ay = (%) AT, A= (%) (a2 +18(22 4 22) 4 6(az1 + azz))

B&j = —6z1C’g,]- — G/Cg’]'
Byj = —aCpj —622C0;

a a
Cg’j =Ne,j (8 +21) +0¢,; (g +Z2)
= a a
Cyj =MNe,; (8 +z2) —0y,j (8 +21) )

with pg j, 05,005 € R.

Elliptic Umbilic

V(z1,22,a,b,c¢) X (z1,22,a,b,c) Type

%) n (8 +2)
23 — 32122 + a(22 + 23) + ba1 + cz2 da f 9b ~ dec

0 1o}
f (2:JcA 5 + 2yAa ) Center-Saddle

Where A = § (+3a? + 6a®) , § € R,and B = —627 — 623 + 2a”

Proof. See section2.5.2]
O

We show in section a number of phase portraits of the CDEs of theorem

2.3.1] Recall that in f1gures 1}2.2]and 2.3} we show the phase space (Sy) of each
of the codimension 3 CDEs.
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2.3.3 Phase portraits of generic CDEs with three parameters

In this section we present the phase portraits of some of the normal forms of
theorem[2.3.1] Recall that Sy is the phase space, this is, the solution curves belong
to the manifold Sy. Such manifolds are as depicted in figures and2.3] At
the bifurcation sets B, the solution curves have a sudden change of behavior, and
then it is said that a catastrophe occurs.

Briefly speaking, a generic constrained differential equation with three para-
meters is likely to have solutions that resemble those of the pictures presented in
this section.

Remark 2.3.2. In all our pictures below, the symbol D represents the desingularization
of the corresponding constrained differential equation. The name of each section refers to
the tables of theorem

Regular

In this case the constraint manifold Sy has no singularities. So the constraint
manifold Sy is the whole R3. In figures [2.12a| and [2.12b| we show the phase
portraits of the flow-box and source case. The pictures of the saddle-1, saddle-2
and sink are similar to figure 2.12b|just changing accordingly the directions of

the invariant manifolds.

> c

a b a b

(a) Flow-box phase portrait (b) Source phase portrait

Figure 2.12: Phase portraits corresponding to the regular case. We show only two
examples corresponding to the flow-box (left) and the source (right) case. As the
constraint manifold Sy is regular, the only singularities that may happen are equi-
librium points, this is X (0) = 0. For to the same reason, there are no jumps. The
remaining cases can be obtained by reversing the direction of the flow according to
the corresponding spectra.
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Fold

In this case the potential function is V(a,b,c,2) = 32° 4+ az. The constraint

manifold Sy = {(a,b, ¢, z) € R*|2? + a = 0} is 3-dimensional. The attracting part
of Sy is given by

SV,min = {(a7ba ¢, Z) S SV ‘ z > O} .

The projection @ = 7|Sy is given by

7la,b,c,z) = (=22, b,c,2) = (—22,b,¢).

Note that the determinant of 7 is negative for points in Sy, ,i,. Therefore,
the trajectories of the desingularized vector field X and of the CDE (V, X) have
opposite directions. Due to the presence of 3 parameters, the singularity set is
the plane

B ={(2,0,b,0) € R¥|(,a) = (0,0)}.

It is important to note that all phase portraits of the Fold case have projections
matching figure 3 of [39].

¢ Flow-box-1. By recalling the normal form in theorem we see that the
integral curves are as depicted in figure[2.13]

¢ Flow-box-2.
The phase portrait in this case is as in figure just the direction of the
trajectories is reversed.

¢ Sink and Saddle.

In all the following cases, a 1-dimensional center manifold w appears
within the fold surface. The choice of p = £1 changes the direction of we.

In all the following pictures we set p = 1. The the integral curves of X are
in opposite direction with respect to the solutions of (V, X) since det (D7)
is negative in Sy pin.

Cusp

In this case the constraint manifold is given by

Sy = {(a,b,c,2) € R*|2* + bz +a =0},
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Figure 2.13: Phase portrait and projections of the flow-box-1 case with the variable
c suppressed. The shown folded surface is a tomography of the 3-dimensional con-
straint manifold Sy . The dotted line corresponds to the 2-dimensional bifurcation set.
Observe that since we are suppressing the variable ¢, this phase portrait is also shown
in figure 3 of [39]

Figure 2.14: Projections of the solutions curves of the sink case. The folded surface is
a tomography (fixed value of c) of the 3 dimensional manifold Sy. The hyperplane
{z,a,b,c|b = c} is invariant. In such space, the dynamics are reduced to the 2-
parameter fold listed in [39] and in theorem Observe that there exists a 1-
dimensional manifold which is locally tangent to the fold surface.
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Figure 2.15: Projections of the solutions curves of the saddle case. The folded surface
is a tomography (fixed value of c) of the 3 dimensional manifold Sy. The hyperplane
{z,a,b,c|b = c} is invariant. In such space, the dynamics are reduced to the 2-
parameter fold listed in [39] and in theorem Observe that there exists a 1-
dimensional manifold which is locally tangent to the fold surface.

and the attracting part of Sy reads as
Sv.min = {(b,c,2) € Sy | 2* + bz >0} .
The projection @ = 7|g,, reads as
#la,b,c,z) = m(—=2> —bz,b,c,2) = (=% — bz, b, c).

Note that det(D7) is negative in Sy, min- This means that the integral curves
of the desingularized vector field X go in opposite direction with respect to the
solutions of (V, X).

* The flow-box and the (dual) flow-box cases. Since in this case the generic
vector field X is a flow box, the phase portraits that we obtain are just
the same as in Takens’s list [39]. Just one more artificial variable, the c-
coordinate, is considered.

Swallowtail

In this section we present the phase portrait of a generic CDE in a neighborhood
of a swallowtail singularity. This is, we consider the potential function

1

1
Via,b,c,z) = gz5 + 3

1
cz® + ibz2 + az.
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Figure 2.16: Phase portrait of the flow box case. (1) A tomography (the variable c is
fixed and suppressed) of the 3-dimensional manifold Sy. (2) The 2-dimensional fold
manifold. @ The 1-dimensional cusp manifold. Compare with [39] figure 3 and note
the resemblance with these projections.

Figure 2.17: Phase portrait of the dual flow box case. (1) A tomography (the variable
cis fixed and suppressed) of the 3-dimensional manifold Sy . (2) The 2-dimensional
fold manifold. @ The 1-dimensional cusp manifold. Compare with [39] figure 3 and
note the resemblance with these projections.
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The corresponding constraint manifold reads as
Sy = {(a,b,c,z) eER* |2 4+ bz ta= 0}7
while the attracting region of Sy is given by
SV.min = {(b, c,z) €Sy | 423 4+ 2cz 4+ b = 0} .

Locally, the vector field is a flow-box and is depicted in figure Note
also that the integral curves of the desingularized vector field X go in opposite
direction with respect to the solution curves of the CDE. It is straightforward
to see that if we consider a potential function —V/, the topology of the solutions
does not change. Observe the jumping feature in the case ¢ < 0, see section[2.3.4]
for more details on such phenomenon.

Hyperbolic Umbilic

The total space is R°. The constraint manifold and the bifurcation set are detailed
in figure The origin of the desingularized vector field is a non-hyperbolic
equilibrium point (see the proof of theorem . We show in figures and
the phase portraits of the center-saddle and center-center cases respectively.
We take advantage on the fact that {a = 0} is an invariant set. This means that
the integral curves are arranged by those in the subspace {(0, b, c, 21, 22) }. Note
that both phase portraits satisfy the geometric description given in section
That is, the integral curves are transversal to the singular sets. We have decided
to show only the solution curves within Sy ,,,;, as those are the ones we are
interested in.

Elliptic Umbilic

The constraint manifold and the bifurcation set are described in figure We
show in figure the phase portrait of the center-saddle. It is easy to check that
Sv,minla = 0 is just a point, so unlike in the hyperbolic umbilic case, there are
no solutions curves of the corresponding CDE at {a = 0}. Therefore, we show
projections into Sy, n|a > 0 with the value of « fixed, of some integral curves.

2.3.4 Jumps in CDEs with three parameters

Constrained differential equations and slow-fast systems are closely related.
CDEs may represent an approximation of some generic dynamical systems with
two or more different time scales. One interesting behavior of the latter type
of systems is formed by jumps. Roughly speaking a jump is a rapid transition
from one stable part of Sy to another. One common example of such a behavior
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c<0

Figure 2.18: Tomographies for different values of the parameter a of the phase portraits
of the swallowtail case. The catastrophe is stratified in the sets shown in figure
Note the particular behavior of the solutions when ¢ < 0. In such case, there exists
a region near the origin where jumps may occur. Observe that the shown solutions
are in accordance with our description in section[2.3.} that is X is transverse to the
projection of the singular set.
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Figure 2.19: Phase portraits of the center-saddle case of the hyperbolic umbilic. Top
left: the desingularized vector field. The origin is a semihyperbolic equilibrium point.
Two directions correspond to a saddle, and one to a center manifold. Locally, such
manifold is tangent to the singularity cone depicted. The center manifold changes
direction depending on the + sign of the normal form. The trajectories shown are
within the projection of Sv,min. Top right: Trajectories of the CDE (V, X) restricted
to Sv,min. The latter set is shown as a shaded region. Bottom: the projection of the
solution curves into the parameter space. Note that the phase portrait shown satisfy
the conjecture given in section2.3.1}
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Figure 2.20: Phase portraits of the center case of the hyperbolic umbilic singularity.
Top left: the desingularized vector field. Such vector field has an equilibrium at the
origin and a 3-dimensional center manifold. The direction of the 1-dimensional center
manifold depicted changes according to the =+ sign of the normal form. Top right:
Solutions curves in the invariant space Sv,min|a = 0. The latter set is shown as a
shaded region. Bottom: the projection of the solution curves into the parameter space.
Note that the phase portrait shown satisfy the conjecture given in sectionm
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Figure 2.21: Phase portraits of the center-saddle case of the elliptic umbilic. Top left:
the desingularized vector field. The origin is a semi-hyperbolic equilibrium point with
two hyperbolic and one center directions. The center manifold is locally tangent to
the singularity cone depicted. The hyperbolic directions shown (corresponding to a
saddle) together with the center manifold arrange all the integral curves sufficiently
close to the origin. Top right: Projection of some solutions curves into a tomography
(a fixed) of Sy, min. Observe that Sv,min is the inside region of a cone (refer to figure
and section[2.3.T). Bottom: the projection of the solution curves into the parameter
space.
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are relaxation oscillations. See also the examples in section chapter |1}, where the
characteristic property of jumps is described.

In this section we discuss the possibility of encountering such jumping be-
havior in generic CDEs with a swallowtail, hyperbolic, or elliptic umbilical
singularity.

Definition 2.3.1 (FINITE JUMP). Let  be a solution curve of a CDE (V, X). Let g € B.
We say that ~ has a finite jump at q if the following conditions are satisfied:

1. there exists a point p € Sy min such that w(p) = w(q),
2. there exists a curve from p to q along which V' is monotonically decreasing.

In the case of the fold singularity, there are no finite jumps. In the case of the
cusp singularity, a solution curve 7 has the jump [39]

(a,b,2z) = (a,b,—22).
For the existence (or nonexistence) of finite jumps in the generic CDEs with
three parameters, we have the following proposition.

Proposition 2.3.1 (Jumps in the generic CDEs with 3 parameters). Let (V, X) be a
generic CDE with potential function V one of the codimension 3 catastrophes. Let ~ be a
solution curve of (V, X ). Then

1. If V is the swallowtail catastrophe, then there are finite jumps as follows. Let
(a, b, ¢, z) be coordinates of v N B, then the finite jump is given by

(a,b,c,2) — (—2z — /=222 — ¢,a,b,¢),

where it is readily seen that

e (D) oo

2. If V is the hyperbolic or the elliptic umbilic catastrophe, then there are no finite
jumps.

Proof. See section[2.5.3] O

2.4 Normal form of A,-CDEs

In this section, a topological classification of constrained differential equations
with only one fast variable is presented. Such a classification is motivated by the
Ay, singularities [4]. Briefly speaking, we consider the potential function V' to be
the universal unfolding of a singularity of the type z*** with k > 2. In chapter
we embed the classification obtained below into the theory of slow fast systems.
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Definition 2.4.1. Let (V, X)) be a generic constrained differential equation (CDE). We
say that (V, X)) is an A,-CDE if and only if V' is the universal unfolding of a function
Vo with a singularity of type Ay, [4]. That is, an A,-CDE has the local form

z = f(z,2)

k—1
0=2"+ E 2L
i=1

The motivation behind A;-CDEs is that we will use them in the next section
to study slow fast systems with one fast variable and k — 1 slow variables.

Remark 2.4.1. For k = 2, 3,4 we have the fold, the cusp, and the swallowtail cases
respectively, which have been studied above.

Now, we provide a classification of A;-CDEs.

Proposition 2.4.1. Let (V, X) be an A,-CDE, and assume that f(0,0) # 0. Then
(V, X) is topologically equivalent to (V, % .
1

Proof. See section2.5.4]

2.5 Proofs

2.5.1 Proof of lemma m

Note that we can write each elementary catastrophe in the form

V(z,z) =V(0,2) + Z T; Ova(;’ 2) s

i=1
n m . . . . 9 .
where z € R", z € R™, and with n < m. The constraint manifold is given by 6—V(:p, z) = 0, which means
z

av (0, 2) +Z V()
8sz ’ szazi -

0, vj € [1,n].

i=1

Next, note that we can always solve the previous equation for n of the x;’s, obtaining

Tj =

AV (0, 2) zm: 92V (x, 2)
_— = T; .
62_7’ aZjami
i=j+1



47 Chapter 2. Constrained Differential Equations

This expresses that x; is the coefficient of the linear term z; in the potential function V' (x, z). Now, we can
choose coordinates in Sy as

(2155 2n,
m . m
oV (0, z) Z 82V(:1:,z) oV (0, z) Z 62V(z,z)
- - Ty, — Ti————,Tnil,-- -, Tm
621 3218931' azn anazi
i=j4+1 i=j41

Next, we define the projection 7@ by @ = 7Sy, this is

*(p) oV (0, z) Z 8%V (z, z) oV (0, z) Z 8%V (z, z)

a = ~——a. Tq yeeey T - Ty~ T IR )

P 0z1 * 0z10x; Ozn ! 0z, 01, v m
i=j+1 i=j+1

where p is a point in Sy . In the original coordinates, X has the general form

- o

X = i(r,z)— .
D hwag
i=1

The set Sy is the phase space of a constrained differential equation. So, for a point in Sy with coordinates
(21,3 %Zn, Tngls- .., Tm), X is given by

X = (d7) "' X (2, 7 (z, 2)).

It is clear that X is defined only for points where the projection in non-singular. Next, recall that the map
A~ det(A)A™! can be extended to a C> map on the space of square matrices. This means that we can define
a smooth vector field by

X = det(d#)(d#) ' X (z, #(x, 2)).

Note that for all points where det(d7) # 0, the solutions of (V, X) are obtained from the integral curves

of X. First by a reparametrization due to the smooth projection 7, and in cases where det(d7) < 0, by next
reversing the direction of the solutions.

2.5.2 Proof of theorem

We only detail the hyperbolic umbilic case as it is the most interesting one. All the other cases follow similar
arguments and steps. The procedure of the proof is summarized as follows.

1. Desingularization of (V, X). With this we obtain the desingularized vector field X. Then we are able to

use standard techniques of dynamical systems theory to obtain a polynomial normal form of X following
the next two steps.

2. Reduction to a center manifold, see appendix[A.3] This reduction greatly simplifies the expressions of the
normal forms.

3. Apply Takens’s normal form theorem, see appendix

4. At this stage, we have a polynomial local normal form of the vector field X . Now, recall that the form of

X is obtained by following the desingularization process described in section So, the last step in order
to write the local normal forms of a constrained differential equation (V, X)) is to carry out the inverse

coordinate transformation performed when obtaining X.
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The Hyperbolic Umbilic
Following table we deal with the constrained differential equation
V(a,b,c, 21, 22) = 25 + 25 4+ az122 + bz + czo
2] %] o
X(a,b = fo— - —_
(a,b¢,21,22) = fam + fop + fo

The functions f;(a,b,c, z1,22) : R®

— R, for i = a,b,c, are considered to be C* with the generic
condition f;(0) # 0.

Remark 2.5.1. To simplify notation let (z1, z2) = (x,y).

The constraint manifold is the critical set of the potential function V'

Sy = {(a,b,c,ac,y) €R® | b= -3z — ay, c=—3y2+ax}4

The attracting region of Sy is
SV i = (CL 0, C, T ) S S ‘ 6z @ > 0
,min 30,6, %,Y 1% a 6y| = )

which is equivalent to the conditions 36zy — a® > 0and & +y > 0. Consequently, the catastrophe set reads

6x a
B—{(a,b,c,myy)GSv\dct{a 6y}_0}'

The pictures of Sy and B are given by Following the desingularization process, we choose coordinates
in Sy . The projection into the parameter space restricted to Sy is

7 = (a, —3z% — ay, —3y2 — ax).

Observe that det (D7) > 0 for points in Sy, y in . By following corollary the corresponding desingular-
ized vector field is

X = (36zy — az)fa% + ((—Gy2 + ax) fa — 6yfo +afc) %+
((—6962 + ay) fa+afy — szc) a%'

The vector field X has an equilibrium point at the origin. The corresponding linearization shows the spec-
trum

{o, +6/15(0)£(0), _6\/fb(0)fc(0)} :

Considering the generic conditions on f;, and f., and by referring to the center manifold theorem| we study
the cases where X is topologically equivalent to

— 7] 2] 2]
1. X = fulu) = + o= w2,
(u,v,w) = fu(u) Bu +vav W or

— o o o
2. X (u,v,w) = fu('“'vvvw)a + (v + fuw(u,v,w)) w0 + (—w + fo(u,v,w)) a0’

where f;(0) = D f;(0) = 0 for ¢ = u, v, w. We study each case separately.
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1. Here we consider that the spectrum of X is of the form {0, A1, A2}, A1 > 0 > Ao, so we call it the center-
saddle case. There exists a 1-dimensional center manifold passing through the origin. Following theorem
[A32)and noting that

20 1 0] _ k
{u %,u B = (k —3)u”,

we have that the k—jet of X' is smoothly equivalent to

16} o 6]

2 3

(51u + dou ) a +’U£ —wa—w

for all k& > 3, where §; € R\ {0}, and 62 € R. With this we can further say that X is topologically
equivalent to

_ 1?) e} 7]
’_ 2 3y 9 o9 0
X = (iu + du ) u + v 5o w e J €R. (24)

Observe that u is the center direction and v, w are the hyperbolic (saddle) directions. Locally, the direction
of the center manifold depends on the = sign in front of the u? term of the normal form 2.4).

2. Now we deal with a 3-dimensional center manifold. The vector field X has spectrum {0, Az, —Ae}, A €
R, so we call it the center case. It is convenient to introduce complex coordinates

z=u-+ 1w,

w|

=Uu—1w.

In these coordinates we have that the 1 — jet of X'is

Following the normal form theorem we write the elements of H” ® C as a combination of the
monomials u™1 z"™2Z™3, where my + m2 + ma = k, having the relations

~/ - 0 — 6
|:X1, umlzm2z™ms —] =u"12M2ZM3 (my — mg)a—,
u

_, o v e —m 1%}
X, umtzm2zms :| =1 2M2Z2"3 (my — m3 — 1)6—,
z

-/ 9 p— 8 — 3
X17 w1 ,m2zm3 Z| = ™1 ,M25m3 (mQ — ms + 1) —.
oz o0z

We can choose as a complement of the image of [?ll s 7] . the space spanned by

k—2m _m—m 0 m=k/2
u z z -_—
ou _ U
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This base is chosen so that we can easily write the normal form in the original coordinates by identify-

. 2] 43 o 4 o _0 ith 2] 4 2] d 2] o tivel
in — — |, an — —Z— | wi — — ], an — — w—— | respectively.

8\"oz " "oz ‘\%o: " "oz Yov T ow Yow ~ Woy ) TEPETEY
Then, we have that the k—th order polynomial normal form of X' reads

k 2j=¢ 5
B N D e G e
ou
=2 j=0

2j4+1=1

) . 15] o 7] 0
£—1—2j5 2 2\Jj . . - N
§ : v CR (WJ (U8v+w8w)+glj (an wav)) ’

j=0

(2.5)

where pg;,n¢;, and og; are some nonzero constants. Compare with [38], where the case of a vector field
having eigenvalues of its Jacobian equal to {a, £2} , a # 0 is studied.

At this point then, we have two normal forms of the vector field X' depending on the eigenvalues of Do X.
Recall that the solutions of (V, X) are related to the integral curves of X and therefore also to the integral curves
of X'. In order to locally identify the coordinates in which we expressed X with the original coordinates
(a,b, c,z,y), we perform a linear change of coordinates such that DoX = DOY/. This linear transformation

is given by
a 6 0 0 u
z|l =11 -1 1 v
Yy 1 1 1 w
in the case of the center-saddle vector field , and
a 6 0 o0
z|=|—-1 0 1
Yy -1 1 0

in the case of the vector field (Z.5). By carrying out the computations, X has respectively the k—th order local
normal form

1. Center-saddle case

X = (2a® + 80’ % + 5 ((+a® +50°) + 0~ 6v) %+

1 P 26)
2 3
s ((ia + da ) +a—6w) (972/7
where § € R.
2. Center case
k2=t i
% 1 . 7] 1 n o +GZZ a JAj 17} n
=|(=a — —|=a+z) — il = —
6 Y ox 6 oy oL 6 da
£=2 j=0
ko 2j=¢ ) ko 2j+1=¢ .
t—3 —1—j
a ; a ; 14]
_ . _ A] _ A7A . . .
g 5 Pej <6) + § § 6 2,5 8z+ 2.7)
=2 j=0 0=2  j=0

ko 2j=¢ ko 2j+1=¢
J it £—1—j

o

a . a _ )

- () A E E a N

ZZM’ (6) + 6 e | By
=2 j=0

=2 j=0
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where
A= % (a2 + 6ax + 6ay + 1822 + 18y2)
a a
Agj =me,j gte) towilgty
— a a
Ae,j = me,j (g +y) — e, (g +w> s Meyi0oe; ER

The phase portraits of and (2.7) are shown in figures and respectively.

Finally, by following lemma we can obtain the form of (V, X). Recall that the desingularized vector
field is defined by X = det(D7)(D#) ' X. This means that in principle, once we know X, X is obtained as

X = W D#X. Clearly, the map X is not defined at points of the bifurcation set. Away from such a set, X

is smoothly equivalent to the smooth map £ D# X, where the sign + depends on the sign of det(D7). So, since
in this case we have that det(D7) > 0in Sy, min, the solution curves of (V, X) are obtained from the integral
curves of X and by the reparametrization

b= —3z% — ay, c= —3y2 —ax.

Straightforward computations show that the CDE (V, X = D# X ) with a hyperbolic umbilic singularity has
the local normal forms as stated in theorem 23]

2.5.3 Proof of proposition m

We detail the proof of the hyperbolic umbilic case. The other cases follow the same methodology. To simplify
notation, let (21, 22, a,b,¢c) = (z,y,a,b,c,).

Recall that for the hyperbolic umbilic

Sy = {(a,b,c,r,y) €R® | b:73127ay, c:73y2+am},

SV,min = {(a,b,c,z,y) ESV\36a:yfa2 >0, z+y>0},

and
B = {(a,b,c,x,y) € Sy | 36zy — a® :O}.

Letp = (21,y1,a1,b1,c1) € Sy and ¢ = (x2, y2, a2, b2, c2) € B. So we have that the projections 7 (p)
and 7(q) read as

7(p) = (a1, —3x7 — a1y1, —3yF — a1z1)
m(q) = (a2, —3363 — azy2, —3y§ — az2x2), a% = 3622y>.
The point ¢ = v N B is known. The point p is unknown, it corresponds to a possible arriving point when a

finite jump occurs. If such a point p exists, then it is a nontrivial solution of 7 (p) = m(q). The easiest case is when
as = 0. We have

7\'(17) = (07 73‘T§7 73y$)
7(q) = (0, =323, —3y3), 0= ways.

Here we have two cases: 1) 0 = z2y2 = 22 =0, andy2 # 0,0r2) 0 = zoys = z2 # 0, and y2 =
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1. ax =0, z2 =0, y2 # 0. We have

0

0.2
—3x7

-3y} = —3y»

The non trivial solution is (1, y1) = (0, —y2). So, there is a possible finite jump of the form

q1 = (0,y2,0,b2,¢2) = p1 = (0, —y2,0, b2, c2)

2. az =0, z3 # 0, y2 = 0. Similarly we have the possible jump

g2 = (22,0,0,bz,c2) = p2 = (—x2,0,0, b2, c2).

Now we check if any of such arriving points are in Sy, i». The conditions for a point p = (a, b, ¢, , y) to
bein Sy, min are

73x27ay7b20
73y27arfc:O
36xy—a220
z+y > 0.

It is readily seen then that for a = 0, p1 and p2 are not points in S, min as the last inequality is not satisfied.
Now, we study the case az # 0. The problem 7(p) = m(g) can be rewritten as the nonlinear simultaneous
equation

73{E§ — a2y1 + 313 + azy2 =0
—3y} — aza1 + 3y; + azxzs = 0.

Since az # 0 we can write from the first equation

—31% + 313 + azy2
Ww=——————"—"
az
and substituting in the second equation we get
27£E411 - (54:&3 + 18a2y1)z§ + agzl + 18m§a2y2 - ag:m + 271é = 0.
It is not difficult to see that 1 = x5 is a double root, so we have the factorization

(z1 — $2)2(3I? + 6xo1 + 39:3 — 2asy2) = 0.

The roots of 323 + 62221 + 3235 — 2asy> = 0 are

2
X4 = —20 £ —/azys.
NG

Yi = —Y2 :|: 2\/6{132 ny
V a2

The corresponding y1 solutions are
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This is, for a trajectory  such that v|B = (z2, y2, a2, b2, c2), there are possible jumps towards

2 2v6.\/yaz2
= | —z2+ —=+Va2y2, —y2 + ,az2, bz, co
V6 as

pP1 =
Vaz
2 2v6.\/yaz2
po = | —x2 — —\/azyz, —ys — ——————,az,ba,ca | .
( V6 Vaz

Just as in the previous case, we shall check if the points (X4, Yy, az,b2,c2), (X—,Y_,az,ba2,cz) are
contained in S, min. This is, we have to check if the following inequalities are satisfied.

Xy +Y, >0,
; @8
36X4+Y, —aj >0,
and
X_4Y_>0,
(2.9)

36X_Y_ —a3 > 0.

Inboth cases we have the further properties 36z2y2 —ag = 0and z2+y2 > Osince (z2, Y2, az, b2, c2) € B.

a

By substituting the value y» = 3—2 in X4 and Y4 we have

6xo
X L "
+ =Tt ———7,
3v6x)/?
2
2
Yy = 92 + - zl/2al/2

T 36z 6 2 2

Now, @ and @ read as

n ag/Q a3 2 12 12 5
—xo+ —=—— — —— + —x.'"a >0,
sveel?  Soxs | VG2
(2.10)
3/2
N a2/ (7 ag n 2 w1/2a1/2) —d2>0
3v6z)/? 3622 V6 0 ° 2=
and
3/2 2
ay a3 2 1/2 172
Xy — ———— — —— — —x,' "a >0,
3\/690;/2 36z 6 2 2 T
(2.11)

oy _w” (, a3 _ iml/zal/z) —a2>0
3v6z}/? 36zs V6 ° ° 2=

respectively. It is readily seen that (2.11) is not satisfied. Now we focus on (2.10). First we check the conditions for
X4 > 0and Y4 > 0. We have

3/2

Xy >0 = 222 <2,
3v6

Yy >0 = ——a/? <ad/?

- 12v6
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This is 121\F ad/? < 13/2 < 3\1[ a2/?. Of course this would imply that X 4+ Y > 0. Now we have to

check if for such interval 36 X Y, — a? > 0. So we have

7/2

a
36X,Y, —a® = 12\/6:1:2/20,;/2 - 273 + 4a®,
/2
3v6z,
so we check if
o772
—12\/613/2(1;/2 - 2732 +4a®> >0
3\/6x2/
in the interval
1 1
TV ad? < adl? < G a3/?. 212)
We have that
12\/’ 3/2 1/2 n a;/2 216x3a1/2 + a;/z
(13 a =
2 Sﬁzg/z S\fxg/z
but note that from (2.12) we obtain
1 -
7112/2 < 3\/6123/2,
so we have
216$3a1/2+a7/2 - o5
— > 864252322320/ + 402 > “Zal/?a3/? 4+ 402 > 542,
3v6z,
This means that the inequality
o772
712\f13/2a;/2 2 3/2+4a220
3v6w,

can not be satisfied, which implies that w(p) = m(g) does not have nontrivial solutions in S, min. Therefore, it
is not possible to have finite jumps.

2.54 Proof of propositionm

The constraint differential equation (V, X)) is defined by

k—1
1w 1
V=—-" Z*i )
k+lz —+ imz

i=1

_ o
and X = E k 11 X e Then the desingularized vector field reads as
i= i
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where Z = kzF~1 4 Zf:; (i — 1)&;2°~ 2. The constraint manifold reads as

k—1
Sy =< (z,2) e R¥ | 2" + E 27t =0%,
i=1

while the singularity set is a submanifold of Sy given by
B ={(x,z) € Sy |Z =0}.

Generically X (0) = X(0) # 0, therefore, by the rectification theorem [I], there exists a diffeomorphism &
such that in a sufficiently small neighborhood of the origin we have

- — 13}
P X = —.
0z

This implies that the equivalence in the CDE is given by & = #~* o ® o #. Naturally & is just continuous,
but note that |5, \ p is a local diffeomorphism.
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Chapter 3

Slow fast systems

This chapter presents several techniques which are useful to study the local
dynamics of SFSs, and in particular of what we call A;-SFSs. These slow fast
systems have one fast direction, and their principal characteristic is that their
corresponding slow manifold is given by the critical set of an A, catastrophe
[3,14].

This chapter is arranged as follows. First, the definition, and a qualitative
description of A, slow fast system is given. Next we briefly recall results on
normal forms and transition of slow fast systems along Normally Hyperbolic slow
manifolds. After this, we discuss a class of maps called “exponential type maps”.
These appear frequently in our forthcoming analysis. Following these preliminary
results, we provide a formal normal form of A;-SFSs. Afterwards, we shall briefly
recall the Geometric Desingularization method. All these techniques will be used
in chapter where we study A, (fold), A3 (cusp), and A4 (swallowtail) Slow Fast
Systems.

3.1 Introduction

We consider, as a slow fast system, a parameter family of vector fields X, which
in coordinates has the form

X. - {x/ =ef(z,z,¢) (3.1)

Z/ :g($72,5),

where ¢ is a small positive parameter, this is 0 < ¢ < 1, and where f and g are
considered of class C*°. Throughout this chapter, we study SFSs with one fast

57
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variable, that is z € R. Rescaling the time by ¢ = 7 we can also write (3.1) as
&= f(x,z2,¢)
ez =gz, z,¢).

For ¢ # 0, the systems and are equivalent. Recall that the limite — 0
of (3.2) is the CDE

(3.2)

T = f(ac,z,O)
0=g(z,z20).

Definition 3.1.1 (Slow manifold). The set
S={(z,2) € R¥! x R|g(z,20) = 0}
is called the slow manifold of (3.1).

It is now worth recalling the definition of Normally Hyperbolic Invariant
Manifolds in the present context.

Definition 3.1.2 (Normally Hyperbolic Invariant Manifold). Consider a slow fast
system given by (3.1). The associated slow (invariant) manifold S = {g(x, z,0) = 0} is
said to be normally hyperbolic if each point of S is a hyperbolic equilibrium point of X.

NHIMs are relevant in the context of the geometric study of slow fast systems,
see for example [16]. It turns out that compact NHIMs persist under C! small
perturbation of X, see appendix In the particular context presented above,
a normally hyperbolic compact subset of the slow manifold S persists as an
invariant manifold of the slow fast system X..

A point of S at which S is tangent to the one dimensional fast foliation is
called singular, and the set of all singular points is denoted by B, that is

B:{(m,z)ekaR|gg:0}.
z

Let us now define the particular slow fast system studied here. Briefly speak-
ing, we shall define a class of slow fast systems by a generic perturbation of the
Ay-CDEs of chapter 2]

Definition 3.1.3. Let k > 1. An Ay, slow fast system (for brevity Ay-SFES) is a smooth
vector field obtained as a generic perturbation of an A,-CDE. More specifically, an
Ay-SFS is a singularly perturbed ordinary differential equation given as

iy =1+ef;

ij=cf] (3.3)

et =g+efr,
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where

k—1
g=yg(x,z)=— <zk + inzi’_1> ,
i=1

and where f; = fi(;g z,e), forall i = 1,...,k, are smooth functions. In this context,
generic means that f;(0,0,0) # 0. Observe that the corresponding limit ¢ — 0 of (3.3)
corresponds to a A,-CDE in topological normal form, see section

Equivalently, in the fast time regime, and A;-SFS can be written as

2y =e(l+efi)
oy =%
Z=g+ef

Our main goal in this chapter is to provide a systematic method to study the
flow of an A;-SFS near the origin. For this task, we use the techniques presented
below. Before going any further, a qualitative description of A;-SFSs is given in
the following section.

3.1.1 Qualitative description of A; slow fast systems
The slow manifold of is of dimension k — 1 and is defined by

k—1
S = {(x,z) e RF T x R|e=0, (zk + inzi_1> = 0} )
i=1

For k > 2, the projection 7 : S — R¥~!, from S to the parameter space (z), has
singularities. This is the case we further study, so from now on, let £ > 2. From
the expression of S we distinguish two cases, namely

* kis even. The slow manifold S is of “U-shape”, for example like in the A,
(fold) case.

* kis odd. The slow manifold S has an “S-shape”, for example, like in the
Ajz (cusp) case.

The related CDE of has the simple form
1 =1
i;=0 (3.4)
0=y,
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where we recall that g = (z + ZZ 1 Tiz ) Then, we expect that the flow of

is close to the flow of (.4). Thus, to study the orbits of X within a small
neighborhood of the origin, we define the so called “entry and exit sections” as
follows

e If k is even then
—{ ERk\xlz—xl,en,zeJ}
Zex:{(, )eRk\z:—zex,xleJ’},

where 21 o, and zex are small positive constants, and where J C R and
J' C R are suitable intervals.

e If k is odd then
yen = {(m,z) eR¥ |z, = —Z1en, 2 € J}
2 = {(7,2) ER¥ |31 = —210x, 2 € J'Y},

where 1 ¢, and z ¢« are small positive constants, and where J C R and
J' C R are suitable intervals.

From these sections, a transition II is defined as follows.

Definition 3.1.4. Let X be an A-SFS and let X%, X% be sections as above. A
transition I is a map I1 : £ — X induced by the flow of X.

See fig.[3.1|for a description of the sections and the transition defined above.

Observe in fig. [3.1|that the trajectories of X spend a long time along Normally
Hyperbolic regions of S. Accordingly, before studying the A;-SFS near the non-
hyperbolic singularity at the origin, let us discuss its flow near regular parts of
the manifold S.

3.1.2 Regular slow fast systems

In this section, the dynamics of a regular slow fast system is studied. We remark
that only SFS with one fast variable are considered in this document. To be more
precise we have the following.

Definition 3.1.5. Let X, denote a slow fast system and S its slow manifold. Then X,
is said to be (locally) regular around a point py € S, if S is normally hyperbolic in a
neighborhood of po.
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Z1

ECX

EQX

Figure 3.1: Qualitative picture of the sections 3", ¥ and of a transition II. Left: for k
even. Right: for k odd. A transition is a map from the entry section 3°" to the section
¥** induced by the flow of the vector field X . Note that the trajectories depicted spend
a long time along normally hyperbolic regions of the slow manifold.

The slow vector field

For simplicity, let us consider a slow fast system written as

X, = Zefq;(:c,z,s)aa + H(x,z,¢) 4

2 - 9 (3.5)
where x € R™, z € R, and as usual 0 < ¢ <« 1. Furthermore, assume that f =
(fi,---, fm) is such that £(0,0,0) # 0; and H(0,0,0) = 0, with 2%(0,0,0) < 0.
Thus X. is regular around 0 € R™2. From the defining assumptions of , the
slow manifold S is normally hyperbolic in a sufficiently small neighborhood of
the origin. By looking at the Jacobian of X, it follows that there exists an m + 1
dimensional a center manifold. Since X, is smooth, we can choose a C¢ center
manifold W for any ¢ < oo. This choice of center manifold is given as a graph
z = ¢(z,¢) where ¢ is a C* function.

Remark 3.1.1. Along the rest of the document we frequently make use of a finite class of
differentiability. As it is customary in the present context, when we say that a manifold
(or a map) is C*, we mean that such a manifold (or map) is (-differentiable for ¢ as large
as necessary.

The slow manifold S is naturally given by the restriction w’ le=0 = S. Next,
let us consider the vector field éXe(o:, ¢,€). Since WS is locally invariant, it
follows that 1 X is tangent to W . Therefore the vector field

1
Xstow — lim - X_(z, ¢, €),
e—0 ¢
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is tangent to S at each point of S, and we call it the slow vector field. We remark
that the slow vector field X*!° is only well defined whenever ¢ is invertible.

The slow divergence integral

Associated to a regular slow fast system and the corresponding slow vector field,
the slow divergence integral is defined here. For this, let ¥~ and X" be two sections
which are transversal to the flow of X, given by (3.5). For ¢ # 0 but sufficiently
small, these sections are also transversal to the slow manifold S. Let ~. be a
solution curve of X, chosen along a center manifold WC, thus 7. is transversal
to the sections ¥~ and 7. In the limit ¢ = 0, the curve v is a curve along the
slow manifold S. The idea now is to borrow the well-known divergence theorem
[33] to get some sense on how the trajectories of X, are attracted to S (recall that
we made the assumption 22 < 0). The divergence of X. (given by ) reads as

O0H (z,z,¢€)
0z

We can now take the integral of div X, along the orbit ~. of X, parametrized
by the fast time 7, we have

OH
/ div X, dr = / (%“"Z”) + O(E)) dr. (3.6)

= €

div X, = + O(e).

Let us now define the slow divergence integral by
I(t) = / div XO dt,
Yo

where t is the slow time defined by the slow vector field X*/°*. Our goal then is
to relate the divergence integral (3.6) with I.

Proposition 3.1.1. Under the assumptions made in this section, we have that

M | =

/divXEdT: (I(t) +o0(1)),

where 1(t) is the slow divergence integral.

Proof. Recall that the expression of the slow vector field reads as X% =
lim. o 1 X.(z,¢,¢), where ¢ = ¢(z,¢) is a C* function. By our assumptions,
the curve . is transversal to the sections ¥~ and X7 for € small enough. Without
loss of generality we can assume that . is parametrized by z;. Then let z; and
z] be defined by 7. (7)) = 7. N ¥~ and 7. (] ) = 7. N ©F. Next, the integral of
the divergence of X, along 7. from X~ to £ reads as
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+
, _ L (9H(@.20) __dn
/%desdTE/wl_ ( pR +O(s)> fi(z,2,0) + o(1)

@ 0H(z,2,0) dx;
( T 0z fl(xa Z’O) " 0(1)>

1

(/7 div Xodt + 0(1)> ,

where t is the slow time induced by X%, which in coordinates means that
dml f' O
1

Observe that the slow divergence integral is a first order approximation of
the divergence along orbits of X.. This will useful when presenting our main
result in section 3.4

Normal form and transition of a regular slow fast system

Now we consider the problem of finding a suitable normal form of a regular SFS.

Proposition 3.1.2. Consider a reqular slow fast system on R™+2 given by
8
Xe=c(l+fi)g. + Z I a

where (u,v1,...,0m, z,€) € R™3; where the functions f1 = fi(u,v,z,¢) and g; =
9j (u,v,2,¢€), for 1 < j < m, are smooth and where the function H = H(u,v, z,¢€)
is smooth with H(0,0,0,0) = 0 and aH ~(0,0,0,0) < 0. Then, the vector field X is
Ct-equivalent to a normal form given by

—zz—Jrz:O——Zi (3.7

where {Z = 0} corresponds to a choice of the center manifold w® of X..

Proof. See section O

Motivated by proposition[3.1.2} the dynamics of (3.7) are now discussed. The
slow manifold S, corresponding to the normal form (3.7), is given by

S={e=0,Z=0}.
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Furthermore, we can parametrize the solution of (3.7) by U. Let us define the
sections

2 ={(UV,Z,e) eRxR"xRxR|U=U"}

St={(U,V.Ze) eRxR" xRxR|U =U"},
where U~ < U™. The sections ¥~ and ¥ are transversal to the manifold S and
therefore, for € # 0, are also transversal to the flow of (3.7). Associated to these
sections, we define the transition

m:¥" -3t
(V. Z,e) = (V,Z,8).
To compute the component Z we only need to integrate 992 = —17. Then

it follows that Z = Z(T), where T is the time to go from ¥~ to X+, which is
T = Uy — U;. Since (3.7) is very simple to integrate we get

V=V

~ 1

Z = Zexp (_g(U‘f - UZ))
E=c¢.

Observe the particular format of the transition II. The Z component is an
exponential contraction towards the center manifold {Z = 0}. Maps with this
characteristic will appear frequently in our text. Thus, we proceed in section [3.2]
by discussing in a rather general way, the properties of such maps.

3.2 Exponential type maps

In this section, we discuss a particular type of function which will be found
and used frequently throughout the main text. First, however, let us give two
preliminary definitions.

Definition 3.2.1 ( C’-admissible function). Let U € R". A function f : R® — R
is said to be a C*-admissible function if f is C*-smooth away form the origin (for any
0> 0), C° at the origin and if for all n; € Nand n; < {, there exists an N (n;) € N such
that

o f

WGO(U_NW)), as U; — 0.

7
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Now, we define a particular type of differentiability. For this we need to
extend the common concept of monomial. In our context, a monomial, e.g. in
two variables, w(u, v) is any expression of the form u®v? or of the form u®(Inv)?,
with a, f € R. In general, if we let v € R™ and v € R", we allow a monomial
to be any expression of the type u?(Inv)?, where u? = u{* - - - ufm and (lnv)? =
(Inwy)9 - - (Inwv,)9. We note that these monomials are admissible functions.

Definition 3.2.2 (C* function with respect to monomials). Let (U, V) € R™ x R™.
We say that a function f(U, V) is C*~function with respect to a monomial w(U), if f
is C* w.r.t. V in a neighborhood of 0 € R", and if there is a quadrant U = [0,uy) X
-+ X [0,up,) C R™ where the monomial w(U) is defined and such that the function
f(w,U, V) = f(U,V) is C* with respect to w in U. Similarly, the function f is said to
be a C*~function with respect to monomials wy, . . . ,w; if there is a quadrant U where the
monomials are defined and such that the function flwr, ... ,ws, U, V)= f(UV)isC*
with respect to w, ... ,ws inU.

Observe that a function f which is differentiable w.r.t monomials is an ad-
missible function. As an example, consider f(U) = Uy InU;16(U) where ¢(U) is
smooth. This function is smooth away from U = 0 and C° at the origin. However,
it is not differentiable w.r.t. U; at U; = 0 but it is differentiable with respect to
w=U;InU; atw =0.

Let V € R™, Z € R, and as usual ¢ denotes a small parameter.

Definition 3.2.3 (Exponential type function). A function D(V,Z,¢) is called of
exponential type if it has the following form

(3.8)

D(V,Z,&) = B(V,e) + Zexp (A(V, g) + @V, g,Z)> |

e

where A and B, are C* admissible functions with A > 0, and B(V,0) = 0; and where ®
is C* in z and C* w.r.t. monomials of (V,e) with ®(V,0,Z) = 0. We distinguish two
particular cases

1. the exponential type function D is without shift if B = 0.
2. the exponential type function D is linear if ®(V, Z,¢) = ®(V, ¢)

Remark 3.2.1. Given a function D and if it is of exponential type, the representation of
D is unique in the sense that all the functions in r.h.s of (3.8) are computable from D. In

fact
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B=D(V,0,¢)

A= lim <_51n (D(V%E) —D(V,o,e)»
Z—0 Z

d=—cln (D(‘/’Z75);D(W0,€)> 4

We want to study the scenario where we have to compose D with some other
functions and want to keep the exponential type structure. To be more precise,
we consider D as an (V, ) —parameter family of functions (in Z) and compose it
with a (V, e) —parameter family of diffeomorphisms ¥y .y on R.

Proposition 3.2.1 (Composition on the left). Let ¥(y.) : R — R be a family of
diffeomorphisms, and let D be an exponential type function. Then, the composition
VU (y,ey o D is also of exponential function of the form

A(V,e) +<i>(v,z,g)) _

D =B(V,e) + Zexp <—

Proof. Let us simplify the notation by writing ¥ = Wy, .. Since ¥ is a diffeo-
morphism we can write U(a + b) = ¥(a) + C(1 + ¢ (a,b))b, near b = 0, with ¢ a
C* function such that ¢(a, 0) = 0 and with C' > 0. Then we have

ToD(z) =T <B+Zexp (A”’))

€

— W(B) + C(1+ (V. Z,£)) Z exp <_qu’> .

Since C' > 0 we can take the logarithm of C'(1 + ¢(V, Z, ¢)) and then we have

W o D(z) = U(B) + exp(n(C(1 + 1)) Z exp (Azé)

A+<I’+sln(C(1+¢)>
. .

— () + Zow (-

The result is obtained by setting 8= ¥(B)and & = ® + ¢ In(C(1 +v). O

Proposition 3.2.2 (Composition on the right). Let ¥(y,.) : R — R be a family of
diffeomorphisms with no shift, that is Wy, (0) = 0 for all (V,¢), and let D be an
exponential type function. Then, the composition D o Wy .y is also of exponential
function of the form

D =B(V,e) + Zexp (““(‘/’5) +oZ 5)) .

€
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Proof. Let us simplify the notation by writing ¥ = Wy, ). Since ¥(0) = 0 we can
write ¥(z) = C(1 + O(z))z with C > 0. Then we have

Do W(z) = D(C(1+ 0(2))2) = B(V,e) + C(1 + O(2))z exp <_ AV.e) + (1, e, ‘1’>)

AV, e) + ®(V,e,¥) + eIn(C(1 + O(z)))) .
g

= B(V,e) + zexp (—

The result then is obtained by setting ® = ®(V, &, ¥) + e In(C(1 + O(z))). O

Remark 3.2.2. If we want the composition 11 o Wy, .y to be of exponential type, the
family W v oy cannot be arbitrary. In order to preserve the structure, W (v oy should satisfy
the hypothesis of proposition In corollary[3.2.2)we show a particular case in which
the diffeomorphism U can have a shift and yet preserve the structure of the exponential

type function.
Let us proceed by presenting a couple of useful corollaries.

Corollary 3.2.1. Let Dy and D5 be two exponential type functions of the form

A1 (V,e) + @1(V, Z,¢)

S
As(Vie) + @V, Z, 6))
c )

Di(V, Z,¢) = Zexp (—

Dy(V, Z,6) = Bo(Vi<) + Zexp (—

that is, D1 is an exponential type function with no shift. Then Dy o Dy is an exponential
type function.

Corollary 3.2.2. Let Dy and Dy be two exponential type functions with Dy linear, this
is

Di(V, Z,6) = Bu(Vye) + Zexp (—Al(V’E) T, Z’”)

€

Dy(V.Z,e) = By(V.e) + Zexp <_AQ(5V’€)> |

Then the composition Do o Dy is of exponential type.

Later in this document, we will find transitions in which a component is given
by an exponential type transition. To be more specific, let X (V, Z, ¢) be a given
vector field on R™*2, and let ¥, and ¥; be codimension one subsets of R™+2
which are transversal to the flow of X. For the moment it is sufficient to think
of a section ¥; given by {V; = vy} or by {e = o} with vy and ¢ fixed constants.
Induced from definition[3.2.3we then have the following.
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Definition 3.2.4 (Exponential type transition). A transition 11 : ¥o — ¥ is called
of exponential type if and only if its Z-component is an exponential type function. This
is, an exponential type transition is of the form

(V. Z,¢) = (G, D, H)

= (G(V, e), B(V,e) + Zexp (— AW.e) +;I)(V’ Z7E)> s H(V, 5)) ;

where G : R™1 — R™ gnd H : R™ — R are C* with G(V,0) = V and H(V,0) =
0; where A, B and ® are C*-admissible functions. The names exponential type transition
with no shift and linear are inherited as well from the type of D.

Let us now discuss a particular situation which will be useful later. Suppose
X is a given vector field on R "2, as above, and let &; with i = 0,1,2,3,4,5
be sections which are all transversal to the flow of X. Assume that X induces
exponential type transitions II; : 3;_; — ¥; with i = 1,2, 3,4, 5 of the following
form

1. II; is with no shift and linear

2. II, is with no shift

3. II3 is a general diffeomorphism
4. TI, is with no shift

5. II5 is with no shift and linear.

We need to show that the composition of all these five maps is an exponential
type transition.

Proposition 3.2.3. Let II; : ¥,_1 — 3; as described above. Then the composition
II = II5 o I14 o I3 o Il o Il is an exponential type map of the form

A(V.e) +€i>(W Zf)) , ﬁ(Ma)) :

= (G(V,g), B(V,e) + Zexp (—

where A= Ay + A + Ay + As.
Proof. Let us write each of the transitions as follows.

1. IL(V, Z,e) = (G1, Dy, Hy) = (Gl,ZeXp (—%) ,Hl)

2. 1o(V, Z,) = (Ga, Do, Hy) = (Gg,Zcxp (—M) ,HQ)

&€



69 Chapter 3. Slow fast systems

3. HS(V; Z7 5) = (G33D37H3)

4. T,(V, Z,¢) = (Gy, Dy, Hy) = (G4,Zexp (—w) ,H4)

€

5. I5(V, Z,¢e) = (G5, D5, Hs) = (GrnZeXp (-M) ,Hs)
For brevity let II; o IT; = (GQ, D,, ﬁg). Then we have
(G2, Dy, Hy) =

As(Gy, Hy) + o(Gy, Dy, H
(G2(Ga. ), Dy xp (- AR DRI 6 ).

Now, we take care only of the Z-component of the composition II; o II;. From
the hypothesis on G; and H; we can write G; = V + O(¢) and H; = ae(1+0(¢))
with a > 0, then

Dy = Zexp (—Al(v’ e) = AxVi) + @2V, 2, €)> )

5
where we have gathered in ®, the function ®; and the terms resulting from
taking G1 = V +O(¢) and Hy = ag(1+ O(e)). In a similar way, letting I15 o [Ty =
(G5, Ds, Hy) we get

D5 — Zexp <A4(€) + As(e) + @5(V, Z, 5))

€

Next, and following similar arguments as above, we know from proposi-

tion[3.2.T| that the composition II3y; = II3 o II5 o II; is of exponential type with

shift. Finally since the transition II54, = II5 o Il is of exponential type with no

shift, and using proposition[3.2.1) we have that IT54 o II3p; is an exponential type
transition as claimed in the proposition.

Remark 3.2.3. In the case where 113 is an exponential type map, we get a similar result

with A = Ay + Ay + As + Ay + As.
O

3.3 Formal normal form of A; slow fast systems
In several works dealing with the geometric desingularization of slow fast sys-

tems, e.g. [8, (13 27, (26} 28, 36], the blow-up technique is directly applied to
the vector field being studied. Here, however, we propose an intermediate step
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that simplifies the analysis. Namely, before applying the blow-up we normalize
the A;-SFS (given in definition [3.1.3). Briefly speaking, if we consider a small
neighborhood of the origin then we may regard an A;-SFS as a vector field X
written as

= e i€2f1:

! | | | 3
QTJ}:‘O‘_F‘EQ]‘:

X:{ =19 e
6,*:0: 10 |

F P

where F is “the principal part” of X and P is a “perturbation term”. The vector
field F’ contains the essential information of X, in particular it contains the relev-
ant expression of the slow manifold S. Thus, we want to find a transformation
@ : RF1 — R which conjugates X to its principal part F'.

In fact, we can do better by considering X to be given as X = F' + P, where

9
_5871+iz a a: Vo
k—1

0 0
P= Zefl—i—sg——&—()a

(3.9)

and where

k—1
_ k i—1
g=— 12"+ ijzj
Jj=1

Remark 3.3.1. We shall show that F is (formally) stable in the following sense: any
e-perturbation X = F + P (see (3.9)) of F is formally conjugate to F.

The procedure of normalizing the vector field X is motivated by [29], where
normal forms of quasihomogeneous vector fields are investigated. The formula-
tion of this section is based on the concepts of quasihomogeneous polynomials
and vector fields [4} 29]; refer also to appendix

In brief terms (see more details in appendixlet y€R"andlet f: R" - R
be a smooth function. The function f is said to be quasihomogeneous of quasidegree
d and type r = (r1, ..., ry,) if and only if for every A € R we have

f(Arlyla .. '7>‘Tnyn) = A(Sf(yla cee 7yn)
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Avector fieldY =57 | f; 8%” is said to be quasihomogeneous of quasidegree
v and type r = (r1,...,ry) if each of the functions f; is quasihomogeneous of
quasidegree v + r; and type r. An r-quasihomogeneous vector field Y is said
to be of quasiorder +y if all its components are functions of quasidegree o + r; or
higher.

Following the previous description, the vector field F' is quasihomogeneous
of quasidegree k — 1 and type r = (k,k — 1,...,1,2k — 1). From now on, we fix
the type of quasihomogeneity r. For shortness, we shall write that a polynomial
(or a vector field) is 7-quasihomogeneous if its type of quasihomogeneity is r.

Definition 3.3.1 (Good perturbation). Let F' be an r-quasihomogeneous vector field
of quasidegree k — 1. A good perturbation X of F is a smooth vector field X = F + P,

where P = P(x1,...,%5_1, 2, €) has the following properties
1. P=Y! P»i + P 9 + 02 is a smooth vector field of quasiorder k. That
U ==L gy "oz 0e 1 ’

is, each function P; is r-quasihomogeneous of quasidegree k + r; or higher.
2. P(x1,...,x5-1,2,0) =0.

Remark 3.3.2. A straightforward computation shows that a good perturbation X =
F + P of F satisfies

k-1
_ 0 _ 0 0
P= P— P, — —,
;5 '8mi+€ kaerOaE

where Py (0) = 0 and P; is any r-quasihomogeneous polynomial of quasiorder 0.

Now, we need the operators d, d* and O as introduced in [29]. Let us denote
by #. the space of k + 1 dimensional r-quasihomogeneous vector fields of degree
~v whose elements are of the form

k+1 D)
U - Ui77
; yi

where Uy+1 = 0 and U;(y1,-..,yx,0) = 0 for all i. We identify then y with
(z,z2,¢).

Definition 3.3.2 (The operators d, d* and O). The operator d : H, — Hyq k-1 i5
defined by d(U) = [F, U] for any U € H., and where [-, -] denotes the Lie bracket. The
operator d* is the adjoint operator of d with respect to the inner product of definition
That is, given U € H.,, V € H~y1—1 we have

(dU), V)r i1 = (U, d"(V))ry
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For any quasidegree 8 > k — 1, the self adjoint operator Og : Hg — Hg is defined
by Og(U) = dd*(U) for U € Hg.

Definition 3.3.3.
o Awvector fieldl U € Hp is called resonant if U € ker [g.

o A formal vector field is called resonant if all its quasihomogeneous components are
resonant.

* A good perturbation X = F + R of F'is a normal form with respect to F' if R
is resonant.

Now, recall a result of [29] (Proposition 4.4), only adapted for the present
context.

Theorem 3.3.1 (Formal normal form [29]). Let X = F + P be a good perturbation of
F as in definition Then there exists a formal diffeomorphism & that conjugates X
to a vector field F' + R, where R is a resonant formal vector field in the sense of definition

B.33

Using theorem we next show that a good perturbation X of F is in fact
formally conjugate to F.

Theorem 3.3.2. Let X = F' + P be a good perturbation of the vector field

= o d
k -1 —_
aa:1 : +J,Z:1 KA R

Then, there exists a formal diffeomorphism ® such that @*X = F.

Proof. See section[.5.2] O

Theorem shows that any good perturbation X = F' 4 P is (formally)
conjugate to F'. Next, by Borel’s lemma [10], the vector field I’ can be realized as
a smooth vector field X~ = F + P where P is of the form

0 - 0 0
oz, T Pa; 0%

P=3 P
i=1

where each P; is flat at the origin and Pj|.—o = 0, j = 1, ..., k. More specifically,
in the rest of the document we assume that an A;-SFS has a smooth normal form
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given by
l‘/l = 6(1 + Efl)
fr— 52f~'
XN / L . 3.10
P A—— (zk + Zlel xiz’_l) + efk ( )
g =0

where all the functions f; = f;(x,2,¢) are flat at (z,z,¢) = (0,0,0) € RFL,
This normal form X% is of course not unique and it is given up to flat terms.
The smooth (and maybe analytic) version of theorem is an open problem.
However, the fact that the perturbations f; are flat greatly simplifies the local

analysis of (3.10) as shown in chapter [

3.4 Geometric desingularization

In this section, the geometric desingularization technique (also known as blow-
up) is briefly recalled. For brevity purposes, we restrict ourselves to a vector field
X given by (3.10). We remark however, that this is only one of several methods
to study singular perturbation problems, see e.g. [30} 131} 144] for a recollection of
asymptotic methods.

Observe that the origin is a non-hyperbolic singularity of X. Since the vector
field X is quasihomogeneous (see appendix[A.5), we make use of the so called
quasthomogeneous blow-up. This technique consists on performing the change of
coordinates

21 =1FT1, o =¥ 0, L, o = 12T, 2 =17, £ = PP 1E, (3.11)
where 73 +---+72 | +22+&%=1andr € [0, +00). Thatis (z, z,&,7) € S¥ x RT.
Since € > 0, we can restrict the coordinates to £ > 0. Note that S* x {0} is mapped,
via the blow-up map , to the origin of R*™!. The powers or weights of the
blow-up map are obtained from the type of quasihomogeneity of X, see
section3.3|and appendix

Let us denote by ®(z, z, £) the blow-up map (3.1T). This map induces a smooth
vector field X on S*~! x RT defined by ®.X = X. Itis often the case in which
the vector field X is degenerate along S*~! x {0}. Then one defines X = -1 X
for a well chosen positive integer m. Since € R, the phase portraits of X and
X are equivalent outside S* x {0}, and therefore it is equally useful to study X
instead of X. It turns out that the vector field X is simpler that X in the sense
that the singularities of X are semi-hyperbolic or even hyperbolic, in contrast to
the non-hyperbolic singularity of X. One obtains a complete description of the
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flow of X near the origin by studying the flow of X for (z,z,&,7) € S* x [0,70)
for ro > 0.

For problems of dimension greater than 2, performing computations in spher-
ical coordinates becomes tedious. Therefore, it is more convenient to consider
charts. A chart is a parametrization of a hemisphere of the ball S* x [0, ). More
specifically, the charts are given by

and we always keep r € [0, 7). Naturally, an analysis on all charts provides a
complete picture near S* x [0, (). Finally, we remark that since ¢ is a parameter,
the function 7?1z is constant along the orbits of X. This fact is useful in the
analysis of X. See fig.[3.2|for a schematic description of the blow-up map and the

charts.

Figure 3.2: The blow-up space and the charts. Each chart K, parametrizes a region
of the ball S* x [0,70). A local analysis in the charts provides a full picture of the
dynamics of the vector field X.

In order to be systematic with our exposition, first we present some general
properties of the vector fields obtained on each chart.

3.4.1 The local vector fields on the blow-up charts

In this section we provide the list of vector fields which are obtained via blow-up
on each chart. We remark that to obtain such “blown up vector fields”, one
performs the directional blow-up define on each chart. For example, to obtain the
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blown up vector field in the chart K_z, = {Z1 = —1} one performs the change of
coordinates
T = frk, Tro = rkilig, ey Tl = r2§7k_1, Z=Tz, €= rk-lg,

Carrying out standard computations on finds the following.

Proposition 3.4.1. Let X be an A-SFS given in normal form

ry = 5(1~+ efr)

.15 = ef;
12 =-— (zk + Zi:ll zizifl) +efy’
e =0

where all the functions f; = fi(z, z,¢) are flat at (z,z,¢) = (0,0,0) € RF1. Let
@ : Sk x Ry — R¥*L be the blow-up map . Consider the charts defined by (3.12).
Then, up to smooth equivalence, the blown up vector fields on each of the charts are given
as follows.

e [n the charts K4z, the corresponding local vector field reads as

' =4re
<. . ]% = F(k—j+ 1)ez; +&2f;
Vg = F(2k—1)22
7 =—k (zk N DA L el (= %5‘5) + &g

where the functions f; and g are flat along {r = 0}.

* In the charts K1z, for j € {2,...,k — 1}, the corresponding local vector field

reads as
! = gf_lo
1 =1+ f1)
Yiij : 57;: = gfp
c =Efkn
7 =- (Ek + Zf;ll,i;,éj Tz £ éjil) + Efk,

where the functions fp,forp =0,1,2,...,5—1,j+1,...,k — 1, are flat along

{r =0}
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e [n the chart K ; the corresponding local vector field reads

/

r =Fr+é&g
— )@ ==£kz +EL(z)+Ef
R :i(k—j+1)£jféfj
g =+(2k— 1)z +&%h,
where
1

Mo = (£1)F + S0 ()it

and where the functions g, f; and h are all flat along {r = 0}.

* [n the chart K¢ the corresponding local vector field reads

=0
— T o=1+h
Xz 4§ _ J?
T o= f;
FA—— (Ek + Zf;ll xizi_l) +9,

where the functions f; and g are all flat along {r = 0}.

Remark 3.4.1. It becomes important to relate the local coordinates of the charts. This is
done by means of a “matching map” M} : K; — K. For more details see chapter

Remark 3.4.2. Whenever suitable, normal form theory is used to normalize the blown
up vector fields of proposition In this way, the transitions are expressed in a simpler
format.

Proof of proposition[3.4.1} The proof is carried out by standard computations
following the coordinate transformation of each chart. The coordinate transform-
ation of the chart K, (m being +z;, £2 or ¢) induces a vector field X, on each
chart. Such a vector field is degenerate and thus we must define X, = rk%lf( -
Finally one multiplies X, by a suitable non-zero smooth function to obtain the
expressions of the proposition. O

3.5 Proofs

3.5.1 Proof of propositionm

This result is an application of Takens’s normalization theorem [37]. However, we remark that in some situations,
this normalizing change of coordinates must respect some constraints, for example, we could ask that the change
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of coordinates preserves a certain invariant manifold or more generally, a certain invariant foliation. This requires
the adaptations due to Bonckaert [6}[7].

As a preliminary step, and instead of working with X ., we consider the equivalent vector field X defined on
R X R™ x R X R given as

s+ )5 +E +r2 1ol
! Eg]a 9z ' oe

The first step is to divide the vector field X by 1 + f;. In a sufficiently small neighborhood of the origin this
is a smooth equivalence relation. Thatis Y = g +1 77 X reads as

7]
— .2 — + A=,
E +ZE qJ + 9z’

where §;, for2 > j > k — 1,and H are smooth with (0) = 0 and (O) < 0. Now we note that the origin of

R™ 3 is a semyhyperbolic equilibrium point with (u, v, €) being center coordinates and z being the hyperbolic
coordinate. We can now use Takens-Bonckaert results on the normal form of partially hyperbolic vector fields

[6,[7.37]. This result tells us that there exists a C* change of coordinates (maybe respecting some constraints if
required) under which Y is conjugated to

m
_ 14} -0 _ 0
:— E G— HZ—,
ou A% oz’

where éj = éj(U, V,e), for2 > j > k—1,and H = H(U,V,¢) are C* functions, and where {Z =0}

c - _ _
corresponds to a chosen center manifold W = . We remark that in the vector field Y, the functions G; and H are
independent of Z. Furthermore we have

_ OH
H(0,0,0) = g(o,o,o,o) <o.

This means that in a small neighborhood of the origin ¥ can be divided by | f|. In other words, Y is C¢-
equivalent to

9 N .. 0 P
i K.~ _z 2
gaUJrZE iav, ‘ez’

_ _ c
where G(0,0,0) # 0and K; = K,;(U,V,¢), for2 > j > k — 1, are C*. Next, since W = {Z =0} is
invariant under the flow of )V, we can study the restriction Y| z—o. This is

Viz=o = 057 + ZE Rizey

j=1

For e # 0, the vector field Y| z—¢ is regular because G(0,0,0) # 0. Thus, by the flow-box theorem, there
exists a change of coordinates, depending ina C ¢ way on g, under which Y| z—o can be written as

U ov; "

=1
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This implies that ) is C*-equivalent to
x¥ .2 + Z 0 9 59
res = QU av, ‘oz’
j=1
as stated in the proposition.

3.5.2 Proof of theorem m

First, it is important to note the following.

Lemma 3.5.1. ker g = kerd*|34.

Proof. Leta = k — 1,thend : Hy — Hyto and d” : Hyta — H. Due to the fact that d* is the adjoint of
d, we have the decomposition # = Imd”|3_ ,, @ kerd|s.,. NowletU € H 1o = Hg, then Os(U) =

dd*(U) = 0if and only if d*U € ker d. Furthermore, d*U € Imd*. Thatis d*U € Imd" N ker d. However
Im d* and ker d are orthogonal. Then g (U) = O if and only if d* U = 0.
O

From theorem and lemma we will show that if P € kerd”|y, then P = 0. Let us start by
rewriting d* (P) in a more workable format. a
Leta > kand P € H,. Letalso 8 = o — k + 1and Q € H . We proceed from the definition

(d(Q)aP>T,Oé = <Q7d*(P)>r,B~
For simplicity of notation let x = (z1,...,2k-1,2,8) = (Z1,...,%Tk—1, Tk, Tr+1). Note that we can

write d(Q) = Y"1 F(Qi) — Q(Fy), where F(Qi) = > "1 F 99

J
=1 .
7 ox;

and similarly for Q(F}), then

k+1
(d0(@), P)ria = > (F(Q:) = Q(F)). P}

i=1
k+1

= (F@0): Pirars = {QUED), P rair,
i=1
k+1

= (@i F (P e, — (QUE). Parr,
i=1
k+1 k+1 oF .

= Z(Qin*(Pi)>7\/i+Ti - Z<ij (67931) (P:)) g4r;
i=1 j=1

k41 k41

=S @ -3 (52) @

i=1 j=1
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Comparing with (Q, d* (P)),, g, we can write

o OF1\ ™ OF>\ ™ OF, 1 *
Oxq Oxq Oy

* « " Py
) ey [
d* (P) = Oxo Oxo Oxo . . (313)
: : . : Pris
() () ()
0Tk OTp41 OTp41
Recall that P (in our context) is of the form
k—1
P= E P2 ip 2 102
B Yow, ' Foz | o’
i=1
then, plugging in F' and P into , we are now concerned with
F* 0 ... 0 0 P
0 F* - 0 z* 0 Py
d*(P) = : : - : =0. (3.14)
0 0 Fro (=) 0| [P
0 0 0 F*+Z* 0 Py,
-1 0 0 0 F* 0

where Z* = (Icz’“_l + Zf;;(z - l)mizi_2)*. Now note that implies F*(P;) = 0 forall j =
2,...,k71andP1 :Pk =0.

Remark 3.5.1. For k = 2, the fold case, the result is trivial. The vector field F is

F o (=" + )8+08
=e— — (2 T1)— —
a1 Yoz " oe

s

and d* (P) = 0 is written as

F~ 1 0 Py
d*(P)= |0 F* 422" 0 P =0,
-1 0 F*

which immediately implies Py = Py = 0.

So, we study the problem F*(P;) = 0. Recall that P = P(z1,...,2k_1, 2, €) is not any vector field, but
it has the property that P(z1,...,zr_1, 2,0) = 0. That is, we can write

k—1
P E |
= el —0— T el — el
oz; Yoz " oe
i=1

where P; € Pa+r; —2k+1- That is because the weight of € is 2k — 1. Now, since it is complicated to work with
the adjoint, we first rewrite the problem F* (¢ P;) = 0. We then prove that F* (¢ P;) = 0 implies that P; = 0.

Note that F* (e P;) = 0 is equivalent to (Q, F'* (er))aJr,nJ. _k+1 =0forallQ € 'Pa+rj —k+1- Next, we
use the definition of F'* that is

<Q’F*(5Pj)>a+7‘j—k+l = <F(Q),€Pj>r,a+7«j =0.
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Now, we look for conditions on € P; given that the latter equality is satisfied.
Assume (F(Q), 515]')(1_”]. = Oholds forall Q € Po4r; — k1. Then we choose an element 7 of the basis
of ch+7'j —k+1 given as

z9 :z‘ln ~-~zi’i_llzqkeqk+1, (r,q) =a+r; —k+1.
Next we have
k—1
F(z?) = q1$(11171 . uzzlifllzq’“eqk*ﬁrl —| F+ Zmziil qrxit - ‘xzkifllzqkflsq’ﬁl.
i=1

Let us write € P; as
5. _ Pl Pk—1 Pl ~Pl+1
eP; =¢ E apwyt oz, T 2Pk PR
(r.p)=atr;
where a;, € R. We now proceed by recursion on the exponent of e.

Let gx+1 = O, then the inner product (F(Q), eﬁj>a+,,~j has only one term since F'(Q) has only one
monomial containing e. That is

5 —1 dpe— Pl —
<F(Q)’ 8Pj>a+rj |qk+1:0 = <q11’§1 e zk’illzqk‘E#EaPI]lJl e xk’illzpk>r,a+rj =0. (315)

We naturally consider g1 > 0. If g1 = 0, then the equality is automatically satisfied. Recalling the definition
[A5.7]of the inner product, the equality (8.15) means that

_ (g)" -0
k—1 )riatr; —m%m =0,

q1—1 9k—1 _qy pP1 Pr—1 _pp
(1] coex,t T 2 e eapayt z

and therefore

ap = gy —1,p3,....pp,1 = 0, (3.16)

forall g1 > 0, p2,...,pr > 0 (naturally, also satisfying the degree condition (v, p) = o + ;).
Next, let g1 = 1. Then

k—1
-1 a— 2 k i—1 ak— -1
F(z?) = quzit ~-~xk_1lzq’“s — [ 2"+ E zi2" arTit ~~~ar:k_11zq’€ €.
=1

Once again, the inner product (F(Q), Eﬁj>r,a+rj has only one term, now this is due to the fact that all

coefficients a;, of monomials containing ¢ are zero due to (3.16). Then
5 _ q1—1 dk—1 2 P Pr—1 —
(F(Q), EPj>a+7~j |qk+1:1 ={qa{'" -z, 2% e eapat o, zpke),.,oHr,.j =0.
Therefore, similarly as above, we have the condition

ap = Gqy —1,pg,...,pp.2 = 0,

forall g1 > 0, pa2,...,pr > 0 (naturally, also satisfying the degree condition (7, p) = a + ;).
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By recursion, assume g1 = m and that all the coefficients
U‘P:aplvpgwqpk,m:ov vm < n.

Then again the inner product (F(Q), e P;) r,a+r; has only one term, namely

5 -1 ap— . 1 Pr— s
(F(Q), 5Pj>a+rj ‘qk+1:n ={qzi*" - mk_llzqks"Jr seapxit - mk_llzpk5n>na+rj =0,

which implies

ap = Gqy —1,pg,....pp,n+1 = 0.

This finishes the proof of (F'(Q), €P;)r,a+r; = 0implies P; =0.
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Chapter 4

Applications

In this chapter, we investigate the local dynamics of the A, (fold), Az (cusp)
and A4 (swallowtail) slow fast systems. Our analysis is based on the several
techniques described in chapter[3} We also use the technical results (regarding
normal forms and transition maps) described in appendix

Remark 4.0.2.

* Slow fast systems near a fold, that is A»-SFSs, have been already studied in e.g.
[27]. However, here we use our proposed normal form of section 3.3|and compare
the relevant results.

o Similarly, the As-SFSs have been studied in [8]. In section section however,
we provide a refinement of the the results presented in [8].

* A similar methodology as the presented here can be used to study all A-SFS. In
this way, our approach is systematic.

To simplify the notation we let the parameters be denoted as (z1, z2,z3) =
(a, b, ¢). This matches our exposition of chapter[2as well as the list of catastrophes

provided in table

4.1 Analysis of the A,-SFS

In this section we study an A, slow fast system, which is given as

@ =c(l+])
X: <z =— (z2 + a) +eg (4.1)
g =0,

83
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where, thanks to theorem[3.3.2 f = f(a, z,¢) and g = g(a, 2, ¢) are flat functions
at (a, z,&) = (0,0,0). The corresponding contrained differential equation and the
corresponding layer equation have phase portraits as shown in fig.

¥

¥

Y

Figure 4.1: Left: the phase portrait of the corresponding CDE of . Right: the phase
portrait of the corresponding layer equation of . The set S corresponds to the slow
(or critical) manifold.

We are interested in computing the transition map II : X¢, — Yex defined by
the flow of X and where
Yen = {(a,z,a) e R? la = —ag,z > 0}
Sex = {(a,2,¢) € R3|z = —z9,a > 0},

where ag > 0 and zp > 0 are small constants. Using the techniques of chapter 3|
we have the following.

Proposition 4.1.1. Consider X, 3¢, and Xy given as above. Then the transition map
I : Yo — Xex is given by

X0, — Sex
(z,€) — (a,é),

where

My

=c
a=¢e23 4 0(e).
See fig.[4.2] for a qualitative description of this result.

Remark 4.1.1. Compare proposition with e.g. theorem 2.2 of [27] where it is
shown that

a= 1623 + coelne + cze + O(e*3 In(e)), 4.2)
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EEX

Figure 4.2: Qualitative picture of the flow of near the origin. We study trajectories
passing through Y., and that arrive at Xcx transversally. Before ., the manifold S.
is given by Fenichel’s theory. Afterwards we compute a continuation of S. passing
through the fold point.

for some constants c1, co and c3. We remark that our result does not have the logarithmic
terms of (@.2)) thanks to the formal normal form step that we have performed.

Through the following sections, we prove proposition [4.1.1}

Blow up and charts

Following our exposition of section [3.4 we shall use the blow-up technique to
study the flow of X near the origin. The blow-up map ® : 5? x R — R? is given

by

a:rzd, Z=7rTZ € :7’35,

where r € RT and (@, z,¢) € S%. The charts are given by
Ken ={a= -1}, K. ={e=1}, K ={z=-1}.

Qualitatively speaking, in chart K., we study the trajectories of X before they
arrive at the fold point; in Kz we study the trajectories of X passing through the
fold point; and in K., we study the trajectories of X as they leave the fold point.
We provide the local analysis in each of the above charts. Later we compose the
local transitions in each chart in order to compute the map II : 3¢, — Zex.

Remark 4.1.2 (On notation). Since we have to compose the maps obtained in each
chart Ken, K. and Ky, and to avoid confusion, we shall use the following notation. Any
object O in chart K, (resp K. and K.y) shall be denoted by O (resp Oz and Os).
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Analysis in the chart K,

The local coordinates in this chart are given by
a= —T%, z=1r121, € = r:{’sl. (4.3)

The induced vector filed reads as
i =—eri(l+ f1)
el =331+ f1) (4.4)

1 _
7 =-2(z} - 1- 55121) + rie191,

where f; and g; are flat functions along {r; = 0}. Observe that the equilibrium

set of (4.4) is

Iy = {(7‘1,51,21) S RB ‘61 = 07 21 = :|:1}

Let us define the sections
A?n = (7“1,51,21) S R3 ‘7“1 =Tp, 21 > O}
A?x = (’]"1,61,21) S RS ‘51 = 5},
where ry = a(l)/ ®. Observe that the section A corresponds to ¥, written in

the blow-up coordinates. That is X, = ®(A§") with ® given by (4.3). We are
interested in computing the transition

T A 5 A%
(21,€1) = (71, 21).

Let (1 = z; — 1. This shift puts the origin at the equilibrium point (0, 0, 1).
With this new coordinate we can write (4.4) as

ry = —eiri(1+ f1)
el =331+ f1) (4.5)
1
G =-202+¢— 551) +rie1g1-
The line ¢; = (r1,€1,¢(1) = (r1,0,0) is an equilibrium set of and it is equi-

valent, under the change of coordinates we performed, to I'y. The linearization
of (4.5) along ¢, has eigenvalues eigenvalues (0,0, —2). This means that there
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exists a 2-dimensional center manifold W which is tangent to {¢; = 0} along /;.
Observe that (4.5) satisfies the conditions of proposition Therefore there
exist a near identity C* transformation ¢; : (r1,e1,(1) = (r1,e1, Z1) such that

(4.5) is C* equivalent to

T‘/l = —&17m
XN:{eh =33 (4.6)
Z{ = —2(2+G(7‘1,€1))Zl7

where G(0,0) = 0. With the transformation performed, the center manifold is
now given as W = {Z, = 0}. Note that the flow of X restricted to the center
manifold W is, up to multiplication by ¢, linear. More specifically we have

1 o= —r
—XxN - 4.7
€1 bwe {5’1 = 3¢;. *7)

From the format of (4.7) we see that the origin (r1,£1) = (0,0) is a is a saddle
equilibrium point of (4.7). This allows us to understand the flow of X" in the
neighborhood of the origin and for e; > 0 but sufficiently small. See fig. [4.3]for a

qualitative description of the flows of (4.4), (4.4), and of (4.6).

€1

£1 €1
“ " @
1
1
ﬁ( T1 1
21 G

A

Figure 4.3: From left to right we show the phase portraits of (4.4), (4.4), and of
respectively. We show only the flow restricted to z; > 0 as it is the one which interests

us the most. The shown surface is an invariant center manifold WC. This invariant
manifold is stable.

The manifold W is very important in our analysis. From a geometric point
of view, W is a perturbation of the critical manifold S written in the blow-up

coordinates. Therefore, we will keep track of W asin passes through the other
charts.
Since X is in normal form, we can now compute the transition I1; : (1, Z;)

—
(1, Z1) by following proposition |A.6.5| The time of integration is 7 = In (i>
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(see the details in proposition )- We then have

- 4 -
A=A exp( (1+6¢1€1 ln(€1)+€1G1)> R

" 3e
~ ~ 1/3 ~ ~ 1/3 ¢ . .

where &; = a1(roe;’”) and G1 = G1(roe;’ ") are C* functions (recall that rg is

a positive constant). As expected, the trajectories are attracted to the center

manifold W° (see the expression of Z1).

Now we return to the coordinate (;. We can write ¢; = ¥ (r1,e1, Z1) where 9
is a C* near identity transformation. This means that the relationship between (;
and Z; can be written as follows

G =2Z1(1+o(ri,e1, Z1))
Zy = (14 ¢o(r1,61,¢1))

where 1)y and ¢, are unknown C¢ functions. Then we obtain the expression for G
as follows.

G = Z1(1+ )

4 N
= 71 exp <—3€(1 + aneq 111(81) + €1G1)> (1 + ¢0)
1

=gu+¢@mpcﬁiu+aﬁummufx%0a+w@

=@wmma+m»mmmu+w»mp(—&

4 N
(]. + aneq 111(51) + €1G1))

4 -
= (1 exp < (1+ daqerln(er) + slHl)) ,

T3e,

where we have absorbed the unknown function In(1 + ) and In(1 + ¢) into the
unknown function H;. Finally recall that z; is just a translation of ¢; ({1 = z1 — 1),
and therefore, in the coordinate z; we have a transition that reads as

4 _
21 = (Zl 1)6Xp( (1+O~él€1 ln(51)+51H1)> + 1.

€1

Analysis in the chart K-
In this chart the blow-up map is given by
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a = T%(IQ, Z =T9Z9, €= ’I“S.
Therefore, the blown up vector field reads as
rh=0
a’2 =14+ f (4.8)
7 = — (73 +a2) + gz,

where f_g and go are flat functions along r, = 0. Since r5 = 0, the trajectories

of (4.4) are invariant on each plane given by {r, = R}, with R € R. We are
interested in a transition IIy : AS" — AS* where

A = {(re,a2,22) | as = —agin}

AZX = {(7”2702722) |22 = _22,out}a

where a3 i, and 23 o+ are sufficiently small positive constants.
Let S5 be the set

52 = {(TQ,GQ,ZQ) € R3|’r‘2 = 0’(]/2 — _Z%} .

See fig.[4.4for a qualitative description of the flow of (&.8).

en
A2

)

as

ex
A

Figure 4.4: Qualitative picture of the flow of with initial conditions at AS".
Observe that the trajectories cross horizontally the set S>. This guarantees that all the
trajectories starting at A3" arrive in finite time to AS*.

Note that since the is regular, the map
Il :AS" — AS*

(7"27 2’2) — (’I"Q, Cl~2)
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is a diffeomorphism. Therefore, there exists a smooth function ¢o = ¢2(r2, 22)
such that @y = ¢2. However, since r3 is a constant, we shall write dz = ¢2 -, (22),
where ¢5 ,, is an ro-parameter family of diffeomorphisms.

Analysis in the chart K

In this chart the blow-up map reads as
a= 7"?2,(13, z=—r3, € = bries.
Accordingly, the blown up vector field is given by

ry =r3(1+a3) + f3

ay = —2a3(1 + a3) +e3 + g3 4.9)
o
L=

€ —3e3(1 + as) + has,

where the functions f3, g3 and hs are flat along r3 = 0. Note that the origin is
a hyperbolic equilibrium point of (4.9). This hyperbolic point has two stable
manifolds which are tangent to the a3 and the €3 axes, and one unstable manifold
that is tangent to the r3 axis. Implied by this behavior, we are interested in a
transition of the form

I3 :X§" — X5~
(r3,as) — (ds, €3),
where
5" = {(r3,a3,e3) € R3|e3 = 6}
5= {(rg,ag,sg) ER3|r3 = Tg’out} .
Normal forms of vector fields of the form of are obtained in appendix[A.6.1]

Using proposition[A.6.Twe have that there exists a C> transformation that con-
jugates (4.9) to

rh =13

L= 9 R 4.10
as as +¢3 ( 1+ a3 ( )
gh = —3e3.

The transition map of vector fields of the form of (4¢.10) are computed in
appendix Accordingly, we use proposition to compute the transition
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II5. We then have

2
~ T3 "3
T3,0ut T3,0ut
3
~ 3
T3, 0out

Composition of the chart transitions (proof of proposition 4.1.1)

™
w
I

We now compose all the chart transitions we computed above. To recall what we
have obtained see fig.

1 €3

en en
A§ Ag

ex

ex
AS

€1 r3

KCII KE KCX

Figure 4.5: Flow in each of the charts. In the chart K., we have a transition near
a semihyperbolic point. In the chart K. we have a regular flow, and therefore the
transition is a diffeomorphism. In the chart K. we have a transition near a hyperbolic
point.

In order to compose the transitions we need also the so called matching maps.
These maps relate the coordinates in each chart and they are given as

M, Kon — K.
(r1,21,€1) = (12,02, 22)
M K, — Ko

(re, a2, 22) — (13,as,€3)

where
1/3 —2/3 -1/3
T = 7"181/ , az = —¢; / , 29 = 2164 / ; fore; >0

r3 = —T929, as = 22_2a2, €3 = —22_3, for zo < 0.
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We now need to compute the transition IT : A{" — A$* given as

II =150 M oIly 0o Mg, oIl
Let us proceed step by step.

1. We have in the chart K, a transition of the form
Iy - (Crye1) = (F1,21),

where

4 .
(14 aierIn(er) + ElH)) .

21 =1+ (Zl — 1)exp (_5‘
1

2. Next, we relate the coordinates of the chart K, with the coordinates of the
chart K: by the matching map M¢,. Thus we have

(T27a2722)‘A§n = M:n ((T17€1721)|A(§X) = Meen(fla(sa 21)

and then the coordinates of the image of the map II;, in the chart K5, read
as

To = 7“081/3

ag = —6_2/3

Z9 = (5_1/321.

3. Next we have that the transition in the chart Kz
IIp :AS" — ASF
(ro, z2) = (12, d2)

is a diffeomorphism with do = ¢2(z2) = ¢2(Z1) where ¢- is a smooth
function.

4. Next we apply the matching map from K; to K. This is

(r3,€3,a3)|agn = MZ*(ra, a2, 22)|age = M (12, a2, —22,0ut)-
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Since 22, oy is an arbitrary positive constant we choose 23 ot = 6 —1/3_ This
allows us to match the exit section A§* with the entry section A§". That is,
A§" = ME*(AS). So we have

r3 = 7’0671/361/3
€3 =19 (4.11)

as = 52/3(;32(21)

. The transition I3 : (r3,a3) — (€3, ag) is given by

3

- T3
€3 = €3 ( )

T3,out

2
~ T3 "3
as = az + €30 .
T3,0ut T3,0ut

The constant 73,4, is chosen as 73 ,,+ = ro and therefore, substituting (4.11)

into (4.12) we get

(4.12)

)) (4.13)

We now have to express ¢3(Z;) in the coordinates (g1, z1). We can expand
@2(Z1) at Z; = 1 as follows

$2(Z1) =1+ (21 — 1)(A+ B(%1)),

for some positive constant A and a smooth function B. Then we have
. 4 - ; -
$2(Z1) =14 (21 — 1) exp (—351(1 + aqerIn(er) + 51H)) (A+ B(%1))

4 _
=14 (2 —1)exp <351(1 + aqerIn(er) + €1H)) ,
(4.14)

where we have absorbed the unknown function A + B(2;) = A+ B 51,
into the also unknown function H. Now we substitute (4.14) 1nt0 4.13) to
obtain

az = (1 + (21 — 1) exp <_34€1(1 + drey In(er) + eﬁ))) 23 (1 +0(e 1/3)) ,
(4.15)
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We can write (14 0(£'/?)) as exp(In(1+O(c'/?))) and thus we reduce (4.15)
to

B . p 4 .
s = gf/‘i (1 + O(s}/d)) + Ef/S(Zl —1)exp ( (14 a1e11n(eq) +51H)) .

€1

Now observe that the exponential exp (— % (1+ae1In(e)) + e H )) is flat
along 1 = 0. Therefore, we can write

l~13 = 6?/3 + 0(61) + \11(21,61),

where ¥ is a flat function at e; = 0. However, a function which is flat at
e1 = Ois also of order O(e;) and thus we arrive to our final expression

as = 8?/3 + O(e1).

We have then computed TI, where the relevant data is a3 = si/ >+ 0(ey).
To obtain the final result we return to the the original coordinates (a,z) via
blow-down. It follows that

a=e*?+0(e).

4.2 Analysis of the A;-SFS

In this section we study an A3 slow fast system based on techniques described in
chapter 3] To simplify the notation, let us write the A3-SFS as

0 0 0 0
X = (1 — 26— (34 — 4+ 0— 4.16
e+ f)g, +efogy = (7 +bz+a+efs) 5+ 05, (4.16)
where thanks the functions f; = fi(a,b,z,¢) are smooth. We investigate the
transition associated to (4.16) between the sections
3T = {(a,b,z,e) eER'la=—a", z> 0}
vt = {(a,b72,5) eER'a=a", 2z < 0},
where ¢~ > 0 and a™ > 0 are arbitrarily large constants. However, since the
trajectories of X spend a long time along regular parts of .S, it will be useful to
define the “entry” and “exit” sections
2" = {(a,b,z,e) € R*|a = —aop, z > 0}
N = {(a,b,z,a) eR*|a=ag, z< O},
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Figure 4.6: Qualitative representation of the investigation performed in this section.
The sections 3X°" and X°* are arbitrarily close to the cusp point. On the other hand the
sections ¥~ and X7 (not shown) are parallel to =°" and ~°* but far away from the
cusp point. In a qualitative sense, we will construct an invariant manifold M. and
then extend it all the the way up to the sections ¥~ and ¥T. Our analysis aims for
simplicity and thus depends extensively on the usage of normal forms. This, of course,
makes our results depend on the choice of coordinates.

where q is a positive but sufficiently small constant, for reference see fig.
It will be clear from our analysis in the blow-up space, see section that
the section ¥~ needs to be partitioned as follows.

Definition 4.2.1 (The inner layer and the lateral regions). Let 0 < L < M < oo be
constants. The inner layer S"°" C ¥~ is defined as

¥ o yinner — {(b,z,s) ex||b] < M52/5}.
On the other hand, the lateral regions are defined as

o uth = {(b,z;s) ex|b> L52/5}

Yo%l = {(b,z,s) eEX | —b> L52/5}.

Note that the set { Xm0, 3T 570 is an open cover of 5, see fig.

We are now in position to present our main result. In the following theorem,
we characterize the transition IT : ¥~ — ¥ under a suitable choice of coordinates
at the section ¥~ and XT. Furthermore, we give details on the differentiability of
this map according to the cover of X7, see definition[4.2.1]
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Zinner
/
/
N / ~d
SN '//
. /
- N
xb ] ™~ 1+b

b

Figure 4.7: The section ¥~ needs to be partitioned into three subsections: the inner
layer yinrer and the lateral regions >t »~% Froma qualitative point of view, these
three layers correspond to three different types of trajectories: 1. Trajectories starting
at ™" pass close to the cusp point. Observe that lim._,q(3™"") = {b = 0} and then
corresponds to a solution of the associated CDE passing exactly through the cusp
point. 2. Trajectories starting at ¥ * pass sufficiently away from the cusp point along
the regular side of the manifold S. 3. Trajectories starting at ¥ " pass sufficiently away
from the cusp point along the folded side of the manifold S.

Theorem 4.2.1 (Transition map of an A3-SFS). Let X be an Ag slow fast system. This
is, X is a vector field defined by

0 0 0 0
X =¢(1 Il 2~ (B +p ) — + 00— 4.17
e( +5f1)aa+€ fzab (2° + z+a+5f3)az+ 5 (4.17)
where each f; = fi(a,b,z,¢), i =1,2,3, is smooth. Let the sections ¥~, £+ be defined
as above. Then we can choose suitable Ct-coordinates (B, Z, ) in ¥ and Ct-coordinates
(B, Z,&) in X% such that the transition 11 : (B, Z,e) — (B, Z,&) is an exponential
type map of the form

(B, Z,¢) = (B +h, ¢(B,e) + Zexp (— A(Bye) +€\I'(B’ Z, €)> ,g> . (4.18)

where h is flat at the origin, A > 0 is C*, ¢ is C*-admissible with ¢(B,0) = 0, and ¥
is C*-admissible with W(B, Z,0) = 0, see section or the definition of C*-admissible.
Moreover, we have the following properties of the function A, ¢ and V.

1. —A(B,0) = I(B) where I is the slow divergence integral associated to (4.17).
2. Restricted to (B, Z, ) € X, there are functions ¢ and W such that
6(B.2) =6 (")
(B, Z,c) = ¥ <|B|1/2,€1/5,61n6,u,2) ,
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where ¢ and U are C*~functions with respect to monomials (see definition m)
with y = Be~2/%. Note that in this domain, j is well defined in the sense that y
is bounded by a constant as € — 0.

3. Restricted to (B, Z,¢) € X0, there is a function W such that
¢(B,e) =0
U(B,Z,e) = ¥ (|B["%,6"° e n(|BI), 0, Z)

where U is a C'~function with respect to monomials (see definition with
o = ¢|B|~%/2. Note that in this domain, o is well defined since | B| > 0.

4. Restricted to (B, Z,e) € ¥7°, there are functions & and U such that

8(B.2) = 6 (1B["2,0)
(B, Z,2) = ¥ (|B%,/% cm(|B|). o).

where ¢ and U are C*~functions with respect to monomials (see definition m
with o = ¢|B|~%/2. Note that in this domain, o is well defined since | B| > 0.

Sketch of the proof. The first step is to recall theorem which shows that
X is formally conjugate to

0 0 3 0 0
Next, by means of the Borel’s lemma [10]], the vector field F' can be realized as a
smooth vector field XV = F +¢H where H is flat at (a, b, z,¢) = (0,0,0,0). Thus,
from now on, we only treat an A3-SFS given as

X :5(1+6f1)% +52f2% — (P +bz+a+efs) % +0%,
where each f; = fi(a7b,z75) is flat at (a, b, z,¢) = (0,0,0,0).

Another important ingredient of the proof is the blow-up technique, described
in section[3.4] This method provides several local vector fields whose correspond-
ing transitions are of exponential type, refer to section Later all these local
transitions are composed to produce an exponential type transition between the
sections ¥~ and X*. Along the analysis of the local vector fields (in the blow-up
space) we will take advantage of the flatness of the higher order terms of X. The

complete proof follows sections to and is given in section
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Now, assuming that the transition II is of the form (4.18), we can show that
A(B,0) is given by the slow divergence integral of X. For this, let us recall
the Poincaré-Leontovich-Sotomayor formula [12]], which in general is given as
follows.

Proposition 4.2.1. Let X be a vector field on a manifold M™ with a volume form . Let
7 and X7 be two open sections of M and transverse to the flow of X. Let ~. be an orbit
of X along a center manifold we of X, starting at p = v.NYX~ and reaching ¢ = v.NET
in finite time. Let 1L : ¥~ — X be the transition map defined in a neighborhood of p. If
Y~ U =N andyt V= S, withU c R" Yand V. C R"~1, are coordinates in
7 and in XV respectively, then

(Q(p), DY~ (s7) x X(p))

det (D ((dﬁ-)—l ollo z/f)) (s7)= ©q). DU+ (s7) < X(p)) exp (/E diVQXdT)
(4.19)

where s~ = (=) 1(p) and sT = (v )71 (q). The integral is taken along the orbit ~.
from p to q parametrized by the fast time 7.

So we have the following.

Proposition 4.2.2. Consider an A3-SFS and assume that the transition Il : X~ — 2+
is given by (4.18). Then —A(B,0) = I(B), where I(B) is the slow divergence integral
associated to the As-SFS.

Proof. The only relevant component is Z, so denote by II; the Z-component of II.
The factor multiplying the exponential in (4.19) can be taken as a constant C' > 0.
Then we have that (4.19) for the vector field of theorem reads as

oIl .
TZZ:CQXP (/ d1VQXdT>.

=

Using the properties of the slow divergence integral described in section[3.1.2
and since C # 0, we have

oIl .
TZZ = Cexp (/ dvaXdT>

=

— exp (i </7 div X, dt+61nC+0(1)>> (4.20)
—ew (L1+06).

where I is the slow divergence integral of X along a curve in the slow manifold
S from ¥~ to £*. In principle, the limit ¢ — 0 of (4.20) is not well defined.
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However, according to our theorem we have by differentiating (4.18) w.r.t.
A

oy (_A(B,a)—l—E\II(B,Z,E)) (4.21)

oz £
Identifying (4.20) with (4.21) and taking the limit ¢ — 0 we have indeed that

lim (1 +0(e)) = lim(=A(B,¢) +e¥(B, Z,¢)),

which shows the claim.
Note that the slow divergence integral in the coordinates (a, b, z) reads as

I<b) j(b’ <+) _j(b7gi)7

where straightforward computations show that
7 9 5 3 2

and where ¢* is a constant defined by (a*,b,(*) € 2+ N S.
On the other hand, in normal coordinates and along regular parts of the slow
manifold, the A3-SFS can be written as (see section|3.1.2)

0 0 0 0
X(A,B,Z,&):ﬁaiA—f—oaiB—Zaiz—f—()%

In these coordinates the slow divergence integral reads as
I=A"—A",

where AT and A~ are the corresponding parametrizations of 1 and X~ (respect-
ively) in the coordinates (4, B, Z, ¢). O

4.2.1 Analysis in the chart K,

Taking into account our notation convention, the blow-up map in this chart is
given by

a=—1r} b=riby, 2z =13z, e =1rie;. (4.22)
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The corresponding vector field in this chart (after multiplication by 3) has the
form

7’/1 = —&1r (1+f1)
X Vi =2e1by (1+ f1) +r8eifa i
) =-3(2 b — 1 deiz) +riefs

e =5e3(1+ fr)

where the functions f; = fi(r1,b1,21,€1) are flat along r; = 0, recall that S x
{r =0} — 0 € R* via the blow-up map. We study a transition IT; : A" — A{
where

A(in = {(7‘17b1,2’1,51) S R4|r1 =rp,e1 <6, 21 > 0}

Aix = {(7"1,b1,21,€1) S ]R4 | g1 = 5, r < 7"0} R
where ry and § are sufficiently small positive constants. In fact, we choose

1/3

To = ag -

Remark 4.2.1. The section A" corresponds to ¥* in the blow-up space, that is X" =
O(AS"), where ® is the blow-up map (4.22). This implies that trajectories of X crossing
X" correspond to trajectories of Xen crossing AS™.

Before going any further, let us provide a qualitative description of X, based
on [8]. This process can be repeated, following similar arguments, in all the local
charts; however, for brevity we only detail it for the current one.

Qualitative description of the flow of X, The subspaces {r; =0}, {e1 =0}
and {ry = 0} N {e; = 0} are invariant. Therefore, it is useful to study the flow of
Xen restricted to the aforementioned subspaces.

Restriction to {r; = 0} N {1 = 0}. In this space X, is reduced to

b, =0
2y =-3 (zf +b1z1 —1). (4.23)

The set
Y1 = {(bl,zl) |Zi)) + blzl —1= 0}

is a curve of equilibrium points. The phase portrait of (4.23) is shown in figure
4.8
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21
vy A
N \'—
> b1
V
N
-

A

Figure 4.8: The phase portrait of X, restricted to the invariant space {r; =0} N
{e1 = 0}. The shown curve is ; and it comprises a set of equilibrium points. Note
that locally, all trajectories with initial condition z; (0) > 0 are attracted to 1., >0}

Remark 4.2.2. All the trajectories of restricted to an initial condition zo > 0
are attracted to the curve +1|,,>o. Furthermore, due to our definition of A", we are
interested only in trajectories satisfying this initial condition. Thus, from now on, we
restrict our analysis to the subspace {z1 > 0}.

Restriction to {¢; = 0}. In this space X, is reduced to
=0
Y, =0

4.24
21 ==3(2} + b1z —1). 424

The set 'y = {(r1,b1,21) |2} + biz1 — 1 = 0} is a surface of equilibrium points
given by I'y = (71, v1). Since ] = 0, the phase space of (4.24) is foliated by two
dimensional leaves in which the flow looks like fig.

Restriction to {r; = 0}. In this space X, is reduced to

b/l = 2€1b1

/ 3 1
z1=-3 (zl +bizp —1— 35121) (4.25)
g} = 5e?,

Once again, the set y; = {(b1,21,61)|e1 =0, 2> 0, 28 + by2; — 1 = 0} isa curve
of equilibrium points. The Jacobian of {#.25) evaluated along ~; shows that, for
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small enough €1, there exists an invariant center manifold that passes through
~1. Furthermore, the non-zero eigenvalue corresponding to the z-direction is
negative along ;. The phase portrait of #.25) is shown in figure

21

A

€1

Figure 4.9: Phase portrait of (4.25) restricted to z1 > 0. The shown surface is an
invariant center manifold, which is attracting in the z;-direction.

Observe that the b; and the £, directions are expanding. It is important to know
the relation between such two expanding variables. We have

db_2b
d€1 n 5617

2/5
()"
1

where b7 < b; and 7 < ¢, are the initial conditions, that is (b7, e7) = (b1, €1)|acn.

which has the solution

It is important to look at the ratio of initial conditions % This ratio tells
€1

us that b; is bounded as ¢; — 0 (and therefore as ¢} — 0) if and only if b} €

@) ((5{)2/ 5). In other words, if the initial condition b} is not of order O((£})?/%)

then the value of b; at A{* blows up as e — 0. This leads us to partition the
section A{" into three open regions as follows.

2/5

en,e1 __ en
Al - Al |‘b1|<M51

en,by __ Aen
Ay = A} |1)1>st/u

en,—by __ en
Ay =AY |—b1>Kaf/5’
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where 0 < K < M < co. Observe that the open sets A", AS™"" and A"
form an open cover of A¢". Accordingly, these sets induce an open cover of the
entry section X°" via the blow-up map ([#22). See fig.[£.10]for a representation of
the aforementioned partition.

Figure 4.10: Partition of Af{". Trajectories crossing through A7™*! corresponding to
the inner wedge area, have a continuation on the chart K. On the other hand, outside
AS™1 we must consider the lateral regions A" and AS™ 1.

Based on the partition of the entry section A{", we define three transitions as
follows

€1 . en,e1 ex
I AT = AT
I AP APt (4.26)
—by . Aen,—b; ex,—by
I - AY — A ,

where

Aix {Tl,bl,zl,al ER |E1—(5T1<T0}

+b
A?X ! { 7“1,[)1,21,51 c R |b1 :|:77,’I“1 < 7“0}.

To finish with the qualitative description, note that there exists a (non-unique)

3-dimensional center manifold W; . This is shown by evaluating the Jacobian of
Xen all along the surface

Fl = {(7"1,b1721,€1)|51 :O, 21 >02?+b121 —1:0}

Moreover, by the analysis provided above, the center manifold ch |2, >0 is attract-
ing for £; small enough. Note that ch le;=0 = I'1. This means that Wf can be
interpreted as a perturbation of the slow manifold S, written in the coordinates
of the current chart. See fig. for a representation of the previous exposition.
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€1
ex,e1
Ay

| |

\
ex,—by ex,+b;
A \ Ay
‘A
(€}
1

11/ bl

.

7

n

A

Figure 4.11: Phase portrait of the trajectories of X., depending on their initial condi-
tion. If the trajectories satisfy the estimate y € O(¢%/°), then they arrive to AT in
finite time. If the estimate y € O(¢?/°) is not satisfied, then we must choose one of the
outgoing sections Afx’ib in order to have a well defined transition map.

Let us recall that the vector field X, is of the form

. =—ear (1+£)
X Vi =2eiby (14 f1) +rfeife (427)
o Zi =-3 (2’? +biz1 —1— %6121) + T%&lfg '

ef =5e3(1+ f1)

We now proceed to describe the transitions II; given by (4.26). For this, first
we write (4.27) in a suitable normal form. Next, based on this normal form, we
compute the corresponding transition.

First of all, let us move the origin to the point (r1,b, z1,€1) = (0,0, 1,0). This
is done by defining a new variable {; by (1 = z; — 1. With this variable we have
a new local vector field Y., which is defined by

Ty = —eir (1+f1)

by =2e1by (1+ fl) +1r0e2 f,
ey =5e2(1+ f1)

¢ =-3G(br,e1,G) +e1h,
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where G(0,0,0) = 0 and g—g(o, 0,0) = 3. Now, we want to write Y., in a suitable
normal form. From proposition we know that Y, is C* equivalent to

f,ﬂi = —€1M
B/ = 25 B
N . 1 Lo
Xen : 6/ — 562
1 - 1
7, =-9(1+ Hy(r1,B1,e1)) 7,

where H; is a C’-function vanishing at the origin. This normal form X[ is

convenient since the chosen center manifold ch is now simply given by ch =
{Z; = 0}. Furthermore, from the format of X7, it is evident the “hyperbolic

208
nature” of the flow restricted to the center manifold: the restriction of X/} to the

center manifold ch has a simple structure, namely

/
ry = —e1r
N . [
Xen ch . Bl = 2&‘131
el =bhel.

The vector field X2 is of the form studied in proposition therefore we
have that the transition

II5* : (B1,e1,21) — (7:1731,21)

is of the form

2/5
5= (3)
€1

~ 9
Z1 = Z1exp <—5€(1 +aye1lne; + €1G1)> R
1

where a1 = ay(ro|B1|Y2,r0e1/?) and Gy = G (ro|B1|Y/2,roel’®, 1) where p =
B151_2/ ®. Recall that for this transition we have the condition B; € O(Ef/ %) so
is well defined.

On the other hand, the transition

P (By,e1, Z1) = (71,21, Z1)
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is (see proposition [A.6.5) of the form
B, 1/2
on()
n
5/2
- (n
o (Bl)

. 9
Zl = Z1 exp <_5E(1 + ﬂlé‘l ln(|Bl|) + 61H1)> s
1

where 51 = ﬁl(T0|Bl|1/2, 7"05}/5) and H1 = Hl(T0|Bl‘1/2, 7“051/5, 0'), where o =
£1|B1|75/2. Note that since By ¢ O(c>/%), o is well defined. We observe that the
transitions I15' and IT?" are exponential type maps.

4.2.2 Analysis in the chart K
Taking into account our notation convention, the blow-up map in this chart is
given by

azrgag, b:’f'gbg, 2:7"322, e=rj.

Then, the blown up vector field reads as

rh =0
lA — 1 ~
x.:{% Tt (4.28)
by =
2 g2
zh =-— (Zg’ + bazg + a2) + g3,

where the function g§; = §;(r2, as, b2, 22) are flat along o = 0. Note that in this
chart 75 acts as a parameter and that the flow of X; is regular. From the equation
ay =1+ g1, we define the following “entry” and “exit” sections.

Agn,é _ {(’rg,ag,bZ,ZZ) |a,2 = —AOa Z2 2> O}a
A;Xﬁg = {(7"2,(12,[)2,22) |a2 = A07 22 < 0} :

Therefore, we define a transition I15 as
g . A€Nn,E en,ge
II5 A5 — Ay

(TQ, b27 ZQ) = (7:27 BQ; 22)
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Since (4.28) is regular, by the flow box theorem all trajectories starting at A5™*
arrive at AJ"° in finite time. Moreover, the transition II§ is a diffeomorphism
and then, from (4.28) we have that I1§ reads as

HQ&T(TQ,bQ,ZQ) - (7:2762a£2)
= (r2, by + huy, P1(r2,b2) + P2(r2,b2) (1 + ¢d3(r2, b2, 22)) 22),

where the ¢;’s are smooth functions. Observe that in this chart, the transition is
not an exponential type map.

4.2.3 Analysis in the chart K

Taking into account our notation convention, the blow-up map in this chart is
given by

a:rg’, b:’f'gbg, z :'f'ng, 627’253.

Then, the corresponding blown up vector field reads as

ry =esrs (14 fl)

X bg = —263b3 (1 + f~1) + ’/’g&‘%fg
o 2y =-3 (zg +b3zz3 +1+ %5323) +1r3esfs
gy =-5e3 (14 f1)

where the function f; = fi(r3, b3, €3, 23) are flat along r3 = 0. Observe that the
vector field X, resembles the vector field X.,. Therefore, we have a similar
behavior of the trajectories, the main difference is that in the case of Xy, there is
one expanding (r3) and three contracting (b3, €3 and z3) directions. The flow of
Xex is obtained following similar arguments as for the flow of Xey,.

From the fact that X, has three contracting and one expanding direction, we
define the entry sections

Agnf = {(Tg,bg,Eg,Zg) P E3 = 5, 23 <0, r3 < T'()}
Afi,“’+b3 = {(rs,b3,€3,23) 1 bg =1, 23 <0, 73 < 1o}
AE“"b3 = {(r3,b3,€3,23) : b3 = —1n, 23 <0, r3 < 1o},

where all the constants are positive and sufficiently small, and the exit section

AF* = {(r3,bs,e3,23) = 13 =10, 23 <0, €3 <9, |bg| <n}.
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Then, accordingly, we define three transition maps as follows
€3 . en,g ex
II5% : A" — A3
: (T37 b37 23) = (b3a 537 23)
L0 AS™TEs o Ag
: (T37 €3, 23) = (b?n 535 23)
—bz ., Aen,—bs ex
1157« Ay — A3
: (r3,e3,23) > (b3, €3, 23).

Now we proceed to write Xy in a normal form just as we did with X, in
section Following proposition we have that X, is C* equivalent to

’I’é = E3T3
XN . Bé = —25333
ey = —5ed
3 3
Zy = —9(1+ Hj)Zs,

where H3 = Hj(r3, B3, ¢3) is a C* function vanishing at the origin. Just as in the
chart K., there exists a three dimensional center manifold W3C associated to
XX and which has been chosen such that W; = {Z3 = 0}. Since 73 is the only
expanding direction, we take as transition time 73 = In (:—2) This transition
time is computed from the dynamics restricted to )/\)3C , that is, from the equation
r4 = r3. In contrast to what happened in the chart K, the time T3 is well defined

for all the three transitions I15?, IT; ©* and IT; . Following proposition we
have
~ T 2
-
To
5
- 3
ea(2)
To
5 9 ro\°
Z3 = Z3exp <— <<0> — 1+ aseslnrs + €3H3>> ,
553 T3

1/5 1/5

where a3 = az(r3|Bs|'/?,r3e5’”) and Hs = Hs(rs|Bs|'/2,r3e5'”, r3). Therefore,



109 Chapter 4. Applications

by taking into account the definitions of the entry sections we have

2 5 5
9

HZS(’I‘g,Bg,Zg): Bs s ;0 s , Zgexp | —— To — 14+ a3dlnrs + dHs

T0 T0 56 T3

2 5 5
9

H§b3(r3,53,Z3) = (:tn (E) , €3 (T—S) , Z3 exp <7— ((T—O) — 1+ ageszlnrs + 53H3)>) .

70 To 5e3 3

Observe that these transitions are of exponential type.

4.2.4 Analysis in the charts K ;

In this section we study the local flow at the charts K ; and K_j;. In a qualitative
sense, these charts come into play when the initial condition by = b|sxen does not
satisfy the estimate by € O(£2/%). This implies that the corresponding trajectory
passes away from the cusp point. The chart K ,; “sees” trajectories with initial
condition b|sen > 0 while K_; “sees” trajectories with initial condition b|sen < 0.

Analysis in the chart K_;
In this chart the blow-up maps reads
a= rg’ag, b= r%, Z=Toz9, € = 7’362.

Then we have that the blow-up vector field is given by

Té = 62f'r

a,2 :62(1+fa2)+€2ga2
X-i-E ! r

€y = _52f€2 ~

zy = —(28+ 22 +a2) +eaf,

where all the functions f; are flat along {r, = 0}. Observe that the set

Ty = {(ry,a,62,22) |€2 = 0, 25 + 22 + a = 0}

isa NHIM of X ;. However, X ; is not exactly a slow fast system since €, # 0,
but the restriction of X ; to {r» = 0} is indeed a slow fast system. This restriction
reads as

a2 = &2
X+E|{r2=0} . 6/2 =0
2h = —(25 4 22 + az).
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Since the subspace {r, = 0} is invariant and X is a flat perturbation of

X 3lr,—0y, it is equally useful to study the restriction X ;|(,,—o} than the whole

system X_ ;. After all, the flow of X 3|,~0 is equivalent to the flow of X 3| (,,—0}-

The slow manifold of X_ 3|{,,—o} is defined by I'z|,,—¢ and it is normally hyper-
bolic. Let us define the sections

Agn'ﬂm = {(r2, a2, €2, 22) € R*|ag = —Ao} (4.29)

A;X,-‘rbz = {(Tg,ag,EQ,ZQ) ER4|CI,2 :Ao}. ‘

Accordingly, we study the transition

+ba . Aen,+b2 ex,+bs
I3 Ay — A,

(TQ) €2, ZQ) = (7’:2) 527 22)

For a qualitative description of X, 3|,,—0} and the objects defined above see

fig.

Z2 Z2

L.

Agn7+bz 22

a9 N a2

ex,+ba
AQ

Figure 4.12: Left: phase portrait of the corresponding layer equation of X 3|r,—03-
Center: phase portrait of the corresponding CDE of X 3|(;,—0}. Right: Since the
critical manifold is regular, by Fenichel theory we know that the manifold I is
perturbed to an invariant manifold I's ., which is at distance of order O(ez) from I's.

For sufficiently small €5, there exists a ct change of coordinates (see our
exposition of section 3.1.2) that transforms X j|;,,—o} into the vector field

a’2 135}
N
Yhidey =0
!
Zz :_227

From the definition of the entry and exit sections (4.29), we choose the time of
integration as T' = 24, which is obtained from the equation d; = 1. To obtain
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the component Z, of the transition IT; "2 l{r,—0} We need to integrate
1
Z é = - 7Z27
€2

and then Z, = Z,(T). Therefore the transition IT; > reads as

2A
13720, e9, Zo) = <0352, Zyexp (—EO>>
2

Remark 4.2.3. By regular perturbation theory, the flow of X j|(r,—0y is equivalent to
that of X ,|(r,>0y- In other words, the image of T3 > |(AS™ 12|, ) is diffeomorphic to
the image of TL 2| (AS™02).
Analysis in the chart K_;
In this chart the blow-up maps reads

5

a=riay, b= —r3 2 =12, € = r’cy.

Then we have that the blow-up vector field is given by

vy = —eafy
X—E . a/,2 = 62(} + faz) + €29a,
& = 52f€2
z = —(2 -zt a) +erf,

where all the functions f, and g,, are flat along {r = 0}. Observe that the
subspace {r, = 0} is invariant. The restriction of X_; to this subspace reads as

0/2 = &9
/

Xﬁg‘{m:o} . 62 = 0
2 = —(25 — 20+ ag).

The flow of X _j is a flat perturbation of the flow of X ;|;,,—0}. Therefore, let
us continue our analysis restricted to the invariant space {ry = 0}.
The manifold I';, which is defined by

I'; = {(rg,a2,62,22)|7’2 =0,e9 =0, 23—22+a2 ZO}



4.2. Analysis of the A3-SFS 112

is normally hyperbolic except at the two points p; = & (%, %) Let us define
the sections

ASH T = {(rs,a2,62,22) ER*|azy = — Ao}
Ago TP = {(rg,a2,22,22) € R*|az = Ap},

where Ay > 0 is a sufficiently large constant. We are interested in the transition
I, % L AS TP A2
(T27 €2, Z2) = (7:27 §2a 22)

For a qualitative description of X_j|(,,—o} and the objects defined above see

fig.

22 %) A;n,+bz Z2

> — -QW

a3z a2

ag

/D
[

ex,+ba
A2

Figure 4.13: Left: phase portrait of the corresponding layer equation of X_z|{y,=0}-
Center: phase portrait of the corresponding CDE of X _z|{,,—0}. Right: The expected
perturbed invariant manifold obtained from the flow of the corresponding CDE and
layer equation.

Away from the fold points p4, the manifold I'; is regular and thus, Fenichel’s
theory applies. However, we need to take care of the transition near the fold point
p+. The local transition of a slow fast system near a fold point is investigated in
e.g. [27]. However, in our current problem this transition is not essential. By this
we mean that the passage through the fold point is seen as a flat perturbation
of the trajectory along the stable branch of I's. In a qualitative sense, this is due
to the fact that the transition IT, ”* goes along a large NHIM, which fails to be
normally hyperbolic only at one point.

Proposition 4.2.3. We can choose appropriate coordinates (Zs,e5) in AS™ "2 and
(Za,3) in A7 such that the transition 11,2 : A2 — A2 gssociated to
X_3 is an exponential type map of the form
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_ 1
11, %(0, 2, Z5) = <0a€27¢2 + Zs exp (—62(140 +€2¢2)>) ,

where o = ¢2(e2) and 1o = )o(Za, e2) are Ct-admissible functions, and where Ay is
given by the slow divergence integral of X _g|(r,—0y-

Remark 4.2.4. By regular perturbation theory, the flow of X_j|,,—oy is equivalent to
that of X 3| (r,>0y. It other words, the image of Iy 2 |(AS™"%|,_o) is diffeomorphic to
the image of T1; 2| (AS™"2).

Proof. To prove that A is given by the slow divergence integral we proceed

along the same lines as in proposition so we do not repeat it here. In figure
fig.[.14)we show the three transitions that we must consider.

22
en,—bo
A, A
Qen Qex
> 12
CX,—bQ
A2

Figure 4.14: The three different transitions in which IT; ** is decomposed. The central
transitions is locally an Az problem. The other two transitions at the sides are regular.

The three transitions are defined as
I Agn’_b"‘ — Qo
o . qen — e
II5°9% - QO — AFYT"2,
where (°" and Q°" are given as

Q" = {(rg,a2,62, Z2) € R* |ag = —ag.en}
Q% = {(r27a2,€2,22) eR* | Z = Z2vex}v
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where a3 ¢n and Z; o« are well chosen constants.

The total transition IT;}*? is given by I3 = T1;°% o IT}°" o TI;°". Recall from
section [3.2| that if we want to write the transition IT** as an exponential type
map, we require that IT;“" is expressed as an exponential type map with no shift.
The transition Hg °ld is studied in section In there, it is shown that there are
local coordinates (Zg, £9)in Q°", and (aq, €2) in 2%, such that the transition Hg old
is given by

HgOld(Zz,&) = (ag,€2)
= (63/3 + 0(62), 62) .

Assume now that we have characterized an invariant manifold M/°!¢ from

Q°" to Q°* via the map I13°'?. Now we want to “extend” M2 all the way up to

the sections A" ~"? and AJ®""* via transitions along regular regions of I'y. For
this, it is more convenient to regard M7%'? as a graph (> = ¢2,., (A2) where for
€2 > 0, P2 ., is an eo-family of diffeomorphisms. In this way we have that we can
equivalently express the map I1}°'* as

157 (Z2, 2) = (¢2,0,(Za), €2).

Next, following section we can find coordinates (Zs, ) in AS" ™", and
coordinates (Zs,5) in AS© ™" in such a way that the transitions TT,°* and IT,%9>

are given as
regl 1 4
I, (Z2,e2) = | Za exp —g(Ao —as.en) | | = (Z2,€2)

2

rege 1 - ~
H2 g (Z2,cx;52) = (Zz,cx €xXp (_e(AO - a2)>> = (Z27€2).

Remark 4.2.5. Recall that along normally hyperbolic slow manifolds, it is possible to
make a normal form transformation in such a way that this transformation respects
certain constraint or structure of the vector field, [6,|7l]. In this particular case, we respect
the choice of the invariant manifold M\

Next, we can compute the composition II;% = TI;°* o [T} o TI;°" by
following section[3.2]and it thus follows that

Hng (0,Z3,e2) = (O; 92_552 + Zyexp ( (A1 + As + €2¢2)) 752) ,

1
€2
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where ¢., = ¢.,(0)exp (—?—;) and where 1), = 15(Z,¢5) is a C*-admissible

function. The result is finally obtained by regular perturbation theory.
O

4.2.,5 Proof of theorem

In this section we prove theorem For this, we need to compose all the maps
that we have computed in sections to In words, we have to construct
a transition from the entry section A$" to the exit section A§*. Recall that A"
and A§* are the blow-up versions of ¥°* and ¥ respectively, and therefore, a
transition A{" — Ag* is equivalent to a transition 3°" — ¥°*. Once we obtain the
latter transition, we extend it to a transition ¥~ — X7 given as an exponential
type map. We have three possibilities given by the partition of the entry section
A

o Ifbyfaen € O(af/ %) then we construct a transition passing through the charts
Ken = Kz — Koy

* If bifacm ¢ O(sf/ %) and b, |aen > 0 then we construct a transition passing
through the charts K, — K j — Kex.

o If bifacn ¢ O(sf/ %) and b, |aen < 0 then we construct a transition passing
through the charts Ko, =+ K_j — Kex.

In fig. f.T5|we give a qualitative diagram of the local transitions obtained and
their relationship.

As we have seen in our previous analysis, we consider three transitions which
are given as

IT°F =115 o MS* o 115 0 M, o 11§

+b _ 17+b1 ex +b +b +b1
I =TI3™ o My, o II;7 o Mg ™" o 1T
I7° =TI5" o M%}, o3 o Mg o T ™,

where the matching maps are obtained from the blow-up map. For example, to
obtain the matching map from the chart K., to the chart K we relate the two
directional blow-up maps

a= —r‘;’, b= r%bl, z2=r121, €= T?El
and

a= rgag, b= ’/‘%bg, Z =T9z29, €= rg.
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K.
Figure 4.15: All the transitions obtained in the charts. We have to compose all such
transitions through the matching maps M;. A matching map M; relates the coordin-
ates between the charts K; and Kj.
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Let us detail how to obtain the map II°. The other two cases are obtained by
following similar arguments and thus the details are omitted.

The transition II°

Here we compute first the transition
£ __ €3 ex 10 £ €1 . en,e; ex
II° =1I5° o MZ* o II5? o Mg, o IIT" « ATV — A

A matching map M/ relates the exit section in the chart K; with the entry
section of the chart K;. For example we have AJ™** = MZ (AT*"") and so on.

Let us work out only with the z-component of the transitions as it is the only
relevant one. Recall from section that II5' is an exponential type map with
no shift. Next, the composition I1¢¢""%" = M*oII5% 0 ME, can be seen as a general
diffeomorphism as II? is a general diffeomorphism, and the matching maps are
local diffeomorphisms on their domain of definition. Next, the last transition IT5?
is an exponential type map with no shift. Finally, following sectionwe have
that I15% o 1"l o TI{* is an exponential type map of the form

_ 1 - _
%, = ¢(Bi,e1) + Z1exp (—61 (A(By, 1) +€1‘1’(B1,€1721))> ;

where A > 0 and ¢ and ¥ are C* admissible functions. The differentiability of ¢
and ¥ with respect to monomials is obtained by performing the straightforward
computation II5? o IT¢"*7al o TI7* and it is evident from the results of section

By blowing down we obtain that the transition II'™»¢" : ¥ — ¥** (in a small
neighborhood of the cusp point and within the inner layer as domain) reads as

HiZnneT = ¢(B,¢) + Z exp (—i (.A(B,a) + 5@(3,5, Z))) .

To obtain the transition I : ¥~ — ¥ we now need to compose 112" with
exponential type maps on the left and on the right corresponding to

I .3 = X"
It . ¥ 5 3.

However, we must proceed carefully. As shown in section in order to
express the transition II as an exponential type map, we need that at least the
transition I~ is an exponential type map with no shift. In other words, we need
to choose appropriate coordinates on ¥~ and on £ in such a way that we respect
the already chosen coordinates in X" and in ¥, and the already chose invariant
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manifold between X" and X°*. Fortunately, this is possible with the extensions
of Bonckaert [6, 7] to the normalization results of Takens [37].

For sake of clarity, let (Ben, Zen) be coordinates in X" and (Bex, Zex) be
coordinates in X**. We have shown that these coordinates can be chosen in such
a way that the “vertical” component of the transition map II"""¢" ; ¥en — yex
reads as

HZen (Bena Zen’ 5) - Zex

= ¢(Ben, €) + Zen €Xp (i (A(Ben, €) + €U (Ben; e, Zen))) .

In this case the invariant manifold, say M., is given by Z,,, = 0. Using [6}[7]
we can find suitable coordinates (B_, Z_) in ¥~ in such a way that

1
HE, (B*7 Z776) =Z_ eXp <_€(A0)) = Zen~

In other words, there is a change of coordinates respecting the invariant
manifold M, under which the transition I is an exponential type map with
no shift and linear. Similar arguments hold for the choice of coordinates in .
Finally performing the composition II* o I’ o [T~ we prove our claim.

4.3 Analysis of the A4-SFS

In this section we study the transition of an A4 slow fast system. As we have seen
in the previous examples (the fold and the cusp) the most important transition is
through a small strip around the central singularity.

To simplify notation, we let = (a,b,c) € R® and z € R. We then consider a
vector field X given by

0] 2, 0O 2, O 4 9 i) )
- — 4.30
X—5(1+f1)8a+5 fzab—i—e f3ac (z +cz +bz+a+f4)8z+085’ (4.30)

where, thanks to theorem all f;’s are flat at the origin. The critical manifold
is locally defined by

S={(a,b,c,z)|2* +cz*> +bz+a=0}.
The singularity set is then defined as

B ={(a,b,c,z)|42° + 2cz + b= 0}.
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Refer to section for the description of S and B. The flow of the corres-

ponding CDE is found in section The flow of the CDE leads us to define
the following sections

2" = {(a,b,c,2,6) €R®|a = —ag, 2 >0}
N = {(a,b,c,z,a) eR’|a > —0, zz—zo},

where a¢ and zg are positive but sufficiently small constants. Then we study the
transition

I: 20— 3o

defined by the flow of X. In this section we only focus on a transition along a
small strip around the swallowtail point. Sufficiently away from the swallowtail
point, the constraint manifold S has only cusp and fold singularities, an therefore,
the transitions near those points are already known. Following the same type of
analysis as in sections [4.T|and [£.2] we can obtain the following.

Proposition 4.3.1. Consider an A4-SFS given by (4.30) and the transition
I3 — 3%
(b, ¢, z,€) — (a,b, ¢ &).

Let $mner C $°0 pe defined as
yinner {(b7 c,z,e) €N |be OE¥T), ce 0(52/7)} .

Then, the transition 11

simner 1S givEN by
e 4 0(65/7)
b+ fp

My S R
[
e}
+
o

Il
)

where each function f; = fi(a,b,¢,z,€),i =b,c, isflat at (a,b,c, z,¢) = (0,0,0,0,0).
For a qualitative picture of the result stated in proposition see fig.

Proof of proposition This proof follows similar arguments as in sections[4.1]
and thus we shall be brief and point out only the key ingredients.
The blow-up map reads as

a=r%a,b=r c=1% 2=rZ c=r'c

According to this blow-up map, the induced vector fields on the charts K, =
{a = -1}, K = {€ = 1}, and K¢x = {Z = —1} are studied.
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'/ Zex

B vy

Figure 4.16: Qualitative description of the result stated in proposition In words,
after passing through the swallowtail point, the distance from S. to the fast fiber
passing through the origin is of order O(¢*/7).

Analysis in the chart K,

The induced vector field in this chart reads as

= —re

by =3e1b1 +e1fp,

¢y =2e161 + fo (4.31)
e =72

2= —4(—2f +adf +bhiz —1— teiz) +erfe,,

where the functions f; = f;(r1,b01,¢1,¢€1,21), for i = by, c1, 71, are flat along
{r1 = 0}. According to appendix[A.6.2] we have that in a small neighborhood of
(r1,b1,¢1,61,21) = (0,0,0,0,1), the system (4.31) is C* equivalent to

7,/1 = —T1&1
Bi = 36131
Ci = 28101
eh = 7€l

Zy = —=A(r1, B1,Ch,61) 21,
where A(0,0,0,0) = 16. The sections of interest are defined as
AP = {(ry, By,C1,e1,21) € R® |ry = —r{}
A = {(r1,B1,C1,e1,Z1) ER?|eg =6},
0 L/

where ) = qa * and ¢ are small constants. Then, in normal coordinates and
according to appendix we have that the transition IT™ner ; Alnner — A¢x
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reads as
H1(317 017517 Zl) = (7:13 -B~17 élu Z~1)7
with

aert(3)”

3/7
5-(2)
€1
} 5\2/7
e (2)
€1

- 16
71 = Z1exp (_761(1 +aie1lne; + €1G1)> s

where a = a(ry, B1,C4) and By = G1(r1, B1,C4, Z1) are admissible functions.

Analysis in the chart K-

In this chart the induced blown up vector field reads as

rh=0

ay =1+ fa,

by = fo, (4.32)
C/2 = fC2

2y = —(25 4 cozi + bazo + as) + fa,,
where each f; = fi(r2,a2,b2, ¢, 22), for i = ag, by, ¢, 29, is flat along {r, = 0}.
The sections of interest read as
AT = {(r27a2,b2,0222) ER|ay = —ag}
AS = {(rg,ag,bg,CQ,ZQ) ERS |2z = fzg} )
The transition is then Iy : AS® — AS$*. Since the vector field is regu-

lar, then IT is a local diffeomorphism. Moreover if we write II3(rg, be, c2, 22) =
(72, d2, ba, é2) we have

9 = T3

dz = ¢(ra, ba, 2, 22)
bo = bz + fi,

G = o+ fey,

where ¢(r2,ba,¢2,22) = P(ry,bs,c0)(22), Where ¢, 1, .,y : R = Ris a family of
local diffeomorphisms.
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Analysis in the chart K

The corresponding blown up vector field is smoothly equivalent to

/
ryg =713+ 53fr3
/

ay = —4daz + 3L +e3fo,

B, = —3bs + e5.f, (4.33)
¢y = —2c3 +e3fe,

gh = —Te3 + €3 s,

where L = L(as, b3, c3) = m and where the funF:tions f? = fi(rs,as, 1?3, C3,€3)
for i = r3, a3, bs, c3, €3 are flat along {r; = 0}. The sections of interest are given
by
Agn = {(Tg,(lg,bg,Cg,Eg) € R5 |€3 = (5}
A = {(rs,as,bs,c3,e3) €R® [rz3 =13},
where § and r§ are small positive constants. Thus, we describe the transition

I3 : AS* — A§*. According to appendix we have that (4.33) is smoothly
conjugate to

/o
T3 =T3
ay = —4az +e3L
b, = —3by
¢y = —2c3
eh = —Tes.

Then, following appendix we have that IT3 is given by II3(r3, ag, b3, c3) =
(a3, bs, €3, €3) where
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Composition of the transitions

The last step of the proof is to compose the local transitions taking into account
the matching maps M¢, and M*. That is, one obtains the map IT : A — A§*.
The matching maps are given by

s . . 1/7 -yt =37 Y S Vi
M, - ro=r16], a2 =—¢; ', ba=¢€,""bi,co=¢;""¢c1, :a =6, ' 2,
and

ex | _ _ 4 _ -3 -2 T

M T3 = —ToZ9, A3 = 25 G2, b3 = —25 "ba, c3 = 25 “C2, €3 = —2z5 .

The composition IT = II3 0 M&* o II5 o ME, o I1; is obtained by following the
procedure detailed in section[4.1} By doing this one proves the result.
O

4.4 Digression on the A;-SFSs

In this section, we briefly discuss a way to study the local transition of 4,-SFS
based on the exposition of this thesis. Recall that, in normal form, an A4,-SFS
reads as

P k—1 P k-1 P
_ 2f _ k ) _ -
X—a(1+€f1)8—l_l+7zz;s flax <z —i—;xlz efk> +08
where all the functions f; = fi(x1,...,2k_1, 2, €) are smooth. The cases k = 2, 3,4

have been studied in sections[4.1|to [4.3] However, similar steps can be followed
to study any Ay, SFS. The procedure is as follows.

q

1. The formal normal form result, given in theorem shows that there exists

a formal diffeomorphism & : RFt1 — R*¥+! such that &, X = F, where F is
known as the principal part and is given as

a k— . k—1 . P P

By Borel’s lemma [10], this principal part F' can be realized as a smooth vector
field XV = F + ¢H, where H is smooth and flat at 0 € R**+1.

Remark 4.4.1. Suppose this formal normal form result can be extended to a smooth
and/or analytic version. That is, there exists a smooth/analytic diffeomorphism
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@ : RFFI — R conjugating X to F. This implies that F is a smooth/analytic
normal form of X. However, even in such a case, F' cannot be integrated. This means
that even with such a smooth/analytic normal form, some technique must be used to
study the local dynamics of F. We propose to use the Geometric Desingularization
method as in chapters[Bland

2. Depending on k, define the entry and the exist sections.

If & is even then

2 = {(z,2,6) ERF T X RxR|2y = —29, 2> 0}
2 = {(z,2,6) ERF ' xRxR|z=—2" 21 >0},

where z{ and 2° are sufficiently small small positive constants.
If k is odd then

2 = {(z,2,6) ERF ' xRxR|zy = —29, 2> 0}
2 = {(z,2,6) ER" ' x Rx R |z =29, 2 < 0},

where 29 is a sufficiently small small positive constant.
3. The blow-up map is given by

1 =188, 2o =" e, L, 2=z, e =07 e

4. To study the transition through a small neighborhood of the origin, one con-
siders the following three charts

Ken ={2, =-1}, K. ={e¢=-1},
and if k is even
Kex = {2 = -1},
while if k is odd

Ko = {7, = 1}.
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5. A study in the chart K., shows that a transition through the charts K.,, K.
and K, is well defined only if the coordinates (z2, ...,2;_1) € Xy satisfy the
estimate

x; € 0O (E k;’“i:rll) .
Therefore, a subset of £°*, called the inner layer, is defined as

yinner _ {(g;,z) €N |3 < Kie T, 0< K; < 00, Vi=2,3,....k— 1}.

6. A local study through the charts provides several local transitions, which have
to be composed.

7. Finally, by composing the local transitions obtained in each chart, the map
IT : 3" — ¥ can be computed. In a broad sense, we conjecture that the type
of results to be obtained are as follows.

If k is odd. There exist local coordinates (Xa,...,X;-1,7Z,¢) € ¥ and
(X2,...,Xk_1,Z,€) € £ such that the transition map

H(XQ,...,Xk_l,Z,é‘) — (XQ,...,Xk_l,Z,é)
is given by
H(XQa"'an—hZaE) = (XQ +h23"'7Xk—1 +hk—1aD35)7

where each h; = h;(Xs,..., Xk_1,Z,¢),i=2,...,k — 1, is a flat function and
where D = D(Xy,...,Xk—_1, Z, €) is an exponential type function in Z, that is

1
D=®+ Zexp (—E(A—FE\IJ)) ,
where ® = (P(XQ, ces ,Xk,hf:“), U= \I’(XQ, .. ~7Xk717 Z, 5) and A = A(X27 e ,kal,&‘)

are admissible functions with A|._o > 0 and given by the slow divergence
integral.

If k is even. There exist local coordinates (Xo,..., Xk-1,2Z,¢) € X and
(X1, Xa,...,Xk_1,€) € £ such that the transition map

H(XQ,..WX]C,l,Z,E) — (Xl,X27...,Xk,1,5)
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is given by
k k+1
H(X27...,X]€71,Z75) = (52k—1 + 0 (E2k—1> s Xo+ho.oo, Xk 1 —‘rhkl,E) s

where each h; = hi(Xs,...,Xp-1,2Z,¢),i = 2,...,k — 1, is a flat function at
the origin of RF*1.



Chapter 5

Conclusions and future
research

This thesis deals with

1. Constrained Differential Equations (CDEs),

2. Slow Fast Systems (SFSs).

Studying CDEs is important since these are zeroth-order approximations of
SESs. Thus, in chapter |2l we have studied the classification problem of CDEs.
In this context, Takens classified CDEs related to the A5 (fold) and As (cusp)
catastrophes [39] . As a contribution, we have extended Takens’ results by
classifying CDEs related to the Ay, the D* (hyperbolic umbilic), and the D~*
(elliptic umbilic) catastrophes. The class of CDEs related to the A, catastrophes
have further relevance in our research, and therefore we have called them Aj.-
CDEs.

Our next step, in chapter 3} has been to embed the A;-CDEs into the theory
of slow fast systems. By doing this we have studied what we called A;-SFSs,
which are e-perturbations of the A,-CDEs of chapter 2l The slow manifold
corresponding to the A;-SFSs is not Normally Hyperbolic and thus, the method
called Geometric Desingularization (GD) becomes useful. With the aim of refining
the results obtained by the GD-process, we have proposed a normal form of Ag-
SFSs. Later, in chapter 4, we have shown that this normal form greatly simplifies
the local analysis of the A;-SFSs via the GD-method. Our final contribution is
the description of the flow of A;-SFSs for k = 2, 3, 4 near the fold, the cusp, and
the swallowtail points respectively. However, we remark that the methodology
developed here is systematic and is applicable to all the A;-SFSs.
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Motivated by our research, a series of open problems arise.

* On Constrained Differential Equations

1.

Complete the topological classification of CDEs (V, X) for all potential
functions V' given by Thom's catastrophes. That consists on extending our
results by considering potential functions given by the Butterfly and the
Parabolic Umbilic catastrophes.

It is also interesting to investigate the topological classification of generic
CDEs for other known stable potential functions. That is, one may consider
potential functions V' given as the universal unfolding of singularities of
type D,,, Es, E7, Eg, etcetera [4].

The research reported in this thesis relies on the smooth (up to diffeomorph-
ism) classification of singularities of smooth maps. In contrast, it is known
that the topologically stable maps form a dense set in the space of smooth
maps [3]. Thus, it is also interesting to investigate if the classification of
CDE:s is possible in the case where the potential function V' is given just up
to homeomorphism.

* On Slow fast systems

1.

The first natural question is to investigate the corresponding SFSs obtained
as e-perturbations of the CDEs described above. For example: to consider
SESs with two (or more) fast variables.

Regarding Aj-SFSs, it is interesting to investigate whether the formal nor-
mal form provided in section [3.3|can be made smooth and/or analytic. If
the answer is affirmative, then many of the arguments of this thesis get
simpler. However, since the normal forms are still not integrable, we cannot
avoid using, e.g., the geometric desingularization method.

Related to normal forms of SFSs, it is interesting to investigate if our pro-
posed normal form can be extended to more complicated slow fast systems.
For example, SFSs with two or more fast variables.

Another interesting application of normal forms of SFSs is to obtain a “true”
normal form of the canard phenomenon.

Global problems are also interesting, in particular because they involve
the intersection of invariant manifolds. Thus, the investigation of slow
fast systems with some “global return mechanism” may lead to interesting
results. In this setting, the class of differentiability of the transition maps
involved becomes important.



Appendix A

Auxiliary results

A.1 Elementary catastrophe theory

Catastrophe theory has its origins in the 1960’s with the work of René Thom [40, 41} 42]. One of its goals was to
qualitatively study the sudden (or catastrophic) way in which solutions of biological systems change upon a small
variation of parameters. The most basic setting of this theory is called elementary catastrophe theory [18}32}135]. It
is concerned with gradient dynamical systems

z= 7£V(w,z). (A1)

The variables z € R™ represent the states or the measurable quantities of a certain process, and = € R™
represent control parameters. One concern is to find the equilibrium points of (A1), this is, to solve

%V(z,z) =0. (A.2)

In mathematical terminology, one is interested in the qualitative behavior of the solutions z of as the
parameters x change. It is also interesting to know to what extent different functions V' may show the same local
behavior. These ideas led to the classification of families of degenerate functions V' (z, z) : R™ x R™ — R for
m < 4, which is known as the “seven elementary catastrophes”, see table

Theorem A.1.1 (Thom’s classification theorem [10]). Let V,(z) = V(x, 2z) : R™ X R™ — R be an m—parameter

family of smooth functions with m < 4. If V (x, z) is generic then it is right-equivalent (up to multiplication by £1, up to
addition of Morse functions and up to addition of functions on the parameters) to one of the forms shown in tuble

A.2 Thom-Boardman symbols

Let N™, M™ be smooth manifolds, and consider that (z1, ..., z,)and (y1, . . ., Ym ) are some local coordinates
in N and M respectively. Let a smooth map f : N™ — M™ be givenby y; = f;(x). Let i; be a nonnegative
integer. The set 31 (f) consists of all points at which the kernel of D f has dimension ;. Given a finite sequence
I = (1,12, . - ., iy ) of non-increasing nonnegative numbers, 32/ ( f) is defined inductively as follows.

Definition A.2.1 (THOM-SYMBOL). Assume that S1(f) = $11:%2:k () C N is a smooth manifold. Then

020 ik i1 ikl (f‘zl(f)>
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Name V(z, z) Codimension
Non-critical z

Non-degenerate (Morse) 22 0

Fold %23 +x12 1

Cusp %24 + %xzzz +x12 2
Swallowtail %zf’ + %1323 + %9:2,22 +x12 3
Elliptic Umbilic zf - Szlzg + asg(zf + zg) + 2221 + 122 3
Hyperbollic Umbilic zf + zg + x32122 + T221 + T122 3
Butterfly ézG + %14.24 + %mgz?’ -+ %1222 + 12z 4
Parabolic Umbilic 2320 + 25 + a2zt + a322 + X221 + T122 4

Table A.1: Thom’s classification of families of functions for m < 4. Each elementary catastrophe is a struc-
turally stable m-parameter unfolding of the germ V' (z, 0). Loosely speaking, the codimension of a singularity
is the minimal number of parameters m for which a singularity persistently occurs in an m —parameter family
of functions.

is the set of all points at which the kernel of D(f|=1 (f)) has dimension iy 1.

Naturally, we have the inclusions
NOES(f)DE ™ 2(f)D ...

Denote by &, the ring of germs of C*° functions on R™ at 0. Let .# be an ideal of &,.
Definition A.2.2 (JACOBIAN EXTENSION). The Jacobian extension Ay (%) of & is the ideal generated by % and all

8 -
the Jacobians det (8;%) of order k, and where ¢; are functions in .&.

]
Remark A.2.1.
o The ideal Ay, (F) is independent on the choice of coordinates.
o Appi(F) C A(SH).

Definition A.2.3 (CRITICAL JACOBIAN EXTENSION). A Jacobian extension Ay, (%) is said to be critical if Ay, # &y
but &, = Ap_1(F). This is, the order k of the Jacobians is the smallest for which the extension does not coincide with &,,.

Now, we change lower indices to upper indices as follows.
Definition A.2.4. A" = A, 4.

By using the upper indices as in definiﬁon we have
iy = corank(.#), iz = corank(A'1.#), ..., i) = corank(A*%k—1... A"k 7).

Definition A.2.5 (THOM-BOARDMAN SYMBOL). Let I = (i1,i2,...,%x) be a non-increasing sequence of non-
negative integer numbers. The ideal . is said to have Thom-Boardman symbol I if its successive critical extensions
are

AL g ARZAN g ATRAR-L L ARAT g

Definition A.2.6 (SYMBOL OF A SINGULARITY). Let the map f : N™ — M™ be such that f(0) = 0. We say that

f has a singularity of Thom-Boardman symbol ' at 0 if the ideal generated by the m coordinate functions f; has
Thom-Boardman symbol I.
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Definition A.2.7 (NICE MAP). A map f is said to be nice if its k-jet extension is transverse to the manifolds 7.
The importance of a nice map is contained in the following result.

Theorem A.2.1 (ON NICE MAPS). [5]

1. Iff : N™ — M™ is a nice map, then S (f) = (5% f)=2(21). This is ©'(f) is a submanifold of N and
x € I(f) ifand only if j* f(x) € =7.

2. Anysmoothmap f : N™ — M™ can be arbitrarily well approximated by a nice map.

A.3 Some classical normal forms

Let a C*° vector field Y (x) be given as Y = Z:’_l fi 3% . Assume that the origin is an isolated equilibrium

point, this is Y'(0) = 0. Assume also that the Jacobian of Y has ¢ eigenvalues in the imaginary axis, and let £ be a
positive integer. We have the following result.

Theorem A.3.1 (TOPOLOGICAL REDUCTION TO THE CENTER MANIFOLD). There exists a C¢, c—dimensional manifold
W€ containing the origin, and a neighborhood U of 0 € R™, such that for any point x € W N U, Y (x) is tangent to
W€ at . Moreover, there exists an integer r, with 0 < r < n — c such that Y is topologically equivalent to the vector

field

c a c+r 8 n 3
Y = E £ L — + E 2 E L
filya, s Ye) e Yi I Yi s s
i=1 i=c+1 i=ctrtl
where (y1, - -+ ,ye) are coordinates in the center manifold W<, and all eigenvalues of Do f are on the imaginary axis.

It is important to note that the center manifold W in theorem is not unique. However, different choices
of W€ lead to topologically equivalent phase portraits [2[38].
Define by Y7 (z) the vector field which has the same 1—jet at z = 0 as Y, and whose coefficients are linear

in x. Denote by H* the space of vector fields whose coefficients are homogeneous polynomials of degree k.
The linear map [Y1, —]i : H* — HP* assigns to each H € HP* the Lie product [Y1, H]. Observe that for a
fixed Y7 there is a splitting H*E = B* + G*, where BF = Im ([Y1, =)&), and G* is some complementary space.

Theorem A.3.2 (NORMAL FORM THEOREM [38]]). Let Y, Y1, B*, G* be as above. Then, for £ < k, there exists a
C°° —diffeomorphism ¢ : R™ — R™, which fixes the origin, such that ¢..(Y') = Y is of the form

Y' =Yi+g2+ - +ge+ Re

where g; € GI,j=2,...,0and Ry isa vector field with vanishing € — jet at the origin, ¢ = k = oo is not excluded.

Remark A.3.1. Incasethe 1 — jet of Y is identically O, one proceeds as follows. Let s be the smallest integer such that the
s — jet of Y does not vanish at 0, denote by Y the vector field whose component functions are homogeneous polynomials of
degree s, and such that the s—jets of Y and Y are the same. As in the normal form theorem, define the map

Ve, =], HF = HFTet

For k > s, the splitting of the space HE* is H* = B¥ + G, where B¥ = im ([Ys, H)), with now H € Hl—stL,
In this way, the conclusion of the normal form theorem remains valid by replacing the Y from above by

Y' =Y, +gst1+...+g0+ Ry
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Theorem A.3.3 (TAKENS NORMAL FORM THEOREM ON SEMI-HYPERBOLIC SINGULARITIES [37]). Let X be a vector
field on R™ which is zero at the origin. If X satisfies the non-resonant condition of Stenberg, then there are C* coordinates
(T1,...y2e), (Y1s- -5 yz)and (21, ..., zy) on R™ such that X is locally of the form

- P - PR P
X = E Xi(f51w~wirc)87$1+ E A(Il,uwmc)yi% E B(zl,.‘.,mc)ziaz_,
’ i=1

i=1 i=1
where
o All the eigenvalues of D, X (0) have zero real part,
e A(0)<O
e B(0)>0

Theorem A.3.4 (Sternberg-Chen [111134]). Let X and Y be two hyperbolic vector fields. Then X and Y are C*° equivalent
if and only if they are formally equivalent.

A.4 Fenichel’s theory

Let X be a slow fast system whose slow manifold S is regular, say at the origin, that is

N
I

X, : {I/ =cf(@ 2) (A3)
g(z, z,€),

d
where 22 (0) is non-singular. As usual, we denote by S the slow manifold of , and by definition this manifold

z
S is Normally Hyperbolic in a neighborhood of the origin. Let Sg be a compact subset of S.

Theorem A.4.1 (Fenichel [16,146]). Ife > 0 but sufficiently small, there exists a manifold S which lies within distance
of order O(e) from So. Moreover, the manifold S is invariant under the flow of X . and is C* forany 0 < £ < oo.

This theorem tells us that the flow of the corresponding CDE gives an approximation of the flow along the
invariant manifold S, of . We remark that the compactness property guarantees the existence and uniqueness
of S, [45,[46].

A.5 Quasihomogeneous functions and vector fields

In this section we briefly recall the principal properties of quasihomogeneous functions, and vector fields. This
section is mainly based in [3}[29].

Let x € R™. Germs of functions are denoted by f : (R™,0) — (R,0). Similarly, vector fields on R™
are denote by X. We shall use the usual multi-index notation as follows: let ¢ = (r1,...,qn) € N", then
x9 expresses the monomial ]! -+ -2, |q| = q1 + -+ + qn is the length of . Let 7 € N”, then (r,q) =
T1q1 + -+ Tnqn-

Definition A.5.1 (Quasihomogeneous function). Let f : (R™,0) — (R, 0) be a (germ of a) smooth function. The
function f is called quasihomogeneous of degree 6 and type r = (71, ..., ry) if forany X > 0 the following holds

FOzy A2z ..., A zy,) = )\Sf(zl,xg,...,xn).

In the rest we are interested only in quasihomogeneous polynomials.
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?eﬁnition A.5.2 (Degree of a monomial). We say that the r-monomial x4 = z{* - - - x" has quasidegree § if (r, q) =

Let us, from now on, fix the type r = (71, ..., ry). Observe then that any r-quasihomogeneous polynomial
of degree § can be written in the form
E aqQ 2@ s

(r,Q)=3¢

where ag € R. Since r is fixed, whenever no confusion is possible, we will omit to mention the type of a
quasihomogeneous polynomial.

Definition A.5.3 (Quasidegree). Let f be a quasihomogeneous polynomial. If all the monomials of f are of degree & we
call & the quasidegree of f. By convention, the degree of 0 is +oc.

Definition A.5.4 (Order). A polynomial f has order ord(f) = ¢ if all of its monomials have degree & or higher.

We denote by P the linear space formed by polynomials of order §. Observe that Ps C P for 6’ < 6.

2]
Definition A.5.5 (Quasihomogeneous vector field). A (formal) vector field X = Z X; — is called quasihomo-
9z,
geneous of degree § and type r = (r1, .. .) if each non-zero X; is a quasihomogeneous (polynomial) function of degree
6 + 7y and of type r = (r1, .. .).

Definition A.5.6 (Order of a vector field). A formal vector field X = Z X,
quasihomogeneous components X ; are of degree higher than § 4 r;.

i 61 is said to have order § all its

The set of all quasihomogeneous vector fields of order ¢ is denoted by # 5. The following lemma summarizes
some of the properties of quasihomogeneous objects that are useful in the present context.

Lemma A.5.1 (Properties of quasihomogeneous objects [4,29]). Let §, o € N be nonnegative,and f € Ps, X € Ho.
The following facts hold

® ifg € Py, then fg € Psyo-

* Lxf € Psto

e fX€eHs540

o ifY € Hs, then DX - Y € Hoysand [X,Y] € Hoys.

o Let X = E —1X —_— thenord(X) = §ifand only iford(X;) = 6 + 7.

We shall define a convenient inner product in the space of quasihomogeneous polynomials and vector fields.

Definition A.5.7 (The inner product (-, ), s). Letx = (z1,...,2y),and s,q € N". Let f, g € Ps, that is
% fswsy
(r,s)=48
and similarly for g. Then the inner product (-, -) . s is defined as
(8’)'
E fsgs——
(r,s)=5

where (s!)" = (s11)"L -+« (sp!)"™. So for monomials one has
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s o M if s=q with (s,r) =0,
(%, 2)rs = .
0 otherwise.

"X 2 €

i=1" 10w,

For vector fields we have the following. Let X, Y be quasihomogeneous vector fields such that X = E
Hs,andY = E:;l YIOLTL € Hgs. Then

<X1 Y>T,5 = E <Xi7}/11>7‘,8+7‘i-

=1

Examples of quasihomogeneous polynomials and vector fields
The following examples are used in the main text.
Example A.5.1. The function f(x1,z) = 2 + x1 2 is quasihomogeneous of degree & = 3 and type r = (2, 1).

Example A.5.2. Consider the quasihontogeneous polynomial f* = 2% 4+ Zf;ll x;2 7. All its monomials are of degree
k. Therefore, we say that f has quasidegree k.

Example A.5.3 (Order).
o The quasihomogeneous polynomial f* = z* + Zi:ll x;2° 7" has order k.
o Consider the quasihomogeneous polynomial f* + P, where deg(P) > k. Then f* + P has order k.
o Consider the quasihomogeneous polynomial ¥ + O, where ord(O) > k. Then f* + O has order k.

n 9 . . .
Example A.5.4. The n-dimensional linear vector field X = Ziil ajx; — is a quasihomogeneous vector field of degree

ox;
6 =0and typer = (1,1,...,1).
yp

n

2] 2] 2]

Example A.5.5. The 3-dimensional vector field X = S (2% + x1)8— + 08— is a quasihomogeneous of degree
1 z e

6 = land typer = (2,1, 3).

Example A.5.6. The k + 1 dimensional vector field

-1
X 17} B i1 o 40 o
=¢ —| =2 E Tz — —
Oxq 0z Oe

i=1

is quasihomogeneous of degree § = k — 1and typer = (k,k —1,...,1,2k — 1).

A.6 Normal forms and transitions

Here we present a procedure to obtain C** normal forms of hyperbolic and semi-hyperbolic vector fields. We do
this because those are the type of blown up vector fields that we encounter when studying A-SFS.
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A.6.1 Normal form near a hyperbolic point
Proposition A.6.1. Let X be the m + 2 dimensional vector field

v =uL()+ fu
v] = aiv1L(v) + w+ fu,

X
v_; = ov;L(v) + fvj
w' = ywL(v) + fuw,
wherej = 2,...,m, L(v) =1+ Z:l v; and all the f,'s are flat along w = 0. Assume that the coefficients ov; and
~y are non-zero. Then, there exists a C° transformation that brings X intro the normal form
U =U
XNV =i Wy
' Vi =-aV;
W' = —yW.

Proof of proposmon- The proof con51sts of two steps. First divide (re-parametrize time) X by L(v). Fmally
apply Sternberg-Chen theorem appendlx

A.6.2 Normal form near a semi-hyperbolic point
Proposition A.6.2. Let (u,v,w, z) € R X R™ X R x R and consider the vector field X given as

v = ocwu(l+ f)
v

. i = Biwui(1+ f) + wg;
w' =~yw?(1+ f),
2 =—-A+4+h
where j = 1, ..., m; where the coefficients v, B;, v are all nonzero, the functions f, g; and h are all smooth functions flat

along w = 0and A = A(u,v,w, z) is a smooth function such that A(0) = 0 and g—’; (0) > 0. Then there exist C'*
coordinates around the origin such that X is C* equivalent to

U =aWU

/ — . .

X];Y : VJ = B;WV;
s W/ — ’YW2
z' =-Gz,

where G = G(U, V, W) isa C* function such that G(0) > 0.

Proof of proposition From the definition of the vector field X we note that the origin is a semi-hyperbolic
singular point. The hyperbolic eigenspace is 1-dimensional while the center eigenspace is (m + 1)-dimensional.
In the following lines we obtain a C'* normal form X2 for X. We detail all the steps that take X into the normal
form X V.

Divideby 1 + f. We define a new vector field Y by Y = ﬁX, which reads

’

u = xwu
y . Qv = Biwvj +wi;
w/ — ’Yva
2 = —-A+ fz,
where the functions g;, j = 1,...,m, and h are flat along v = 0. Then, in a small neighborhood of the origin,

the vector fields X and Y are smoothly conjugate.
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Characterize a center manifold. ~ Observe that linearization of Y at the origin shows the existence of an (m+1)-

c
dimensional center manifold YW~ [19]. In this step we simplify the expression of the center manifold. Let My be
the set of critical points of Y, that is

Mo = {(u, v, w,2) | A(u,v,0,2) =0}
By definition, the manifold My is invariant and normally hyperbolic. Now, assume |w| < 1. Such a condition
appears naturally in our applications. By Fenichel’s theory [16] the manifold My will persist as an invariant

normally hyperbolic manifold M,,, for sufficiently small w # 0. We identify such manifold M,, with Wc. In

c
other words, there exists a C* function m = m(u, v, w) such that the center manifold W is given as a graph

C
W = Graph(u, v, w,m).

c
Let ( = z — m, then ¢’ = 2’ — m/. But we know, due to invariance of YW~ under the flow of Y, that
¢'l¢=0 = 0. This is, there exists a C* function g = g(u, v, w, ¢) such that ¢/ = —g¢. With g(0) = 0 and
dg
—(0) > 0.
20

In conclusion of this step, there exists a C ¢ transformation P (u,v,w, z) = (u,v,w,() that transforms
the vector field Y into

u = xwu

7. v}/ = Bjuz)vj + wg;
w' =yw?,
¢ =-g¢

0, OA
where g = g(u, v, w, ¢) is a C* function such that g(0) = 0 and a—g(O) = 8—(0)
z z

Eliminate the flat terms in the center manifold W . Observe that thanks to the previous step, the center
c c - c
manifold W has the simple expression W~ = {{ = 0}. The flow of Y restricted to W~ reads

’

u = oawu

\C \ ’ ~

YO=Y| c:quv; =Bjwv; +wj
w' :'szv

where we recycle the notation of the flat perturbation. Note that the vector field Y©is, up to multiplication by w
and up to flat perturbation, linear. That is

1 u = au
NCaRt
’

w' = yw.

The goal now is to conjugate ¥ ¢ with its infinite jet, which is linear. However we must do this fixing
the coordinate w. Note that this is not possible by only using Sternberg-Chen. But it is possible via a result of
Roussarie [15]. Thus, for w # 0, we have that there is a smooth change of coordinates (u, v, w) +— (@, 0, w)
conjugating Y to

' = awd
c - .
y v; = Bjwv;
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Finally, since the center dynamics are independent of ¢, we have that the vector ¥ is smoothly conjugate to

= awi
v, v = B wdy
. ’ _ 2
w' =yw
¢ =-g¢

where § = g(@, 9, w, {).

Linearize the hyperbolic direction. Roughly speaking, the last step in order to obtain the normal form X% is
to make the equation of ¢’ linear in ¢. We do so by invoking the Bonckaert extensions to the theorem of Takens on
semi-hyperbolic fixed points [37)[6}[7]. Such result guarantees the existence of C** change of coordinates coordin-
ates (@, 0, w, ¢) — (@, U, w, Z) bringing ) into the normal form

i’ = awi
~1 ~
N, )T = Biwd
sh * o 2
w =Ayw
zZ' =-GZ,

where G = G(@, 7, w) is a C* function such that G(0) > 0.

A.6.3 Partition of a smooth function

In this section we investigate the problem of partitioning a smooth function. The result presented below is import-
ant since it is used to simplify the computation of transition maps. To be more specific, let us give a brief example.
Consider the three dimensional differential equation

r =T
’
Y =—y
2 =g(x,y)z,

where g is a smooth function. We want to take advantage from the fact that y is a first integral. We show below
that the function g can be partitioned as g(z,y) = g1(zy,z) + g2(zy,y). This makes the integration of 2’
simpler.

Lemma A.6.1. Letuw € Randv € R™. Let f = f(u,v) be a smooth function such that f(0,0) = 0. Then there exist
smooth functions fo = fo(uv,w) and f1(uv, v) such that the function f can be written as

f=Jfo+ f1,
where fo(0,0) = 0and f1(0,0) = 0.
Proof of lemma[A.6.1] We proceed in two steps. The first consists in proving the formal version of the statement.
The second step is to extend the formal result to the smooth case.
Formal step

Let f denote the formal expansion of the smooth function f. Letp € Nand ¢ € N™. We use the following
notation:



A.6. Normal forms and transitions 138

* Byg > Owemeang; > Oforalli € [1,m].
e Foravector v € R™ we write v? = v{1 - - - vZm.

m

e The L; norm of q is denote by |q|, and thus for ¢ > 0 we have |¢| = ijl G-

* We denote by §G; the vector

Gi = (q1s- > qim1,qit1,-+qm)

and therefore we have that v7i reads as

q
_ v ) )
a4 _ — il ... %ol ditl am
v = o7 =Y Vi—1 Ve Um' -
i
Besides, we have that the Ly norm of §; is given by |G;| = |q| — ¢; = m 1 U
J=1,j7#4

The formal series expansion of f reads as

f= E apquPv?,

p=0,920

where ago = 0. With the notation introduced above, we can partition f as follows

m
I = E ‘Z;Jq(uv)qupflqI + E E a;q(uvi)p(vw)’”ufi*p*lqi‘7
|

p>lq i=1 q;2p+d;|
where
(uv)q = (uvl)[n c (UUWL)an
q
N (v;v)
(viv) U?qq‘, ’

i

and where a;,, € R are suitable chosen coefficients. Let » € N™, s € N. Define the following formal polynomials
h(uv,u) = E ars(uv) u® = E a;q(uv)qup_‘q‘,
r,5>0 p>laq|
where a5 € R, and

gi(uvi,v) = Z Birs(uvi)v”

rys,t>0

_ ’ Y] AP, 2 —P—14q;l

= E apq (vi0) 7 (uv;) o ,
q; >p+14;|

where 3;,s € R. The coefficients s and 3;,s are conveniently chosen to make the definitions hold. Let uv =
(uw1, ..., uvy). Define § = g(uv,v) by g(uv,v) = Z:r:1 §i (uv;, v), then we can write f as

Flu,v) = h(uv, u) + gluv,v).

This shows that the proposition holds for formal series.
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Smooth step

By Borel’s lemma [10], there exist smooth functions h = h(uv, ) and g = g(uv, v) (Whose formal series expan-
sions are h and § respectively) such that

f=h+g+R,

where R (reminder) is a flat function. We now show the following.

Proposition A.6.3. Let u € R, v € R™, and R(u,v) be a smooth flat function at (0,0) € R x R™. There exist flat
functions ro = ro(uv, w) and ry = 71 (uv, v) such that

R=ro+mr:.
Remark A.6.1. Propositiontogether with the formal step f = h + § imply our result.
Proof of proposition[A:6.3} For this proof we shall use the blow-up technique. Let ® : S x Rt — R™F! be
a blow-up map. The map ® maps S™ x {0} to the origin in R™¥*. Let R be a function defined by R = R o ®.
Since R is flat at the origin, the function R is flat along the sphere S™. We assume that the function R = R(u, v)
is defined on a small neighborhood R of the origin in R x R™; this neighborhood is defined as
R = {lu| <A, |vi| < Bi},

for some A, B; positive scalars. Let 0 < § < 1. The sphere S™ can be partitioned into m + 1 regions as follows:

U= 8"\ {lul < s}
Vi = 8"\ {|w:] <4},

where (@, %) = (@, 71, - - -, 0m) € S™. We can then take a partition of unity to split R as
m
R(a,v) = Ro(a,7) + E Ri(a,), (A4)
i=1

where Supp(Ro) C U and Supp(R;) C V; fori € [1, m]. We define as R and R; the corresponding functions
on R™T* flat at the origin given by the blow-up map &, thatis R; = R;j o ®, for j = 0,1, ..., m. Note that
R — Ris an isomorphism between the space of functions on (u, v) € R™T? flat at the origin, and the space of
functions on ((@, ©), p) € S™ x RT flatat S™ x {0}. Therefore, the splitting induces the splitting

R(u,v) = Ro(u,v) + Z R;(u,v)

i=1
of functions on R 1. We will now prove that there exist flat functions r and r; such that

Ro(u,v) = ro(uv, u)
Ri(u,v) = r;(uv;,v).

Let us detail only the case of Rg. The other functions are obtained in a similar way.
The function Rg has support in /. We can parametrize U by the directional blow-up map ®,, which reads as

(Uy D1, v oy Om) > (T U1y ey WD) = (U V1, ooy U ).
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Now, suppose that there exists a flat function Py defined by
Ro(u, ) = Po(u, u’v).
This implies that there is a function 79 = Pyod® w ! such that
Ro(u,v) = 7o (u, uv),

which is precisely what we want to prove. So, now we only need to show that indeed a function Py as above exists.
For this let us define coordinates (U, V1, ..., Vi, ) given by

U=u, V1 :uzﬁl, ooy Vi :’LI.Z’D,,,,,,7
and let Py (u, V') be a function defined as
- ~ |4
Po(u, V) = Ro (7au> .
u

Note that P, is flat at (u, V) = 0. This is seen as follows. Since Ry is flat along {u = 0}, it follows that
}50(0, O) = RO‘u:O = 0 and

8Py AR,
—(0) = —|yu=0=0
EY ( ) EY |u70
ap, 1 8RR,

0) = — —|u=0 =0,
6\4( )= a7, lu=o

and so on for the higher order derivatives.
Finally, for convenience of notation we define ro(uv,u) = 7o(u,uv), thus we can write Ro(u,v)
ro(uv, u) Following similar arguments as above we find the functions r; = 7;(uv;, v) such that R;(u, v)

ri(uv;, v) for i € [1, m]. Then we define r1 (uv, v) = 27;1 r; (uv;, v). It follows that

R(u,v) = ro(uv,u) + r1(uv,v).

With this last proposition we can now write the function f as

F = h(uv, u) + g(uv, v) + R(u,v)
= h(uv, u) + g(uv, v) + ro(uv, u) + r1 (uv, v).

Finally, to show the lemma we define the smooth functions f1, f2 of the statement by

fi=h+ro
fa=g+r.
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A.6.4 Transition near a hyperbolic point

In this section we study the flow near the hyperbolic equilibrium point of the vector field XN obtained in ap-

pendix
We recall that lev reads

u =Uu
’ _ L(v)—1
XN Q" = —aon +w (1= 4750
’U; = —Q;vy;
"=,
where j = 1,...,m. Observe that X;¥ has m + 1 contracting directions and only one expanding direction.
Therefore, it is convenient to study a transition map given as
IT: (u, 01, U, W) = (Uout D1y - - vy Dy D), -

where .+ > u. We then choose the time of integration tobe 7" = In (%) . We have the following.
Proposition A.6.4. Let X[ be as above and let

I (u, V1, vy U, W) = (Uout, D1y« v vy O, W)

C31
s (o) (o (35)
Uout Uout

u )
05 = v ( ) vj € [2,m]

Then we have

Proof of proposition[A.6.4} The solutions w and ©; for j € [2, m] are straightforward. So now the only problem
we have is to integrate a one dimensional equation of the form

v = —ayvi +w(t)F(t,v1), (A5)

where F'(t, v1) reads

1
F(t,v1) = ™ — 1
Lbwp+ 3" v(0)e "

In our applications w(t) is small in magnitude. Thus, observe that if w = 0, we would have vy (t) =
vy (0)e” 1%,
Let us define V; by v; = e~ %1 tV;. Then substituting in we get

Vi = wel STV B V), (A6)

where we have substituted w(t) = we ™" and

- 1
F(t, V1) = -
T+e o1tV + ) ;’;2 v;(0)e” 9"
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The term —~ 4« is always negative, and the term we (=721t is Jominant in forward time. This is because
F — last — oo. Then, even though we cannot explicitly integrate V;, from the form of (A.6) we expect that

Vi = Awel 77TV (1 4 B,

with some constant A and E = E(t) ~ e~ °* with ¢ > 0. Therefore we would have (adding the solution to the
linear equation and the solution for V')

vi(t) = v1(0)e” "1 e 1ty
v1(0)e” 1 4 Awe Y (1 + E).

Then taking into account the time of integration 7" = In ( “out ) we have

u

B u 1 u v u
01 = vy + Aw 14+0 .
Uout Uout Uout

Since v > «; we finally have
aq
o) (o)
Uout Uout

A.6.5 Transition near a semi-hyperbolic point

In this section we investigate the transitions for the vector field X computed in appendix Relabeling the
coordinates we recall that X 5}\{ reads

u = xwu
’
Xs]}\{ : vj/ = Bjwv;
w = yw
2 = —gz,
where j = 1,...,m, and where g = g(u, v, w) is a C* function such that g(0) = A > 0. We assume that

w € R For our applications, we are interested in only two particular situations.
1. The saddle 1 case where « = —1, 3; > Oand v > 0.

2. The saddle 2 case where o =

1,8; < 0and v < 0.

Saddle 1

In this case we investigate the transitions of a vector field of the form

u = —wu
v = Bijwv;
Y : 7 5 (A7)
w = yw
2 = —gz,
where the coefficients 3;, forall j = 1,...,m, and ~y are positive. Observe that the flow in the direction of u and

z is a contraction while it expands in all the other directions. Roughly speaking, this implies that a transition can
go out at any expanding direction v; of w.
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We investigate two types of transitions that will be used later in our applications. For this, let us define the
following sections

Ben = {(u, v, w, 2) |u = u; }
T = {(u, v, w,2) |w = w,}
+o;

Yox T =A{(w,v,w,2) [v; = vj0}.
In this section we compute the transitions

MY :Yen — S50

(v, w,2) = (&, ¥;, Z),
foralli € [1,m], and

. +v,
o+ .5, — 5.7

(v, w, 2) = (@, D;, W, 2),
forall ¢ € [1, m] with ¢ # j. The way each transition is used is made clear in section

=0 .
Proposition A.6.5. Consider the vector field Y given by and let Sy, B, Soy 7 and IV, TI1%Y5 be as above. Then

ex’

o The transition 11" is given by
U =1u —_— 5 ’l’)i = v; —_—
Wo w
. A _ -
Z=rzexp |—— (1 + aw In(w) + wG)
~Yw

where & = &(uvil/ﬁi,uwl/'y) and G = @(uv:/ﬁi,uwl/w,wl/“’,ui) are C* functions with p; =
vil/ﬁi'wfl/'*.

o The transition TIV3 is given by

~ (vj)l/ﬁ . (nj>ﬁi/5]‘ o (,r]j>7/ﬁj
—_ ) Vi =V | — 5 w=w/|—
i vj Vi

A -
= zexp |:—— (1 + & wlin(vy) + wG/)} s
Yw

IS
Il

e
|

with i # j and where

a = &/(uvil/ﬁﬂuwl/ﬂ’)

G = G (o} w7 oy, i)

1/8; 1/8;
are C* functions with Py = w7y ,/57 and p; = v.l/ﬂlv./ﬂ]‘
J 7 J

Proof of proposition We detail first the computations for the transition II*”. The transition % is com-
puted in a similar way so we only highlight the key parts of the computation.
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The transition II¥

. . . Lo we \ 1/
In this case, the time of integration is T' = In (—j’)

= " where wo = w(t)|>31eg( and w = w(t)|s,, . Such a time

of integration is obtained form the equation w’ = vw. We also make the assumption that v; € O(ei /7). Such
an assumption will appear in our applications. From the form of Y we evidently have

w \ /7
w(T)=a=mu (w—o)

Bil~Y
vi(T) = v; = v; (ﬁ) .

w

It only rests to compute the transition for the z coordinate. Let us rewrite Y as follows

’

u = —u
v; = Biv;
w = yw

, A+ G(u,v,w)
-z

z = 5

w

where G is a C* function vanishing at the origin. Observe that we have the first integrals ubiv; and uYw. We
shall take advantage of such a fact. We define new coordinates (U, V, W) given by

U = u, Viﬁi =v;, WY =w.

In this new coordinates we have the system

U =-U
Vi =V
W =w
2 = ——AJFG(U’ Vﬂi’Ww)z.

W~

In the new coordinates, the time of integration is given as T' = In ( VX‘;’ ) To have an idea of the expression

of Z, let us first study a simple example.

The case G =0

Let us suppose G = 0. Therefore we have 2z’ = — 25 z, which has the solution

2(t) = z(0) exp (—A// W(s)”ds) ,
0

where W (s) = W (0) exp(s). Substituting the time of integration 7" we have

Wo
o ()
HT)=2=zexp | - e ds
0

W~

o (= (- ()

Observe that since W < W,, we have that Z — 0 as W — 0. Let us now study the general case.
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The case G # 0

We now consider that G # 0, we have

z2(T)=2=zexp(Io+ I1),

T 1
Ip = —A —d:
’ /0 W)™

RECORORRIOV
, W(s) '

where

I, =

N ) Bi s
The integral Iy has already been computed above. Let us write F/(U, V, W) = %W We

can do this because G(U,0,0) = 0and VP € O(W?). Now we estimate the integral I;. Using lemma
we can write

T
I, = / [F1(s) + F2(s)] ds,
0

where

Fy = F{(UV4,... UV, UW,U)
F2 = FQ(UV1,...,UVm,7UW7V17-~-7vaW)~

Observe that UW and all the UV;’s’ are first integrals. Let J; = f Fyand Jy = f F5. Then we have

T
Fy(UV,UW, U(s))ds

A
Il
c\

In
= / Fi(UV,UW,Ue™ *)ds.
0

Let us make the change of variables y = e~ °, we obtain

W
Wo d’g
J = — Fy(UV,UW, Uy)—.
Yy
1

We expand the function F; in power of y that is

Fy (UV,UW,Uy) = Fy(UV,UW, 0) + O(y).

%%
Wo dy ~
J1:* 041*+F17
1 Yy

Then we have
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where a; = a; (UV,UW) and Fy, = Fy(UV,UW, Uy(T)) is some (unknown) C* function. Finally we get

Ji1 = 1 o + F Uv,Uw,U
« - - | -
1 1 W 1 5 ) Wo

The function £ is C** but unknown, and W, is a fixed positive constant, then we can simplify the notation
of Fy as Fy = By (UV,UW, W).
Next we have
T
Jy = / Fo(UV,UW, V(s), W(s))ds
0

Wo

1,,( i
- / F(UV,UW, VieP1®, . Ve ™ we?*)ds.
0

Let us make the change of variables y = e®. Then we obtain

Wo
w B B8 ~y dy
Jo = UV, UW, iy’ . V™ wy?)—.
Y
1

As above, we expand in powers of y, that is

Fy = az +O0(y),

and then we have
J. 1 9) + F
=azln | — s
2 2 W 2

where ay = aa(UV,UW), Fo = Fo(UV,UW, ;) is a C* function with pu; = V;W = forall i € [1,m].
Recall that since v; € O(w?i/7) we also have that V € O(W).
Now we can write the integral I; as

Iy = J1 + J2
=oa1ln (%)Hﬁl +a21n<W°)+F2
w w
:aln(%)—&-ﬁ,
w

where o« = a(UV,UW) and F = F(UV,UW, W, [1i) are C* functions. FInally we write Z in the original
coordinates as follows

2= zexp(lo + Ih)

A w 1 Wo .
=zexp|— |1— — |+ —aln|{ — | + F
yw Wo 8l w

= zexp |:—A (1 + awIn(w) + wé)j| s
yw

where & = d(uvj/ﬁi,uwl/”’) and G = é(uv;/ﬁi ;uw'/ Y w7 ;) are C* functions with p; = vw =i/ 7.
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The transition 1%

i
equation v; = B;v;. The we have

v

<)

S
Il

N\ /85
In this case the time of integration is given by 7' = In (Z—J) . Such a time of integration is obtained from the
1/8
“ )

J

o (n]_>131,//3j
Vi =0 | —
Vj

N\ v/ Bj
w (1) .
vj

Then, only remains to compute Z. Following similar arguments as for the transition IT*” we get in this case

3

D

A -
Z = zexp [—— (1 + & wlin(vy) + wG')} s
Yw

where now
& = &/(uvil/ﬁi,uwl/ﬂ’)
G = G (wo} P uw | oy, i)

—Bi/Bj

are C* functions with = wv;’Y/Bj and p; = viv; O
Saddle 2
In this case we investigate the transitions of a vector field of the form
Ul = wu
vl = —Bjwv;
y:{ Y (A.8)
w = —yw
2 = —gz
where the coefficients §3;, forall j = 1, ..., m, and v are positive. We assume that u € RT. Observe that now,

in contrast with case 1, we only have one expanding direction. This makes the study of the transition easier. Let
Uyt > 0 In this case, it is more convenient to study a transition

0" : Ben — Zex,

where we let ..., be any codimension 1 subset of R™ ¥ given by setting one of the coordinates (v, w) to a constant
and with u < wueyt, and

Bex = {(u, 0, W, 2) | & = Uout} -

Proposition A.6.6. Consider the vector field Y given by @ and let Yoy, Xex and II™ be as above. Then

(i)
Vi = Uy
Uout
()
w
Uout
A v _
z exp [—— ((M) — 14+ awln(u) + wF)]
yw u

where o = a(uPiv;, wYw) and F = F(uPiv;, uVw, u) are C* functions.

1)
Il

I\
Il
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Proof of proposition[A.6.6] We have that the time of integration is 7' = In (M) . We then immediately have

u
e ()
V4 Vi
Uout
e (an)
w=w .
Uout

It only rests to compute Z. Following very similar arguments as in case 1 we have

A R ~
Z = zexp |:7— ((M) 71+awln(u)+wF>:|,
yw u

where a = a(ufiv;, uYw) and F = F(uPiv;, u w, u) are C* admissible functions. O




Summary

In this thesis we study Constrained Differential Equations (CDEs) and Slow Fast
Systems (SFSs). A SFS is a singularly perturbed ordinary differential equation
given by

i’:f(I,Z,E)

ez =g(x,z,¢),

(A.9)

while a CDE is obtained by taking the limit ¢ — 0 of (A.9). A motivation to study
SFSs is that several real life phenomena occur in two or more time scales, and
thus can often be modeled by SFSs. For example, see in Chapter 1 the Zeeman's
heartbeat and nerve impulse models. Our main goal is to contribute to the
understanding of the local dynamics of SFSs and of CDEs, and to explore their
mutual relationship. To accomplish this, we rely not only on classical techniques
from dynamical systems, but new methods are being introduced.

Regarding CDEs, our primary interest is their topological classification, where
elementary catastrophes (see Thom's list in appendix play an important role.
This was shown by Takens [39] who classified those CDEs associated to the Fold
(A2) and the Cusp (As3) catastrophes.

As our first contribution, in Chapter 2, we extend Takens'’s results by clas-
sifying CDEs related to the Ay (k > 2), and the D** (hyperbolic and elliptic
umbilical) catastrophes, see [4}[10]. Further interest is given to the CDEs linked
to the Ay, catastrophes, which we call A;-CDEs. Afterwards in Chapters 3 and
4, we embed these A;-CDEs in the theory of slow fast systems. More precisely,
we study Aj-SFSs which are e-perturbations of the A;-CDEs. The analysis per-
formed is as follows: first, a formal normal form of A;-SFSs is proposed. Next,
the local flow of the Aj-SFSs is studied and the usefulness of this formal normal
form is exploited. Such a study follows the Geometric Desingularization (or
blow-up) method, see [8, 13} 14} 26]. In this way, we are able to generalize results
dealing with SFSs near fold and cusp points like in [8} 26].

From the results obtained, many open problems arise, for example:
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1. To study slow fast systems with more complicated dynamics, for example:
1) with two fast directions, and 2) with “canards”.

2. To obtain a smooth and/or an analytic normal form of A-SFS.

An extensive digression of these and more open problems is given in Chapter
5.



Samenvatting

In dit proefschrift bestuderen we Constrained Differential Equations (CDEs) en
Slow Fast Systems (SFSs). Een SFS is een singulier gestoorde gewone differenti-
aalvergelijking gegeven door

T = f(x,z2,¢)

ez =g(x,z¢).

Door het nemen van de limiet ¢ — 0 ontstaat een CDE. Een van de motivaties
om een SFS te bestuderen is het feit dat veel natuurlijke fenomenen plaatsvinden
op verschillende tijdschalen. De modellen van Zeeman voor de hartslag en
zenuwimpulsen in Hoofdstuk 1 vormen een voorbeeld hiervan. Het belangrijkste
doel van dit proefschrift is het verkrijgen van inzicht in de lokale dynamica van
zowel CDEs als SFSs en het verkennen van de relatie tussen deze twee. Hierbijj
maken we niet alleen gebruik van reeds bestaande technieken uit de theorie van
Dynamische Systemen, maar ontwikkelen we ook nieuwe methoden.

Met betrekking tot CDEs is ons voornaamste doel de topologische classificatie
van deze systemen, waarin elementaire catastrofen (zie de lijst van Thom in
appendix een belangrijk rol vervullen. Dit is aangetoond door Takens, die
de CDEs behorende bij de Vouw (Fold, A2) en de Doorn (Cusp, As) catastrofen
heeft geclassificeerd.

Als onze eerste bijdrage, in Hoofdstuk 2, breiden we de resultaten van Takens
uit door middel van de catastrofen van de typen Ay (K > 2), en D** (hyperbolic
and elliptic umbilical catastrophes), zie [4, [10]. De CDEs gerelateerd aan de
A;, noemen we A;-CDEs. In Hoofdstuk 3 en 4 bestuderen we de rol van deze
normaalvormen in de context van een SFS. In het bijzonder beschouwen we
Ay-SFSs gegeven door e-storingen van de A,-CDEs. De analyse geschiedt langs
de volgende weg. Als eerste wordt een normaalvorm gegeven voor een Aj-
SFES. Vervolgens wordt de lokale oplossingsstroming van deze normaalvorm
bestudeerd. Hierbij maken we gebruik van een techniek genaamd “meetkundige
desingularisatie”, zie [8,[13}[14}26]. Op deze manier zijn we in staat om resultaten
voor een SFS nabij een Vouw en een Doorn te generaliseren zoals in [8), 26].
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We noemen hier twee richtingen waarin het vervolgonderzoek zich kan
ontwikkelen.

1. Een studie naar SFSs met meer gecompliceerde dynamica, bijvoorbeeld:
met twee snelle richtingen, en met “canards”.

2. Het verkrijgen van een gladde en/of analytische normaalvorm voor een
Ay-SFS.

Hoofdstuk 5 van dit proefschrift is gewijd aan een uitgebreide beschrijving
van deze en andere open vragen.
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