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Chapter 1

Introduction

This thesis is dedicated to the study of Constrained Differential Equations (CDEs)
and of Slow Fast Systems (SFSs). A SFS is a singularly perturbed ordinary differ-
ential equation of the form

ẋ(t) = f(x(t), z(t), ε)
εż(t) = g(x(t), z(t), ε),

(1.1)

where x ∈ Rm, z ∈ Rn; where ε is a small positive parameter, i.e., 0 < ε� 1, and
where we assume that the functions f and g are of class C∞ (all partial derivatives
exist and are continuous)1 . The over dot denotes the derivative with respect to
the time parameter t.

In some applications (see e.g. section 1.1), z(t) represents states or measurable
quantities of a process while x(t) denotes control parameters. The small para-
meter ε models the difference of the rates of change between z and x, and that is
why systems like (1.1) are often used to model phenomena with two time scales.
Observe that the smaller ε is, the faster z evolves with respect to x. Therefore x
(resp. z) is called the slow (resp. fast) variable. The time parameter t is named as
the slow time and then (1.1) is known as the slow equation. Whenever ε 6= 0, a new
time parameter τ is defined by τ = 1

ε t. With this new time parametrization (1.1)
becomes

x′(τ) = εf(x(τ), z(τ), ε)
z′(τ) = g(x(τ), z(τ), ε),

(1.2)

1Along this document, smooth means of class C∞. Whenever we refer to a finite class of differen-
tiability (in a well chosen neighborhood of a point) we shall write C` instead, with ` <∞ but as large
as necessary.

1
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where the prime denotes the derivative with respect to τ . In contrast to (1.1),
the system (1.2) is known as the fast equation. We remark that (1.2) is not a
singular perturbation problem anymore, but is an ε-parameter family of smooth
vector fields. Since only autonomous systems are considered, we omit to indicate
the time dependence of the variables. Observe that as long as ε 6= 0 and f
is not identically zero, the systems (1.1) and (1.2) are equivalent up to time
re-parametrization.

A good strategy to understand the qualitative behavior of SFSs is to study
(1.1) and (1.2) in the limit ε→ 0. Accordingly, when ε = 0, the slow equation (1.1)
becomes

ẋ = f(x, z, 0)
0 = g(x, z, 0).

(1.3)

A system of the form (1.3) is called constrained differential equation (CDE), see
chapter 2 where a detailed description of CDEs is provided. An important
geometric object to consider is “the set of constraints”. To be more precise, the set
S, defined as

S = {(x, z) ∈ Rm × Rn | g(x, z, 0) = 0}

serves as the phase space of (1.3). For generic CDEs (by generic we mean “almost
all”, but we formalize this notion in chapter 2) this set is an m-dimensional
smooth manifold and is called the constraint manifold [39]. Note that if the matrix
∂g(x,z,0)

∂z is regular on S, then S can be expressed as a graph z = h(x). Then,
under this condition, the motion along the constraint manifold S is given by

ẋ = f(x, h(x), 0).

On the other hand, when ε = 0 the fast equation (1.2) becomes

x′ = 0
z′ = g(x, z, 0),

(1.4)

which is called the layer equation [46]. In this case, the constraint manifold S serves
as the set of equilibrium points of (1.4). A point p ∈ S which is a hyperbolic
equilibrium point of (1.4) is called regular; and it is called singular otherwise. A
qualitative description of the dynamics of a SFS can be obtained from the CDE
and from the layer equation as follows.

Qualitative description. The constrained differential equation (1.3) is an ap-
proximation of the slow dynamics (1.1), while the layer equation (1.4) approx-
imates the fast dynamics (1.2). Far away from the manifold S, the trajectories of
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the SFS (1.2) closely follow those of the layer equation (1.4). Observe that, due to
x′ = 0, the phase space of the layer equation is a family of n-dimensional planes
parametrized by x ≡ constant. Such a family is called the fast foliation. On the
other hand, sufficiently close to S, the trajectories of (1.1) closely follow those of
the CDE (1.3). The trajectories of (1.3) have to satisfy the constraint g = 0.

Suppose that an initial condition (x0, z0) does not lie in S. In that case there
is an infinitely fast transition towards a regular point of S (either in forward
or in backward time) along the fast foliation according to (1.4). If the trajectory
arrives at S, then its dynamics are now governed by the CDE (1.3) along the
manifold S. If a trajectory of the CDE arrives at a singular point, then such a
trajectory follows again the layer equation either indefinitely or until arriving
again at a regular point of S. This description is shown in fig. 1.1. In the present
document, we are interested in studying the flow of slow fast systems near a
singular point as described above. That is, in the situation where a sudden change
of the trajectories’ behavior occurs.

Figure 1.1: Qualitative description of the dynamics of a slow fast system from the
corresponding constrained differential equation and layer equation. The manifold S
is defined by a constraint g(x, z) = 0. Far away from S, the flow goes along the fast
foliation according to the layer equation. Near S, the flow follows the constrained
dynamics of the CDE. Note that depending on the geometry of the manifold S, there
may be sudden changes on the flow’s behavior.
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Constrained differential equations were thoroughly studied by Takens [39].
One of his main results in this context, is the topological2 classification of gen-
eric CDEs with two or less parameters. In such a classification, the following
argument becomes important.

Remark 1.0.1. We assume that the vector field z′ = g(x, z, 0) is conservative. This
means that there exists an m-parameter family of functions Vx : Rn → R such that

g0(x, z) = ∂Vx
∂z

(z),

where g0(x, z) = g(x, z, 0). This allows us to consider CDEs of the form

ẋ = f(x, z, 0)

0 = ∂V

∂z
(x, z),

where V : Rm × Rn → R is a smooth function with Vx(z) = V (x, z), and thus the
constraint manifold is the critical set of the family Vx. Accordingly, the classification of
critical points of smooth functions [3, 4, 10] shall play an important role in our studies.
Recall that for few parameters, i.e. m ≤ 4, such a classification yields a finite number of
equivalence classes, where the preferred representatives are called elementary catastrophes,
see appendix A.1.

Motivated by Takens’s studies [39], our first contribution is a classification of
generic CDEs where the potential function V is related to singularities of type Ak,
D+

4 , and D−4 [3, 4]. Once this classification is obtained, the next natural question
is to study SFSs given as ε-perturbation of these generic CDEs. More specifically,
we study SFS given by

ẋ = f(x, z, 0) + εf̃(x, z, ε)

εż = ∂V

∂z
+ εg̃(x, z, ε),

where f̃ and g̃ are smooth maps and where the corresponding CDE is a member
of the aforementioned classification.

To motivate our studies, let us now recall two classical examples of biological
phenomena which were modeled by a SFS and where elementary catastrophe
theory plays an important role.

2Two CDEs are topologically equivalent if there exists a continuous function that maps solutions
of one into solutions of the other, see definition 2.1.9.



5 Chapter 1. Introduction

1.1 Zeeman’s Examples

In this section we review two classical examples of natural phenomena modeled
by a slow fast system and where elementary catastrophe theory plays an import-
ant role. These applications were studied by Zeeman [48]. His interest for using
this theory was that it enables a qualitative description of the local dynamics of
a biological system instead of modeling the complicated biochemical processes
involved.

1.1.1 Zeeman’s heartbeat model
The simplified heart is considered to have two (measurable) states. The diastole
which corresponds to a relaxed state of the heart’s muscle fiber, and systole which
stands for the contracted state. When a heart stops beating it does so in relaxed
state, an equilibrium state. There is an electrochemical wave that makes the heart
contract into systole. When such a wave reaches a certain threshold, it triggers
a sudden contraction of the heart fibers: a catastrophe occurs. After this, the
heart remains in systole for a certain amount of time (larger in comparison to the
contraction-relaxation time) and then rapidly returns to diastole. A mathematical
local representation of the behavior just explained is given by

ẋ1 = z − z∗,
εż = −

(
z3 − z + x1

) (1.5)

where x1, z ∈ R. Observe the similarity of (1.5) with the Van der Pol oscillator
with small damping [43]. The variable z models the length of the muscle fiber, x1
corresponds to an electrochemical control variable and z∗ > 1√

3 represents the
threshold. In the limit ε = 0 we obtain the CDE

ẋ1 = z − z∗,
0 = −

(
z3 − z + x1

) (1.6)

The critical points of the potential function V (x1, z) = 1
4z

4− 1
2z+x1z (compare

with the cusp catastrophe in appendix A.1) form the S-shaped constraint manifold

SV =
{

(x1, z) ∈ R× R | z3 − z + x1 = 0
}
.

Observe that there are two singular points of SV defining the singularity set

B =
{

(x1, z) ∈ SV | 3z2 − 1 = 0
}

=
{(

2
3
√

3
,

1√
3

)
,

(
− 2

3
√

3
,− 1√

3

)}
.
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At points of B, the solution of (1.6) suffer a sudden change of behavior, a jump
occurs. A schematic of the dynamics of (1.6) is shown in fig. 1.2

Figure 1.2: Dynamics of the simplified heartbeat model (1.6) in the limit ε = 0. In this
limit the S-shaped constrained manifold SV is the phase space of the solutions. The
singularity set B is the union of the two fold points. The interpretation is as follows:
a pacemaker controls the value of the parameter x1 changing its value from x∗1 up to
an adequate threshold, beyond the fold point, such that the action of contraction is
triggered. Then, the heart remains in a contracted state for a while until the value of
x1 triggers the relaxation action. Contractions and relaxations are modeled by a fast
transition between the two stable branches of the curve SV .

For sufficiently small ε > 0, the trajectories of (1.5) are close to those of (1.6).
See fig. 1.3. It is one of the goals of the theory of slow fast systems to make
precise the notion of closeness mentioned above, especially in the neighborhood
of singular points (see chapter 3 and e.g., [13, 16, 27]).

Figure 1.3: Dynamics of the simplified heartbeat model (1.5) for sufficiently small ε.
The trajectory shown is a small perturbation of the solution curve of the corresponding
CDE in (1.6).
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1.1.2 Zeeman’s nerve impulse model

This model qualitatively describes the local and simplified behavior of a neuron
when transmitting information through its axon, see [48] for details and compare
also with the Hodgkin-Huxley model [20]. Qualitatively speaking, there are
three important components in this process: a) the concentration of sodium (Na)
around the walls of the axon, b) the concentration of potassium (K) around the
walls of the axon, and c) the electric potential, or voltage (V), around the wall of
the axon. As information is being transmitted, through an electric signal, there is
a slow and smooth change of the voltage and of the concentration of potassium
but a rather sudden change in the concentration of sodium. Another local charac-
teristic is that the return to the equilibrium state, when there is no transmission
of information, is slow and smooth. The three variables aforementioned behave
qualitatively as shown in fig. 1.4.

Figure 1.4: A qualitative picture of the three variables involved in the local model
of the nerve impulse [48]. The signal V represents the potential around the axon’s
wall. The signals of Na and K represent the conductance of sodium and potassium
respectively. Observe that a characteristic property is the sudden and rapid change
of the sodium conductance followed by a smooth and slow return to its equilibrium
state. See [48], where a qualitatively similar graph is plotted from measured data.

A mathematical model that roughly describes the nerve impulse process is
given by

ȧ = −1− b
ḃ = −2(b+ z)
εż = −(z3 + bz + a),

where a, b, and z stand for the concentration of potassium, the voltage and
the concentration of sodium respectively [48]. The corresponding constrained
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differential equation reads as

ȧ = −1− b
ḃ = −2(b+ z)
0 = −(z3 + bz + a).

(1.7)

The defining potential function is given by the cusp catastrophe V = 1
4z

4 +
1
2bz

2 + az. The constraint manifold is defined as

SV =
{

(a, b, z) ∈ R2 × R | z3 + bz + a = 0
}
,

and is the critical set of the 2-parameter family V(a,b)(z) = V (a, b, z). Recall that
SV serves as the phase space of the flow of (1.7). The singular set, points of SV at
which SV is tangent to the z-direction, is defined by

B =
{

(b, z) ∈ SV | 3z2 + b = 0
}
.

The attracting part of the manifold SV , denoted by SV,min, is given by points
where D2

zV > 0, i.e. by

SV,min =
{

(a, b, z) ∈ SV | 3z2 + b > 0
}
.

Let us now describe a procedure under which a smooth vector field, whose
solutions are equivalent (in a sense specified below) to the solutions of (1.7), can
be obtained. Let π denote the projection π : (a, b, z) 7→ (a, b). Note that π|SV \B is
a local diffeomorphism, which means that we can also project solutions curves
on SV onto the parameter space. To be more precise, if we restrict the coordinates
to SV , the projection π|SV reads as

(a, b, z) 7→ (−z3 − bz, b),

which allows us to rewrite (1.7) as the planar system

ḃ = −2(b+ z)

ż = 1 + b+ 2(b+ z)z
3z2 + b

.
(1.8)

The vector field (1.8) is not smooth everywhere; in particular, it is not well
defined at the singular set B =

{
3z2 + b = 0

}
. However outside B, the function

h(z, b) = 3z2 + b is nonzero and smooth. Furthermore, h(z, b) > 0 for all points
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in SV,min. Therefore, we can multiply (1.8) by h. Thus, whenever h > 0, we have
that (1.8) is smoothly equivalent3 to

ḃ = −2(3z2 + b)(b+ z)
ż = 1 + b+ 2(b+ z)z.

(1.9)

The vector field (1.9) is called the desingularized vector field. Note that (1.9) is
smooth and is defined for all (b, z) ∈ R2. The importance of (1.9) lies in the fact
that we obtain the solutions of the CDE (1.7) from the integral curves of (1.9). The
general reduction process through which we obtain the desingularized vector
field is described in section 2.2.

It is straightforward to show that (1.9) has equilibrium points (b, z) as follows:

• pa = (−1, 1) ∈ SV,min, which is a regular equilibrium point,

• pf =
(
− 3

4 ,
1
2
)
∈ B, which receives the name folded singularity.

Furthermore, pf is a saddle point, whence it is called a folded-saddle singu-
larity. Refer to fig. 1.5 for the phase portrait of (1.9) and note the smooth return of
some trajectories and compare with the heartbeat model where this effect does
not occur.

Once (1.9) is better understood, we can give a qualitative picture of the flow of
(1.7) taking back the operations performed above. We show in fig. 1.5 the phase
portraits of desingularized vector field (1.9) and of the CDE (1.7).

Remark 1.1.1. Figure 1.5 graphically shows all the important elements in the theory of
constrained differential equations.

• The constraint manifold SV is the phase space of the CDE.

• The map π : Rm×Rn → Rm is a projection from the total space onto the parameter
space. The vector field induced in this space is denoted by X̃ .

• The smooth vector field X is obtained by desingularization, which is denoted by
D. In the previous example such a process is as follows: first a restriction of
the coordinates to SV allows the change of coordinates a = −z3 − bz. Then the
projection π restricted to SV is performed, that is (a, b, z)|SV = (−z3−bz, b, z) 7→
(−z3−bz, b). By a smooth re-parametrization the smooth vector fieldX is obtained.
Observe that for points in SV,min, the desingularization process D can be seen as a
one-to-one map between the solution curves of X and those of the CDE (1.7). The
details of the desingularization procedure are given in section 2.2.

3Two vector fields, X and Y , on a manifold M are smoothly equivalent if there exists a smooth
map Φ : M →M such that DΦ ·X(Φ) = Y .
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SVB

π

D

a

b

z

b

X̃ :


ȧ = −1− b,
ḃ = −2(b+ z)

Satisfying
0 = z3 + bz + a

X :
{
ḃ = −2(3z2 + b)(b+ z)
ż = 1 + b+ 2(b+ z)z.

Figure 1.5: Top right: phase portrait of the CDE (1.7). The manifold SV serves as the
phase space of the corresponding flow. The shaded region is the attracting part of
the constraint manifold, that is SV,min. Top left: phase portrait of the desingularized
vector field (1.9). In this picture, and in the rest of the document, the symbolD denotes
the desingularization process, to be detailed in section 2.2. Observe that although
the vector field X is defined for all (b, z) ∈ R2 we are only interested in the region of
(b, z)-values corresponding to SV,min. When the trajectories reach the singular set B,
they jump to another attracting part of SV,min. Bottom right: projection of the phase
portrait of (1.7) onto the parameter space. The map π is a projection of the total space
(a, b, z) ∈ R3 onto the parameter space (a, b) ∈ R2.

• The solutions of the CDE are obtained from the integral curves of the desingularized
vector field X .

Remark 1.1.2. From the examples presented above, it is possible to conclude that un-
derstanding CDEs is a good preliminary step in order to study SFSs. However, this is
not enough, since we cannot expect that a complete description a singular perturbation
problem is obtained from the limiting behavior. In particular, we want to describe the
way the solutions of a SFS depend on the small parameter ε as ε→ 0. This problem is
well understood, e.g. by Geometric Singular Perturbation Theory [16, 25, 24, 47] in the
case where the manifold S is a set of hyperbolic equilibrium points of the layer equation;
in other words, when S is regular. In this document we are interested in studying SFSs
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near singular points of the manifold SV .

1.2 Outline of this thesis

In chapter 2 we extend Takens’s list of singularities of CDEs [39] by obtaining the
following classifications.

1. A topological classification of singularities of generic CDEs with three parameters.
That is, the possible potential functions are given by the Swallowtail, the
Hyperbolic and the Elliptic Umbilical catastrophes, and the possible vector
fields are given up to topological equivalence. This result is also reported
in [22].

2. A topological classification of generic CDEs with one fast variable. In this classi-
fication the potential functions are given by the Ak catastrophes. A corres-
ponding normal form is given by

ẋ1 = 1
ẋj = 0

0 = zk +
k−1∑
i=1

xiz
i−1,

(1.10)

where j = 2, 3, . . . , k−1. The constraint manifold of (1.10) may be regarded
as the critical set of an Ak catastrophe. Hence we call (1.10) Ak-CDE.

In Chapter 3, we embed the Ak-CDEs into the theory of SFSs. That is, we
study SFSs of the form

X :


x′1 = ε(1 + εg1(x, z, ε))
x′j = ε2gj(x, z, ε)
z′ = −

(
zk +

∑k−1
i=1 xiz

i−1
)

+ εgk(x, z, ε)
ε′ = 0,

(1.11)

where k ≥ 2, j = 2, 3, . . . , k−1, x = (x1, . . . , xk−1) ∈ Rk−1, z ∈ R, 0 < ε� 1; and
where gi’s are smooth functions vanishing at the origin. Our investigations are
focused on understanding the flow of (1.11) in a small neighborhood of the origin,
which is a degenerate equilibrium point of X . The first step in our program is
to normalize (1.11). In such a context, we show that there exists a near identity
formal diffeomorphism Φ̂ : Rk+1 → Rk+1 that conjugates (1.11) to a polynomial
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vector field F defined by

F :


x′1 = ε

x′j = 0
z′ = −

(
zk +

∑k−1
i=1 xiz

i−1
)

ε′ = 0.

(1.12)

In this sense, we say that F is (formally) stable under ε-perturbations. This result
has been reported in [21].

Next, by means of the Borel’s lemma [10], the formal normal form F can be
realized as a smooth vector field XN of the form

XN = F + εH,

where H =
∑k−1
i=1 hi(x, z, ε)

∂
∂xi

+ hk(x, z, ε) ∂∂z + 0 ∂
∂ε is a smooth vector field

and where all the functions hj are flat at (x, z, ε) = (0, 0, 0) ∈ Rk+1. Next, we
conveniently choose two sections Σen and Σex which are transversal to the flow
of XN within a small neighborhood of 0 ∈ Rk+1. According to these sections and
induced by the flow of XN , the transition map Π : Σen → Σex is defined. With
this transition map we are able to describe the solution curves of XN .

Our principal contribution, in the context of Ak slow fast systems, is that
we provide a general methodology by which the local flow of (1.12) can be
understood by means of transition maps. The frequent use of normal form theory
allows us to specify the differentiability of Π as ε→ 0. This follows the program
of Geometric Singular Perturbation Theory developed for slow fast systems near
degenerate singularities, e.g., [8, 13, 14, 26, 27].

In Chapter 4, we show how the program developed in Chapter 3 works for
the A2 (fold), A3 (cusp, see [23]) and A4 (swallowtail) cases. We also digress on
the Ak, for k > 4, case.

Finally, in Chapter 5, concluding remarks and future research direction are
discussed.

For readability purposes, the long proofs are gathered at the end of the
respective chapter. In the appendix, relevant and supplementary information
used along this thesis is provided.



Chapter 2

Constrained Differential
Equations

2.1 Definitions

Let us start with the important definitions. Many of these are intrinsic. However,
since our studies are local, whenever necessary the corresponding local model is
given.

Definition 2.1.1 (CONSTRAINED DIFFERENTIAL EQUATION (CDE)). Let E and
B be C∞-manifolds, and π : E → B a C∞-projection. A constrained differential
equation on E is a pair (V,X), where V : E → R is a C∞-function, called potential
function, that has the following properties:

CDE.1 V restricted to any fiber of E (denoted by V |π−1 (π(e)), e ∈ E) is proper and
bounded from below,

CDE.2 the set SV =
{
e ∈ E : V |π−1 (π(e)) has a critical point in e

}
, called the con-

straint manifold, is locally compact in the sense: for each compact K ⊂ B, the set
SV
⋂
π−1(K) is compact,

and X is such that:

CDE.3 X : E → TB is a C∞-map covering π : E → B.

Remark 2.1.1.

• SV is a smooth manifold of the same dimension as B [39, 5].

13
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• The covering property of X means that for all e ∈ E , the tangent vector X(e) is
an element of Tπ(e)B, the tangent space of B at the point π(e). TB denotes the
tangent bundle of B. The covering property of X defines a vector field X̃ : B →
TB, X̃ = X ◦ π−1.

Now, recall from chapter 1 that the solutions of the CDE are defined in the
attracting region of the constraint manifold, thus we have the following.

Definition 2.1.2 (THE SET OF MINIMA). The set of minima of V is denoted by SV,min
and is defined by

SV,min =
{
e ∈ E : V |π−1 (π(e)) has a critical point in e where the Hes-

sian is positive semi-definite

}
Once that we have defined the region where solutions may exists, let us give

the formal definition of what we mean by a solution of a CDE.

Definition 2.1.3 (SOLUTION). Let (V,X) be as in definition 2.1.1. A curve γ : J → E ,
J an open interval of R, is a solution of (V,X) if

S1 γ
(
t+0
)
=limt↓t0 γ and γ

(
t−0
)

= limt↑t0 γ exist for all t0 ∈ J , satisfying

• π
(
γ
(
t+0
))

= π
(
γ
(
t−0
))

,

• γ
(
t+0
)
, γ
(
t−0
)
∈ SV,min.

S2 For each t ∈ J , X (γ (t−)) (resp. X (γ (t+))) is the left (resp. right) derivative of
π(γ) at t.

S3 Whenever γ (t−) 6= γ (t+) , t ∈ J , there is a curve in π−1 (π (γ (t+))) from
γ (t−) to γ (t+) along which V is monotonically decreasing.

Remark 2.1.2.

• Solutions are also defined for closed or semiclosed intervals. A curve γ : [α, β]→ E
(γ : (α, β] → E , or γ : [α, β) → E) is a solution of (V,X) if, for any α < α′ <
β′ < β, the restriction γ|(α′, β′) is a solution and if γ is continuous at α and β
(at β, or at α) or if there is a curve from γ (α) to γ (α+) and from γ (β−) to γ (β)
(from γ (β−) to γ (β), or from γ (α) to γ (α+)) as in property S3 above.

• The projection π(γ) is continuous.

• The property S3 above describes the jumping process. It basically says that if a
jump occurs, it happens along some fiber π−1(π(e)). A jump is an infinitely fast
transition along a fiber passing through a singular point of SV .
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The concept of singularity, as in the context of vector fields, is defined for
CDEs as follows.

Definition 2.1.4 (SINGULARITY). We say that a CDE (V,X) has a singularity at
e ∈ E if

1. X(e) = 0, or

2. V |π−1 (π(e)) has a degenerate critical point at e.

In the rest of this chapter, we are interested in singularities of CDEs defined
by degenerate critical points of the potential function V . Thus we shall assume
in the following that X(e) 6= 0, which is a generic property.

From definition 2.1.4 we see that the classification of critical points of smooth
functions plays an important role in the classification of singularities of CDEs.
Let us now recall some useful definitions.

Definition 2.1.5 (JET SPACE). Let π : E → B be a fiber bundle as before. We define
JkV (E ,R) as the space of k−jets of functions V : E → R. Similarly JkX(E , TB) is
defined to be the space of k−jets of smooth maps X : E → TB covering π. Finally
Jk(E) = JkV (E ,R) ⊕ JkX(E , TB) is the space of k−jets of constrained equations. For
a given (V,X), the smooth map jk(V,X) : E → Jk(E) assigns to each e ∈ E the
corresponding k−jets of V and X at e.

Remark 2.1.3. The elements of JkV (E ,R) are equivalence classes of pairs (V, e), V ∈
C∞(E ,R), e ∈ E ; where (V, e) ∼ (V ′, e′) if e = e′ and all partial derivatives of (V −V ′)
up to order k vanish at e. The same idea holds for JkX(E , TB) and thus for Jk(E). This
equivalence relation is independent of the choice of coordinates.

Definition 2.1.6 (THE SET ΣI ). Let I = (i1, i2, . . . , ik) be a sequence of positive
integers such that i1 ≥ i2 ≥ · · · ≥ ik. The set ΣI ⊂ J`(E) (` ≥ k) is the set of CDEs
(V,X) for whose restriction V |π−1 (π(e)) has in e a critical point of Thom Boardman
symbol I (see appendix A.2 for details).

The following statements are shown, for example, in [4]:

• J`(E) can be stratified since the closure of ΣI is an algebraic subset of J`(E),

• ΣI is a submanifold of J`(E).

It is useful now to state Thom’s transversality theorem in the context of
constrained differential equations.

Theorem 2.1.1 (THOM’S STRONG TRANSVERSALITY THEOREM [41]). Let Q ⊂
Jk(E) be a stratified subset of codimension p. Then there is an open and dense subset
OQ ⊂ C∞(E ,R)×C∞(E , TB) such that for each (V,X) ∈ OQ, jk(V,X) is transversal
to Q. Therefore

(
jk(V,X)

)−1 (Q) is a codimension p stratified subset of E .
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Definition 2.1.7 (GENERIC CDE). Let I = (i1, i2, . . . , ik) be a sequence of positive
integers such that i1 ≥ i2 ≥ · · · ≥ ik. We say that a CDE (V,X) is generic if jk(V,X)
is transversal to ΣI ⊂ J`(E), with (` ≥ k).

In the rest of this document, the term generic refers to definition 2.1.7.

Remark 2.1.4. The analysis of the present document is local. Therefore, we identify the
fibre bundle π : E → B with the trivial fibre bundle π : Rn × Rm → Rm. Moreover, by
definition 2.1.7, let e ∈ Rn × Rm be a point such that V |π−1(π(e)) has a degenerate
critical point at e. Then, for m ≤ 4, there are local coordinates such that V can be
written as one of the seven elementary catastrophes of table A.1. Hence, let without loss of
generality e = 0. A generic CDE is a pair (V,X) where V is an elementary catastrophe
and the constraint manifold is indeed a smooth manifold. Furthermore, the local normal
form of the pair (V,X) can be given as a polynomial expression.

Definition 2.1.8 (THE SINGULARITY AND CATASTROPHE SETS). The singularity
set, also called bifurcation set, is locally defined as

B =
{

(x, z) ∈ SV | det ∂
2V

∂z2 = 0
}
.

The projection of B into the parameter space π(B) is called the catastrophe set, and
shall be denoted by ∆.

As can be seen from the definitions of this section, many of the topological
characteristics of a generic CDE are given by the form of the potential function
V . It is especially important to know how the critical set of V is stratified. The
following example is intended to give a qualitative idea of the geometric objects
that we have to consider.

Example 2.1.1 (STRATA OF THE SWALLOWTAIL CATASTROPHE). Consider a CDE
(V,X) where the potential function V is given by the swallowtail catastrophe, that is

V (x, z) = 1
5z

5 + 1
3cz

3 + 1
2bz

2 + az.

See appendix A.1 and table A.1 for more details. Then we have the following sets:

ΣI ΣI(V ) = (jk(V,X))−1 (ΣI)
Σ1 SV

Σ1,1 B, the singularity set

Σ1,1,0 The set of only fold points

Σ1,1,1,0 The set of only cusp points

Σ1,1,1,1 The swallowtail point
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The sets Σi(V ) above are formed as follows (see appendix A.2 for the generalization)

Σ1(V ) =
{

(x, z) ∈ R4 |DzV = 0
}

Σ1,1(V ) =
{

(x, z) ∈ R4 |DzV = D2
zV = 0

}
...

The strata are manifolds of certain dimension formed by points of the same degeneracy.
In our particular example we have

Σ1,0(V ) = Σ1(V )\Σ1,1(V ) A 3-dim. manifold of regular points of SV

Σ1,1,0(V ) = Σ1,1(V )\Σ1,1,1(V ) A 2-dim. manifold of fold points

Σ1,1,1,0(V ) = Σ1,1,1(V )\Σ1,1,1,1(V ) A 1-dim. manifold of cusp points

Note the inclusion SV ⊃ B ⊃ Σ1,1,1 ⊃ Σ1,1,1,1, which is a generic situation [4, 17].

Following example 2.1.1, the critical set of the codimension 3 catastrophes are
stratified as shown at the end of this section in figures 2.1, 2.2 and 2.3 respectively.

Definition 2.1.9 (TOPOLOGICAL EQUIVALENCE [39]). Let (V,X) and (V ′, X ′) be
two constrained differential equations. Let e ∈ SV,min and e′ ∈ SV ′,min. We say
that (V,X) at e is topologically equivalent to (V ′, X ′) at e′ if there exists a local
homeomorphism h form a neighborhood U of e to a neighborhood U ′ of e′, such that if
γ is a solution of (V,X) in U , h ◦ γ is a solution of (V ′, X ′) in U ′.

Observe that definition 2.1.9 does not require preservation of the time para-
metrization, only of direction.
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Figure 2.1: Stratification of the swallowtail catastrophe. Top: The total space is R4,
therefore, we show some representative tomograms, in particular we show the strat-
ification of the set of critical points of the swallowtail catastrophe (refer to example
2.1.1). For various constant values of c, 1 represents the 3-dimensional set of regular
points of SV , this is SV \B. 2 indicates a 2-dimensional surface of folds. 3 denotes
a 1-dimensional curve of cusps. 4 represents the central singularity (at the origin)
which is the swallowtail point. Note that with this notation B = 2 ∪ 3 ∪ 4 . By π
we represent the projection onto the parameter space. In the bottom picture we present
the projection of the singularity set, this is ∆ = π(B). The same numbered notation is
used to indicate the different strata.
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Figure 2.2: Stratification of the hyperbolic umbilic catastrophe. We follow the same

numbered notation as in figure 2.1. 1 The 3-dimensional manifold of regular points
of SV , this is SV \B. 2 2-dimensional surface of folds. 3 1-dimensional curve of
cusps. 4 The central singularity corresponding to the hyperbolic umbilic.
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Figure 2.3: Stratification of the elliptic umbilic catastrophe. We follow the same

numbered notation as in figures 2.1 and 2.2. 1 The 3-dimensional manifold of regular
points of SV , this is SV \B. 2 2-dimensional surface of folds. 3 1-dimensional curve
of cusps. 4 The central singularity corresponding to the elliptic umbilic.
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Remark 2.1.5. Figures 2.1, 2.2 and 2.3 play an important role in understanding the
behavior of the solutions of generic CDEs with potential function corresponding to
a codimension 3 catastrophe. In each figure, the solution curves are contained in the
attracting part of SV . By the generic conditions of X , we have that for each point p ∈ ∆,
the tangent vector X(p) is transverse to ∆ at p. When a solution curve reaches a point
in B we generically expect to see a catastrophic change in the behavior of the solutions.

2.2 Desingularization

In the context of constrained differential equations (CDEs), desingularization is
a process in which one obtains a smooth vector field which is related to the
CDE. This process plays a key role when finding topological normal forms of
CDEs. The desingularized vector field X of a CDE (V,X) is constructed in such
a way that we can relate its integral curves to the solutions of (V,X). Recall the
example given in section 1.1.2. The general process to obtain such a vector field
is described in the following lines.

Lemma 2.2.1 (DESINGULARIZATION [39]). Consider a constrained differential equa-
tion (V,X) with V one of the elementary catastrophes. Then the induced smooth vector
field, called the desingularized vector field is given by

X = det(dπ̃)(dπ̃)−1X(π̃, z), (2.1)

where π̃ = π|SV . Furthermore, given the integral curves of the vector field X and the
map π̃, it is possible to obtain the solution curves of (V,X).

For a proof and details see section 2.5.1. Once the desingularized vector field
(2.1) is well understood, the solutions of (V,X) are obtained from the integral
curves of X . Note that in the case where det(dπ̃) < 0, the solutions of X and the
corresponding solutions of the CDE go in opposite directions.

Remark 2.2.1. Let (V,X) and (V ′, X ′) be topologically equivalent CDEs. From defin-
ition 2.1.9 the homeomorphism h also maps SV,min to SV ′,min. On the other hand, it
is straightforward to see that right equivalent functions have diffeomorphic critical sets.
This means that we can choose and fix a representative of generic potential functions. The
natural choice for a low number of parameters is one of the seven elementary catastrophes.
Thus, our problem reduces to study the topological equivalence of CDEs (V,X) and
(V,X ′), that is with the same (up to right equivalence) potential function. Denote by X
andX

′
the corresponding desingularized vector fields. Then ifX andX

′
are topologically

equivalent, so are the CDEs (V,X) and (V,X ′).
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Now, let us write the CDEs with three parameters in local coordinates. Fol-
lowing the list of catastrophes in appendix A.1 we have the following list of
desingularized vector fields.

Corollary 2.2.1. Let (a, b, c, z1, z2) ∈ R3 × R2 be local coordinates. The parameters
correspond to (a, b, c) while the state variables are (z1, z2). Let (V,X) be a constrained
differential equation with the potential function V given by a codimension 3 catastrophe
(see table A.1). Let the map X : E → TB be given in general form as

X = fa
∂
∂a + fb

∂
∂b + fc

∂
∂c ,

where fa, fb, fc are smooth functions on the total space E . Then the corresponding
desingularized vector fields X read as

• Swallowtail:

X =(z2fc + zfb + fa) ∂
∂z
− (4z3 + 2cz + b)fb

∂

∂b
− (4z3 + 2cz + b)fc

∂

∂c
.

• Elliptic Umbilic:

X =
(
(12z2

1 − 4az2 − 12y2)fa + (6z1 − 2a)fb − 6z2fc
) ∂

∂z1
+

(−4z2(a+ 6z1)fa − 6z2fb − (2a+ 6z1)fc)
∂

∂z2
+
(
4a2 − 36z2

1 − 36z2
2
)
fa

∂

∂a

• Hyperbolic Umbilic:

X = (36z1z2 − a2)fa
∂

∂a
+ ((az1 − 6z2

2)fa − 6z2fb + afc)
∂

∂z1
+(

(az2 − 6z2
1)fa + afb − 6z1fc

) ∂

∂z2
.

Proof. Straightforward computations following lemma 2.2.1.

The desingularized vector fields of corollary 2.2.1 are to be used later to
compute the list of topological normal forms of CDEs with three parameters.

We end this section with Takens’s theorem on normal forms of constrained
differential equations with two parameters.
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Theorem 2.2.1 (TAKENS’S NORMAL FORMS OF CDES [39]). Let π : E → B be as in
definition 2.1.1 and let dim(B) = 2. Then there are 12 normal forms (under topological
equivalence, definition 2.1.9) of generic constrained differential equations, which are
given by

Regular
V (a, b, z) X(a, b, z)

1
2
z2

∂

∂a

a
∂

∂a
+ b

∂

∂b

a
∂

∂a
− b

∂

∂b

−a
∂

∂a
− b

∂

∂b

Fold
V (a, b, z) X(a, b, z)

1
3
z3 + az

∂

∂a

−
∂

∂a

(a+ 3z)
∂

∂a
+

∂

∂b

(a− 3z)
∂

∂a
+

∂

∂b

−b
∂

∂a
+

∂

∂b

(b+ z)
∂

∂a
+

∂

∂b
Cusp

V (a, b, z) X(a, b, z)
1
4
z4 + bz2 + az

∂

∂a

−
(1

4
z4 + bz2 + az

)
∂

∂a

Remark 2.2.2.

• In the cusp case, a distinction between V and −V is made. This is due to the fact
that the corresponding phase portraits are topologically different. This does not
happen in the regular and fold cases. See for reference figs. 2.12a, 2.12b, 2.13, 2.14,
2.15, 2.16 and 2.17.

• In the fold case of theorem 2.2.1, one extra parameter is considered (see the cata-
strophes list in section A.1). Due to this fact, instead of having a fold point at
(z, a) = (0, 0), there is a fold line given by {(z, a, b) = (0, 0, b)}. In contrast, if E
is 2-dimensional, this is, (V,X) =

(
z3

3 + az, f(a, z) ∂∂a
)

, then there are only two
topological normal forms which read as

V (z, a) = z3

3 + az , X = ∂

∂a
,

V (z, a) = z3

3 + az , X = − ∂

∂a
.



2.3. Normal form of CDEs with three parameters 24

• Although the classification under topological equivalence may seem too coarse, it
is the simplest one. Recall the well-known fact [2, 9] that there is no topological
difference between the phase portraits shown in figure 2.4.

x

y

x
y

x

y

Figure 2.4: Topologically equivalent sources.

2.3 Normal form of CDEs with three parameters

In this section we provide our first result phrased in theorem 2.3.1. We give
16 local normal forms of generic constrained differential equations with three
parameters. Thereby, we extend the existing Takens’s list [39].

For clarity purposes, before stating the main result of the present chapter, we
provide a geometric description of the constraint manifold SV and how a generic
vector field would look like. After this, the results stated in theorem 2.3.1 will
seem natural.

2.3.1 Geometry of the codimenion 3 catastrophes.
In this section we review some of the geometrical aspects of the codimension 3
catastrophes to have an idea of what is their influence in the type of the generic
desingularized vector fields.

The Swallowtail

We recall that the swallowtail catastrophe is given by the potential function

V (a, b, c.z) = 1
5z

5 + 1
3cz

3 + 1
2bz

2 + az. (2.2)

The constraint manifold, this is the phase space of the constrained differential
equation (V,X) with potential function given by (2.2), is the critical set of V .

SV =
{

(a, b, c, z) ∈ R4 | z4 + cz2 + bz + a = 0
}
. (2.3)
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Within the constraint manifold, there are two important sets. The set SV,min
is the attracting region of SV . The set B consists of singular point of SV , that is
where SV is tangent to the one dimensional fast foliation. The previous sets read
as

SV,min =
{

(a, b, c, z) ∈ SV | 4z3 + 2cz + b > 0
}
,

and

B =
{

(a, b, c, z) ∈ SV | 4z3 + 2cz + b = 0
}
.

The projection of the singular setB into the parameter space is the catastrophe
set, denoted by ∆, and given by ∆ = π(B). As it is readily seen, the set SV is
3-Dimensional. In figure 2.5 we show tomographies of SV as well as sections of
∆ (see also figure 2.1 for the stratification of the swallowtail catastrophe).

Recall also from corollary 2.2.1 that the desingularized vector field reads as

X = (z2fc + xfb + fa) ∂
∂z
− (4z3 + 2cz + b)fb

∂

∂b
− (4z3 + 2cz + b)fc

∂

∂c
.

Note that we have the generic condition X(0) = fa(0) ∂∂z 6= 0. This is, we
expect that X is given by a flow-box in a neighborhood of the central singular-
ity. From figure 2.6 we can see that a flow-box in the direction of the a-axis is
transversal to ∆ in a neighborhood of the swallowtail point.

On the other hand, the fast fibers are parallel lines to the z-axis. If a trajectory
jumps, it does so along such a fiber. A jump of a trajectory from a singular point
of S to a stable branch of SV is expected only when c < 0 as this is the only case
where (2.3) may have more than two distinct real roots. We show in figure 2.7 the
projections of the singular set B into the manifold SV , representing the possible
jumps to be encountered.

The Hyperbolic Umbilic

We proceed as in the previous section with a geometric description of the hyper-
bolic umbilic singularity. The corresponding catastrophe (see table A.1) reads

V (z1, z2, a, b, c) = −
(
z3

1 + z3
2 + az1z2 + bz1 + cz2

)
.

Now we have two constraint variables (z1, z2) (as opposed to the swallowtail
singularity where the constraint variable is z). This means that the fast foliation
is a family of planes parallel to (z1, z2, 0, 0, 0) ∈ R5. The critical set of V is given
by

SV =
{

(z1, z2, a, b, c) ∈ R5 | b = −3z2
1 − az2, c = −3z2

2 + az1
}
.
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c = 0c < 0 c > 0
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∆
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c = 0c < 0 c > 0

Figure 2.5: From left to right we show a tomography of the 3-dimensional manifold
SV for different values of a and parametrized by different coordinates. Compare with
figure 2.1. The shaded region represents the stable part of SV , that is SV,min. In each
figure the thick curve represents the 2-dimentional set of folds. For a < 0 the dots
stand for the 1-dimensional set of cusps. For a = 0 the dot represents the central
singularity, the swallowtail point. Note that for a > 0 the only singularities of SV are
fold points. The projection π occurs along a one dimensional fast foliation.

bb b

a

c = 0c < 0 c > 0

Figure 2.6: The thick curve represents section of the catastrophe set ∆. We show some
tangent planes to ∆ in a neighborhood of the Swallowtail point. A generic condition
of the map X is to be transversal to ∆. So, observe that a flow-bow in the direction of
the c-axis would have this property.
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bb b

z

c = 0c < 0 c > 0

Figure 2.7: For values of c < 0 a trajectory may jump. A jump is an infinitely fast
transition from a singular point of the manifold SV to a stable part of SV . The transition
occurs along a one dimensional fiber. The thick lines represent the singularity set
B, and the thin lines represent the projection of B into SV . Such lines represent
possible arriving points when a jump occurs. We show also a possible jump situation
represented as an arrow starting in B and arriving at the projection of B in to SV,min

(the attracting part of SV ).

There are attracting points within SV defined as

SV,min =
{

(z1, z2, a, b, c) ∈ SV |
[
6z1 a
a 6z2

]
≥ 0
}
.

The singular set of SV is formed by all the points which are tangent to the fast
fibers. Such a singular set reads

B =
{

(z1, z2, a, b, c) ∈ SV | 36z1z2 − a2 = 0
}
.

We show in figure 2.8 some tomographies of the constraint manifold SV as
well as sections of the singular set B.

Now, recall from corollary 2.2.1 that the desingularized vector field reads

X =(36z1z2 − a2)fa
∂

∂a
+
((
−6z2

2 + az1
)
fa − 6z2fb + afc

) ∂

∂z1
+((

−6z2
1 + az2

)
fa + afb − 6z1fc

) ∂

∂z2
.

The vector field X has generically an equilibrium point at the origin. It can
also be shown that such a point is isolated within a sufficiently small neigh-
borhood of the origin. Therefore, in contrast with the swallowtail case, we
do not expect that a generic vector field X has the form of a flow-box. Note
however, from the Jacobian of X evaluated at the origin, that the hyperbolic
eigenspace is two dimensional and the center eigenspace is one dimensional (see
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Figure 2.8: From left to right we show a tomography of the 3-dimensional manifold
SV for different values of a and parametrized by different coordinates. Compare with
figure 2.2. The shaded region represents the stable part of SV , that is SV,min. For
reference purposes, the singularity set B is divided into two components B1 and B2.
In each figure the thick curve represents the 2-dimentional set of folds. For a 6= 0 the
dots stand for the 1-dimensional set of cusps. For a = 0 the dot represents the central
singularity, the hyperbolic umbilic point, which correspond to the intersection of the
cusp lines. Recall that π is a projection from the total space to the parameter space,
and occurs along the two dimensional fast foliation.
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section 2.5.2 for details). So, we expect to have a 1-dimensional center manifold
and a 2-dimensional hyperbolic invariant manifold intersecting at the origin.
Such manifolds arrange the whole dynamics in a small neighborhood of the the
hyperbolic umbilic point. Moreover, we expect that X meets transversally the set
π(B), this means that X is also transversal to B. Such transversality property is
depicted in figure 2.9.

z1z1 z1

z2

a = 0a < 0 a > 0

Figure 2.9: The transversality property of X with respect to B means that the integral
curves of X are tangent to the thin lines depicted. Recall that if X is transversal
to B|(a = 0) (center picture), then X is also transversal to a small perturbation of
B|(a = 0) (left and right pictures).

It is worth to take a closer look at figure 2.8, specially at the case a < 0.
Observe, in the parameter space (a, b, c), that within the shaded region SV,min,
there appear to be a set of singularities π(B2). However this is only a visual effect
due to the projection map π. We can note from the the same picture in the space
(z1, z2, a), that the trajectories in SV,min cannot meet the set B2.

The jumping behavior is now more complicated. Mainly because a jump may
occur along a plane parallel to the (z1, z2, 0, 0, 0) space. However, two important
facts can be seen from figure 2.8. First, the set SV,min is one connected component.
Second, as explained in the previous paragraph, we can see that there is no
superposition (along the fibers) of points in SV,min and points in B (compare
with the diagram of the swallowtail given in figure 2.5). This means that along
the projection π it is not possible to join a point in B with a point in SV,min.
These facts lead us to conjecture that there are no jumps for generic CDEs with a
hyperbolic umbilic singularity. Such an idea is proved in section 2.3.4.

The Elliptic Umbilic

Now we provide some insight on the geometry of the elliptic umbilic catastrophe,
which is given by

V (z1, z2, a, b, c) = z3
1 − 3z1z

2
2 + a(z2

1 + z2
2) + bz1 + cz2.
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As in the hyperbolic umbilic case, the fast fibration is now two dimensional.
The constraint manifold, the set of critical points of V , reads as

SV =
{

(z1, z2, a, b, c) ∈ R5 | b = −3z2
1 − 3z2

2 − 2az1, c = −6z1z2 − 2az2
}
.

As before, within SV there is a set of attracting points and a set of singular
points. So we have that the set of regular points reads as

SV,min =
{

(z1, z2, a, b, c) ∈ SV | det
[
6z1 + 2a 6z2

6z2 6z1 + 2a

]
≥ 0
}
,

which is equivalent to the condition 36z2
1 + 36z2

2 − 4a2 ≥ 0 and a > 0. The set of
singular points is given by

B =
{

(z1, z2, a, b, c) ∈ SV | 36z2
1 + 36z2

2 − 4a2 = 0
}
.

We show in figure 2.10 some tomographies of the constraint manifold SV as
well as sections of the singular set B.

The desingularized vector field in this case reads as

X =(4a2 − 36z2
1 − 36z2

2)fa
∂

∂a
+(

(12z2
1 − 4az1 − 12z2

2)fa + (6z1 − 2a)fb − 6z2fc
) ∂

∂z1
+

(−4z2(a+ 6z1)fa − 6z2fb − (2a+ 6z1)fc)
∂

∂z2
,

and as in the Hyperbolic Umbilic case, there is generically an equilibrium point
at the origin. Similar arguments as before then apply. Namely, we expect that
the vector field has a 1-dimensional center manifold and 2-dimensional hyper-
bolic invariant manifold intersecting at the origin. A qualitative picture of the
transversality of X with respect to B is shown in figure 2.11

Regarding the jumps, the same arguments as for the hyperbolic umbilic
catastrophe apply. Observe from figure 2.10 that it is not possible to join points
in B with points in SV,min along the fibers.

2.3.2 Classification of CDEs with three parameters
In this section we provide a list of generic CDEs with three parameters. In contrast
with Takens’s list of normal forms [39], the result in this sections includes CDEs
with two dimensional fast fibers. As it was mentioned in section 2.1 folds and
cusps (lower codimension singularities) also appear as generic singularities of
CDEs with three parameters. However the qualitative behavior of the solutions,
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z1z1 z1

z2

a = 0a < 0 a > 0

π

bb b

c

a = 0a < 0 a > 0

Figure 2.10: From left to right we show a tomography of the 3-dimensional manifold
SV for different values of a and parametrized by different coordinates. Compare with
figure 2.3. The shaded region represents the stable part of SV , that is SV,min. In each
figure the thick curve represents the 2-dimentional set of folds. For a 6= 0 the dots
stand for the 1-dimensional set of cusps. For a = 0 the dot represents the central
singularity, the hyperbolic umbilic point, which correspond to the intersection of the
cusp lines. Recall that π is a projection from the total space to the parameter space.

z1z1 z1

z2

a = 0a < 0 a > 0

Figure 2.11: The transversality property of X with respect to B means that the integral
curves of X are tangent to the thin lines depicted in the right picture.
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in a small neighborhood of folds and cusps, can be understood from Takens’s
list [39]. The novelty of theorem 2.3.1 is that it provides an understanding of
the solutions of generic CDEs in a small neighborhood of the swallowtail, of the
elliptic and of the hyperbolic umbilical singularities.

Theorem 2.3.1. Let (V,X) be a generic constrained differential equation with three
parameters. Then (V,X) is topologically equivalent to one of the following 16 polynomial
local normal forms.

Regular

V (z, a, b, c) X(z, a, b, c) Type

1
2z

2

∂

∂a
Flow-box

a
∂

∂a
+ b

∂

∂b
+ c

∂

∂c
Source

a
∂

∂a
+ b

∂

∂b
− c ∂

∂c
Saddle-1

a
∂

∂a
− b ∂

∂b
− c ∂

∂c
Saddle-2

−a ∂
∂a
− b ∂

∂b
− c ∂

∂c
Sink

Fold

V (z, a, b, c) X(z, a, b, c); (ρ = ±1, δ ∈ R) Type

1
3z

3 + az

∂

∂a
Flow-box-1

− ∂

∂a
Flow-box-2(

3x+ 1
2 b+ 1

2c
) ∂

∂a
+ P (ρ, δ, a, b) Source(

−3x+ 1
2 b+ 1

2c
) ∂

∂a
+ P (ρ, δ, a, b) Sink

−
(

1
2 b+ 1

2c
) ∂

∂a
+ P (ρ, δ, a, b) Saddle

where

P (ρ, δ, a, b) = (c− b)2 (ρ+ δ(c− b))
(
− ∂

∂b
+ ∂

∂c

)
+ 1

2

(
∂

∂b
+ ∂

∂c

)



33 Chapter 2. Constrained Differential Equations

Remark 2.3.1. If b = c, these fold normal forms reduce to those of theorem 2.2.1.

Cusp

V (z, a, b, c) X(z, a, b, c) Type

1
4z

4 + bz2 + az
∂

∂a
Flow-box

−
(1

4z
4 + bz2 + az

)
∂

∂a
(Dual) Flow-box

Swallowtail

V (z, a, b, c) X(z, a, b, c) Type

1
5z

5 + 1
3cz

3 + 1
2 bz

2 + az
∂

∂a
Flow-box

Hyperbolic Umbilic

V (z1, z2, a, b, c) X(z1, z2, a, b, c) Type

z3
1 + z3

2 + az1z2 + bz1 + cz2

6Φ(a)
∂

∂a
−

Ψ
(
∂

∂b
+ ∂

∂c

)
Center-Saddle

(
a2

6 − 6z1z2
)
∂

∂b
+ Center(

−a2

6 − 6z1z2
)
∂

∂c
+Q

Where
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Φ(a) = ±
a2

36
+
δa3

216
, δ ∈ R

Ψ =
(

Φ(a)(6z1 + 6z2 − a)− 6z1z2 +
a2

6

)
Q = 6

k∑
`=2

2j=`∑
j=0

ρ`,jA`,j
∂

∂a
+

k∑
`=2

(
(6z1 + a− 6z2)

2j=`∑
j=0

ρ`,jA`,j +
2j+1=`∑

j=0

(
a

6

)−1
A`,jB`,j

)
∂

∂b
+

k∑
`=2

(
(6z2 + a− 6z1)

2j=`∑
j=0

ρ`,jA`,j +
2j+1=`∑

j=0

(
a

6

)−1
A`,jB`,j

)
∂

∂c

A`,j =
(
a

6

)`−j

∆j , ∆ =
(

a

108

)(
a2 + 18(z2

1 + z2
2) + 6(az1 + az2)

)
B`,j = −6z1C`,j − aC`,j

B`,j = −aC`,j − 6z2C`,j

C`,j = η`,j

(
a

6
+ z1

)
+ σ`,j

(
a

6
+ z2

)
C`,j = η`,j

(
a

6
+ z2

)
− σ`,j

(
a

6
+ z1

)
,

with ρ`,j , η`,j , σ`,j ∈ R.

Elliptic Umbilic

V (z1, z2, a, b, c) X(z1, z2, a, b, c) Type

z3
1 − 3z1z2

2 + a(z2
1 + z2

2) + bz1 + cz2
A
∂

∂a
+ B√

2

(
∂

∂b
+

∂

∂c

)
− 1√

2

(
2xA

∂

∂b
+ 2yA

∂

∂c

)
Center-Saddle

Where A = 1
9
(
±3a2 + δa3) , δ ∈ R, and B = −6z2

1 − 6z2
2 + 2

3a
2.

Proof. See section 2.5.2

We show in section 2.3.3 a number of phase portraits of the CDEs of theorem
2.3.1. Recall that in figures 2.1, 2.2 and 2.3, we show the phase space (SV ) of each
of the codimension 3 CDEs.
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2.3.3 Phase portraits of generic CDEs with three parameters

In this section we present the phase portraits of some of the normal forms of
theorem 2.3.1. Recall that SV is the phase space, this is, the solution curves belong
to the manifold SV . Such manifolds are as depicted in figures 2.1, 2.2 and 2.3. At
the bifurcation sets B, the solution curves have a sudden change of behavior, and
then it is said that a catastrophe occurs.

Briefly speaking, a generic constrained differential equation with three para-
meters is likely to have solutions that resemble those of the pictures presented in
this section.

Remark 2.3.2. In all our pictures below, the symbol D represents the desingularization
of the corresponding constrained differential equation. The name of each section refers to
the tables of theorem 2.3.1.

Regular

In this case the constraint manifold SV has no singularities. So the constraint
manifold SV is the whole R3. In figures 2.12a and 2.12b we show the phase
portraits of the flow-box and source case. The pictures of the saddle-1, saddle-2
and sink are similar to figure 2.12b just changing accordingly the directions of
the invariant manifolds.

(a) Flow-box phase portrait (b) Source phase portrait

a b

c

ba

c

Figure 2.12: Phase portraits corresponding to the regular case. We show only two
examples corresponding to the flow-box (left) and the source (right) case. As the
constraint manifold SV is regular, the only singularities that may happen are equi-
librium points, this is X(0) = 0. For to the same reason, there are no jumps. The
remaining cases can be obtained by reversing the direction of the flow according to
the corresponding spectra.
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Fold

In this case the potential function is V (a, b, c, z) = 1
3z

3 + az. The constraint
manifold SV = {(a, b, c, z) ∈ R4|z2 + a = 0} is 3-dimensional. The attracting part
of SV is given by

SV,min = {(a, b, c, z) ∈ SV | z ≥ 0} .

The projection π̃ = π|SV is given by

π̃(a, b, c, z) = π(−z2, b, c, z) = (−z2, b, c).

Note that the determinant of π̃ is negative for points in SV,min. Therefore,
the trajectories of the desingularized vector field X and of the CDE (V,X) have
opposite directions. Due to the presence of 3 parameters, the singularity set is
the plane

B = {(z, a, b, c) ∈ R4|(z, a) = (0, 0)}.

It is important to note that all phase portraits of the Fold case have projections
matching figure 3 of [39].

• Flow-box-1. By recalling the normal form in theorem 2.3.1 we see that the
integral curves are as depicted in figure 2.13.

• Flow-box-2.

The phase portrait in this case is as in figure 2.13, just the direction of the
trajectories is reversed.

• Sink and Saddle.

In all the following cases, a 1-dimensional center manifold W
C

appears
within the fold surface. The choice of ρ = ±1 changes the direction of W

C

.
In all the following pictures we set ρ = 1. The the integral curves of X are
in opposite direction with respect to the solutions of (V,X) since det(Dπ̃)
is negative in SV,min.

Cusp

In this case the constraint manifold is given by

SV =
{

(a, b, c, z) ∈ R4 | z3 + bz + a = 0
}
,
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ba

z
D

Figure 2.13: Phase portrait and projections of the flow-box-1 case with the variable
c suppressed. The shown folded surface is a tomography of the 3-dimensional con-
straint manifold SV . The dotted line corresponds to the 2-dimensional bifurcation set.
Observe that since we are suppressing the variable c, this phase portrait is also shown
in figure 3 of [39]

ba

zD

W
c

π

Figure 2.14: Projections of the solutions curves of the sink case. The folded surface is
a tomography (fixed value of c) of the 3 dimensional manifold SV . The hyperplane
{z, a, b, c | b = c} is invariant. In such space, the dynamics are reduced to the 2-
parameter fold listed in [39] and in theorem 2.2.1. Observe that there exists a 1-
dimensional manifold which is locally tangent to the fold surface.
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ba

zD

W
c

π

W
c

Figure 2.15: Projections of the solutions curves of the saddle case. The folded surface
is a tomography (fixed value of c) of the 3 dimensional manifold SV . The hyperplane
{z, a, b, c | b = c} is invariant. In such space, the dynamics are reduced to the 2-
parameter fold listed in [39] and in theorem 2.2.1. Observe that there exists a 1-
dimensional manifold which is locally tangent to the fold surface.

and the attracting part of SV reads as

SV,min =
{

(b, c, z) ∈ SV | z3 + bz > 0
}
.

The projection π̃ = π|SV reads as

π̃(a, b, c, z) = π(−z3 − bz, b, c, z) = (−z3 − bz, b, c).

Note that det(Dπ̃) is negative in SV,min. This means that the integral curves
of the desingularized vector field X go in opposite direction with respect to the
solutions of (V,X).

• The flow-box and the (dual) flow-box cases. Since in this case the generic
vector field X is a flow box, the phase portraits that we obtain are just
the same as in Takens’s list [39]. Just one more artificial variable, the c-
coordinate, is considered.

Swallowtail

In this section we present the phase portrait of a generic CDE in a neighborhood
of a swallowtail singularity. This is, we consider the potential function

V (a, b, c, z) = 1
5z

5 + 1
3cz

3 + 1
2bz

2 + az.
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ba

z
D

π

Figure 2.16: Phase portrait of the flow box case. 1 A tomography (the variable c is
fixed and suppressed) of the 3-dimensional manifold SV . 2 The 2-dimensional fold
manifold. 3 The 1-dimensional cusp manifold. Compare with [39] figure 3 and note
the resemblance with these projections.

ba

z
D

π

Figure 2.17: Phase portrait of the dual flow box case. 1 A tomography (the variable
c is fixed and suppressed) of the 3-dimensional manifold SV . 2 The 2-dimensional
fold manifold. 3 The 1-dimensional cusp manifold. Compare with [39] figure 3 and
note the resemblance with these projections.
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The corresponding constraint manifold reads as

SV =
{

(a, b, c, z) ∈ R4 | z4 + cz2 + bz + a = 0
}
,

while the attracting region of SV is given by

SV,min =
{

(b, c, z) ∈ SV | 4z3 + 2cz + b = 0
}
.

Locally, the vector field is a flow-box and is depicted in figure 2.3.3. Note
also that the integral curves of the desingularized vector field X go in opposite
direction with respect to the solution curves of the CDE. It is straightforward
to see that if we consider a potential function −V , the topology of the solutions
does not change. Observe the jumping feature in the case c < 0, see section 2.3.4
for more details on such phenomenon.

Hyperbolic Umbilic

The total space is R5. The constraint manifold and the bifurcation set are detailed
in figure 2.2. The origin of the desingularized vector field is a non-hyperbolic
equilibrium point (see the proof of theorem 2.3.1) . We show in figures 2.19 and
2.20 the phase portraits of the center-saddle and center-center cases respectively.
We take advantage on the fact that {a = 0} is an invariant set. This means that
the integral curves are arranged by those in the subspace {(0, b, c, z1, z2)}. Note
that both phase portraits satisfy the geometric description given in section 2.3.1.
That is, the integral curves are transversal to the singular sets. We have decided
to show only the solution curves within SV,min as those are the ones we are
interested in.

Elliptic Umbilic

The constraint manifold and the bifurcation set are described in figure 2.2. We
show in figure 2.21 the phase portrait of the center-saddle. It is easy to check that
SV,min|a = 0 is just a point, so unlike in the hyperbolic umbilic case, there are
no solutions curves of the corresponding CDE at {a = 0}. Therefore, we show
projections into SV,min|a > 0 with the value of a fixed, of some integral curves.

2.3.4 Jumps in CDEs with three parameters
Constrained differential equations and slow-fast systems are closely related.
CDEs may represent an approximation of some generic dynamical systems with
two or more different time scales. One interesting behavior of the latter type
of systems is formed by jumps. Roughly speaking a jump is a rapid transition
from one stable part of SV to another. One common example of such a behavior
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π

D
z

b
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π

D
z

b
a

π

c = 0 c > 0

c < 0

Figure 2.18: Tomographies for different values of the parameter a of the phase portraits
of the swallowtail case. The catastrophe is stratified in the sets shown in figure 2.1.
Note the particular behavior of the solutions when c < 0. In such case, there exists
a region near the origin where jumps may occur. Observe that the shown solutions
are in accordance with our description in section 2.3.1, that is X is transverse to the
projection of the singular set.
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C

z1

z2

z1
z2
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z1
z2

c

c

b

a

Figure 2.19: Phase portraits of the center-saddle case of the hyperbolic umbilic. Top
left: the desingularized vector field. The origin is a semihyperbolic equilibrium point.
Two directions correspond to a saddle, and one to a center manifold. Locally, such
manifold is tangent to the singularity cone depicted. The center manifold changes
direction depending on the ± sign of the normal form. The trajectories shown are
within the projection of SV,min. Top right: Trajectories of the CDE (V,X) restricted
to SV,min. The latter set is shown as a shaded region. Bottom: the projection of the
solution curves into the parameter space. Note that the phase portrait shown satisfy
the conjecture given in section 2.3.1.
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Figure 2.20: Phase portraits of the center case of the hyperbolic umbilic singularity.
Top left: the desingularized vector field. Such vector field has an equilibrium at the
origin and a 3-dimensional center manifold. The direction of the 1-dimensional center
manifold depicted changes according to the ± sign of the normal form. Top right:
Solutions curves in the invariant space SV,min|a = 0. The latter set is shown as a
shaded region. Bottom: the projection of the solution curves into the parameter space.
Note that the phase portrait shown satisfy the conjecture given in section 2.3.1.
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a b

Figure 2.21: Phase portraits of the center-saddle case of the elliptic umbilic. Top left:
the desingularized vector field. The origin is a semi-hyperbolic equilibrium point with
two hyperbolic and one center directions. The center manifold is locally tangent to
the singularity cone depicted. The hyperbolic directions shown (corresponding to a
saddle) together with the center manifold arrange all the integral curves sufficiently
close to the origin. Top right: Projection of some solutions curves into a tomography
(a fixed) of SV,min. Observe that SV,min is the inside region of a cone (refer to figure
2.3 and section 2.3.1). Bottom: the projection of the solution curves into the parameter
space.
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are relaxation oscillations. See also the examples in section chapter 1, where the
characteristic property of jumps is described.

In this section we discuss the possibility of encountering such jumping be-
havior in generic CDEs with a swallowtail, hyperbolic, or elliptic umbilical
singularity.

Definition 2.3.1 (FINITE JUMP). Let γ be a solution curve of a CDE (V,X). Let q ∈ B.
We say that γ has a finite jump at q if the following conditions are satisfied:

1. there exists a point p ∈ SV,min such that π(p) = π(q),

2. there exists a curve from p to q along which V is monotonically decreasing.

In the case of the fold singularity, there are no finite jumps. In the case of the
cusp singularity, a solution curve γ has the jump [39]

(a, b, z)→ (a, b,−2z).

For the existence (or nonexistence) of finite jumps in the generic CDEs with
three parameters, we have the following proposition.

Proposition 2.3.1 (Jumps in the generic CDEs with 3 parameters). Let (V,X) be a
generic CDE with potential function V one of the codimension 3 catastrophes. Let γ be a
solution curve of (V,X). Then

1. If V is the swallowtail catastrophe, then there are finite jumps as follows. Let
(a, b, c, z) be coordinates of γ ∩B, then the finite jump is given by

(a, b, c, z) 7→ (−z −
√
−2z2 − c, a, b, c),

where it is readily seen that

z ∈
(
−
√
− c2 ,

√
− c2

)
, c < 0.

2. If V is the hyperbolic or the elliptic umbilic catastrophe, then there are no finite
jumps.

Proof. See section 2.5.3.

2.4 Normal form of Ak-CDEs

In this section, a topological classification of constrained differential equations
with only one fast variable is presented. Such a classification is motivated by the
Ak singularities [4]. Briefly speaking, we consider the potential function V to be
the universal unfolding of a singularity of the type zk+1 with k ≥ 2. In chapter 3
we embed the classification obtained below into the theory of slow fast systems.
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Definition 2.4.1. Let (V,X) be a generic constrained differential equation (CDE). We
say that (V,X) is an Ak-CDE if and only if V is the universal unfolding of a function
V0 with a singularity of type Ak [4]. That is, an Ak-CDE has the local form

ẋ = f(x, z)

0 = zk +
k−1∑
i=1

xiz
i−1.

The motivation behind Ak-CDEs is that we will use them in the next section
to study slow fast systems with one fast variable and k − 1 slow variables.

Remark 2.4.1. For k = 2, 3, 4 we have the fold, the cusp, and the swallowtail cases
respectively, which have been studied above.

Now, we provide a classification of Ak-CDEs.

Proposition 2.4.1. Let (V,X) be an Ak-CDE, and assume that f(0, 0) 6= 0. Then

(V,X) is topologically equivalent to
(
V,

∂

∂x1

)
.

Proof. See section 2.5.4

2.5 Proofs

2.5.1 Proof of lemma 2.2.1
Note that we can write each elementary catastrophe in the form

V (x, z) = V (0, z) +
m∑
i=1

xi
∂V (x, z)
∂xi

,

where z ∈ Rn, x ∈ Rm, and with n ≤ m. The constraint manifold is given by
∂

∂z
V (x, z) = 0, which means

∂V (0, z)
∂zj

+
m∑
i=1

xi
∂2V (x, z)
∂zj∂xi

= 0, ∀j ∈ [1, n].

Next, note that we can always solve the previous equation for n of the xj ’s, obtaining

xj = −
∂V (0, z)
∂zj

−
m∑

i=j+1

xi
∂2V (x, z)
∂zj∂xi

.
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This expresses that xj is the coefficient of the linear term zj in the potential function V (x, z). Now, we can
choose coordinates in SV as

(z1, . . . , zn,

−
∂V (0, z)
∂z1

−
m∑

i=j+1

xi
∂2V (x, z)
∂z1∂xi

, . . . ,−
∂V (0, z)
∂zn

−
m∑

i=j+1

xi
∂2V (x, z)
∂zn∂xi

, xn+1, . . . , xm

)
.

Next, we define the projection π̃ by π̃ = π|SV , this is

π̃(p) =

(
−
∂V (0, z)
∂z1

−
m∑

i=j+1

xi
∂2V (x, z)
∂z1∂xi

, . . . ,−
∂V (0, z)
∂zn

−
m∑

i=j+1

xi
∂2V (x, z)
∂zn∂xi

, xn+1, . . . , xm

)
,

where p is a point in SV . In the original coordinates,X has the general form

X =
m∑
i=1

fi(x, z)
∂

∂x i
.

The set SV is the phase space of a constrained differential equation. So, for a point in SV with coordinates
(z1, . . . , zn, xn+1, . . . , xm), X̃ is given by

X̃ = (dπ̃)−1
X(z, π̃(x, z)).

It is clear that X̃ is defined only for points where the projection in non-singular. Next, recall that the map
A 7→ det(A)A−1 can be extended to a C∞ map on the space of square matrices. This means that we can define
a smooth vector field by

X = det(dπ̃)(dπ̃)−1
X(z, π̃(x, z)).

Note that for all points where det(dπ̃) 6= 0, the solutions of (V,X) are obtained from the integral curves
of X . First by a reparametrization due to the smooth projection π̃, and in cases where det(dπ̃) < 0, by next
reversing the direction of the solutions.

2.5.2 Proof of theorem 2.3.1
We only detail the hyperbolic umbilic case as it is the most interesting one. All the other cases follow similar
arguments and steps. The procedure of the proof is summarized as follows.

1. Desingularization of (V,X). With this we obtain the desingularized vector field X . Then we are able to
use standard techniques of dynamical systems theory to obtain a polynomial normal form ofX following
the next two steps.

2. Reduction to a center manifold, see appendix A.3. This reduction greatly simplifies the expressions of the
normal forms.

3. Apply Takens’s normal form theorem, see appendix A.3.

4. At this stage, we have a polynomial local normal form of the vector field X . Now, recall that the form of
X is obtained by following the desingularization process described in section 2.2. So, the last step in order
to write the local normal forms of a constrained differential equation (V,X) is to carry out the inverse
coordinate transformation performed when obtainingX .



2.5. Proofs 48

The Hyperbolic Umbilic

Following table A.1, we deal with the constrained differential equation

V (a, b, c, z1, z2) = z
3
1 + z

3
2 + az1z2 + bz1 + cz2

X(a, b, c, z1, z2) = fa
∂

∂a
+ fb

∂

∂b
+ fc

∂

∂c
,

The functions fi(a, b, c, z1, z2) : R5 → R, for i = a, b, c, are considered to be C∞ with the generic
condition fi(0) 6= 0 .

Remark 2.5.1. To simplify notation let (z1, z2) = (x, y).

The constraint manifold is the critical set of the potential function V

SV =
{

(a, b, c, x, y) ∈ R5 | b = −3x2 − ay, c = −3y2 + ax
}
.

The attracting region of SV is

SV,min =
{

(a, b, c, x, y) ∈ SV |
[

6x a
a 6y

]
≥ 0
}
,

which is equivalent to the conditions 36xy−a2 ≥ 0 and x+y ≥ 0. Consequently, the catastrophe set reads

B =
{

(a, b, c, x, y) ∈ SV | det
[

6x a
a 6y

]
= 0
}
.

The pictures of SV and B are given by 2.2. Following the desingularization process, we choose coordinates
in SV . The projection into the parameter space restricted to SV is

π̃ = (a,−3x2 − ay,−3y2 − ax).

Observe that det(Dπ̃) ≥ 0 for points in SV,min. By following corollary 2.2.1, the corresponding desingular-
ized vector field is

X = (36xy − a2)fa
∂

∂a
+
((
−6y2 + ax

)
fa − 6yfb + afc

) ∂

∂x
+((

−6x2 + ay
)
fa + afb − 6xfc

) ∂

∂y
.

The vector field X has an equilibrium point at the origin. The corresponding linearization shows the spec-
trum {

0,+6
√
fb(0)fc(0),−6

√
fb(0)fc(0)

}
.

Considering the generic conditions on fb and fc, and by referring to the center manifold theorem A.3.1, we study
the cases whereX is topologically equivalent to

1. X
′(u, v, w) = fu(u)

∂

∂u
+ v

∂

∂v
− w

∂

∂w
, or

2. X
′(u, v, w) = fu(u, v, w)

∂

∂u
+ (v + fw(u, v, w))

∂

∂w
+ (−w + fv(u, v, w))

∂

∂v
,

where fi(0) = Dfi(0) = 0 for i = u, v, w. We study each case separately.
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1. Here we consider that the spectrum ofX is of the form {0, λ1, λ2}, λ1 > 0 > λ2, so we call it the center-
saddle case. There exists a 1-dimensional center manifold passing through the origin. Following theorem
A.3.2 and noting that

[
u

2 ∂

∂u
, u
k−1 ∂

∂u

]
= (k − 3)uk,

we have that the k−jet ofX
′

is smoothly equivalent to(
δ1u

2 + δ2u
3
) ∂

∂u
+ v

∂

∂v
− w

∂

∂w

for all k ≥ 3, where δ1 ∈ R\ {0}, and δ2 ∈ R. With this we can further say that X is topologically
equivalent to

X
′ =
(
±u2 + δu

3
) ∂

∂u
+ v

∂

∂v
− w

∂

∂w
, δ ∈ R. (2.4)

Observe that u is the center direction and v, w are the hyperbolic (saddle) directions. Locally, the direction
of the center manifold depends on the± sign in front of the u2 term of the normal form (2.4).

2. Now we deal with a 3-dimensional center manifold. The vector fieldX
′

has spectrum {0, λı,−λı}, λ ∈
R, so we call it the center case. It is convenient to introduce complex coordinates

z = u+ ıw,

z = u− ıw.

In these coordinates we have that the 1− jet ofX
′

is

X
′
1(u, z, z) = ı

(
z
∂

∂z
− z

∂

∂z

)
.

Following the normal form theorem A.3.2, we write the elements of Hk ⊗ C as a combination of the
monomials um1zm2zm3 , wherem1 +m2 +m3 = k, having the relations

[
X
′
1, u

m1z
m2z

m3 ∂

∂u

]
= ıu

m1z
m2z

m3 (m2 −m3)
∂

∂u
,[

X
′
1, u

m1z
m2z

m3 ∂

∂z

]
= ıu

m1z
m2z

m3 (m2 −m3 − 1)
∂

∂z
,[

X
′
1, u

m1z
m2z

m3 ∂

∂z

]
= ıu

m1z
m2z

m3 (m2 −m3 + 1)
∂

∂z
.

We can choose as a complement of the image of
[
X
′
1,−
]
k

the space spanned by{
u
k−2m

z
m
z
m ∂

∂u

}m=k/2

m=0

⋃
{
u
k−1−2m

z
m
z
m

(
z
∂

∂z
+ z

∂

∂z

)
, ıu

k−1−2m
z
m
z
m

(
z
∂

∂z
− z

∂

∂z

)}m= k−1
2

m=0
.
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This base is chosen so that we can easily write the normal form in the original coordinates by identify-

ing
(
z
∂

∂z
+ z

∂

∂z

)
, and ı

(
z
∂

∂z
− z

∂

∂z

)
with

(
v
∂

∂v
+ w

∂

∂w

)
, and

(
v
∂

∂w
− w

∂

∂v

)
respectively.

Then, we have that the k−th order polynomial normal form ofX
′

reads

X
′ = X

′
1+

k∑
`=2

(
2j=`∑
j=0

ρ`ju
`−2j(v2 + w

2)j
∂

∂u
+

2j+1=l∑
j=0

u
`−1−2j(v2 + w

2)j
(
η`j

(
v
∂

∂v
+ w

∂

∂w

)
+ σ`j

(
v
∂

∂w
− w

∂

∂v

)))
,

(2.5)

where ρ`j , η`j , and σ`j are some nonzero constants. Compare with [38], where the case of a vector field
having eigenvalues of its Jacobian equal to {α,±ı} , α 6= 0 is studied.

At this point then, we have two normal forms of the vector field X
′

depending on the eigenvalues of D0X .
Recall that the solutions of (V,X) are related to the integral curves of X and therefore also to the integral curves
of X

′
. In order to locally identify the coordinates in which we expressed X

′
with the original coordinates

(a, b, c, x, y), we perform a linear change of coordinates such that D0X = D0X
′
. This linear transformation

is given by [
a
x
y

]
=

[
6 0 0
1 −1 1
1 1 1

][
u
v
w

]
in the case of the center-saddle vector field (2.4), and[

a
x
y

]
=

[
6 0 0
−1 0 1
−1 1 0

][
u
v
w

]
in the case of the vector field (2.5). By carrying out the computations, X has respectively the k−th order local
normal form

1. Center-saddle case

X =
(
±a2 + δa

3
) ∂

∂a
+

1
6

((
±a2 + δa

3
)

+ a− 6y
) ∂

∂x
+

1
6

((
±a2 + δa

3
)

+ a− 6x
) ∂

∂y
,

(2.6)

where δ ∈ R.

2. Center case

X =
(

1
6
a+ y

)
∂

∂x
−
(

1
6
a+ x

)
∂

∂y
+ 6

k∑
`=2

2j=`∑
j=0

ρ`j

(
a

6

)`−j
∆j ∂

∂a
+(

−
k∑
`=2

2j=`∑
j=0

ρ`j

(
a

6

)`−j
∆j +

k∑
`=2

2j+1=`∑
j=0

(
a

6

)`−1−j
∆j
A`,j

)
∂

∂x
+(

−
k∑
`=2

2j=`∑
j=0

ρ`j

(
a

6

)`−j
∆j +

k∑
`=2

2j+1=`∑
j=0

(
a

6

)`−1−j
∆j
A`,j

)
∂

∂y

(2.7)
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where

∆ =
a

108

(
a

2 + 6ax+ 6ay + 18x2 + 18y2
)

A`,j = η`,j

(
a

6
+ x

)
+ σ`,j

(
a

6
+ y

)
A`,j = η`,j

(
a

6
+ y

)
− σ`,j

(
a

6
+ x

)
, η`,j , σ`,j ∈ R

The phase portraits of (2.6) and (2.7) are shown in figures 2.19 and 2.20 respectively.

Finally, by following lemma 2.2.1 we can obtain the form of (V,X). Recall that the desingularized vector
field is defined by X = det(Dπ̃)(Dπ̃)−1X . This means that in principle, once we know X , X is obtained as
X = 1

det(Dπ̃)Dπ̃X . Clearly, the map X is not defined at points of the bifurcation set. Away from such a set, X

is smoothly equivalent to the smooth map ±Dπ̃X , where the sign ± depends on the sign of det(Dπ̃). So, since
in this case we have that det(Dπ̃) > 0 in SV,min, the solution curves of (V,X) are obtained from the integral
curves ofX and by the reparametrization

b = −3x2 − ay, c = −3y2 − ax.

Straightforward computations show that the CDE (V,X = Dπ̃X) with a hyperbolic umbilic singularity has
the local normal forms as stated in theorem 2.3.1.

2.5.3 Proof of proposition 2.3.1
We detail the proof of the hyperbolic umbilic case. The other cases follow the same methodology. To simplify
notation, let (z1, z2, a, b, c) = (x, y, a, b, c, ).

Recall that for the hyperbolic umbilic

SV =
{

(a, b, c, x, y) ∈ R5 | b = −3x2 − ay, c = −3y2 + ax
}
,

SV,min =
{

(a, b, c, x, y) ∈ SV | 36xy − a2 ≥ 0, x+ y > 0
}
,

and

B =
{

(a, b, c, x, y) ∈ SV | 36xy − a2 = 0
}
.

Let p = (x1, y1, a1, b1, c1) ∈ SV and q = (x2, y2, a2, b2, c2) ∈ B. So we have that the projections π(p)
and π(q) read as

π(p) = (a1,−3x2
1 − a1y1,−3y2

1 − a1x1)

π(q) = (a2,−3x2
2 − a2y2,−3y2

2 − a2x2), a
2
2 = 36x2y2.

The point q = γ ∩ B is known. The point p is unknown, it corresponds to a possible arriving point when a
finite jump occurs. If such a point p exists, then it is a nontrivial solution of π(p) = π(q). The easiest case is when
a2 = 0. We have

π(p) = (0,−3x2
1,−3y2

1)

π(q) = (0,−3x2
2,−3y2

2), 0 = x2y2.

Here we have two cases: 1) 0 = x2y2 =⇒ x2 = 0, and y2 6= 0, or 2) 0 = x2y2 =⇒ x2 6= 0, and y2 =
0.
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1. a2 = 0, x2 = 0, y2 6= 0. We have

−3x2
1 = 0

−3y2
1 = −3y2

The non trivial solution is (x1, y1) = (0,−y2). So, there is a possible finite jump of the form

q1 = (0, y2, 0, b2, c2) 7→ p1 = (0,−y2, 0, b2, c2)

2. a2 = 0, x2 6= 0, y2 = 0. Similarly we have the possible jump

q2 = (x2, 0, 0, b2, c2) 7→ p2 = (−x2, 0, 0, b2, c2).

Now we check if any of such arriving points are in SV,min. The conditions for a point p = (a, b, c, x, y) to
be in SV,min are

−3x2 − ay − b = 0

−3y2 − ax− c = 0

36xy − a2 ≥ 0
x+ y ≥ 0.

It is readily seen then that for a = 0, p1 and p2 are not points in SV,min as the last inequality is not satisfied.
Now, we study the case a2 6= 0. The problem π(p) = π(q) can be rewritten as the nonlinear simultaneous

equation

−3x2
1 − a2y1 + 3x2

2 + a2y2 = 0

−3y2
1 − a2x1 + 3y2

2 + a2x2 = 0.

Since a2 6= 0 we can write from the first equation

y1 =
−3x2

1 + 3x2
2 + a2y2

a2
,

and substituting in the second equation we get

27x4
1 − (54x2

2 + 18a2y1)x2
2 + a

3
2x1 + 18x2

2a2y2 − a3
2x2 + 27x4

2 = 0.

It is not difficult to see that x1 = x2 is a double root, so we have the factorization

(x1 − x2)2(3x2
1 + 6x2x1 + 3x2

2 − 2a2y2) = 0.

The roots of 3x2
1 + 6x2x1 + 3x2

2 − 2a2y2 = 0 are

X± = −x2 ±
2
√

6
√
a2y2.

The corresponding y1 solutions are

Y± = −y2 ± 2
√

6x2

√
y2

a2
.
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This is, for a trajectory γ such that γ|B = (x2, y2, a2, b2, c2), there are possible jumps towards

p1 =

(
−x2 +

2
√

6
√
a2y2,−y2 +

2
√

6√y2x2
√
a2

, a2, b2, c2

)
p2 =

(
−x2 −

2
√

6
√
a2y2,−y2 −

2
√

6√y2x2
√
a2

, a2, b2, c2

)
.

Just as in the previous case, we shall check if the points (X+, Y+, a2, b2, c2), (X−, Y−, a2, b2, c2) are
contained in SV,min. This is, we have to check if the following inequalities are satisfied.

X+ + Y+ ≥ 0,

36X+Y+ − a2
2 ≥ 0,

(2.8)

and

X− + Y− ≥ 0,

36X−Y− − a2
2 ≥ 0.

(2.9)

In both cases we have the further properties 36x2y2−a2
2 = 0 andx2+y2 ≥ 0 since (x2, y2, a2, b2, c2) ∈ B.

By substituting the value y2 = a2
36x2

inX± and Y± we have

X± = −x2 ±
a

3/2
2

3
√

6x1/2
2

,

Y± = −
a2

2
36x2

±
2
√

6
x

1/2
2 a

1/2
2 .

Now, (2.8) and (2.9) read as

−x2 +
a

3/2
2

3
√

6x1/2
2

−
a2

2
36x2

+
2
√

6
x

1/2
2 a

1/2
2 ≥ 0,(

−x2 +
a

3/2
2

3
√

6x1/2
2

)(
−

a2
2

36x2
+

2
√

6
x

1/2
2 a

1/2
2

)
− a2

2 ≥ 0,

(2.10)

and

−x2 −
a

3/2
2

3
√

6x1/2
2

−
a2

2
36x2

−
2
√

6
x

1/2
2 a

1/2
2 ≥ 0,(

−x2 −
a

3/2
2

3
√

6x1/2
2

)(
−

a2
2

36x2
−

2
√

6
x

1/2
2 a

1/2
2

)
− a2

2 ≥ 0,

(2.11)

respectively. It is readily seen that (2.11) is not satisfied. Now we focus on (2.10). First we check the conditions for
X+ ≥ 0 and Y+ ≥ 0. We have

X+ ≥ 0 =⇒ x
3/2
2 ≤

a3/2

3
√

6
,

Y+ ≥ 0 =⇒
1

12
√

6
a

3/2 ≤ x3/2
2 .
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This is 1
12
√

6
a

3/2
2 ≤ x

3/2
2 ≤ 1

3
√

6
a

3/2
2 . Of course this would imply that X+ + Y+ ≥ 0. Now we have to

check if for such interval 36X+Y+ − a2 ≥ 0. So we have

36X+Y+ − a2 = 12
√

6x3/2
2 a

1/2
2 −

a
7/2
2

3
√

6x3/2
2

+ 4a2
,

so we check if

−12
√

6x3/2
2 a

1/2
2 −

a
7/2
2

3
√

6x3/2
2

+ 4a2 ≥ 0

in the interval

1
12
√

6
a

3/2
2 ≤ x3/2

2 ≤
1

3
√

6
a

3/2
2 . (2.12)

We have that

12
√

6x3/2
2 a

1/2
2 +

a
7/2
2

3
√

6x3/2
2

=
216x3

2a
1/2
2 + a

7/2
2

3
√

6x3/2
2

,

but note that from (2.12) we obtain
1
4
a

3/2
2 ≤ 3

√
6x3/2

2 ,

so we have

216x3
2a

1/2
2 + a

7/2
2

3
√

6x3/2
2

≥ 864x3/2
2 a

−3/2
2 x

3/2
2 a

1/2
2 + 4a2

2 ≥
72
√

6
a

1/2
2 x

3/2
2 + 4a2

2 ≥ 5a2
2.

This means that the inequality

− 12
√

6x3/2
2 a

1/2
2 −

a
7/2
2

3
√

6x3/2
2

+ 4a2 ≥ 0

can not be satisfied, which implies that π(p) = π(q) does not have nontrivial solutions in SV,min. Therefore, it
is not possible to have finite jumps.

2.5.4 Proof of proposition 2.4.1
The constraint differential equation (V,X) is defined by

V =
1

k + 1
z
k+1 +

k−1∑
i=1

1
i
xiz

i
,

andX =
∑k−1

i=1
Xi

∂

∂xi
. Then the desingularized vector field reads as

X =

(
X1 −

k−1∑
i=2

z
i−1

Xi

)
∂

∂z
+ Z

k−1∑
i=2

Xi
∂

∂xi
,
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where Z = kzk−1 +
∑k−1

i=2
(i− 1)xizi−2. The constraint manifold reads as

SV =

{
(x, z) ∈ Rk | zk +

k−1∑
i=1

xiz
i−1 = 0

}
,

while the singularity set is a submanifold of SV given by

B = {(x, z) ∈ SV |Z = 0} .

Generically X(0) = X1(0) 6= 0, therefore, by the rectification theorem [1], there exists a diffeomorphism Φ
such that in a sufficiently small neighborhood of the origin we have

Φ∗X =
∂

∂z
.

This implies that the equivalence in the CDE is given by Φ = π̃−1 ◦ Φ ◦ π̃. Naturally Φ is just continuous,
but note that Φ|SV \B is a local diffeomorphism.
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Chapter 3

Slow fast systems

This chapter presents several techniques which are useful to study the local
dynamics of SFSs, and in particular of what we call Ak-SFSs. These slow fast
systems have one fast direction, and their principal characteristic is that their
corresponding slow manifold is given by the critical set of an Ak catastrophe
[3, 4].

This chapter is arranged as follows. First, the definition, and a qualitative
description of Ak slow fast system is given. Next we briefly recall results on
normal forms and transition of slow fast systems along Normally Hyperbolic slow
manifolds. After this, we discuss a class of maps called “exponential type maps”.
These appear frequently in our forthcoming analysis. Following these preliminary
results, we provide a formal normal form ofAk-SFSs. Afterwards, we shall briefly
recall the Geometric Desingularization method. All these techniques will be used
in chapter 4, where we study A2 (fold), A3 (cusp), and A4 (swallowtail) Slow Fast
Systems.

3.1 Introduction

We consider, as a slow fast system, a parameter family of vector fields Xε which
in coordinates has the form

Xε :
{
x′ = εf(x, z, ε)
z′ = g(x, z, ε),

(3.1)

where ε is a small positive parameter, this is 0 < ε� 1, and where f and g are
considered of class C∞. Throughout this chapter, we study SFSs with one fast

57
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variable, that is z ∈ R. Rescaling the time by t = ετ we can also write (3.1) as

ẋ = f(x, z, ε)
εż = g(x, z, ε).

(3.2)

For ε 6= 0, the systems (3.1) and (3.2) are equivalent. Recall that the limit ε→ 0
of (3.2) is the CDE

ẋ = f(x, z, 0)
0 = g(x, z, 0).

Definition 3.1.1 (Slow manifold). The set

S =
{

(x, z) ∈ Rk−1 × R | g(x, z, 0) = 0
}

is called the slow manifold of (3.1).

It is now worth recalling the definition of Normally Hyperbolic Invariant
Manifolds in the present context.

Definition 3.1.2 (Normally Hyperbolic Invariant Manifold). Consider a slow fast
system given by (3.1). The associated slow (invariant) manifold S = {g(x, z, 0) = 0} is
said to be normally hyperbolic if each point of S is a hyperbolic equilibrium point of X0.

NHIMs are relevant in the context of the geometric study of slow fast systems,
see for example [16]. It turns out that compact NHIMs persist under C1 small
perturbation of X0, see appendix A.4. In the particular context presented above,
a normally hyperbolic compact subset of the slow manifold S persists as an
invariant manifold of the slow fast system Xε.

A point of S at which S is tangent to the one dimensional fast foliation is
called singular, and the set of all singular points is denoted by B, that is

B =
{

(x, z) ∈ Rk × R | ∂g
∂z

= 0
}
.

Let us now define the particular slow fast system studied here. Briefly speak-
ing, we shall define a class of slow fast systems by a generic perturbation of the
Ak-CDEs of chapter 2.

Definition 3.1.3. Let k ≥ 1. An Ak slow fast system (for brevity Ak-SFS) is a smooth
vector field obtained as a generic perturbation of an Ak-CDE. More specifically, an
Ak-SFS is a singularly perturbed ordinary differential equation given as

ẋ1 = 1 + εf̃1

ẋj = εf̃j

εż = g + εf̃k,

(3.3)
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where

g = g(x, z) = −
(
zk +

k−1∑
i=1

xiz
i−1

)
,

and where f̃i = f̃i(x, z, ε), for all i = 1, . . . , k, are smooth functions. In this context,
generic means that f̃i(0, 0, 0) 6= 0. Observe that the corresponding limit ε→ 0 of (3.3)
corresponds to a Ak-CDE in topological normal form, see section 2.4.

Equivalently, in the fast time regime, and Ak-SFS can be written as

x′1 = ε(1 + εf̃1)
x′j = ε2f̃j

z′ = g + εf̃k.

Our main goal in this chapter is to provide a systematic method to study the
flow of an Ak-SFS near the origin. For this task, we use the techniques presented
below. Before going any further, a qualitative description of Ak-SFSs is given in
the following section.

3.1.1 Qualitative description of Ak slow fast systems
The slow manifold of (3.3) is of dimension k − 1 and is defined by

S =
{

(x, z) ∈ Rk−1 × R | ε = 0,
(
zk +

k−1∑
i=1

xiz
i−1

)
= 0
}
.

For k ≥ 2, the projection π : S → Rk−1, from S to the parameter space (x), has
singularities. This is the case we further study, so from now on, let k ≥ 2. From
the expression of S we distinguish two cases, namely

• k is even. The slow manifold S is of “U-shape”, for example like in the A2
(fold) case.

• k is odd. The slow manifold S has an “S-shape”, for example, like in the
A3 (cusp) case.

The related CDE of (3.3) has the simple form

ẋ1 = 1
ẋj = 0
0 = g,

(3.4)
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where we recall that g =
(
zk +

∑k−1
i=1 xiz

i−1
)

. Then, we expect that the flow of
(3.3) is close to the flow of (3.4). Thus, to study the orbits of X within a small
neighborhood of the origin, we define the so called “entry and exit sections” as
follows

• If k is even then

Σen =
{

(x, z) ∈ Rk |x1 = −x1,en, z ∈ J
}

Σex =
{

(x, z) ∈ Rk | z = −zex, x1 ∈ J ′
}
,

where x1,en and zex are small positive constants, and where J ⊂ R and
J ′ ⊂ R are suitable intervals.

• If k is odd then

Σen =
{

(x, z) ∈ Rk |x1 = −x1,en, z ∈ J
}

Σex =
{

(x, z) ∈ Rk |x1 = −x1,ex, z ∈ J ′
}
,

where x1,en and x1,ex are small positive constants, and where J ⊂ R and
J ′ ⊂ R are suitable intervals.

From these sections, a transition Π is defined as follows.

Definition 3.1.4. Let X be an Ak-SFS and let Σen, Σex be sections as above. A
transition Π is a map Π : Σen → Σex induced by the flow of X .

See fig. 3.1 for a description of the sections and the transition defined above.

Observe in fig. 3.1 that the trajectories of X spend a long time along Normally
Hyperbolic regions of S. Accordingly, before studying the Ak-SFS near the non-
hyperbolic singularity at the origin, let us discuss its flow near regular parts of
the manifold S.

3.1.2 Regular slow fast systems

In this section, the dynamics of a regular slow fast system is studied. We remark
that only SFS with one fast variable are considered in this document. To be more
precise we have the following.

Definition 3.1.5. Let Xε denote a slow fast system and S its slow manifold. Then Xε

is said to be (locally) regular around a point p0 ∈ S, if S is normally hyperbolic in a
neighborhood of p0.
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Σen

Σex

z z

x1 x1

Σen

Σex

Figure 3.1: Qualitative picture of the sections Σen, Σex and of a transition Π. Left: for k
even. Right: for k odd. A transition is a map from the entry section Σen to the section
Σex induced by the flow of the vector fieldX . Note that the trajectories depicted spend
a long time along normally hyperbolic regions of the slow manifold.

The slow vector field

For simplicity, let us consider a slow fast system written as

Xε =
m∑
i=1

εfi(x, z, ε)
∂

∂xi
+H(x, z, ε) ∂

∂z
, (3.5)

where x ∈ Rm, z ∈ R, and as usual 0 < ε � 1. Furthermore, assume that f =
(f1, . . . , fm) is such that f(0, 0, 0) 6= 0; and H(0, 0, 0) = 0, with ∂H

∂z (0, 0, 0) < 0.
Thus Xε is regular around 0 ∈ Rm+2. From the defining assumptions of (3.5), the
slow manifold S is normally hyperbolic in a sufficiently small neighborhood of
the origin. By looking at the Jacobian of Xε it follows that there exists an m+ 1
dimensional a center manifold. Since Xε is smooth, we can choose a C` center
manifoldWC

for any ` <∞. This choice of center manifold is given as a graph
z = φ(x, ε) where φ is a C` function.

Remark 3.1.1. Along the rest of the document we frequently make use of a finite class of
differentiability. As it is customary in the present context, when we say that a manifold
(or a map) is C`, we mean that such a manifold (or map) is `-differentiable for ` as large
as necessary.

The slow manifold S is naturally given by the restrictionWC |ε=0 = S. Next,
let us consider the vector field 1

εXε(x, φ, ε). Since WC

is locally invariant, it
follows that 1

εXε is tangent toWC

. Therefore the vector field

Xslow = lim
ε→0

1
ε
Xε(x, φ, ε),
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is tangent to S at each point of S, and we call it the slow vector field. We remark
that the slow vector field Xslow is only well defined whenever φ is invertible.

The slow divergence integral

Associated to a regular slow fast system and the corresponding slow vector field,
the slow divergence integral is defined here. For this, let Σ− and Σ+ be two sections
which are transversal to the flow of Xε given by (3.5). For ε 6= 0 but sufficiently
small, these sections are also transversal to the slow manifold S. Let γε be a
solution curve of Xε chosen along a center manifoldWC

, thus γε is transversal
to the sections Σ− and Σ+. In the limit ε = 0, the curve γ0 is a curve along the
slow manifold S. The idea now is to borrow the well-known divergence theorem
[33] to get some sense on how the trajectories of Xε are attracted to S (recall that
we made the assumption ∂H

∂z < 0). The divergence of Xε (given by (3.5)) reads as

divXε = ∂H(x, z, ε)
∂z

+O(ε).

We can now take the integral of divXε along the orbit γε of Xε parametrized
by the fast time τ , we have∫

γε

divXε dτ =
∫
γε

(
∂H(x, z, ε)

∂z
+O(ε)

)
dτ. (3.6)

Let us now define the slow divergence integral by

I(t) =
∫
γ0

divX0 dt,

where t is the slow time defined by the slow vector field Xslow. Our goal then is
to relate the divergence integral (3.6) with I .

Proposition 3.1.1. Under the assumptions made in this section, we have that∫
γε

divXε dτ = 1
ε

(I(t) + o(1)) ,

where I(t) is the slow divergence integral.

Proof. Recall that the expression of the slow vector field reads as Xslow =
limε→0

1
εXε(x, φ, ε), where φ = φ(x, ε) is a C` function. By our assumptions,

the curve γε is transversal to the sections Σ− and Σ+ for ε small enough. Without
loss of generality we can assume that γε is parametrized by x1. Then let x−1 and
x+

1 be defined by γε(x−1 ) = γε ∩ Σ− and γε(x+
1 ) = γε ∩ Σ+. Next, the integral of

the divergence of Xε along γε from Σ− to Σ+ reads as
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∫
γε

divXε dτ = 1
ε

∫ x+
1

x−1

(
∂H(x, z, 0)

∂z
+O(ε)

)
dx1

f1(x, z, 0) + o(1)

= 1
ε

(∫ x+
1

x−1

∂H(x, z, 0)
∂z

dx1

f1(x, z, 0) + o(1)
)

= 1
ε

(∫
γ0

divX0dt+ o(1)
)
,

where t is the slow time induced by Xslow, which in coordinates means that
dx1
dt = f1.

Observe that the slow divergence integral is a first order approximation of
the divergence along orbits of Xε. This will useful when presenting our main
result in section 3.4.

Normal form and transition of a regular slow fast system

Now we consider the problem of finding a suitable normal form of a regular SFS.

Proposition 3.1.2. Consider a regular slow fast system on Rm+2 given by

Xε = ε(1 + f1) ∂
∂u

+
m∑
j=1

εgj
∂

∂vj
+H

∂

∂z
,

where (u, v1, . . . , vm, z, ε) ∈ Rm+3; where the functions f1 = f1(u, v, z, ε) and gj =
gj(u, v, z, ε), for 1 ≤ j ≤ m, are smooth and where the function H = H(u, v, z, ε)
is smooth with H(0, 0, 0, 0) = 0 and ∂H

∂z (0, 0, 0, 0) < 0. Then, the vector field X is
C`-equivalent to a normal form given by

XN
ε = ε

∂

∂U
+

m∑
j=1

0 ∂

∂Vj
− Z ∂

∂Z
, (3.7)

where {Z = 0} corresponds to a choice of the center manifoldWC

of Xε.

Proof. See section 3.5.1

Motivated by proposition 3.1.2, the dynamics of (3.7) are now discussed. The
slow manifold S, corresponding to the normal form (3.7), is given by

S = {ε = 0, Z = 0} .
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Furthermore, we can parametrize the solution of (3.7) by U . Let us define the
sections

Σ− =
{

(U, V, Z, ε) ∈ R× Rm × R× R |U = U−
}

Σ+ =
{

(U, V, Z, ε) ∈ R× Rm × R× R |U = U+} ,
where U− < U+. The sections Σ− and Σ+ are transversal to the manifold S and
therefore, for ε 6= 0, are also transversal to the flow of (3.7). Associated to these
sections, we define the transition

Π : Σ− → Σ+

(V,Z, ε) 7→ (Ṽ , Z̃, ε̃).

To compute the component Z̃ we only need to integrate ∂dZ
∂dU = − 1

εZ. Then
it follows that Z̃ = Z(T ), where T is the time to go from Σ− to Σ+, which is
T = Uf − Ui. Since (3.7) is very simple to integrate we get

Ṽ = V

Z̃ = Z exp
(
−1
ε

(Uf − Ui)
)

ε̃ = ε.

Observe the particular format of the transition Π. The Z component is an
exponential contraction towards the center manifold {Z = 0}. Maps with this
characteristic will appear frequently in our text. Thus, we proceed in section 3.2
by discussing in a rather general way, the properties of such maps.

3.2 Exponential type maps

In this section, we discuss a particular type of function which will be found
and used frequently throughout the main text. First, however, let us give two
preliminary definitions.

Definition 3.2.1 ( C`-admissible function). Let U ∈ Rn. A function f : Rn → R
is said to be a C`-admissible function if f is C`-smooth away form the origin (for any
` > 0), C0 at the origin and if for all ni ∈ N and ni < `, there exists an N(ni) ∈ N such
that

∂nif

∂Unii
∈ O

(
U
−N(ni)
i

)
, as Ui → 0.
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Now, we define a particular type of differentiability. For this we need to
extend the common concept of monomial. In our context, a monomial, e.g. in
two variables, ω(u, v) is any expression of the form uαvβ or of the form uα(ln v)β ,
with α, β ∈ R. In general, if we let u ∈ Rm and v ∈ Rn, we allow a monomial
to be any expression of the type up(ln v)q, where up = up1

1 · · ·upmm and (ln v)q =
(ln v1)q1 · · · (ln vn)qn . We note that these monomials are admissible functions.

Definition 3.2.2 (C` function with respect to monomials). Let (U, V ) ∈ Rm × Rn.
We say that a function f(U, V ) is C`-function with respect to a monomial ω(U), if f
is C` w.r.t. V in a neighborhood of 0 ∈ Rn, and if there is a quadrant U = [0, u1) ×
· · · × [0, un) ⊂ Rm where the monomial ω(U) is defined and such that the function
f̃(ω,U, V ) = f(U, V ) is C` with respect to ω in U . Similarly, the function f is said to
be a C`-function with respect to monomials ω1, . . . , ωs if there is a quadrant U where the
monomials are defined and such that the function f̃(ω1, . . . , ωs, U, V ) = f(U, V ) is C`
with respect to ω1, . . . , ωs in U .

Observe that a function f which is differentiable w.r.t monomials is an ad-
missible function. As an example, consider f(U) = U1 lnU1φ(U) where φ(U) is
smooth. This function is smooth away from U = 0 and C0 at the origin. However,
it is not differentiable w.r.t. U1 at U1 = 0 but it is differentiable with respect to
ω = U1 lnU1 at ω = 0.

Let V ∈ Rm, Z ∈ R, and as usual ε denotes a small parameter.

Definition 3.2.3 (Exponential type function). A function D(V,Z, ε) is called of
exponential type if it has the following form

D(V,Z, ε) = B(V, ε) + Z exp
(
−A(V, ε) + Φ(V, ε, Z)

ε

)
, (3.8)

where A and B, are C` admissible functions with A > 0, and B(V, 0) = 0; and where Φ
is C` in z and C` w.r.t. monomials of (V, ε) with Φ(V, 0, Z) = 0. We distinguish two
particular cases

1. the exponential type function D is without shift if B ≡ 0.

2. the exponential type function D is linear if Φ(V,Z, ε) ≡ Φ(V, ε)

Remark 3.2.1. Given a function D and if it is of exponential type, the representation of
D is unique in the sense that all the functions in r.h.s of (3.8) are computable from D. In
fact
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B = D(V, 0, ε)

A = lim
Z→0

(
−ε ln

(
D(V,Z, ε)−D(V, 0, ε)

Z

))
Φ = −ε ln

(
D(V,Z, ε)−D(V, 0, ε)

Z

)
−A.

We want to study the scenario where we have to compose D with some other
functions and want to keep the exponential type structure. To be more precise,
we consider D as an (V, ε)−parameter family of functions (in Z) and compose it
with a (V, ε)−parameter family of diffeomorphisms Ψ(V,ε) on R.

Proposition 3.2.1 (Composition on the left). Let Ψ(V,ε) : R → R be a family of
diffeomorphisms, and let D be an exponential type function. Then, the composition
Ψ(V,ε) ◦D is also of exponential function of the form

D̃ = B̃(V, ε) + Z exp
(
−A(V, ε) + Φ̃(V,Z, ε)

ε

)
.

Proof. Let us simplify the notation by writing Ψ = Ψ(V,ε). Since Ψ is a diffeo-
morphism we can write Ψ(a+ b) = Ψ(a) + C(1 + ψ(a, b))b, near b = 0, with ψ a
C` function such that ψ(a, 0) = 0 and with C > 0. Then we have

Ψ ◦D(z) = Ψ
(
B + Z exp

(
−A+ Φ

ε

))
= Ψ(B) + C(1 + ψ(V,Z, ε))Z exp

(
−A+ Φ

ε

)
.

Since C > 0 we can take the logarithm of C(1 + ψ(V,Z, ε)) and then we have

Ψ ◦D(z) = Ψ(B) + exp(ln(C(1 + ψ))Z exp
(
−A+ Φ

ε

)
= Ψ(B) + Z exp

(
−A+ Φ + ε ln(C(1 + ψ)

ε

)
.

The result is obtained by setting B̃ = Ψ(B) and Φ̃ = Φ + ε ln(C(1 + ψ).

Proposition 3.2.2 (Composition on the right). Let Ψ(V,ε) : R → R be a family of
diffeomorphisms with no shift, that is Ψ(V,ε)(0) = 0 for all (V, ε), and let D be an
exponential type function. Then, the composition D ◦ Ψ(V,ε) is also of exponential
function of the form

D̃ = B̃(V, ε) + Z exp
(
−A(V, ε) + Φ̃(V,Z, ε)

ε

)
.
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Proof. Let us simplify the notation by writing Ψ = Ψ(V,ε). Since Ψ(0) = 0 we can
write Ψ(z) = C(1 +O(z))z with C > 0. Then we have

D ◦Ψ(z) = D(C(1 +O(z))z) = B(V, ε) + C(1 +O(z))z exp
(
−A(V, ε) + Φ(V, ε,Ψ)

ε

)
= B(V, ε) + z exp

(
−A(V, ε) + Φ(V, ε,Ψ) + ε ln(C(1 +O(z)))

ε

)
.

The result then is obtained by setting Φ̃ = Φ(V, ε,Ψ) + ε ln(C(1 +O(z))).

Remark 3.2.2. If we want the composition Π ◦ Ψ(V,ε) to be of exponential type, the
family Ψ(V,ε) cannot be arbitrary. In order to preserve the structure, Ψ(V,ε) should satisfy
the hypothesis of proposition 3.2.2. In corollary 3.2.2 we show a particular case in which
the diffeomorphism Ψ can have a shift and yet preserve the structure of the exponential
type function.

Let us proceed by presenting a couple of useful corollaries.

Corollary 3.2.1. Let D1 and D2 be two exponential type functions of the form

D1(V,Z, ε) = Z exp
(
−A1(V, ε) + Φ1(V,Z, ε)

ε

)
D2(V,Z, ε) = B2(V, ε) + Z exp

(
−A2(V, ε) + Φ2(V,Z, ε)

ε

)
,

that is, D1 is an exponential type function with no shift. Then D2 ◦D1 is an exponential
type function.

Corollary 3.2.2. Let D1 and D2 be two exponential type functions with D2 linear, this
is

D1(V,Z, ε) = B1(V, ε) + Z exp
(
−A1(V, ε) + Φ1(V,Z, ε)

ε

)
D2(V,Z, ε) = B2(V, ε) + Z exp

(
−A2(V, ε)

ε

)
.

Then the composition D2 ◦D1 is of exponential type.

Later in this document, we will find transitions in which a component is given
by an exponential type transition. To be more specific, let X(V,Z, ε) be a given
vector field on Rm+2, and let Σ0 and Σ1 be codimension one subsets of Rm+2

which are transversal to the flow of X . For the moment it is sufficient to think
of a section Σi given by {Vj = v0} or by {ε = ε0}with v0 and ε0 fixed constants.
Induced from definition 3.2.3 we then have the following.
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Definition 3.2.4 (Exponential type transition). A transition Π : Σ0 → Σ1 is called
of exponential type if and only if its Z-component is an exponential type function. This
is, an exponential type transition is of the form

Π(V,Z, ε) = (G,D,H)

=
(
G(V, ε), B(V, ε) + Z exp

(
−A(V, ε) + Φ(V,Z, ε)

ε

)
, H(V, ε)

)
,

where G : Rm+1 → Rm and H : Rm+1 → R are C` with G(V, 0) = V and H(V, 0) =
0; where A, B and Φ are C`-admissible functions. The names exponential type transition
with no shift and linear are inherited as well from the type of D.

Let us now discuss a particular situation which will be useful later. Suppose
X is a given vector field on Rm+2, as above, and let Σi with i = 0, 1, 2, 3, 4, 5
be sections which are all transversal to the flow of X . Assume that X induces
exponential type transitions Πi : Σi−1 → Σi with i = 1, 2, 3, 4, 5 of the following
form

1. Π1 is with no shift and linear

2. Π2 is with no shift

3. Π3 is a general diffeomorphism

4. Π4 is with no shift

5. Π5 is with no shift and linear.

We need to show that the composition of all these five maps is an exponential
type transition.

Proposition 3.2.3. Let Πi : Σi−1 → Σi as described above. Then the composition
Π = Π5 ◦Π4 ◦Π3 ◦Π2 ◦Π1 is an exponential type map of the form

Π =
(
G̃(V, ε), B̃(V, ε) + Z exp

(
−Ã(V, ε) + Φ̃(V,Z, ε)

ε

)
, H̃(V, ε)

)
,

where Ã = A1 +A2 +A4 +A5.

Proof. Let us write each of the transitions as follows.

1. Π1(V,Z, ε) = (G1, D1, H1) =
(
G1, Z exp

(
−A1(V,ε)

ε

)
, H1

)
2. Π2(V,Z, ε) = (G2, D2, H2) =

(
G2, Z exp

(
−A2(V,ε)+Φ2(V,Z,ε)

ε

)
, H2

)
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3. Π3(V,Z, ε) = (G3, D3, H3)

4. Π4(V,Z, ε) = (G4, D4, H4) =
(
G4, Z exp

(
−A4(V,ε)+Φ4(V,Z,ε)

ε

)
, H4

)
5. Π5(V,Z, ε) = (G5, D5, H5) =

(
G5, Z exp

(
−A5(V,ε)

ε

)
, H5

)
For brevity let Π2 ◦Π1 = (G̃2, D̃2, H̃2). Then we have

(G̃2, D̃2, H̃2) =(
G2(G1, H1), D1 exp

(
−A2(G1, H1) + Φ2(G1, D1, H1)

H1

)
, H2(G1, H1)

)
.

Now, we take care only of the Z-component of the composition Π2 ◦Π1. From
the hypothesis on G1 and H1 we can write G1 = V +O(ε) and H1 = αε(1 +O(ε))
with α > 0, then

D̃2 = Z exp
(
−A1(V, ε) +A2(V, ε) + Φ̄2(V,Z, ε)

ε

)
,

where we have gathered in Φ̄2 the function Φ1 and the terms resulting from
taking G1 = V +O(ε) and H1 = αε(1 +O(ε)). In a similar way, letting Π5 ◦Π4 =
(G̃5, D̃5, H̃5) we get

D̃5 = Z exp
(
−A4(ε) +A5(ε) + Φ̄5(V,Z, ε)

ε

)
Next, and following similar arguments as above, we know from proposi-

tion 3.2.1 that the composition Π321 = Π3 ◦ Π2 ◦ Π1 is of exponential type with
shift. Finally since the transition Π54 = Π5 ◦ Π4 is of exponential type with no
shift, and using proposition 3.2.1, we have that Π54 ◦Π321 is an exponential type
transition as claimed in the proposition.

Remark 3.2.3. In the case where Π3 is an exponential type map, we get a similar result
with Ã = A1 +A2 +A3 +A4 +A5.

3.3 Formal normal form of Ak slow fast systems

In several works dealing with the geometric desingularization of slow fast sys-
tems, e.g. [8, 13, 27, 26, 28, 36], the blow-up technique is directly applied to
the vector field being studied. Here, however, we propose an intermediate step
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that simplifies the analysis. Namely, before applying the blow-up we normalize
the Ak-SFS (given in definition 3.1.3). Briefly speaking, if we consider a small
neighborhood of the origin then we may regard an Ak-SFS as a vector field X
written as

X :



x′1 =
x′j =
z′ =
ε′ =

ε
0
g
0

+

ε2f̃1
ε2f̃j
εg̃
0

F P

where F is “the principal part” of X and P is a “perturbation term”. The vector
field F contains the essential information of X , in particular it contains the relev-
ant expression of the slow manifold S. Thus, we want to find a transformation
Φ : Rk+1 → Rk+1 which conjugates X to its principal part F .

In fact, we can do better by considering X to be given as X = F + P , where

F = ε
∂

∂x1
+
k−1∑
i=2

0 ∂

∂xi
+ g

∂

∂z
+ 0 ∂

∂ε
,

P =
k−1∑
i=1

εf̃i + εg̃
∂

∂z
+ 0 ∂

∂ε
,

(3.9)

and where

g = −

zk +
k−1∑
j=1

xjz
j−1

 .

Remark 3.3.1. We shall show that F is (formally) stable in the following sense: any
ε-perturbation X = F + P (see (3.9)) of F is formally conjugate to F .

The procedure of normalizing the vector field X is motivated by [29], where
normal forms of quasihomogeneous vector fields are investigated. The formula-
tion of this section is based on the concepts of quasihomogeneous polynomials
and vector fields [4, 29]; refer also to appendix A.5.

In brief terms (see more details in appendix A.5), let y ∈ Rn and let f : Rn → R
be a smooth function. The function f is said to be quasihomogeneous of quasidegree
δ and type r = (r1, . . . , rn) if and only if for every λ ∈ R we have

f(λr1y1, . . . , λ
rnyn) = λδf(y1, . . . , yn).
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A vector field Y =
∑n
i=1 fi

∂
∂yi

is said to be quasihomogeneous of quasidegree
γ and type r = (r1, . . . , rn) if each of the functions fi is quasihomogeneous of
quasidegree γ + ri and type r. An r-quasihomogeneous vector field Y is said
to be of quasiorder γ if all its components are functions of quasidegree σ + ri or
higher.

Following the previous description, the vector field F is quasihomogeneous
of quasidegree k − 1 and type r = (k, k − 1, . . . , 1, 2k − 1). From now on, we fix
the type of quasihomogeneity r. For shortness, we shall write that a polynomial
(or a vector field) is r-quasihomogeneous if its type of quasihomogeneity is r.

Definition 3.3.1 (Good perturbation). Let F be an r-quasihomogeneous vector field
of quasidegree k − 1. A good perturbation X of F is a smooth vector field X = F + P ,
where P = P (x1, . . . , xk−1, z, ε) has the following properties

1. P =
∑k−1
i=1 Pi

∂

∂xi
+ Pk

∂

∂z
+ 0 ∂

∂ε
is a smooth vector field of quasiorder k. That

is, each function Pj is r-quasihomogeneous of quasidegree k + rj or higher.

2. P (x1, . . . , xk−1, z, 0) = 0.

Remark 3.3.2. A straightforward computation shows that a good perturbation X =
F + P of F satisfies

P =
k−1∑
i=1

εP̄i
∂

∂xi
+ εP̄k

∂

∂z
+ 0 ∂

∂ε
,

where P̄1(0) = 0 and P̄j is any r-quasihomogeneous polynomial of quasiorder 0.

Now, we need the operators d, d∗ and � as introduced in [29]. Let us denote
byHγ the space of k+1 dimensional r-quasihomogeneous vector fields of degree
γ whose elements are of the form

U =
k+1∑
i=1

Ui
∂

∂yi
,

where Uk+1 = 0 and Ui(y1, . . . , yk, 0) = 0 for all i. We identify then y with
(x, z, ε).

Definition 3.3.2 (The operators d, d∗ and �). The operator d : Hγ → Hγ+k−1 is
defined by d(U) = [F,U ] for any U ∈ Hγ and where [·, ·] denotes the Lie bracket. The
operator d∗ is the adjoint operator of d with respect to the inner product of definition
A.5.7. That is, given U ∈ Hγ , V ∈ Hγ+k−1 we have

〈d(U), V 〉r,γ+k−1 = 〈U, d∗(V )〉r,γ
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For any quasidegree β > k − 1, the self adjoint operator �β : Hβ → Hβ is defined
by �β(U) = dd∗(U) for U ∈ Hβ .

Definition 3.3.3.

• A vector field U ∈ Hβ is called resonant if U ∈ ker�β .

• A formal vector field is called resonant if all its quasihomogeneous components are
resonant.

• A good perturbation X = F +R of F is a normal form with respect to F if R
is resonant.

Now, recall a result of [29] (Proposition 4.4), only adapted for the present
context.

Theorem 3.3.1 (Formal normal form [29]). Let X = F +P be a good perturbation of
F as in definition 3.3.1. Then there exists a formal diffeomorphism Φ̂ that conjugates X̂
to a vector field F +R, where R is a resonant formal vector field in the sense of definition
3.3.3.

Using theorem 3.3.1, we next show that a good perturbation X of F is in fact
formally conjugate to F .

Theorem 3.3.2. Let X = F + P be a good perturbation of the vector field

F = ε
∂

∂x1
+
k−1∑
i=2

0 ∂

∂xi
−

zk +
k−1∑
j=1

xjz
j−1

 ∂

∂z
+ 0 ∂

∂ε
.

Then, there exists a formal diffeomorphism Φ̂ such that Φ̂∗X = F .

Proof. See section 3.5.2

Theorem 3.3.2 shows that any good perturbation X = F + P is (formally)
conjugate to F . Next, by Borel’s lemma [10], the vector field F can be realized as
a smooth vector field XN = F + P̃ where P̃ is of the form

P̃ =
k−1∑
i=1

P̃i
∂

∂xi
+ P̃k

∂

∂z
+ 0 ∂

∂ε
,

where each P̃j is flat at the origin and P̃j |ε=0 = 0, j = 1, . . . , k. More specifically,
in the rest of the document we assume that an Ak-SFS has a smooth normal form



73 Chapter 3. Slow fast systems

given by

XN :


x′1 = ε(1 + εf̃1)
x′j = ε2f̃j

z′ = −
(
zk +

∑k−1
i=1 xiz

i−1
)

+ εf̃k

ε′ = 0

(3.10)

where all the functions f̃i = f̃i(x, z, ε) are flat at (x, z, ε) = (0, 0, 0) ∈ Rk+1.
This normal form XN is of course not unique and it is given up to flat terms.
The smooth (and maybe analytic) version of theorem 3.3.2 is an open problem.
However, the fact that the perturbations f̃i are flat greatly simplifies the local
analysis of (3.10) as shown in chapter 4.

3.4 Geometric desingularization

In this section, the geometric desingularization technique (also known as blow-
up) is briefly recalled. For brevity purposes, we restrict ourselves to a vector field
X given by (3.10). We remark however, that this is only one of several methods
to study singular perturbation problems, see e.g. [30, 31, 44] for a recollection of
asymptotic methods.

Observe that the origin is a non-hyperbolic singularity of X . Since the vector
field X is quasihomogeneous (see appendix A.5), we make use of the so called
quasihomogeneous blow-up. This technique consists on performing the change of
coordinates

x1 = rkx̄1, x2 = rk−1x̄2, . . . , xk−1 = r2x̄k−1, z = rz̄, ε = r2k−1ε̄, (3.11)

where x̄2
1 + · · ·+ x̄2

k−1 + z̄2 + ε̄2 = 1 and r ∈ [0,+∞). That is (x̄, z̄, ε̄, r) ∈ Sk×R+.
Since ε ≥ 0, we can restrict the coordinates to ε̄ ≥ 0. Note that Sk×{0} is mapped,
via the blow-up map (3.11), to the origin of Rk+1. The powers or weights of the
blow-up map (3.11) are obtained from the type of quasihomogeneity of X , see
section 3.3 and appendix A.5.

Let us denote by Φ(x̄, z̄, ε̄) the blow-up map (3.11). This map induces a smooth
vector field X̃ on Sk−1 × R+ defined by Φ∗X̃ = X . It is often the case in which
the vector field X̃ is degenerate along Sk−1 × {0}. Then one defines X̄ = 1

rm X̃

for a well chosen positive integer m. Since r ∈ R+, the phase portraits of X̃ and
X̄ are equivalent outside Sk × {0}, and therefore it is equally useful to study X̄
instead of X̃ . It turns out that the vector field X̄ is simpler that X in the sense
that the singularities of X̄ are semi-hyperbolic or even hyperbolic, in contrast to
the non-hyperbolic singularity of X . One obtains a complete description of the
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flow of X near the origin by studying the flow of X̄ for (x̄, z̄, ε̄, r) ∈ Sk × [0, r0)
for r0 > 0.

For problems of dimension greater than 2, performing computations in spher-
ical coordinates becomes tedious. Therefore, it is more convenient to consider
charts. A chart is a parametrization of a hemisphere of the ball Sk × [0, r0). More
specifically, the charts are given by

K±x̄i = {x̄i = ±1} , K±z̄ = {z̄ = ±1} , Kε̄ = {ε̄ = 1} , (3.12)

and we always keep r ∈ [0, r0). Naturally, an analysis on all charts provides a
complete picture near Sk × [0, r0). Finally, we remark that since ε is a parameter,
the function r2k−1ε̄ is constant along the orbits of X̄ . This fact is useful in the
analysis of X̄ . See fig. 3.2 for a schematic description of the blow-up map and the
charts.

Sk × [0, r0)

Skz̄

ε̄
x̄1

Kε̄

Kx̄1

Figure 3.2: The blow-up space and the charts. Each chart K` parametrizes a region
of the ball Sk × [0, r0). A local analysis in the charts provides a full picture of the
dynamics of the vector field X̄ .

In order to be systematic with our exposition, first we present some general
properties of the vector fields obtained on each chart.

3.4.1 The local vector fields on the blow-up charts

In this section we provide the list of vector fields which are obtained via blow-up
on each chart. We remark that to obtain such “blown up vector fields”, one
performs the directional blow-up define on each chart. For example, to obtain the
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blown up vector field in the chart K−x̄1 = {x̄1 = −1} one performs the change of
coordinates

x1 = −rk, x2 = rk−1x̄2, . . . , xk−1 = r2x̄k−1, z = rz̄, ε = r2k−1ε̄.

Carrying out standard computations on finds the following.

Proposition 3.4.1. Let X be an Ak-SFS given in normal form

X :


x′1 = ε(1 + εf̃1)
x′j = ε2f̃j

z′ = −
(
zk +

∑k−1
i=1 xiz

i−1
)

+ εf̃k

ε′ = 0

,

where all the functions f̃i = f̃i(x, z, ε) are flat at (x, z, ε) = (0, 0, 0) ∈ Rk+1. Let
Φ : Sk × R+ → Rk+1 be the blow-up map (3.11). Consider the charts defined by (3.12).
Then, up to smooth equivalence, the blown up vector fields on each of the charts are given
as follows.

• In the charts K±x̄1 the corresponding local vector field reads as

X±x̄1 :


r′ = ±rε̄
x̄′j = ∓(k − j + 1)ε̄x̄j + ε̄2f̄j

ε̄′ = ∓(2k − 1)ε̄2

z̄′ = −k
(
z̄k +

∑k−1
i=2 x̄iz̄

i−1 ± 1± 1
k ε̄z̄
)

+ ε̄ḡ

where the functions f̄j and ḡ are flat along {r = 0}.

• In the charts K±x̄j , for j ∈ {2, . . . , k − 1}, the corresponding local vector field
reads as

X±x̄j :



r′ = ε̄f̄0

x̄1 = ε̄(1 + f̄1)
x̄′p = ε̄f̄p

ε̄ = ε̄f̄k+1

z̄′ = −
(
z̄k +

∑k−1
i=1,i6=j x̄iz̄

i−1 ± z̄j−1
)

+ ε̄f̄k,

where the functions f̄p, for p = 0, 1, 2, . . . , j − 1, j + 1, . . . , k − 1, are flat along
{r = 0}.
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• In the chart K±z̄ the corresponding local vector field reads

X±z̄ :


r′ = ∓r + ε̄ḡ

x̄′1 = ±kx̄1 + ε̄L(x̄) + ε̄f̄1

x̄′j = ±(k − j + 1)x̄j + ε̄f̄j

ε̄′ = ±(2k − 1)ε̄+ ε̄2h̄,

where

L(x̄) = 1
(±1)k +

∑k−1
i=1 (±1)i+1xi

,

and where the functions ḡ, f̄i and h̄ are all flat along {r = 0}.

• In the chart Kε̄ the corresponding local vector field reads

X ε̄ :


r′ = 0
x̄′1 = 1 + f̄1

x̄′j = f̄j

z̄′ = −
(
z̄k +

∑k−1
i=1 xiz

i−1
)

+ ḡ,

where the functions f̄i and ḡ are all flat along {r = 0}.

Remark 3.4.1. It becomes important to relate the local coordinates of the charts. This is
done by means of a “matching map” M j

i : Ki → Kj . For more details see chapter 4.

Remark 3.4.2. Whenever suitable, normal form theory is used to normalize the blown
up vector fields of proposition 3.4.1. In this way, the transitions are expressed in a simpler
format.

Proof of proposition 3.4.1. The proof is carried out by standard computations
following the coordinate transformation of each chart. The coordinate transform-
ation of the chart Km (m being ±x̄i, ±z̄ or ε̄) induces a vector field X̃m on each
chart. Such a vector field is degenerate and thus we must define Xm = 1

rk−1 X̃m.
Finally one multiplies Xm by a suitable non-zero smooth function to obtain the
expressions of the proposition.

3.5 Proofs

3.5.1 Proof of proposition 3.1.2
This result is an application of Takens’s normalization theorem [37]. However, we remark that in some situations,
this normalizing change of coordinates must respect some constraints, for example, we could ask that the change
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of coordinates preserves a certain invariant manifold or more generally, a certain invariant foliation. This requires
the adaptations due to Bonckaert [6, 7].

As a preliminary step, and instead of working withXε, we consider the equivalent vector fieldX defined on
R× Rm × R× R given as

X = ε(1 + f1)
∂

∂u
+

m∑
j=1

εgj
∂

∂vj
+H

∂

∂z
+ 0

∂

∂ε
.

The first step is to divide the vector field X by 1 + f1. In a sufficiently small neighborhood of the origin this
is a smooth equivalence relation. That is Y = 1

1+f1
X reads as

Y = ε
∂

∂u
+

m∑
j=1

ε
2
g̃j

∂

∂vj
+ H̃

∂

∂z
,

where g̃j , for 2 ≥ j ≥ k− 1, and H̃ are smooth with H̃(0) = 0 and ∂H̃
∂z (0) < 0. Now we note that the origin of

Rm+3 is a semyhyperbolic equilibrium point with (u, v, ε) being center coordinates and z being the hyperbolic
coordinate. We can now use Takens-Bonckaert results on the normal form of partially hyperbolic vector fields
[6, 7, 37]. This result tells us that there exists a C` change of coordinates (maybe respecting some constraints if
required) under which Y is conjugated to

Ȳ = ε
∂

∂U
+

m∑
j=1

ε
2
Ḡj

∂

∂Vj
+ H̄Z

∂

∂Z
,

where Ḡj = Ḡj(U, V, ε), for 2 ≥ j ≥ k − 1, and H̄ = H̄(U, V, ε) are C` functions, and where {Z = 0}
corresponds to a chosen center manifoldW

C
. We remark that in the vector field Ȳ , the functions Ḡj and H̄ are

independent of Z. Furthermore we have

H̄(0, 0, 0) =
∂H̃

∂z
(0, 0, 0, 0) < 0.

This means that in a small neighborhood of the origin Ȳ can be divided by |H̄|. In other words, Ȳ is C`-
equivalent to

Y = εG
∂

∂U
+

m∑
j=1

ε
2
K̄j

∂

∂Vj
− Z

∂

∂Z
,

where G(0, 0, 0) 6= 0 and K̄j = K̄j(U, V, ε), for 2 ≥ j ≥ k − 1, are C`. Next, since W
C

= {Z = 0} is
invariant under the flow of Y , we can study the restriction Y|Z=0. This is

Y|Z=0 = εG
∂

∂U
+

m∑
j=1

ε
2
K̄j

∂

∂Vj
.

For ε 6= 0, the vector field Y|Z=0 is regular because G(0, 0, 0) 6= 0. Thus, by the flow-box theorem, there
exists a change of coordinates, depending in a C` way on ε, under which Y|Z=0 can be written as

ε
∂

∂U
+

m∑
j=1

0
∂

∂Vj
.
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This implies that Y is C`-equivalent to

X
N
reg = ε

∂

∂U
+

m∑
j=1

0
∂

∂Vj
− Z

∂

∂Z
,

as stated in the proposition.

3.5.2 Proof of theorem 3.3.2
First, it is important to note the following.

Lemma 3.5.1. ker�β = ker d∗|Hβ .

Proof. Let α = k − 1, then d : Hγ → Hγ+α and d∗ : Hγ+α → Hγ . Due to the fact that d∗ is the adjoint of
d, we have the decomposition Hγ = Im d∗|Hγ+α ⊕ ker d|Hγ . Now let U ∈ Hγ+α = Hβ , then �β(U) =
dd∗(U) = 0 if and only if d∗U ∈ ker d. Furthermore, d∗U ∈ Im d∗. That is d∗U ∈ Im d∗ ∩ ker d. However
Im d∗ and ker d are orthogonal. Then �β(U) = 0 if and only if d∗U = 0.

From theorem 3.3.1 and lemma 3.5.1 we will show that if P ∈ ker d∗|H≥k then P = 0. Let us start by
rewriting d∗(P ) in a more workable format.

Let α ≥ k and P ∈ Hα. Let also β = α− k + 1 andQ ∈ Hβ . We proceed from the definition

〈d(Q), P 〉r,α = 〈Q, d∗(P )〉r,β .

For simplicity of notation let x = (x1, . . . , xk−1, z, ε) = (x1, . . . , xk−1, xk, xk+1). Note that we can

write d(Q) =
∑k+1

i=1
F (Qi)−Q(Fi), where F (Qi) =

∑k+1
j=1

Fj
∂Qi

∂xj
and similarly forQ(Fi), then

〈d0(Q), P 〉r,α =
k+1∑
i=1

〈F (Qi)−Q(Fi), Pi〉r,β

=
k+1∑
i=1

〈F (Qi), Pi〉r,α+ri − 〈Q(Fi), Pi〉r,α+ri

=
k+1∑
i=1

〈Qi, F∗(Pi)〉r,β+ri − 〈Q(Fi), Pi〉α+ri

=
k+1∑
i=1

〈Qi, F∗(Pi)〉r,β+ri −
k+1∑
j=1

〈Qj ,
(
∂Fi

∂xj

)∗
(Pi)〉β+rj

=
k+1∑
i=1

〈Qi, F∗(Pi)−
k+1∑
j=1

(
∂Fj

∂xi

)∗
(Pj)〉β+ri
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Comparing with 〈Q, d∗(P )〉r,β , we can write

d
∗(P ) =


F∗ −

(
∂F1

∂x1

)∗
−
(
∂F2

∂x1

)∗
· · · −

(
∂Fk+1

∂x1

)∗
−
(
∂F1

∂x2

)∗
F∗ −

(
∂F2

∂x2

)∗
· · · −

(
∂Fk+1

∂x2

)∗
...

...
. . .

...

−
(

∂F1

∂xk+1

)∗
−
(

∂F2

∂xk+1

)∗
· · · F∗ −

(
∂Fk+1

∂xk+1

)∗


 P1

P2
...

Pk+1

 . (3.13)

Recall that P (in our context) is of the form

P =
k−1∑
i=1

Pi
∂

∂xi
+ Pk

∂

∂z
+ 0

∂

∂ε
,

then, plugging in F and P into (3.13), we are now concerned with

d
∗(P ) =


F∗ 0 · · · 0 1 0
0 F∗ · · · 0 z∗ 0
...

...
. . .

...
...

0 0 · · · F∗
(
zk−1

)∗
0

0 0 · · · 0 F∗ + Z∗ 0
−1 0 · · · 0 0 F∗




P1
P2

...
Pk−1
Pk
0

 = 0. (3.14)

where Z∗ =
(
kzk−1 +

∑k−1
i=2

(i− 1)xizi−2
)∗

. Now note that (3.14) implies F∗(Pj) = 0 for all j =
2, . . . , k − 1 and P1 = Pk = 0.

Remark 3.5.1. For k = 2, the fold case, the result is trivial. The vector field F is

F = ε
∂

∂x1
− (z2 + x1)

∂

∂z
+ 0

∂

∂ε
,

and d∗(P ) = 0 is written as

d
∗(P ) =

[
F∗ 1 0
0 F∗ + 2z∗ 0
−1 0 F∗

][
P1
P2
0

]
= 0,

which immediately implies P1 = P2 = 0.

So, we study the problem F∗(Pj) = 0. Recall that P = P (x1, . . . , xk−1, z, ε) is not any vector field, but
it has the property that P (x1, . . . , xk−1, z, 0) = 0. That is, we can write

P =
k−1∑
i=1

εP̄i
∂

∂xi
+ εP̄k

∂

∂z
+ 0

∂

∂ε
,

where P̄j ∈ Pα+ri−2k+1. That is because the weight of ε is 2k − 1. Now, since it is complicated to work with
the adjoint, we first rewrite the problem F∗(εP̄j) = 0. We then prove that F∗(εP̄j) = 0 implies that P̄j = 0.

Note that F∗(εP̄j) = 0 is equivalent to 〈Q,F∗(εP̄j)〉α+rj−k+1 = 0 for all Q ∈ Pα+rj−k+1. Next, we
use the definition of F∗ that is

〈Q,F∗(εP̄j)〉α+rj−k+1 = 〈F (Q), εP̄j〉r,α+rj = 0.



3.5. Proofs 80

Now, we look for conditions on εP̄j given that the latter equality is satisfied.
Assume 〈F (Q), εP̄j〉α+rj = 0 holds for all Q ∈ Pα+rj−k+1. Then we choose an element xq of the basis

of Pα+rj−k+1 given as

x
q = x

q1
1 · · · x

qk−1
k−1 z

qkε
qk+1 , (r, q) = α+ rj − k + 1.

Next we have

F (xq) = q1x
q1−1
1 · · · x

qk−1
k−1 z

qkε
qk+1+1 −

(
z
k +

k−1∑
i=1

xiz
i−1

)
qkx

q1
1 · · · x

qk−1
k−1 z

qk−1
ε
qk+1 .

Let us write εP̄j as

εP̄j = ε

∑
(r,p)=α+rj

apx
p1
1 · · · x

pk−1
k−1 z

pkε
pk+1 ,

where ap ∈ R. We now proceed by recursion on the exponent of ε.
Let qk+1 = 0, then the inner product 〈F (Q), εP̄j〉α+rj has only one term since F (Q) has only one

monomial containing ε. That is

〈F (Q), εP̄j〉α+rj |qk+1=0 = 〈q1x
q1−1
1 · · · x

qk−1
k−1 z

qkε, εapx
p1
1 · · · x

pk−1
k−1 z

pk 〉r,α+rj = 0. (3.15)

We naturally consider q1 > 0. If q1 = 0, then the equality is automatically satisfied. Recalling the definition
A.5.7 of the inner product, the equality (3.15) means that

〈q1x
q1−1
1 · · · x

qk−1
k−1 z

qkε, εapx
p1
1 · · · x

pk−1
k−1 z

pk 〉r,α+rj = q1ap
(q!)r

(α+ rj)!
= 0,

and therefore

ap = aq1−1,p2,...,pk,1 = 0, (3.16)

for all q1 > 0, p2, . . . , pk ≥ 0 (naturally, also satisfying the degree condition (r, p) = α+ rj ).
Next, let qk+1 = 1. Then

F (xq) = q1x
q1−1
1 · · · x

qk−1
k−1 z

qkε
2 −

(
z
k +

k−1∑
i=1

xiz
i−1

)
qkx

q1
1 · · · x

qk−1
k−1 z

qk−1
ε.

Once again, the inner product 〈F (Q), εP̄j〉r,α+rj has only one term, now this is due to the fact that all
coefficients ap of monomials containing ε are zero due to (3.16). Then

〈F (Q), εP̄j〉α+rj |qk+1=1 = 〈q1x
q1−1
1 · · · x

qk−1
k−1 z

qkε
2
, εapx

p1
1 · · · x

pk−1
k−1 z

pkε〉r,α+rj = 0.

Therefore, similarly as above, we have the condition

ap = aq1−1,p2,...,pk,2 = 0,

for all q1 > 0, p2, . . . , pk ≥ 0 (naturally, also satisfying the degree condition (r, p) = α+ rj ).
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By recursion, assume qk+1 = n and that all the coefficients

ap = ap1,p2,...,pk,m = 0, ∀m ≤ n.

Then again the inner product 〈F (Q), εP̄j〉r,α+rj has only one term, namely

〈F (Q), εP̄j〉α+rj |qk+1=n = 〈q1x
q1−1
1 · · · x

qk−1
k−1 z

qkε
n+1

, εapx
p1
1 · · · x

pk−1
k−1 z

pkε
n〉r,α+rj = 0,

which implies

ap = aq1−1,p2,...,pk,n+1 = 0.

This finishes the proof of 〈F (Q), εP̄j〉r,α+rj = 0 implies P̄j = 0.
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Chapter 4

Applications

In this chapter, we investigate the local dynamics of the A2 (fold), A3 (cusp)
and A4 (swallowtail) slow fast systems. Our analysis is based on the several
techniques described in chapter 3. We also use the technical results (regarding
normal forms and transition maps) described in appendix A.6.

Remark 4.0.2.

• Slow fast systems near a fold, that is A2-SFSs, have been already studied in e.g.
[27]. However, here we use our proposed normal form of section 3.3 and compare
the relevant results.

• Similarly, the A3-SFSs have been studied in [8]. In section section 4.2, however,
we provide a refinement of the the results presented in [8].

• A similar methodology as the presented here can be used to study all Ak-SFS. In
this way, our approach is systematic.

To simplify the notation we let the parameters be denoted as (x1, x2, x3) =
(a, b, c). This matches our exposition of chapter 2 as well as the list of catastrophes
provided in table A.1.

4.1 Analysis of the A2-SFS

In this section we study an A2 slow fast system, which is given as

X :


a′ = ε(1 + f)
z′ = −

(
z2 + a

)
+ εg

ε′ = 0,
(4.1)

83
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where, thanks to theorem 3.3.2, f = f(a, z, ε) and g = g(a, z, ε) are flat functions
at (a, z, ε) = (0, 0, 0). The corresponding contrained differential equation and the
corresponding layer equation have phase portraits as shown in fig. 4.1.

a a

z z

S S

Figure 4.1: Left: the phase portrait of the corresponding CDE of (4.1). Right: the phase
portrait of the corresponding layer equation of (4.1). The set S corresponds to the slow
(or critical) manifold.

We are interested in computing the transition map Π : Σen → Σex defined by
the flow of X and where

Σen =
{

(a, z, ε) ∈ R3 | a = −a0, z > 0
}

Σex =
{

(a, z, ε) ∈ R3 | z = −z0, a > 0
}
,

where a0 > 0 and z0 > 0 are small constants. Using the techniques of chapter 3
we have the following.

Proposition 4.1.1. Consider X , Σen and Σex given as above. Then the transition map
Π : Σen → Σex is given by

Π :Σen → Σex

(z, ε) 7→ (ã, ε̃),

where

ε̃ = ε

ã = ε2/3 +O(ε).

See fig. 4.2 for a qualitative description of this result.

Remark 4.1.1. Compare proposition 4.1.1 with e.g. theorem 2.2 of [27] where it is
shown that

ã = c1ε
2/3 + c2ε ln ε+ c3ε+O(ε4/3 ln(ε)), (4.2)
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a

z

Σex

Σen
Sε

S

Figure 4.2: Qualitative picture of the flow of (4.1) near the origin. We study trajectories
passing through Σen and that arrive at Σex transversally. Before Σen, the manifold Sε

is given by Fenichel’s theory. Afterwards we compute a continuation of Sε passing
through the fold point.

for some constants c1, c2 and c3. We remark that our result does not have the logarithmic
terms of (4.2) thanks to the formal normal form step that we have performed.

Through the following sections, we prove proposition 4.1.1.

Blow up and charts

Following our exposition of section 3.4 we shall use the blow-up technique to
study the flow of X near the origin. The blow-up map Φ : S2×R+ → R3 is given
by

a = r2ā, z = rz̄, ε = r3ε̄,

where r ∈ R+ and (ā, z̄, ε̄) ∈ S2. The charts are given by

Ken = {ā = −1} , Kε = {ε̄ = 1} , Kex = {z̄ = −1} .

Qualitatively speaking, in chart Ken we study the trajectories of X before they
arrive at the fold point; in Kε̄ we study the trajectories of X passing through the
fold point; and in Kex we study the trajectories of X as they leave the fold point.
We provide the local analysis in each of the above charts. Later we compose the
local transitions in each chart in order to compute the map Π : Σen → Σex.

Remark 4.1.2 (On notation). Since we have to compose the maps obtained in each
chart Ken, Kε and Kex, and to avoid confusion, we shall use the following notation. Any
object O in chart Ken (resp Kε and Kex) shall be denoted by O1 (resp O2 and O3).
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Analysis in the chart Ken

The local coordinates in this chart are given by

a = −r2
1, z = r1z1, ε = r3

1ε1. (4.3)

The induced vector filed reads as

r′1 = −ε1r1(1 + f̄1)
ε′1 = 3ε2

1(1 + f̄1)

z′1 = −2(z2
1 − 1− 1

2ε1z1) + r1ε1ḡ1,

(4.4)

where f̄1 and ḡ1 are flat functions along {r1 = 0}. Observe that the equilibrium
set of (4.4) is

Γ1 =
{

(r1, ε1, z1) ∈ R3 | ε1 = 0, z1 = ±1
}
.

Let us define the sections

∆en
1 =

{
(r1, ε1, z1) ∈ R3 | r1 = r0, z1 > 0

}
∆ex

1 =
{

(r1, ε1, z1) ∈ R3 | ε1 = δ
}
,

where r0 = a
1/3
0 . Observe that the section ∆en

1 corresponds to Σen written in
the blow-up coordinates. That is Σen = Φ(∆en

1 ) with Φ given by (4.3). We are
interested in computing the transition

Π1 :∆en
1 → ∆ex

1

(z1, ε1) 7→ (r̃1, z̃1).

Let ζ1 = z1 − 1. This shift puts the origin at the equilibrium point (0, 0, 1).
With this new coordinate we can write (4.4) as

r′1 = −ε1r1(1 + f̄1)
ε′1 = 3ε2

1(1 + f̄1)

ζ ′1 = −2ζ(2 + ζ − 1
2ε1) + r1ε1ḡ1.

(4.5)

The line `1 = (r1, ε1, ζ1) = (r1, 0, 0) is an equilibrium set of (4.5) and it is equi-
valent, under the change of coordinates we performed, to Γ1. The linearization
of (4.5) along `1 has eigenvalues eigenvalues (0, 0,−2). This means that there
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exists a 2-dimensional center manifoldWC

which is tangent to {ζ1 = 0} along `1.
Observe that (4.5) satisfies the conditions of proposition A.6.2. Therefore there
exist a near identity C` transformation φ1 : (r1, ε1, ζ1) 7→ (r1, ε1, Z1) such that
(4.5) is C` equivalent to

XN :


r′1 = −ε1r1

ε′1 = 3ε2
1

Z ′1 = −2(2 +G(r1, ε1))Z1,

(4.6)

where G(0, 0) = 0. With the transformation performed, the center manifold is
now given asWC = {Z1 = 0}. Note that the flow of XN restricted to the center
manifoldWC

is, up to multiplication by ε1 linear. More specifically we have

1
ε1
XN |WC :

{
r′1 = −r1

ε′1 = 3ε1.
(4.7)

From the format of (4.7) we see that the origin (r1, ε1) = (0, 0) is a is a saddle
equilibrium point of (4.7). This allows us to understand the flow of XN in the
neighborhood of the origin and for ε1 > 0 but sufficiently small. See fig. 4.3 for a
qualitative description of the flows of (4.4), (4.4), and of (4.6).

r1

z1

ε1

r1

ζ1

ε1

r1

Z1

ε1

Figure 4.3: From left to right we show the phase portraits of (4.4), (4.4), and of (4.6)
respectively. We show only the flow restricted to z1 > 0 as it is the one which interests
us the most. The shown surface is an invariant center manifoldW

C

. This invariant
manifold is stable.

The manifoldWC

is very important in our analysis. From a geometric point
of view,WC

is a perturbation of the critical manifold S written in the blow-up
coordinates. Therefore, we will keep track ofWC

as in passes through the other
charts.

SinceXN is in normal form, we can now compute the transition Π1 : (ε1, Z1) 7→
(r̃1, Z̃1) by following proposition A.6.5. The time of integration is T = ln

(
δ
ε1

)
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(see the details in proposition A.6.5 ). We then have

r̃1 = r0

(ε1

δ

)1/3

Z̃1 = Z1 exp
(
− 4

3ε1
(1 + α̃1ε1 ln(ε1) + ε1G̃1)

)
,

where α̃1 = α̃1(r0ε
1/3
1 ) and G̃1 = G̃1(r0ε

1/3
1 ) are C` functions (recall that r0 is

a positive constant). As expected, the trajectories are attracted to the center
manifoldWC

(see the expression of Z̃1).
Now we return to the coordinate ζ1. We can write ζ1 = ψ(r1, ε1, Z1) where ψ

is a C` near identity transformation. This means that the relationship between ζ1
and Z1 can be written as follows

ζ1 = Z1(1 + ψ0(r1, ε1, Z1))
Z1 = ζ1(1 + φ0(r1, ε1, ζ1))

where ψ0 and φ0 are unknown C` functions. Then we obtain the expression for ζ̃1
as follows.

ζ̃1 = Z̃1(1 + ψ0)

= Z1 exp
(
− 4

3ε1
(1 + α̃1ε1 ln(ε1) + ε1G̃1)

)
(1 + ψ0)

= ζ1(1 + φ0) exp
(
− 4

3ε1
(1 + α̃1ε1 ln(ε1) + ε1G̃1)

)
(1 + ψ0)

= ζ1 exp(ln(1 + φ0)) exp(ln(1 + ψ0)) exp
(
− 4

3ε1
(1 + α̃1ε1 ln(ε1) + ε1G̃1)

)
= ζ1 exp

(
− 4

3ε1
(1 + α̃1ε1 ln(ε1) + ε1H̃1)

)
,

where we have absorbed the unknown function ln(1 +ψ0) and ln(1 +φ0) into the
unknown function H̃1. Finally recall that z1 is just a translation of ζ1 (ζ1 = z1− 1),
and therefore, in the coordinate z1 we have a transition that reads as

z̃1 = (z1 − 1) exp
(
− 4

3ε1
(1 + α̃1ε1 ln(ε1) + ε1H̃1)

)
+ 1.

Analysis in the chart Kε̄

In this chart the blow-up map is given by
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a = r2
2a2, z = r2z2, ε = r3

2.

Therefore, the blown up vector field reads as

r′2 = 0
a′2 = 1 + f̄2

z′2 = −(z2
2 + a2) + ḡ2,

(4.8)

where f̄2 and ḡ2 are flat functions along r2 = 0. Since r′2 = 0, the trajectories
of (4.4) are invariant on each plane given by {r2 = R}, with R ∈ R. We are
interested in a transition Π2 : ∆en

2 → ∆ex
2 where

∆en
2 = {(r2, a2, z2) | a2 = −a2,in}

∆ex
2 = {(r2, a2, z2) | z2 = −z2,out} ,

where a2,in and z2,out are sufficiently small positive constants.
Let S2 be the set

S2 =
{

(r2, a2, z2) ∈ R3|r2 = 0, a2 = −z2
2
}
.

See fig. 4.4 for a qualitative description of the flow of (4.8).

a2

z2

∆ex
2

∆en
2

S2

Figure 4.4: Qualitative picture of the flow of (4.8) with initial conditions at ∆en
2 .

Observe that the trajectories cross horizontally the set S2. This guarantees that all the
trajectories starting at ∆en

2 arrive in finite time to ∆ex
2 .

Note that since the (4.8) is regular, the map

Π2 :∆en
2 → ∆ex

2

(r2, z2) 7→ (r2, ã2)
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is a diffeomorphism. Therefore, there exists a smooth function φ2 = φ2(r2, z2)
such that ã2 = φ2. However, since r2 is a constant, we shall write ã2 = φ2,r2(z2),
where φ2,r2 is an r2-parameter family of diffeomorphisms.

Analysis in the chart Kex

In this chart the blow-up map reads as

a = r2
3a3, z = −r3, ε = br3ε3.

Accordingly, the blown up vector field is given by

r′3 = r3(1 + a3) + f̄3

a′3 = −2a3(1 + a3) + ε3 + ḡ3

ε′3 = −3ε3(1 + a3) + h̄3,

(4.9)

where the functions f̄3, ḡ3 and h̄3 are flat along r3 = 0. Note that the origin is
a hyperbolic equilibrium point of (4.9). This hyperbolic point has two stable
manifolds which are tangent to the a3 and the ε3 axes, and one unstable manifold
that is tangent to the r3 axis. Implied by this behavior, we are interested in a
transition of the form

Π3 :Σen
3 → Σex

3

(r3, a3) 7→ (ã3, ε̃3),

where

Σen
3 =

{
(r3, a3, ε3) ∈ R3 | ε3 = δ

}
Σex

3 =
{

(r3, a3, ε3) ∈ R3 | r3 = r3,out
}
.

Normal forms of vector fields of the form of (4.9) are obtained in appendix A.6.1.
Using proposition A.6.1 we have that there exists a C∞ transformation that con-
jugates (4.9) to

r′3 = r3

a′3 = −2a3 + ε3

(
1− a3

1 + a3

)
ε′3 = −3ε3.

(4.10)

The transition map of vector fields of the form of (4.10) are computed in
appendix A.6.4. Accordingly, we use proposition A.6.4 to compute the transition
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Π3. We then have

ã3 =
(

r3

r3,out

)2(
a3 + ε3O

(
r3

r3,out

))
ε̃3 = ε3

(
r3

r3,out

)3

Composition of the chart transitions (proof of proposition 4.1.1)

We now compose all the chart transitions we computed above. To recall what we
have obtained see fig. 4.5.

a2

z2r1 ε3

r3ε1

KεKen Kex

∆en
1

∆ex
1

∆en
3

∆ex
3

Figure 4.5: Flow in each of the charts. In the chart Ken we have a transition near
a semihyperbolic point. In the chart Kε we have a regular flow, and therefore the
transition is a diffeomorphism. In the chart Kex we have a transition near a hyperbolic
point.

In order to compose the transitions we need also the so called matching maps.
These maps relate the coordinates in each chart and they are given as

Mε
en :Ken → Kε

(r1, z1, ε1) 7→ (r2, a2, z2)
M ex
ε :Kε → Kex

(r2, a2, z2) 7→ (r3, a3, ε3)

where

r2 = r1ε
1/3
1 , a2 = −ε−2/3

1 , z2 = z1ε
−1/3
1 , for ε1 > 0

r3 = −r2z2, a3 = z−2
2 a2, ε3 = −z−3

2 , for z2 < 0.
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We now need to compute the transition Π̃ : ∆en
1 → ∆ex

3 given as

Π̃ = Π3 ◦M ex
ε ◦Π2 ◦Mε

en ◦Π1

Let us proceed step by step.

1. We have in the chart Ken a transition of the form

Π1 : (ζ1, ε1) 7→ (r̃1, z̃1),

where

r̃1 = r0

(ε1

δ

)1/3
,

z̃1 = 1 + (z1 − 1) exp
(
− 4

3ε1
(1 + α̃1ε1 ln(ε1) + ε1H̃)

)
.

2. Next, we relate the coordinates of the chart Ken with the coordinates of the
chart Kε̄ by the matching map Mε

en. Thus we have

(r2, a2, z2)|∆en
2

= Mε
en
(
(r1, ε1, z1)|∆ex

1

)
= Mε

en(r̃1, δ, z̃1)

and then the coordinates of the image of the map Π1, in the chart Kε̄, read
as

r2 = r0ε
1/3
1

a2 = −δ−2/3

z2 = δ−1/3z̃1.

3. Next we have that the transition in the chart Kε̄

Π2 :∆en
2 → ∆ex

2

(r2, z2) 7→ (r2, ã2)

is a diffeomorphism with ã2 = φ2(z2) = φ2(z̃1) where φ2 is a smooth
function.

4. Next we apply the matching map from Kε̄ to Kex. This is

(r3, ε3, a3)|∆en
3

= M ex
ε (r2, a2, z2)|∆ex

2
= M ex

ε (r2, ã2,−z2,out).
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Since z2,out is an arbitrary positive constant we choose z2,out = δ−1/3. This
allows us to match the exit section ∆ex

2 with the entry section ∆en
3 . That is,

∆en
3 = M ex

ε (∆ex
2 ). So we have

r3 = r0δ
−1/3ε

1/3
1

ε3 = δ

a3 = δ2/3φ2(z̃1).
(4.11)

5. The transition Π3 : (r3, a3) 7→ (ε̃3, ã3) is given by

ε̃3 = ε3

(
r3

r3,out

)3

ã3 =
(

r3

r3,out

)2(
a3 + ε3O

(
r3

r3,out

))
.

(4.12)

The constant r3,out is chosen as r3,out = r0 and therefore, substituting (4.11)
into (4.12) we get

ε̃3 = ε1

ã3 = φ2(z̃1)ε2/3
1

(
1 +O(ε1/3

1 )
) (4.13)

We now have to express φ2(z̃1) in the coordinates (ε1, z1). We can expand
φ2(z̃1) at z̃1 = 1 as follows

φ2(z̃1) = 1 + (z̃1 − 1)(A+B(z̃1)),

for some positive constant A and a smooth function B. Then we have

φ2(z̃1) = 1 + (z1 − 1) exp
(
− 4

3ε1
(1 + α̃1ε1 ln(ε1) + ε1H̃)

)
(A+B(z̃1))

= 1 + (z1 − 1) exp
(
− 4

3ε1
(1 + α̃1ε1 ln(ε1) + ε1H̃)

)
,

(4.14)

where we have absorbed the unknown function A+B(z̃1) = A+B(ε1, z1)
into the also unknown function H̃ . Now we substitute (4.14) into (4.13) to
obtain

ã3 =
(

1 + (z1 − 1) exp
(
− 4

3ε1
(1 + α̃1ε1 ln(ε1) + ε1H̃)

))
ε

2/3
1

(
1 +O(ε1/3

1 )
)
.

(4.15)
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We can write (1+O(ε1/3)) as exp(ln(1+O(ε1/3))) and thus we reduce (4.15)
to

ã3 = ε
2/3
1

(
1 +O(ε1/3

1 )
)

+ ε
2/3
1 (z1 − 1) exp

(
− 4

3ε1
(1 + α̃1ε1 ln(ε1) + ε1H̃)

)
.

Now observe that the exponential exp
(
− 4

3ε1 (1 + α̃1ε1 ln(ε1) + ε1H̃)
)

is flat
along ε1 = 0. Therefore, we can write

ã3 = ε
2/3
1 +O(ε1) + Ψ(z1, ε1),

where Ψ is a flat function at ε1 = 0. However, a function which is flat at
ε1 = 0 is also of order O(ε1) and thus we arrive to our final expression

ã3 = ε
2/3
1 +O(ε1).

We have then computed Π̃, where the relevant data is ã3 = ε
2/3
1 + O(ε1).

To obtain the final result we return to the the original coordinates (a, z) via
blow-down. It follows that

ã = ε2/3 +O(ε).

4.2 Analysis of the A3-SFS

In this section we study an A3 slow fast system based on techniques described in
chapter 3. To simplify the notation, let us write the A3-SFS as

X = ε(1 + f1) ∂
∂a

+ ε2f2
∂

∂b
− (z3 + bz + a+ εf3) ∂

∂z
+ 0 ∂

∂ε
, (4.16)

where thanks the functions fi = fi(a, b, z, ε) are smooth. We investigate the
transition associated to (4.16) between the sections

Σ− =
{

(a, b, z, ε) ∈ R4 | a = −a−, z > 0
}

Σ+ =
{

(a, b, z, ε) ∈ R4 | a = a+, z < 0
}
,

where a− > 0 and a+ > 0 are arbitrarily large constants. However, since the
trajectories of X spend a long time along regular parts of S, it will be useful to
define the “entry” and “exit” sections

Σen =
{

(a, b, z, ε) ∈ R4 | a = −a0, z > 0
}

Σex =
{

(a, b, z, ε) ∈ R4 | a = a0, z < 0
}
,
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S

S−ε

S+
ε

Mε

Σex

Σen

Figure 4.6: Qualitative representation of the investigation performed in this section.
The sections Σen and Σex are arbitrarily close to the cusp point. On the other hand the
sections Σ− and Σ+ (not shown) are parallel to Σen and Σex but far away from the
cusp point. In a qualitative sense, we will construct an invariant manifoldMε and
then extend it all the the way up to the sections Σ− and Σ+. Our analysis aims for
simplicity and thus depends extensively on the usage of normal forms. This, of course,
makes our results depend on the choice of coordinates.

where a0 is a positive but sufficiently small constant, for reference see fig. 4.6.
It will be clear from our analysis in the blow-up space, see section 4.2.1, that

the section Σ− needs to be partitioned as follows.

Definition 4.2.1 (The inner layer and the lateral regions). Let 0 < L < M <∞ be
constants. The inner layer Σinner ⊂ Σ− is defined as

Σ− ⊃ Σinner =
{

(b, z, ε) ∈ Σ− | |b| < Mε2/5
}
.

On the other hand, the lateral regions are defined as

Σ− ⊃ Σ+b =
{

(b, z, ε) ∈ Σ− | b > Lε2/5
}

Σ− ⊃ Σ−b =
{

(b, z, ε) ∈ Σ− | − b > Lε2/5
}
.

Note that the set
{

Σinner,Σ+b,Σ−b
}

is an open cover of Σ−, see fig. 4.7.

We are now in position to present our main result. In the following theorem,
we characterize the transition Π : Σ− → Σ+ under a suitable choice of coordinates
at the section Σ− and Σ+. Furthermore, we give details on the differentiability of
this map according to the cover of Σ−, see definition 4.2.1.
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Σinner

Σ+bΣ−b
b

ε

Figure 4.7: The section Σ− needs to be partitioned into three subsections: the inner
layer Σinner and the lateral regions Σ+b, Σ−b. From a qualitative point of view, these
three layers correspond to three different types of trajectories: 1. Trajectories starting
at Σinner pass close to the cusp point. Observe that limε→0(Σinner) = {b = 0} and then
corresponds to a solution of the associated CDE passing exactly through the cusp
point. 2. Trajectories starting at Σ+b pass sufficiently away from the cusp point along
the regular side of the manifold S. 3. Trajectories starting at Σ−b pass sufficiently away
from the cusp point along the folded side of the manifold S.

Theorem 4.2.1 (Transition map of anA3-SFS). LetX be anA3 slow fast system. This
is, X is a vector field defined by

X = ε(1 + εf1) ∂
∂a

+ ε2f2
∂

∂b
−
(
z3 + bz + a+ εf3

) ∂
∂z

+ 0 ∂
∂ε
, (4.17)

where each fi = fi(a, b, z, ε), i = 1, 2, 3, is smooth. Let the sections Σ−, Σ+ be defined
as above. Then we can choose suitable C`-coordinates (B,Z, ε) in Σ− and C`-coordinates
(B̃, Z̃, ε̃) in Σ+ such that the transition Π : (B,Z, ε) 7→ (B̃, Z̃, ε̃) is an exponential
type map of the form

Π(B,Z, ε) =
(
B + h, φ(B, ε) + Z exp

(
−A(B, ε) + Ψ(B,Z, ε)

ε

)
, ε

)
, (4.18)

where h is flat at the origin, A > 0 is C`, φ is C`-admissible with φ(B, 0) = 0, and Ψ
is C`-admissible with Ψ(B,Z, 0) = 0, see section 3.2 for the definition of C`-admissible.
Moreover, we have the following properties of the function A, φ and Ψ.

1. −A(B, 0) = I(B) where I is the slow divergence integral associated to (4.17).

2. Restricted to (B,Z, ε) ∈ Σinner, there are functions φ̃ and Ψ̃ such that

φ(B, ε) = φ̃
(
µ, ε1/5

)
Ψ(B,Z, ε) = Ψ̃

(
|B|1/2, ε1/5, ε ln ε, µ, Z

)
,
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where φ̃ and Ψ̃ are C`-functions with respect to monomials (see definition 3.2.2)
with µ = Bε−2/5. Note that in this domain, µ is well defined in the sense that µ
is bounded by a constant as ε→ 0.

3. Restricted to (B,Z, ε) ∈ Σ+b, there is a function Ψ̃ such that

φ(B, ε) = 0

Ψ(B,Z, ε) = Ψ̃
(
|B|1/2, ε1/5, ε ln(|B|), σ, Z

)
,

where Ψ̃ is a C`-function with respect to monomials (see definition 3.2.2) with
σ = ε|B|−5/2. Note that in this domain, σ is well defined since |B| > 0.

4. Restricted to (B,Z, ε) ∈ Σ−b, there are functions φ̃ and Ψ̃ such that

φ(B, ε) = φ̃
(
|B|1/2, σ

)
Ψ(B,Z, ε) = Ψ̃

(
|B|1/2, ε1/5, ε ln(|B|), σ

)
,

where φ̃ and Ψ̃ are C`-functions with respect to monomials (see definition 3.2.2)
with σ = ε|B|−5/2. Note that in this domain, σ is well defined since |B| > 0.

Sketch of the proof. The first step is to recall theorem 3.3.2, which shows that
X is formally conjugate to

F = ε
∂

∂a
+ 0 ∂

∂b
−
(
z3 + bz + a

) ∂
∂z

+ 0 ∂
∂ε
.

Next, by means of the Borel’s lemma [10], the vector field F can be realized as a
smooth vector field XN = F + εH where H is flat at (a, b, z, ε) = (0, 0, 0, 0). Thus,
from now on, we only treat an A3-SFS given as

X = ε(1 + εf̃1) ∂
∂a

+ ε2f̃2
∂

∂b
−
(
z3 + bz + a+ εf̃3

) ∂
∂z

+ 0 ∂
∂ε
,

where each f̃i = f̃i(a, b, z, ε) is flat at (a, b, z, ε) = (0, 0, 0, 0).
Another important ingredient of the proof is the blow-up technique, described

in section 3.4. This method provides several local vector fields whose correspond-
ing transitions are of exponential type, refer to section 3.2. Later all these local
transitions are composed to produce an exponential type transition between the
sections Σ− and Σ+. Along the analysis of the local vector fields (in the blow-up
space) we will take advantage of the flatness of the higher order terms of X . The
complete proof follows sections 4.2.1 to 4.2.4 and is given in section 4.2.5.
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Now, assuming that the transition Π is of the form (4.18), we can show that
A(B, 0) is given by the slow divergence integral of X . For this, let us recall
the Poincaré-Leontovich-Sotomayor formula [12], which in general is given as
follows.

Proposition 4.2.1. Let X be a vector field on a manifold Mn with a volume form Ω. Let
Σ− and Σ+ be two open sections of M and transverse to the flow of X . Let γε be an orbit
ofX along a center manifoldWC

ofX , starting at p = γε∩Σ− and reaching q = γε∩Σ+

in finite time. Let Π : Σ− → Σ+ be the transition map defined in a neighborhood of p. If
ψ− : U → Σ− and ψ+ : V → Σ+, with U ⊂ Rn−1 and V ⊂ Rn−1, are coordinates in
Σ− and in Σ+ respectively, then

det
(
D
(
(ψ+)−1 ◦Π ◦ ψ−

))
(s−) = 〈Ω(p), Dψ−(s−)×X(p)〉

〈Ω(q), Dψ+(s+)×X(p)〉 exp
(∫

γε

divΩX dτ

)
,

(4.19)

where s− = (ψ−)−1(p) and s+ = (ψ+)−1(q). The integral is taken along the orbit γε
from p to q parametrized by the fast time τ .

So we have the following.

Proposition 4.2.2. Consider an A3-SFS and assume that the transition Π : Σ− → Σ+

is given by (4.18). Then −A(B, 0) = I(B), where I(B) is the slow divergence integral
associated to the A3-SFS.

Proof. The only relevant component is Z, so denote by ΠZ the Z-component of Π.
The factor multiplying the exponential in (4.19) can be taken as a constant C > 0.
Then we have that (4.19) for the vector field of theorem 4.2.1 reads as

∂ΠZ

∂Z
= C exp

(∫
γε

divΩX dτ

)
.

Using the properties of the slow divergence integral described in section 3.1.2,
and since C 6= 0, we have

∂ΠZ

∂Z
= C exp

(∫
γε

divΩX dτ

)
= exp

(
1
ε

(∫
γ0

divX0 dt+ ε lnC + o(1)
))

= exp
(

1
ε

(I +O(ε))
)
,

(4.20)

where I is the slow divergence integral of X along a curve in the slow manifold
S from Σ− to Σ+. In principle, the limit ε → 0 of (4.20) is not well defined.
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However, according to our theorem 4.2.1, we have by differentiating (4.18) w.r.t.
Z

∂ΠZ

∂Z
= exp

(
−A(B, ε) + εΨ(B,Z, ε)

ε

)
. (4.21)

Identifying (4.20) with (4.21) and taking the limit ε→ 0 we have indeed that

lim
ε→0

(I +O(ε)) = lim
ε→0

(−A(B, ε) + εΨ(B,Z, ε)),

which shows the claim.
Note that the slow divergence integral in the coordinates (a, b, z) reads as

I(b) = Ĩ(b, ζ+)− Ĩ(b, ζ−),

where straightforward computations show that

Ĩ(b, ζ) = 9
5ζ

5 + 2ζ3b+ b2ζ,

and where ζ± is a constant defined by (a±, b, ζ±) ∈ Σ± ∩ S.
On the other hand, in normal coordinates and along regular parts of the slow

manifold, the A3-SFS can be written as (see section 3.1.2)

X(A,B,Z, ε) = ε
∂

∂A
+ 0 ∂

∂B
− Z ∂

∂Z
+ 0 ∂

∂ε
.

In these coordinates the slow divergence integral reads as

I = A+ −A−,

whereA+ andA− are the corresponding parametrizations of Σ+ and Σ− (respect-
ively) in the coordinates (A,B,Z, ε).

4.2.1 Analysis in the chart Ken

Taking into account our notation convention, the blow-up map in this chart is
given by

a = −r3
1, b = r2

1b1, z = r3
1z1, ε = r5

1ε1. (4.22)
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The corresponding vector field in this chart (after multiplication by 3) has the
form

Xen :


r′1 = −ε1r1

(
1 + f̃1

)
b′1 = 2ε1b1

(
1 + f̃1

)
+ r6

1ε
2
1f̃2

z′1 = −3
(
z3

1 + b1z1 − 1− 1
3ε1z1

)
+ r2

1ε1f̃3

ε′1 = 5ε2
1
(
1 + f̃1

)
where the functions f̃i = fi(r1, b1, z1, ε1) are flat along r1 = 0, recall that S3 ×
{r = 0} 7→ 0 ∈ R4 via the blow-up map. We study a transition Π1 : ∆en

1 → ∆ex
1

where

∆en
1 =

{
(r1, b1, z1, ε1) ∈ R4 | r1 = r0, ε1 < δ, z1 > 0

}
∆ex

1 =
{

(r1, b1, z1, ε1) ∈ R4 | ε1 = δ, r1 < r0
}
,

where r0 and δ are sufficiently small positive constants. In fact, we choose
r0 = a

1/3
0 .

Remark 4.2.1. The section ∆en
1 corresponds to Σen in the blow-up space, that is Σen =

Φ(∆en
1 ), where Φ is the blow-up map (4.22). This implies that trajectories of X crossing

Σen correspond to trajectories of Xen crossing ∆en
1 .

Before going any further, let us provide a qualitative description of Xen based
on [8]. This process can be repeated, following similar arguments, in all the local
charts; however, for brevity we only detail it for the current one.

Qualitative description of the flow of Xen The subspaces {r1 = 0}, {ε1 = 0}
and {r1 = 0} ∩ {ε1 = 0} are invariant. Therefore, it is useful to study the flow of
Xen restricted to the aforementioned subspaces.

Restriction to {r1 = 0} ∩ {ε1 = 0}. In this space Xen is reduced to

b′1 = 0
z′1 = −3

(
z3

1 + b1z1 − 1
)
. (4.23)

The set

γ1 =
{

(b1, z1) | z3
1 + b1z1 − 1 = 0

}
is a curve of equilibrium points. The phase portrait of (4.23) is shown in figure
4.8.
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b1

z1

Figure 4.8: The phase portrait of Xen restricted to the invariant space {r1 = 0} ∩
{ε1 = 0}. The shown curve is γ1 and it comprises a set of equilibrium points. Note
that locally, all trajectories with initial condition z1(0) > 0 are attracted to γ1|{z1>0}.

Remark 4.2.2. All the trajectories of (4.23) restricted to an initial condition z0 > 0
are attracted to the curve γ1|z1>0. Furthermore, due to our definition of ∆en

1 , we are
interested only in trajectories satisfying this initial condition. Thus, from now on, we
restrict our analysis to the subspace {z1 > 0}.

Restriction to {ε1 = 0}. In this space Xen is reduced to

r′1 = 0
b′1 = 0
z′1 = −3

(
z3

1 + b1z1 − 1
)
.

(4.24)

The set Γ1 =
{

(r1, b1, z1) | z3
1 + b1z1 − 1 = 0

}
is a surface of equilibrium points

given by Γ1 = (r1, γ1). Since r′1 = 0, the phase space of (4.24) is foliated by two
dimensional leaves in which the flow looks like fig. 4.8.

Restriction to {r1 = 0}. In this space Xen is reduced to

b′1 = 2ε1b1

z′1 = −3
(
z3

1 + b1z1 − 1− 1
3ε1z1

)
ε′1 = 5ε2

1,

(4.25)

Once again, the set γ1 =
{

(b1, z1, ε1) | ε1 = 0, z > 0, z3
1 + b1z1 − 1 = 0

}
is a curve

of equilibrium points. The Jacobian of (4.25) evaluated along γ1 shows that, for
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small enough ε1, there exists an invariant center manifold that passes through
γ1. Furthermore, the non-zero eigenvalue corresponding to the z-direction is
negative along γ1. The phase portrait of (4.25) is shown in figure 4.9.

b1

z1

ε1

Figure 4.9: Phase portrait of (4.25) restricted to z1 > 0. The shown surface is an
invariant center manifold, which is attracting in the z1-direction.

Observe that the b1 and the ε1 directions are expanding. It is important to know
the relation between such two expanding variables. We have

db1
dε1

= 2
5
b1
ε1
,

which has the solution

b1 = b∗1

(
ε1

ε∗1

)2/5
,

where b∗1 ≤ b1 and ε∗1 ≤ ε1 are the initial conditions, that is (b∗1, ε∗1) = (b1, ε1)|∆en
1

.

It is important to look at the ratio of initial conditions b∗1

(ε∗1)2/5 . This ratio tells

us that b1 is bounded as ε1 → 0 (and therefore as ε∗1 → 0) if and only if b∗1 ∈
O
(

(ε∗1)2/5
)

. In other words, if the initial condition b∗1 is not of order O((ε∗1)2/5)
then the value of b1 at ∆ex

1 blows up as ε∗1 → 0. This leads us to partition the
section ∆en

1 into three open regions as follows.

∆en,ε1
1 = ∆en

1 ||b1|<Mε
2/5
1

∆en,b1
1 = ∆en

1 |b1>Kε2/5
1

∆en,−b1
1 = ∆en

1 |−b1>Kε2/5
1
,
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where 0 < K < M < ∞. Observe that the open sets ∆en,ε1
1 , ∆en,b1

1 and ∆en,−b1
1

form an open cover of ∆en
1 . Accordingly, these sets induce an open cover of the

entry section Σen via the blow-up map (4.22). See fig. 4.10 for a representation of
the aforementioned partition.

∆en,ε1
1

∆en,−b1
1 ∆en,b1

1

Figure 4.10: Partition of ∆en
1 . Trajectories crossing through ∆en,ε1

1 corresponding to
the inner wedge area, have a continuation on the chart Kε̄. On the other hand, outside
∆en,ε1

1 we must consider the lateral regions ∆en,b1
1 and ∆en,−b1

1 .

Based on the partition of the entry section ∆en
1 , we define three transitions as

follows

Πε1
1 : ∆en,ε1

1 → ∆ex
1

Π+b1
1 : ∆en,+b1

1 → ∆ex,+b1
1

Π−b11 : ∆en,−b1
1 → ∆ex,−b1

1 ,

(4.26)

where

∆ex
1 =

{
(r1, b1, z1, ε1) ∈ R4 | ε1 = δ, r1 < r0

}
,

∆ex,±b1
1 =

{
(r1, b1, z1, ε1) ∈ R4 | b1 = ±η, r1 < r0

}
.

To finish with the qualitative description, note that there exists a (non-unique)
3-dimensional center manifoldWC

1 . This is shown by evaluating the Jacobian of
Xen all along the surface

Γ1 =
{

(r1, b1, z1, ε1) | ε1 = 0, z1 > 0 z3
1 + b1z1 − 1 = 0

}
.

Moreover, by the analysis provided above, the center manifoldWC

1 |z1>0 is attract-
ing for ε1 small enough. Note thatWC

1 |ε1=0 = Γ1. This means thatWC

1 can be
interpreted as a perturbation of the slow manifold S, written in the coordinates
of the current chart. See fig. 4.11 for a representation of the previous exposition.
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b1

r1

ε1

∆en
1

∆ex,+b1
1∆ex,−b1

1

∆ex,ε1
1

Figure 4.11: Phase portrait of the trajectories of Xen depending on their initial condi-
tion. If the trajectories satisfy the estimate y ∈ O(ε2/5), then they arrive to ∆ex,ε1

1 in
finite time. If the estimate y ∈ O(ε2/5) is not satisfied, then we must choose one of the
outgoing sections ∆ex,±b

1 in order to have a well defined transition map.

Let us recall that the vector field Xen is of the form

Xen :


r′1 = −ε1r1

(
1 + f̃1

)
b′1 = 2ε1b1

(
1 + f̃1

)
+ r6

1ε
2
1f̃2

z′1 = −3
(
z3

1 + b1z1 − 1− 1
3ε1z1

)
+ r2

1ε1f̃3

ε′1 = 5ε2
1
(
1 + f̃1

) (4.27)

We now proceed to describe the transitions Π1 given by (4.26). For this, first
we write (4.27) in a suitable normal form. Next, based on this normal form, we
compute the corresponding transition.

First of all, let us move the origin to the point (r1, b, z1, ε1) = (0, 0, 1, 0). This
is done by defining a new variable ζ1 by ζ1 = z1 − 1. With this variable we have
a new local vector field Yen which is defined by

Yen :


r′1 = −ε1r1

(
1 + f̃1

)
b′1 = 2ε1b1

(
1 + f̃1

)
+ r6

1ε
2
1f̃2

ε′1 = 5ε2
1
(
1 + f̃1

)
ζ ′1 = −3G(b1, ε1, ζ1) + ε1h̃,
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where G(0, 0, 0) = 0 and ∂G
∂ζ1

(0, 0, 0) = 3. Now, we want to write Yen in a suitable
normal form. From proposition A.6.2, we know that Yen is C` equivalent to

XN
en :


r′1 = −ε1r1

B′1 = 2ε1B1

ε′1 = 5ε2
1

Z ′1 = −9(1 +H1(r1, B1, ε1))Z1,

where H1 is a C`-function vanishing at the origin. This normal form XN
en is

convenient since the chosen center manifoldWC

1 is now simply given byWC

1 =
{Z1 = 0}. Furthermore, from the format of XN

en, it is evident the “hyperbolic
nature” of the flow restricted to the center manifold: the restriction of XN

en to the
center manifoldWC

1 has a simple structure, namely

XN
en|WC

1
:


r′1 = −ε1r1

B′1 = 2ε1B1

ε′1 = 5ε2
1.

The vector field XN
en is of the form studied in proposition A.6.5, therefore we

have that the transition

Πε1
1 : (B1, ε1, z1) 7→ (r̃1, B̃1, Z̃1)

is of the form

r̃1 = r0

(ε1

δ

)1/5

B̃1 = B1

(
δ

ε1

)2/5

Z̃1 = Z1 exp
(
− 9

5ε1
(1 + α1ε1 ln ε1 + ε1G1)

)
,

where α1 = α1(r0|B1|1/2, r0ε
1/5
1 ) and G1 = G1(r0|B1|1/2, r0ε

1/5
1 , µ) where µ =

B1ε
−2/5
1 . Recall that for this transition we have the condition B1 ∈ O(ε2/5

1 ) so µ
is well defined.

On the other hand, the transition

Π±B1
1 : (B1, ε1, Z1) 7→ (r̃1, ε̃1, Z̃1)
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is (see proposition A.6.5) of the form

r̃1 = r0

(
B1

η

)1/2

ε̃1 = ε1

(
η

B1

)5/2

Z̃1 = Z1 exp
(
− 9

5ε1
(1 + β1ε1 ln(|B1|) + ε1H1)

)
,

where β1 = β1(r0|B1|1/2, r0ε
1/5
1 ) and H1 = H1(r0|B1|1/2, r0ε

1/5
1 , σ), where σ =

ε1|B1|−5/2. Note that since B1 /∈ O(ε2/5
1 ), σ is well defined. We observe that the

transitions Πε1
1 and Π±B1

1 are exponential type maps.

4.2.2 Analysis in the chart Kε̄

Taking into account our notation convention, the blow-up map in this chart is
given by

a = r3
2a2, b = r2

2b2, z = r3
2z2, ε = r5

2.

Then, the blown up vector field reads as

Xε̄ :


r′2 = 0
a′2 = 1 + g̃1

b′2 = g̃2

z′2 = −
(
z3

2 + b2z2 + a2
)

+ g̃3,

(4.28)

where the function g̃i = g̃i(r2, a2, b2, z2) are flat along r2 = 0. Note that in this
chart r2 acts as a parameter and that the flow of Xε̄ is regular. From the equation
a′2 = 1 + g̃1, we define the following “entry” and “exit” sections.

∆en,ε̄
2 = {(r2, a2, b2, z2) | a2 = −A0, z2 ≥ 0} ,

∆ex,ε̄
2 = {(r2, a2, b2, z2) | a2 = A0, z2 ≤ 0} .

Therefore, we define a transition Πε̄
2 as

Πε̄
2 :∆en,ε̄

2 → ∆en,ε̄
2

(r2, b2, z2) 7→ (r̃2, b̃2, z̃2).
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Since (4.28) is regular, by the flow box theorem all trajectories starting at ∆en,ε̄
2

arrive at ∆ex,ε̄
2 in finite time. Moreover, the transition Πε̄

2 is a diffeomorphism
and then, from (4.28) we have that Πε̄

2 reads as

Π2ε̄(r2, b2, z2) = (r̃2, b̃2, z̃2)
= (r2, b2 + hb2 , φ1(r2, b2) + φ2(r2, b2)(1 + φ3(r2, b2, z2))z2),

where the φi’s are smooth functions. Observe that in this chart, the transition is
not an exponential type map.

4.2.3 Analysis in the chart Kex

Taking into account our notation convention, the blow-up map in this chart is
given by

a = r3
3, b = r2

3b3, z = r3
3z3, ε = r5

3ε3.

Then, the corresponding blown up vector field reads as

Xex :


r′3 = ε3r3

(
1 + f̃1

)
b′3 = −2ε3b3

(
1 + f̃1

)
+ r6

3ε
2
3f̃2

z′3 = −3
(
z3

3 + b3z3 + 1 + 1
3ε3z3

)
+ r2

3ε3f̃3

ε′3 = −5ε2
3
(
1 + f̃1

)
where the function f̃i = f̃i(r3, b3, ε3, z3) are flat along r3 = 0. Observe that the
vector field Xex resembles the vector field Xen. Therefore, we have a similar
behavior of the trajectories, the main difference is that in the case of Xex, there is
one expanding (r3) and three contracting (b3, ε3 and z3) directions. The flow of
Xex is obtained following similar arguments as for the flow of Xen.

From the fact that Xex has three contracting and one expanding direction, we
define the entry sections

∆en,ε̄
3 = {(r3, b3, ε3, z3) : ε3 = δ, z3 < 0, r3 < r0}

∆en,+b3
3 = {(r3, b3, ε3, z3) : b3 = η, z3 < 0, r3 < r0}

∆en,−b3
3 = {(r3, b3, ε3, z3) : b3 = −η, z3 < 0, r3 < r0} ,

where all the constants are positive and sufficiently small, and the exit section

∆ex
3 = {(r3, b3, ε3, z3) : r3 = r0, z3 < 0, ε3 < δ, |b3| < η} .
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Then, accordingly, we define three transition maps as follows

Πε3
3 : ∆en,ε̄

3 → ∆ex
3

: (r3, b3, z3) 7→ (b̃3, ε̃3, z̃3)

Π+b3
3 : ∆en,+b3

3 → ∆ex
3

: (r3, ε3, z3) 7→ (b̃3, ε̃3, z̃3)

Π−b33 : ∆en,−b3
3 → ∆ex

3

: (r3, ε3, z3) 7→ (b̃3, ε̃3, z̃3).

Now we proceed to write Xex in a normal form just as we did with Xen in
section 4.2.1. Following proposition A.6.2 we have that Xex is C` equivalent to

XN
ex :


r′3 = ε3r3

B′3 = −2ε3B3

ε′3 = −5ε2
3

Z ′3 = −9(1 +H3)Z3,

where H3 = H3(r3, B3, ε3) is a C` function vanishing at the origin. Just as in the
chart Ken, there exists a three dimensional center manifold WC

3 associated to
XN

ex and which has been chosen such thatWC

3 = {Z3 = 0}. Since r3 is the only
expanding direction, we take as transition time T3 = ln

(
r0
r3

)
. This transition

time is computed from the dynamics restricted toWC

3 , that is, from the equation
r′3 = r3. In contrast to what happened in the chartKen, the time T3 is well defined
for all the three transitions Πε3

3 , Π+B3
3 and Π−B3

3 . Following proposition A.6.5 we
have

B̃3 = B3

(
r3

r0

)2

ε̃3 = ε3

(
r3

r0

)5

Z̃3 = Z3 exp
(
− 9

5ε3

((
r0

r3

)5
− 1 + α3ε3 ln r3 + ε3H3

))
,

where α3 = α3(r3|B3|1/2, r3ε
1/5
3 ) and H3 = H3(r3|B3|1/2, r3ε

1/5
3 , r3). Therefore,
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by taking into account the definitions of the entry sections we have

Πε33 (r3, B3, Z3) =
(
B3

(
r3

r0

)2
, δ

(
r3

r0

)5
, Z3 exp

(
−

9
5δ

((
r0

r3

)5
− 1 + α3δ ln r3 + δH3

)))
Π±b33 (r3, ε3, Z3) =

(
±η
(
r3

r0

)2
, ε3

(
r3

r0

)5
, Z3 exp

(
−

9
5ε3

((
r0

r3

)5
− 1 + α3ε3 ln r3 + ε3H3

)))
.

Observe that these transitions are of exponential type.

4.2.4 Analysis in the charts K±b̄

In this section we study the local flow at the charts K+b̄ and K−b̄. In a qualitative
sense, these charts come into play when the initial condition b0 = b|Σen does not
satisfy the estimate b0 ∈ O(ε2/5). This implies that the corresponding trajectory
passes away from the cusp point. The chart K+b̄ “sees” trajectories with initial
condition b|Σen > 0 while K−b̄ “sees” trajectories with initial condition b|Σen < 0.

Analysis in the chart K+b̄

In this chart the blow-up maps reads

a = r3
2a2, b = r2

2, z = r2z2, ε = r5
2ε2.

Then we have that the blow-up vector field is given by

X+b̄ :


r′2 = ε2f̄r

a′2 = ε2(1 + f̄a2) + ε2ḡa2

ε′2 = −ε2f̄ε2
z′2 = −(z3

2 + z2 + a2) + ε2f̄z2

where all the functions f̄` are flat along {r2 = 0}. Observe that the set

Γ2 =
{

(r2, a2, ε2, z2) | ε2 = 0, z3
2 + z2 + a2 = 0

}
is a NHIM of X+b̄. However, X+b̄ is not exactly a slow fast system since ε′2 6= 0,
but the restriction of X+b̄ to {r2 = 0} is indeed a slow fast system. This restriction
reads as

X+b̄|{r2=0} :


a′2 = ε2

ε′2 = 0
z′2 = −(z3

2 + z2 + a2).
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Since the subspace {r2 = 0} is invariant and X+b̄ is a flat perturbation of
X+b̄|{r2=0}, it is equally useful to study the restriction X+b̄|{r2=0} than the whole
systemX+b̄. After all, the flow ofX+b̄|r2>0 is equivalent to the flow ofX+b̄|{r2=0}.
The slow manifold of X+b̄|{r2=0} is defined by Γ2|r2=0 and it is normally hyper-
bolic. Let us define the sections

∆en,+b2
2 =

{
(r2, a2, ε2, z2) ∈ R4 | a2 = −A0

}
∆ex,+b2

2 =
{

(r2, a2, ε2, z2) ∈ R4 | a2 = A0
}
.

(4.29)

Accordingly, we study the transition

Π+b2
2 :∆en,+b2

2 → ∆ex,+b2
2

(r2, ε2, z2) 7→ (r̃2, ε̃2, z̃2).

For a qualitative description of X+b̄|{r2=0} and the objects defined above see
fig. 4.12.

a2

z2

a2

z2

a2

z2 ∆en,+b2
2

∆ex,+b2
2

Figure 4.12: Left: phase portrait of the corresponding layer equation of X+b̄|{r2=0}.
Center: phase portrait of the corresponding CDE of X+b̄|{r2=0}. Right: Since the
critical manifold is regular, by Fenichel theory we know that the manifold Γ2 is
perturbed to an invariant manifold Γ2,ε2 which is at distance of order O(ε2) from Γ2.

For sufficiently small ε2, there exists a C` change of coordinates (see our
exposition of section 3.1.2) that transforms X+b̄|{r2=0} into the vector field

Y N :


a′2 = ε2

ε′2 = 0
Z ′2 = −Z2,

From the definition of the entry and exit sections (4.29), we choose the time of
integration as T = 2A0, which is obtained from the equation ȧ2 = 1. To obtain
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the component Z2 of the transition Π+b2
2 |{r2=0} we need to integrate

Z ′2 = − 1
ε2
Z2,

and then Z̃2 = Z2(T ). Therefore the transition Π+b2
2 reads as

Π+b2
2 (0, ε2, Z2) =

(
0, ε2, Z2 exp

(
−2A0

ε2

))

Remark 4.2.3. By regular perturbation theory, the flow of X+b̄|{r2=0} is equivalent to
that of X+b̄|{r2>0}. In other words, the image of Π+b2

2 |(∆en,+b2
2 |r=0) is diffeomorphic to

the image of Π+b2
2 |(∆en,+b2

2 ).

Analysis in the chart K−b̄

In this chart the blow-up maps reads

a = r3
2a2, b = −r2

2, z = r2z2, ε = r5ε2.

Then we have that the blow-up vector field is given by

X−b̄ :


r′2 = −ε2f̄r

a′2 = ε2(1 + f̄a2) + ε2ḡa2

ε′2 = ε2f̄ε2
z′2 = −(z3

2 − z2 + a2) + ε2f̄z2

where all the functions f̄` and ḡa2 are flat along {r2 = 0}. Observe that the
subspace {r2 = 0} is invariant. The restriction of X−b̄ to this subspace reads as

X−b̄|{r2=0} :


a′2 = ε2

ε′2 = 0
z′2 = −(z3

2 − z2 + a2).

The flow of X−b̄ is a flat perturbation of the flow of X−b̄|{r2=0}. Therefore, let
us continue our analysis restricted to the invariant space {r2 = 0}.

The manifold Γ2, which is defined by

Γ2 =
{

(r2, a2, ε2, z2) | r2 = 0, ε2 = 0, z3
2 − z2 + a2 = 0

}
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is normally hyperbolic except at the two points p± = ±
(

2
3
√

3 ,
1√
3

)
. Let us define

the sections

∆en,−b2
2 =

{
(r2, a2, ε2, z2) ∈ R4 | a2 = −A0

}
∆ex,−b2

2 =
{

(r2, a2, ε2, z2) ∈ R4 | a2 = A0
}
,

where A0 > 0 is a sufficiently large constant. We are interested in the transition

Π−b22 :∆en,−b2
2 → ∆ex,−b2

2

(r2, ε2, z2) 7→ (r̃2, ε̃2, z̃2).

For a qualitative description of X−b̄|{r2=0} and the objects defined above see
fig. 4.13.

a2

z2

a2

z2

a2

z2 ∆en,+b2
2

∆ex,+b2
2

Figure 4.13: Left: phase portrait of the corresponding layer equation of X−b̄|{r2=0}.
Center: phase portrait of the corresponding CDE of X−b̄|{r2=0}. Right: The expected
perturbed invariant manifold obtained from the flow of the corresponding CDE and
layer equation.

Away from the fold points p±, the manifold Γ2 is regular and thus, Fenichel’s
theory applies. However, we need to take care of the transition near the fold point
p+. The local transition of a slow fast system near a fold point is investigated in
e.g. [27]. However, in our current problem this transition is not essential. By this
we mean that the passage through the fold point is seen as a flat perturbation
of the trajectory along the stable branch of Γ2. In a qualitative sense, this is due
to the fact that the transition Π−b22 goes along a large NHIM, which fails to be
normally hyperbolic only at one point.

Proposition 4.2.3. We can choose appropriate coordinates (Z2, ε2) in ∆en,−b2
2 and

(Z̃2, ε̃2) in ∆ex,−b2
2 such that the transition Π−b22 : ∆en,−b2

2 → ∆ex,−b2
2 associated to

X−b̄ is an exponential type map of the form
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Π−b22 (0, ε2, Z2) =
(

0, ε2, φ2 + Z2 exp
(
− 1
ε2

(A0 + ε2ψ2)
))

,

where φ2 = φ2(ε2) and ψ2 = ψ2(Z2, ε2) are C`-admissible functions, and where A0 is
given by the slow divergence integral of X−b̄|{r2=0}.

Remark 4.2.4. By regular perturbation theory, the flow of X−b̄|{r2=0} is equivalent to
that of X−b̄|{r2>0}. In other words, the image of Π−b22 |(∆en,−b2

2 |r=0) is diffeomorphic to
the image of Π−b22 |(∆en,−b2

2 ).

Proof. To prove that A0 is given by the slow divergence integral we proceed
along the same lines as in proposition 4.2.2, so we do not repeat it here. In figure
fig. 4.14 we show the three transitions that we must consider.

z2

a2

∆en,−b2
2

∆ex,−b2
2

Ωen Ωex

Figure 4.14: The three different transitions in which Π−b2
2 is decomposed. The central

transitions is locally an A2 problem. The other two transitions at the sides are regular.

The three transitions are defined as

Πreg1
2 : ∆en,−b2

2 → Ωen

Πfold
2 : Ωen → Ωex

Πreg2
2 : Ωex → ∆ex,−b2

2 ,

where Ωen and Ωen are given as

Ωen =
{

(r2, a2, ε2, Z2) ∈ R4 | a2 = −a2,en
}

Ωex =
{

(r2, a2, ε2, Z2) ∈ R4 |Z2 = Z2,ex
}
,
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where a2,en and Z2,ex are well chosen constants.
The total transition Π+b2

2 is given by Πb2
2 = Πreg2

2 ◦Πfold
2 ◦Πreg1

2 . Recall from
section 3.2 that if we want to write the transition Π+b2

2 as an exponential type
map, we require that Πreg1

2 is expressed as an exponential type map with no shift.
The transition Πfold

2 is studied in section 4.1. In there, it is shown that there are
local coordinates (Z̄2, ε2) in Ωen, and (ã2, ε̃2) in Ωex, such that the transition Πfold

2
is given by

Πfold
2 (Z̄2, ε2) = (ã2, ε̃2)

=
(
ε

2/3
2 +O(ε2), ε2

)
.

Assume now that we have characterized an invariant manifoldMfold
ε2 from

Ωen to Ωex via the map Πfold
2 . Now we want to “extend”Mfold

ε2 all the way up to
the sections ∆en,−b2

2 and ∆ex,−b2
2 via transitions along regular regions of Γ2. For

this, it is more convenient to regardMfold
ε2 as a graph ζ2 = φ2,ε2(A2) where for

ε2 > 0, φ2,ε2 is an ε2-family of diffeomorphisms. In this way we have that we can
equivalently express the map Πfold

2 as

Πfold
2 (Z̄2, ε2) = (φ2,ε2(Z̄2), ε2).

Next, following section 3.1.2 we can find coordinates (Z2, ε2) in ∆en,−b2
2 , and

coordinates (Z̃2, ε2) in ∆ex,−b2
2 in such a way that the transitions Πreg1

2 and Πreg2
2

are given as

Πreg1
2 (Z2, ε2) =

(
Z2 exp

(
− 1
ε2

(A0 − a2,en)
))

= (Z̄2, ε2)

Πreg2
2 (Z2,ex, ε2) =

(
Z2,ex exp

(
− 1
ε2

(A0 − ã2)
))

= (Z̃2, ε2).

Remark 4.2.5. Recall that along normally hyperbolic slow manifolds, it is possible to
make a normal form transformation in such a way that this transformation respects
certain constraint or structure of the vector field, [6, 7]. In this particular case, we respect
the choice of the invariant manifoldMfold

ε2 .

Next, we can compute the composition Π−b22 = Πreg2
2 ◦ Πfold

2 ◦ Πreg1
2 by

following section 3.2 and it thus follows that

Π−b22 (0, Z2, ε2) =
(

0, φ̄ε2 + Z2 exp
(
− 1
ε2

(A1 +A3 + ε2ψ2)
)
, ε2

)
,
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where φ̄ε2 = φε2(0) exp
(
−A3
ε2

)
and where ψ2 = ψ2(Z, ε2) is a C`-admissible

function. The result is finally obtained by regular perturbation theory.

4.2.5 Proof of theorem 4.2.1
In this section we prove theorem 4.2.1. For this, we need to compose all the maps
that we have computed in sections 4.2.1 to 4.2.4. In words, we have to construct
a transition from the entry section ∆en

1 to the exit section ∆ex
3 . Recall that ∆en

1
and ∆ex

3 are the blow-up versions of Σen and Σex respectively, and therefore, a
transition ∆en

1 → ∆ex
3 is equivalent to a transition Σen → Σex. Once we obtain the

latter transition, we extend it to a transition Σ− → Σ+ given as an exponential
type map. We have three possibilities given by the partition of the entry section
∆en

1 .

• If b1|∆en
1
∈ O(ε2/5

1 ) then we construct a transition passing through the charts
Ken → Kε̄ → Kex.

• If b1|∆en
1
/∈ O(ε2/5

1 ) and b1|∆en
1
> 0 then we construct a transition passing

through the charts Ken → K+b̄ → Kex.

• If b1|∆en
1
/∈ O(ε2/5

1 ) and b1|∆en
1
< 0 then we construct a transition passing

through the charts Ken → K−b̄ → Kex.

In fig. 4.15 we give a qualitative diagram of the local transitions obtained and
their relationship.

As we have seen in our previous analysis, we consider three transitions which
are given as

Πε = Πε
3 ◦M ex

ε ◦Πε
2 ◦Mε

en ◦Πε
1

Π+b = Π+b1
3 ◦M ex

+b1 ◦Π+b1
2 ◦M+b1

en ◦Π+b1
1

Π−b = Π−b13 ◦M ex
−b1 ◦Π−b12 ◦M−b1en ◦Π−b11 ,

where the matching maps are obtained from the blow-up map. For example, to
obtain the matching map from the chart Ken to the chart Kε̄ we relate the two
directional blow-up maps

a = −r3
1, b = r2

1b1, z = r1z1, ε = r5
1ε1

and

a = r3
2a2, b = r2

2b2, z = r2z2, ε = r5
2.



4.2. Analysis of the A3-SFS 116

Ken Kε̄ Kex

K+b̄

K−b̄

r1

b1

ε1 ε3

b3

r3

∆en
1 ∆ex,−b1

1

∆ex,+b1
1

∆ex,ε1
1 ∆en,ε3

3

∆en,−b3
3

∆en,+b3
3

∆ex
3

M ε̄
en

M+b̄
en

Mex
+b̄

Mex
ε̄

Mex
−b̄

M−b̄en

∆en,ε2
2

∆ex,ε2
2

Figure 4.15: All the transitions obtained in the charts. We have to compose all such
transitions through the matching maps M j

i . A matching map M j
i relates the coordin-

ates between the charts Ki and Kj .



117 Chapter 4. Applications

Let us detail how to obtain the map Πε. The other two cases are obtained by
following similar arguments and thus the details are omitted.

The transition Πε

Here we compute first the transition

Πε = Πε3
3 ◦M ex

ε̄ ◦Πε2
2 ◦M ε̄

en ◦Πε1
1 : ∆en,ε1

1 → ∆ex
3 .

A matching map M j
i relates the exit section in the chart Ki with the entry

section of the chart Kj . For example we have ∆en,ε2
2 = M ε̄

en(∆ex,ε1
1 ) and so on.

Let us work out only with the z-component of the transitions as it is the only
relevant one. Recall from section 4.2.1 that Πε1

1 is an exponential type map with
no shift. Next, the composition Πcentral = M ex

ε̄ ◦Π
ε2
2 ◦M ε̄

en can be seen as a general
diffeomorphism as Πε2

2 is a general diffeomorphism, and the matching maps are
local diffeomorphisms on their domain of definition. Next, the last transition Πε3

2
is an exponential type map with no shift. Finally, following section 3.2 we have
that Πε3

2 ◦Πcentral ◦Πε1
1 is an exponential type map of the form

Πε
Z1

= φ̄(B1, ε1) + Z1 exp
(
− 1
ε1

(
Ā(B1, ε1) + ε1Ψ̄(B1, ε1, Z1)

))
,

where Ā > 0 and φ and Ψ are C` admissible functions. The differentiability of φ
and Ψ with respect to monomials is obtained by performing the straightforward
computation Πε3

2 ◦Πcentral ◦Πε1
1 and it is evident from the results of section 4.2.1.

By blowing down we obtain that the transition Πinner : Σen → Σex (in a small
neighborhood of the cusp point and within the inner layer as domain) reads as

Πinner
Z = φ(B, ε) + Z exp

(
−1
ε

(
A(B, ε) + εΨ̄(B, ε, Z)

))
.

To obtain the transition Π : Σ− → Σ+ we now need to compose Πinner
Z with

exponential type maps on the left and on the right corresponding to

Π− : Σ− → Σen

Π+ : Σex → Σ+.

However, we must proceed carefully. As shown in section 3.2, in order to
express the transition Π as an exponential type map, we need that at least the
transition Π− is an exponential type map with no shift. In other words, we need
to choose appropriate coordinates on Σ− and on Σ+ in such a way that we respect
the already chosen coordinates in Σen and in Σex, and the already chose invariant
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manifold between Σen and Σex. Fortunately, this is possible with the extensions
of Bonckaert [6, 7] to the normalization results of Takens [37].

For sake of clarity, let (Ben, Zen) be coordinates in Σen and (Bex, Zex) be
coordinates in Σex. We have shown that these coordinates can be chosen in such
a way that the “vertical” component of the transition map Πinner : Σen → Σex

reads as

ΠZen(Ben, Zen, ε) = Zex

= φ(Ben, ε) + Zen exp
(
−1
ε

(
A(Ben, ε) + εΨ̄(Ben, ε, Zen)

))
.

In this case the invariant manifold, sayMε, is given by Zen = 0. Using [6, 7]
we can find suitable coordinates (B−, Z−) in Σ− in such a way that

Π−Z−(B−, Z−, ε) = Z− exp
(
−1
ε

(A0)
)

= Zen.

In other words, there is a change of coordinates respecting the invariant
manifoldMε under which the transition Π− is an exponential type map with
no shift and linear. Similar arguments hold for the choice of coordinates in Σ+.
Finally performing the composition Π+ ◦Πinner ◦Π− we prove our claim.

4.3 Analysis of the A4-SFS

In this section we study the transition of an A4 slow fast system. As we have seen
in the previous examples (the fold and the cusp) the most important transition is
through a small strip around the central singularity.

To simplify notation, we let x = (a, b, c) ∈ R3 and z ∈ R. We then consider a
vector field X given by

X = ε(1 + f1) ∂
∂a

+ ε2f2
∂

∂b
+ ε2f3

∂

∂c
−
(
z4 + cz2 + bz + a+ f4

) ∂

∂z
+ 0 ∂

∂ε
, (4.30)

where, thanks to theorem 3.3.2, all fi’s are flat at the origin. The critical manifold
is locally defined by

S =
{

(a, b, c, z) | z4 + cz2 + bz + a = 0
}
.

The singularity set is then defined as

B =
{

(a, b, c, z) | 4z3 + 2cz + b = 0
}
.
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Refer to section 2.3.1 for the description of S and B. The flow of the corres-
ponding CDE is found in section 2.3.3. The flow of the CDE leads us to define
the following sections

Σen =
{

(a, b, c, z, ε) ∈ R5 | a = −a0, z > 0
}

Σex =
{

(a, b, c, z, ε) ∈ R5 | a > −0, z = −z0
}
,

where a0 and z0 are positive but sufficiently small constants. Then we study the
transition

Π : Σen → Σex

defined by the flow of X . In this section we only focus on a transition along a
small strip around the swallowtail point. Sufficiently away from the swallowtail
point, the constraint manifold S has only cusp and fold singularities, an therefore,
the transitions near those points are already known. Following the same type of
analysis as in sections 4.1 and 4.2 we can obtain the following.

Proposition 4.3.1. Consider an A4-SFS given by (4.30) and the transition

Π :Σen → Σex

(b, c, z, ε) 7→ (ã, b̃, c̃, ε̃).

Let Σinner ⊂ Σen be defined as

Σinner =
{

(b, c, z, ε) ∈ Σen | b ∈ O(ε3/7), c ∈ O(ε2/7)
}
.

Then, the transition Π|Σinner is given by

ã = ε4/7 +O(ε5/7)
b̃ = b+ fb

c̃ = c+ fc

ε̃ = ε,

where each function fi = fi(a, b, c, z, ε), i = b, c, is flat at (a, b, c, z, ε) = (0, 0, 0, 0, 0).

For a qualitative picture of the result stated in proposition 4.3.1 see fig. 4.16.

Proof of proposition 4.3.1. This proof follows similar arguments as in sections 4.1
and 4.2, thus we shall be brief and point out only the key ingredients.

The blow-up map reads as

a = r4ā, b = r3b̄, c = r2c̄, z = rz̄, ε = r7ε̄.

According to this blow-up map, the induced vector fields on the charts Ken =
{ā = −1}, Kε̄ = {ε̄ = 1}, and Kex = {z̄ = −1} are studied.
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S

Σen

Σex

Sε

ε4/7

a

z

Figure 4.16: Qualitative description of the result stated in proposition 4.3.1. In words,
after passing through the swallowtail point, the distance from Sε to the fast fiber
passing through the origin is of order O(ε4/7).

Analysis in the chart Ken

The induced vector field in this chart reads as

r′1 = −r1ε1

b′1 = 3ε1b1 + ε1fb1

c′1 = 2ε1c1 + fc1

ε′1 = 7ε2
1

z′1 = −4
(
−z4

1 + c1z
2
1 + b1z1 − 1− 1

4ε1z1
)

+ ε1fz1 ,

(4.31)

where the functions fi = fi(r1, b1, c1, ε1, z1), for i = b1, c1, z1, are flat along
{r1 = 0}. According to appendix A.6.2 we have that in a small neighborhood of
(r1, b1, c1, ε1, z1) = (0, 0, 0, 0, 1), the system (4.31) is C` equivalent to

r′1 = −r1ε1

B′1 = 3ε1B1

C ′1 = 2ε1C1

ε′1 = 7ε2
1

Z ′1 = −Λ(r1, B1, C1, ε1)Z1,

where Λ(0, 0, 0, 0) = 16. The sections of interest are defined as

∆inner
1 =

{
(r1, B1, C1, ε1, Z1) ∈ R5 | r1 = −r0

1
}

∆ex
1 =

{
(r1, B1, C1, ε1, Z1) ∈ R5 | ε1 = δ

}
,

where r0
1 = a

1/4
0 and δ are small constants. Then, in normal coordinates and

according to appendix A.6.5, we have that the transition Πinner : ∆inner
1 → ∆ex

1



121 Chapter 4. Applications

reads as

Π1(B1, C1, ε1, Z1) = (r̃1, B̃1, C̃1, Z̃1),

with

r̃1 = r0
1

(ε1

δ

)1/7

B̃1 = B1

(
δ

ε1

)3/7

C̃1 = C1

(
δ

ε1

)2/7

Z̃1 = Z1 exp
(
− 16

7ε1
(1 + α1ε1 ln ε1 + ε1G1)

)
,

where α = α(r1, B1, C1) and B1 = G1(r1, B1, C1, Z1) are admissible functions.

Analysis in the chart Kε̄

In this chart the induced blown up vector field reads as

r′2 = 0
a′2 = 1 + fa2

b′2 = fb2

c′2 = fc2

z′2 = −(z4
2 + c2z

2
2 + b2z2 + a2) + fz2 ,

(4.32)

where each fi = fi(r2, a2, b2, c2, z2), for i = a2, b2, c2, z2, is flat along {r2 = 0}.
The sections of interest read as

∆en
2 =

{
(r2, a2, b2, c2z2) ∈ R5 | a2 = −a0

2
}

∆ex
2 =

{
(r2, a2, b2, c2, z2) ∈ R5 | z2 = −z0

2
}
.

The transition is then Π2 : ∆en
2 → ∆ex

2 . Since the vector field (4.32) is regu-
lar, then Π is a local diffeomorphism. Moreover if we write Π2(r2, b2, c2, z2) =
(r̃2, ã2, b̃2, c̃2) we have

r̃2 = r2

ã2 = φ(r2, b2, c2, z2)
b̃2 = b2 + f̄b2

c̃2 = c2 + f̄c2 ,

where φ(r2, b2, c2, z2) = φ(r2,b2,c2)(z2), where φ(r2,b2,c2) : R → R is a family of
local diffeomorphisms.



4.3. Analysis of the A4-SFS 122

Analysis in the chart Kex

The corresponding blown up vector field is smoothly equivalent to

r′3 = r3 + ε3fr3

a′3 = −4a3 + ε3L+ ε3fa3

b′3 = −3b3 + ε3fb3

c′3 = −2c3 + ε3fc3

ε′3 = −7ε3 + ε3fε3 ,

(4.33)

whereL = L(a3, b3, c3) = 1
1+a3−b3+c3 and where the functions fi = fi(r3, a3, b3, c3, ε3)

for i = r3, a3, b3, c3, ε3 are flat along {r3 = 0}. The sections of interest are given
by

∆en
3 =

{
(r3, a3, b3, c3, ε3) ∈ R5 | ε3 = δ

}
∆ex

3 =
{

(r3, a3, b3, c3, ε3) ∈ R5 | r3 = r0
3
}
,

where δ and r0
3 are small positive constants. Thus, we describe the transition

Π3 : ∆en
3 → ∆ex

3 . According to appendix A.6.1 we have that (4.33) is smoothly
conjugate to

r′3 = r3

a′3 = −4a3 + ε3L

b′3 = −3b3
c′3 = −2c3
ε′3 = −7ε3.

Then, following appendix A.6.4 we have that Π3 is given by Π3(r3, a3, b3, c3) =
(ã3, b̃3, c̃3, ε̃3) where

ã3 = a3

(
r3

r0
3

)4(
1 +O

(
r3

r0
3

))
b̃3 = b3

(
r3

r0
3

)3

c̃3 = c3

(
r3

r0
3

)2

ε̃3 = δ

(
r3

r0
3

)7
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Composition of the transitions

The last step of the proof is to compose the local transitions taking into account
the matching maps M ε̄

en and M ex
ε̄ . That is, one obtains the map Π : ∆en

1 → ∆ex
1 .

The matching maps are given by

M ε̄
en : r2 = r1ε

1/7
1 , a2 = −ε−4/7

1 , b2 = ε
−3/7
1 b1, c2 = ε

−2/7
1 c1, z2 = ε

−1/7
1 z1,

and

M ex
ε̄ : r3 = −r2z2, a3 = z−4

2 a2, b3 = −z−3
2 b2, c3 = z−2

2 c2, ε3 = −z−7
2 .

The composition Π = Π3 ◦M ex
ε̄ ◦Π2 ◦M ε̄

en ◦Π1 is obtained by following the
procedure detailed in section 4.1. By doing this one proves the result.

4.4 Digression on the Ak-SFSs

In this section, we briefly discuss a way to study the local transition of Ak-SFS
based on the exposition of this thesis. Recall that, in normal form, an Ak-SFS
reads as

X = ε(1 + εf1) ∂

∂x1
+
k−1∑
i=2

ε2fi
∂

∂xi
−

(
zk +

k−1∑
i=1

xiz
i−1 − εfk

)
∂

∂z
+ 0 ∂

∂ε
,

where all the functions fi = fi(x1, . . . , xk−1, z, ε) are smooth. The cases k = 2, 3, 4
have been studied in sections 4.1 to 4.3. However, similar steps can be followed
to study any Ak SFS. The procedure is as follows.

1. The formal normal form result, given in theorem 3.3.2, shows that there exists
a formal diffeomorphism Φ̂ : Rk+1 → Rk+1 such that Φ̂∗X̂ = F , where F is
known as the principal part and is given as

F = ε
∂

∂x1
+
k−1∑
i=2

0 ∂

∂xi
−

(
zk +

k−1∑
i=1

xiz
i−1

)
∂

∂z
+ 0 ∂

∂ε
.

By Borel’s lemma [10], this principal part F can be realized as a smooth vector
field XN = F + εH , where H is smooth and flat at 0 ∈ Rk+1.

Remark 4.4.1. Suppose this formal normal form result can be extended to a smooth
and/or analytic version. That is, there exists a smooth/analytic diffeomorphism
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Φ : Rk+1 → Rk+1 conjugating X to F . This implies that F is a smooth/analytic
normal form of X . However, even in such a case, F cannot be integrated. This means
that even with such a smooth/analytic normal form, some technique must be used to
study the local dynamics of F . We propose to use the Geometric Desingularization
method as in chapters 3 and 4.

2. Depending on k, define the entry and the exist sections.

If k is even then

Σen =
{

(x, z, ε) ∈ Rk−1 × R× R |x1 = −x0
1, z > 0

}
Σex =

{
(x, z, ε) ∈ Rk−1 × R× R | z = −z0, x1 > 0

}
,

where x0
1 and z0 are sufficiently small small positive constants.

If k is odd then

Σen =
{

(x, z, ε) ∈ Rk−1 × R× R |x1 = −x0
1, z > 0

}
Σex =

{
(x, z, ε) ∈ Rk−1 × R× R |x1 = x0

1, z < 0
}
,

where x0
1 is a sufficiently small small positive constant.

3. The blow-up map is given by

x1 = rkx̄1, x2 = rk−1x̄2, . . . , z = rz̄, ε = r2k−1ε̄.

4. To study the transition through a small neighborhood of the origin, one con-
siders the following three charts

Ken = {x̄1 = −1} , Kε = {ε̄ = −1} ,

and if k is even

Kex = {z̄ = −1} ,

while if k is odd

Kex = {x̄1 = 1} .
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5. A study in the chart Ken shows that a transition through the charts Ken, Kε

and Kex is well defined only if the coordinates (x2, . . . , xk−1) ∈ Σen satisfy the
estimate

xi ∈ O
(
ε
k−i+1
2k−1

)
.

Therefore, a subset of Σen, called the inner layer, is defined as

Σinner =
{

(x, z) ∈ Σen |xi < Kiε
k−i+1
2k−1 , 0 < Ki <∞, ∀ i = 2, 3, . . . , k − 1

}
.

6. A local study through the charts provides several local transitions, which have
to be composed.

7. Finally, by composing the local transitions obtained in each chart, the map
Π : Σen → Σex can be computed. In a broad sense, we conjecture that the type
of results to be obtained are as follows.

If k is odd. There exist local coordinates (X2, . . . , Xk−1, Z, ε) ∈ Σen and
(X̃2, . . . , X̃k−1, Z̃, ε̃) ∈ Σen such that the transition map

Π(X2, . . . , Xk−1, Z, ε) 7→ (X̃2, . . . , X̃k−1, Z̃, ε̃)

is given by

Π(X2, . . . , Xk−1, Z, ε) = (X2 + h2, . . . , Xk−1 + hk−1, D, ε) ,

where each hi = hi(X2, . . . , Xk−1, Z, ε), i = 2, . . . , k − 1, is a flat function and
where D = D(X2, . . . , Xk−1, Z, ε) is an exponential type function in Z, that is

D = Φ + Z exp
(
−1
ε

(A+ εΨ)
)
,

where Φ = Φ(X2, . . . , Xk−1, ε), Ψ = Ψ(X2, . . . , Xk−1, Z, ε) andA = A(X2, . . . , Xk−1, ε)
are admissible functions with A|ε=0 > 0 and given by the slow divergence
integral.

If k is even. There exist local coordinates (X2, . . . , Xk−1, Z, ε) ∈ Σen and
(X̃1, X̃2, . . . , X̃k−1, ε̃) ∈ Σen such that the transition map

Π(X2, . . . , Xk−1, Z, ε) 7→ (X̃1, X̃2, . . . , X̃k−1, ε̃)
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is given by

Π(X2, . . . , Xk−1, Z, ε) =
(
ε

k
2k−1 +O

(
ε
k+1
2k−1

)
, X2 + h2 . . . , Xk−1 + hk−1, ε

)
,

where each hi = hi(X2, . . . , Xk−1, Z, ε), i = 2, . . . , k − 1, is a flat function at
the origin of Rk+1.



Chapter 5

Conclusions and future
research

This thesis deals with

1. Constrained Differential Equations (CDEs),

2. Slow Fast Systems (SFSs).

Studying CDEs is important since these are zeroth-order approximations of
SFSs. Thus, in chapter 2 we have studied the classification problem of CDEs.
In this context, Takens classified CDEs related to the A2 (fold) and A3 (cusp)
catastrophes [39] . As a contribution, we have extended Takens’ results by
classifying CDEs related to the Ak, the D4 (hyperbolic umbilic), and the D−4

(elliptic umbilic) catastrophes. The class of CDEs related to the Ak catastrophes
have further relevance in our research, and therefore we have called them Ak-
CDEs.

Our next step, in chapter 3, has been to embed the Ak-CDEs into the theory
of slow fast systems. By doing this we have studied what we called Ak-SFSs,
which are ε-perturbations of the Ak-CDEs of chapter 2. The slow manifold
corresponding to the Ak-SFSs is not Normally Hyperbolic and thus, the method
called Geometric Desingularization (GD) becomes useful. With the aim of refining
the results obtained by the GD-process, we have proposed a normal form of Ak-
SFSs. Later, in chapter 4, we have shown that this normal form greatly simplifies
the local analysis of the Ak-SFSs via the GD-method. Our final contribution is
the description of the flow of Ak-SFSs for k = 2, 3, 4 near the fold, the cusp, and
the swallowtail points respectively. However, we remark that the methodology
developed here is systematic and is applicable to all the Ak-SFSs.

127
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Motivated by our research, a series of open problems arise.

• On Constrained Differential Equations

1. Complete the topological classification of CDEs (V,X) for all potential
functions V given by Thom’s catastrophes. That consists on extending our
results by considering potential functions given by the Butterfly and the
Parabolic Umbilic catastrophes.

2. It is also interesting to investigate the topological classification of generic
CDEs for other known stable potential functions. That is, one may consider
potential functions V given as the universal unfolding of singularities of
type Dn, E6, E7, E8, etcetera [4].

3. The research reported in this thesis relies on the smooth (up to diffeomorph-
ism) classification of singularities of smooth maps. In contrast, it is known
that the topologically stable maps form a dense set in the space of smooth
maps [3]. Thus, it is also interesting to investigate if the classification of
CDEs is possible in the case where the potential function V is given just up
to homeomorphism.

• On Slow fast systems

1. The first natural question is to investigate the corresponding SFSs obtained
as ε-perturbations of the CDEs described above. For example: to consider
SFSs with two (or more) fast variables.

2. Regarding Ak-SFSs, it is interesting to investigate whether the formal nor-
mal form provided in section 3.3 can be made smooth and/or analytic. If
the answer is affirmative, then many of the arguments of this thesis get
simpler. However, since the normal forms are still not integrable, we cannot
avoid using, e.g., the geometric desingularization method.

3. Related to normal forms of SFSs, it is interesting to investigate if our pro-
posed normal form can be extended to more complicated slow fast systems.
For example, SFSs with two or more fast variables.

4. Another interesting application of normal forms of SFSs is to obtain a “true”
normal form of the canard phenomenon.

5. Global problems are also interesting, in particular because they involve
the intersection of invariant manifolds. Thus, the investigation of slow
fast systems with some “global return mechanism” may lead to interesting
results. In this setting, the class of differentiability of the transition maps
involved becomes important.



Appendix A

Auxiliary results

A.1 Elementary catastrophe theory
Catastrophe theory has its origins in the 1960’s with the work of René Thom [40, 41, 42]. One of its goals was to
qualitatively study the sudden (or catastrophic) way in which solutions of biological systems change upon a small
variation of parameters. The most basic setting of this theory is called elementary catastrophe theory [18, 32, 35]. It
is concerned with gradient dynamical systems

ż = −
∂

∂z
V (x, z). (A.1)

The variables z ∈ Rn represent the states or the measurable quantities of a certain process, and x ∈ Rm
represent control parameters. One concern is to find the equilibrium points of (A.1), this is, to solve

∂

∂z
V (x, z) = 0. (A.2)

In mathematical terminology, one is interested in the qualitative behavior of the solutions z of (A.2) as the
parameters x change. It is also interesting to know to what extent different functions V may show the same local
behavior. These ideas led to the classification of families of degenerate functions V (x, z) : Rm × Rn → R for
m ≤ 4, which is known as the “seven elementary catastrophes”, see table A.1.

Theorem A.1.1 (Thom’s classification theorem [10]). Let Vx(z) = V (x, z) : Rm × Rn → R be an m−parameter
family of smooth functions with m ≤ 4. If V (x, z) is generic then it is right-equivalent (up to multiplication by±1, up to
addition of Morse functions and up to addition of functions on the parameters) to one of the forms shown in table A.1.

A.2 Thom-Boardman symbols
LetNn, Mm be smooth manifolds, and consider that (x1, . . . , xn) and (y1, . . . , ym) are some local coordinates
in N and M respectively. Let a smooth map f : Nn → Mm be given by yi = fi(x). Let i1 be a nonnegative
integer. The set Σi1 (f) consists of all points at which the kernel ofDf has dimension i1. Given a finite sequence
I = (i1, i2, . . . , ik) of non-increasing nonnegative numbers, ΣI(f) is defined inductively as follows.

Definition A.2.1 (THOM-SYMBOL). Assume that ΣI(f) = Σi1,i2,...,ik (f) ⊂ N is a smooth manifold. Then

Σi1,i2,...,ik,ik+1 = Σik+1
(
f |ΣI(f)

)
129
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Name V (x, z) Codimension

Non-critical z

Non-degenerate (Morse) z2 0

Fold 1
3 z

3 + x1z 1
Cusp 1

4 z
4 + 1

2x2z
2 + x1z 2

Swallowtail 1
5 z

5 + 1
3x3z

3 + 1
2x2z

2 + x1z 3
Elliptic Umbilic z3

1 − 3z1z2
2 + x3(z2

1 + z2
2) + x2z1 + x1z2 3

Hyperbollic Umbilic z3
1 + z3

2 + x3z1z2 + x2z1 + x1z2 3
Butterfly 1

6 z
6 + 1

4x4z
4 + 1

3x3z
3 + 1

2x2z
2 + x1z 4

Parabolic Umbilic z2
1z2 + z4

2 + x4z
2
1 + x3z

2
2 + x2z1 + x1z2 4

Table A.1: Thom’s classification of families of functions form ≤ 4. Each elementary catastrophe is a struc-
turally stablem-parameter unfolding of the germ V (z, 0). Loosely speaking, the codimension of a singularity
is the minimal number of parametersm for which a singularity persistently occurs in anm−parameter family
of functions.

is the set of all points at which the kernel ofD(f |ΣI(f)) has dimension ik+1.

Naturally, we have the inclusions

N ⊃ Σi1 (f) ⊃ Σi1,i2 (f) ⊃ · · ·

Denote by En the ring of germs of C∞ functions on Rn at 0. Let I be an ideal of En.

Definition A.2.2 (JACOBIAN EXTENSION). The Jacobian extension ∆k(I ) of I is the ideal generated by I and all

the Jacobians det
(
∂φi

∂xj

)
of order k, and where φi are functions in I .

Remark A.2.1.

• The ideal ∆k(I ) is independent on the choice of coordinates.

• ∆k+1(I ) ⊆ ∆k(I ).

Definition A.2.3 (CRITICAL JACOBIAN EXTENSION). A Jacobian extension ∆k(I ) is said to be critical if ∆k 6= En
but En = ∆k−1(I ). This is, the order k of the Jacobians is the smallest for which the extension does not coincide with En.

Now, we change lower indices to upper indices as follows.

Definition A.2.4. ∆k = ∆n−k+1.

By using the upper indices as in definition A.2.4, we have

i1 = corank(I ), i2 = corank(∆i1I ), . . . , ik = corank(∆ik−1 · · ·∆ikI ).

Definition A.2.5 (THOM-BOARDMAN SYMBOL). Let I = (i1, i2, . . . , ik) be a non-increasing sequence of non-
negative integer numbers. The ideal I is said to have Thom-Boardman symbol I if its successive critical extensions
are

∆i1I , ∆i2∆i1I , . . . ,∆ik∆ik−1 · · ·∆i2∆i1I .

Definition A.2.6 (SYMBOL OF A SINGULARITY). Let the map f : Nn → Mm be such that f(0) = 0. We say that
f has a singularity of Thom-Boardman symbol ΣI at 0 if the ideal generated by the m coordinate functions fi has
Thom-Boardman symbol I .
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Definition A.2.7 (NICE MAP). A map f is said to be nice if its k-jet extension is transverse to the manifolds ΣI .

The importance of a nice map is contained in the following result.

Theorem A.2.1 (ON NICE MAPS). [5]

1. If f : Nn → Mm is a nice map, then ΣI(f) = (jkf)−1(ΣI). This is ΣI(f) is a submanifold of N and
x ∈ ΣI(f) if and only if jkf(x) ∈ ΣI .

2. Any smooth map f : Nn →Mm can be arbitrarily well approximated by a nice map.

A.3 Some classical normal forms

Let a C∞ vector field Y (x) be given as Y =
∑n

i=1
fi

∂
∂xi

. Assume that the origin is an isolated equilibrium
point, this is Y (0) = 0. Assume also that the Jacobian of Y has c eigenvalues in the imaginary axis, and let ` be a
positive integer. We have the following result.

Theorem A.3.1 (TOPOLOGICAL REDUCTION TO THE CENTER MANIFOLD). There exists a C`, c−dimensional manifold
W c containing the origin, and a neighborhood U of 0 ∈ Rn, such that for any point x ∈ W c ∩ U , Y (x) is tangent to
W c at x. Moreover, there exists an integer r, with 0 ≤ r ≤ n− c such that Y is topologically equivalent to the vector
field

Y =
c∑
i=1

f̃i(y1, . . . , yc)
∂

∂yi
+

c+r∑
i=c+1

yi
∂

∂yi
−

n∑
i=c+r+1

yi
∂

∂yi
,

where (y1, · · · , yc) are coordinates in the center manifoldW c, and all eigenvalues ofD0f̃ are on the imaginary axis.

It is important to note that the center manifoldW c in theorem A.3.1 is not unique. However, different choices
ofW c lead to topologically equivalent phase portraits [2, 38].

Define by Y1(x) the vector field which has the same 1−jet at x = 0 as Y , and whose coefficients are linear
in x. Denote byHk the space of vector fields whose coefficients are homogeneous polynomials of degree k.

The linear map [Y1,−]k : Hk → Hk assigns to each H ∈ Hk the Lie product [Y1, H]. Observe that for a
fixed Y1 there is a splittingHk = Bk +Gk , whereBk = Im ([Y1,−]k), andGk is some complementary space.

Theorem A.3.2 (NORMAL FORM THEOREM [38]). Let Y, Y1, B
k, Gk be as above. Then, for ` ≤ k, there exists a

C∞−diffeomorphism φ : Rn → Rn, which fixes the origin, such that φ∗(Y ) = Y ′ is of the form

Y
′ = Y1 + g2 + · · ·+ g` + R`

where gj ∈ Gj , j = 2, . . . , ` andR` is a vector field with vanishing `− jet at the origin, ` = k =∞ is not excluded.

Remark A.3.1. In case the 1− jet of Y is identically 0, one proceeds as follows. Let s be the smallest integer such that the
s− jet of Y does not vanish at 0, denote by Ys the vector field whose component functions are homogeneous polynomials of
degree s, and such that the s−jets of Y and Ys are the same. As in the normal form theorem, define the map

[Ys,−]k : Hk → Hk+s−1
.

For k > s, the splitting of the spaceHk isHk = Bk +Gk , whereBk = im ([Ys, H]), with nowH ∈ Hk−s+1.
In this way, the conclusion of the normal form theorem remains valid by replacing the Y ′ from above by

Y
′ = Ys + gs+1 + . . .+ g` + R`.
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Theorem A.3.3 (TAKENS NORMAL FORM THEOREM ON SEMI-HYPERBOLIC SINGULARITIES [37]). LetX be a vector
field on Rn which is zero at the origin. If X satisfies the non-resonant condition of Stenberg, then there are Ck coordinates
(x1, . . . , xc), (y1, . . . , yz) and (z1, . . . , zu) on Rn such thatX is locally of the form

X =
c∑
i=1

Xi(x1, . . . , xc)
∂

∂x1
+

s∑
i=1

A(x1, . . . , xc)yi
∂

∂yi
+

s∑
i=1

B(x1, . . . , xc)zi
∂

∂zi
,

where

• All the eigenvalues ofDxX(0) have zero real part,

• A(0) < 0

• B(0) > 0

Theorem A.3.4 (Sternberg-Chen [11, 34]). LetX andY be two hyperbolic vector fields. ThenX andY are C∞ equivalent
if and only if they are formally equivalent.

A.4 Fenichel’s theory
LetXε be a slow fast system whose slow manifold S is regular, say at the origin, that is

Xε :
{
x′ = εf(x, z, ε)
z′ = g(x, z, ε),

(A.3)

where
∂g

∂z
(0) is non-singular. As usual, we denote byS the slow manifold of (A.3), and by definition this manifold

S is Normally Hyperbolic in a neighborhood of the origin. Let S0 be a compact subset of S.

Theorem A.4.1 (Fenichel [16, 46]). If ε > 0 but sufficiently small, there exists a manifold Sε which lies within distance
of orderO(ε) from S0. Moreover, the manifold Sε is invariant under the flow ofXε and is C` for any 0 < ` <∞.

This theorem tells us that the flow of the corresponding CDE gives an approximation of the flow along the
invariant manifoldSε of (A.3). We remark that the compactness property guarantees the existence and uniqueness
of Sε [45, 46].

A.5 Quasihomogeneous functions and vector fields
In this section we briefly recall the principal properties of quasihomogeneous functions, and vector fields. This
section is mainly based in [3, 29].

Let x ∈ Rn. Germs of functions are denoted by f : (Rn, 0) → (R, 0). Similarly, vector fields on Rn
are denote by X . We shall use the usual multi-index notation as follows: let q = (r1, . . . , qn) ∈ Nn, then
xq expresses the monomial xq11 · · · x

qn
n , |q| = q1 + · · · + qn is the length of q. Let r ∈ Nn, then (r, q) =

r1q1 + · · ·+ rnqn.

Definition A.5.1 (Quasihomogeneous function). Let f : (Rn, 0) → (R, 0) be a (germ of a) smooth function. The
function f is called quasihomogeneous of degree δ and type r = (r1, . . . , rn) if for any λ > 0 the following holds

f(λr1x1, λ
r2x2 . . . , λ

rnxn) = λ
δ
f(x1, x2, . . . , xn).

In the rest we are interested only in quasihomogeneous polynomials.
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Definition A.5.2 (Degree of a monomial). We say that the r-monomial xq = x
q1
1 · · · x

qn
n has quasidegree δ if (r, q) =

δ.

Let us, from now on, fix the type r = (r1, . . . , rn). Observe then that any r-quasihomogeneous polynomial
of degree δ can be written in the form ∑

(r,Q)=δ

aQx
Q
,

where aQ ∈ R. Since r is fixed, whenever no confusion is possible, we will omit to mention the type of a
quasihomogeneous polynomial.

Definition A.5.3 (Quasidegree). Let f be a quasihomogeneous polynomial. If all the monomials of f are of degree δ we
call δ the quasidegree of f . By convention, the degree of 0 is +∞.

Definition A.5.4 (Order). A polynomial f has order ord(f) = δ if all of its monomials have degree δ or higher.

We denote by Pδ the linear space formed by polynomials of order δ. Observe that Pδ ⊂ Pδ′ for δ′ < δ.

Definition A.5.5 (Quasihomogeneous vector field). A (formal) vector field X =
∑

Xi
∂

∂xi
is called quasihomo-

geneous of degree δ and type r = (r1, . . .) if each non-zero Xi is a quasihomogeneous (polynomial) function of degree
δ + ri and of type r = (r1, . . .).

Definition A.5.6 (Order of a vector field). A formal vector field X =
∑

Xi
∂
∂xi

is said to have order δ all its
quasihomogeneous componentsXi are of degree higher than δ + ri.

The set of all quasihomogeneous vector fields of order δ is denoted byHδ . The following lemma summarizes
some of the properties of quasihomogeneous objects that are useful in the present context.

Lemma A.5.1 (Properties of quasihomogeneous objects [4, 29]). Let δ, σ ∈ N be nonnegative, and f ∈ Pδ ,X ∈ Hσ .
The following facts hold

• if g ∈ Pσ , then fg ∈ Pδ+σ .

• LXf ∈ Pδ+σ

• fX ∈ Hδ+σ

• if Y ∈ Hδ , thenDX · Y ∈ Hσ+δ and [X,Y ] ∈ Hσ+δ .

• LetX =
∑n

i=1
Xi

∂

∂xi
, then ord(X) = δ if and only if ord(Xi) = δ + ri.

We shall define a convenient inner product in the space of quasihomogeneous polynomials and vector fields.

Definition A.5.7 (The inner product 〈·, ·〉r,δ). Let x = (x1, . . . , xn), and s, q ∈ Nn. Let f, g ∈ Pδ , that is

f =
∑

(r,s)=δ

fsx
s
,

and similarly for g. Then the inner product 〈·, ·〉r,δ is defined as

〈f, g〉r,δ =
∑

(r,s)=δ

fsgs
(s!)r

δ!
,

where (s!)r = (s1!)r1 · · · (sn!)rn . So for monomials one has
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〈xs, xq〉r,δ =

{
(s1!)r1 ···(sn!)rn

δ! if s = q with (s, r) = δ,

0 otherwise.

For vector fields we have the following. LetX,Y be quasihomogeneous vector fields such thatX =
∑n

i=1
Xi

∂
∂xi
∈

Hδ , and Y =
∑n

i=1
Yi

∂
∂xi
∈ Hδ . Then

〈X,Y 〉r,δ =
n∑
i=1

〈Xi, Yi〉r,δ+ri .

Examples of quasihomogeneous polynomials and vector fields
The following examples are used in the main text.

Example A.5.1. The function f(x1, z) = z3 + x1z is quasihomogeneous of degree δ = 3 and type r = (2, 1).

Example A.5.2. Consider the quasihomogeneous polynomial fk = zk+
∑k−1

i=1
xiz

i−1. All its monomials are of degree
k. Therefore, we say that f has quasidegree k.

Example A.5.3 (Order).

• The quasihomogeneous polynomial fk = zk +
∑k−1

i=1
xiz

i−1 has order k.

• Consider the quasihomogeneous polynomial fk + P , where deg(P ) ≥ k. Then fk + P has order k.

• Consider the quasihomogeneous polynomial fk +O, where ord(O) ≥ k. Then fk +O has order k.

Example A.5.4. The n-dimensional linear vector fieldX =
∑n

i=1
aixi

∂

∂xi
is a quasihomogeneous vector field of degree

δ = 0 and type r = (1, 1, . . . , 1︸ ︷︷ ︸
n

).

Example A.5.5. The 3-dimensional vector field X = ε
∂

∂x1
− (z2 + x1)

∂

∂z
+ 0

∂

∂ε
is a quasihomogeneous of degree

δ = 1 and type r = (2, 1, 3).

Example A.5.6. The k + 1 dimensional vector field

X = ε
∂

∂x1
−

(
z
k +

k−1∑
i=1

xiz
i−1

)
∂

∂z
+ 0

∂

∂ε

is quasihomogeneous of degree δ = k − 1 and type r = (k, k − 1, . . . , 1, 2k − 1).

A.6 Normal forms and transitions

Here we present a procedure to obtain C` normal forms of hyperbolic and semi-hyperbolic vector fields. We do
this because those are the type of blown up vector fields that we encounter when studyingAk-SFS.
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A.6.1 Normal form near a hyperbolic point
Proposition A.6.1. LetX be them+ 2 dimensional vector field

X :


u′ = uL(v) + fu
v′1 = α1v1L(v) + w + fv1
v′j = αjvjL(v) + fvj
w′ = γwL(v) + fw,

where j = 2, . . . ,m, L(v) = 1 +
∑m

i=1
vi and all the f`’s are flat along u = 0. Assume that the coefficients αi and

γ are non-zero. Then, there exists a C∞ transformation that bringsX intro the normal form

X
N
h :


U ′ = U

V ′1 = −α1V1 +W 1
L(V )

V ′j = −αjVj
W ′ = −γW.

Proof of proposition A.6.1. The proof consists of two steps. First divide (re-parametrize time)X byL(v). Finally
apply Sternberg-Chen theorem appendix A.3.

A.6.2 Normal form near a semi-hyperbolic point
Proposition A.6.2. Let (u, v, w, z) ∈ R× Rm × R× R and consider the vector fieldX given as

X :


u′ = αwu(1 + f)
v′j = βjwvj(1 + f) + wgj
w′ = γw2(1 + f),
z′ = −Λ + h

where j = 1, . . . ,m; where the coefficients α, βi, γ are all nonzero, the functions f , gi and h are all smooth functions flat
along u = 0 and Λ = Λ(u, v, w, z) is a smooth function such that Λ(0) = 0 and ∂Λ

∂z (0) > 0. Then there exist C`

coordinates around the origin such thatX is C` equivalent to

X
N
sh :


U ′ = αWU

V ′j = βjWVj
W ′ = γW 2

Z′ = −GZ,

whereG = G(U, V,W ) is a C` function such thatG(0) > 0.

Proof of proposition A.6.2. From the definition of the vector field X we note that the origin is a semi-hyperbolic
singular point. The hyperbolic eigenspace is 1-dimensional while the center eigenspace is (m + 1)-dimensional.
In the following lines we obtain a C` normal form XNsh for X . We detail all the steps that take X into the normal
formXN .

Divide by 1 + f . We define a new vector field Y by Y = 1
1+fX , which reads

Y :


u′ = αwu

v′j = βjwvj + wg̃j
w′ = γw2,

z′ = −Λ + h̃,

where the functions g̃j , j = 1, . . . ,m, and h̃ are flat along u = 0. Then, in a small neighborhood of the origin,
the vector fieldsX and Y are smoothly conjugate.
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Characterize a center manifold. Observe that linearization of Y at the origin shows the existence of an (m+1)-

dimensional center manifoldW
C

[19]. In this step we simplify the expression of the center manifold. Let M0 be
the set of critical points of Y , that is

M0 = {(u, v, w, z) |Λ(u, v, 0, z) = 0} .

By definition, the manifold M0 is invariant and normally hyperbolic. Now, assume |w| � 1. Such a condition
appears naturally in our applications. By Fenichel’s theory [16] the manifold M0 will persist as an invariant

normally hyperbolic manifold Mw , for sufficiently small w 6= 0 . We identify such manifold Mw withW
C

. In

other words, there exists a C` functionm = m(u, v, w) such that the center manifoldW
C

is given as a graph

W
C

= Graph(u, v, w,m).

Let ζ = z − m, then ζ′ = z′ − m′. But we know, due to invariance ofW
C

under the flow of Y , that
ζ′|ζ=0 = 0. This is, there exists a C` function g = g(u, v, w, ζ) such that ζ′ = −gζ. With g(0) = 0 and
∂g

∂ζ
(0) > 0.

In conclusion of this step, there exists a C` transformation ψ : (u, v, w, z) 7→ (u, v, w, ζ) that transforms
the vector field Y into

Ỹ :


u′ = αwu

v′j = βjwvj + wg̃j
w′ = γw2,

ζ′ = −gζ,

where g = g(u, v, w, ζ) is a C` function such that g(0) = 0 and
∂g

∂z
(0) =

∂Λ
∂z

(0).

Eliminate the flat terms in the center manifold W
C

. Observe that thanks to the previous step, the center

manifoldW
C

has the simple expressionW
C

= {ζ = 0}. The flow of Ỹ restricted toW
C

reads

Ỹ
c = Ỹ |

WC
:

{
u′ = αwu

v′j = βjwvj + wg̃j
w′ = γw2,

where we recycle the notation of the flat perturbation. Note that the vector field Ỹ c is, up to multiplication by w
and up to flat perturbation, linear. That is

j
∞
(

1
w
Ỹ
c

)
:

{
u′ = αu

v′j = βjvj
w′ = γw.

The goal now is to conjugate 1
w Ỹ

c with its infinite jet, which is linear. However we must do this fixing
the coordinate w. Note that this is not possible by only using Sternberg-Chen. But it is possible via a result of
Roussarie [15]. Thus, for w 6= 0, we have that there is a smooth change of coordinates (u, v, w) 7→ (ũ, ṽ, w)
conjugating Ỹ c to

Yc :

{
ũ′ = αw̃ũ

ṽ′j = βjw̃ṽj
w′ = γw2.
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Finally, since the center dynamics are independent of ζ, we have that the vector Ỹ is smoothly conjugate to

Y :


ũ′ = αwũ

ṽ′j = βjwṽj
w′ = γw2

ζ′ = −g̃ζ,

where g̃ = g(ũ, ṽ, w, ζ).

Linearize the hyperbolic direction. Roughly speaking, the last step in order to obtain the normal form XN is
to make the equation of ζ′ linear in ζ. We do so by invoking the Bonckaert extensions to the theorem of Takens on
semi-hyperbolic fixed points [37, 6, 7]. Such result guarantees the existence of C` change of coordinates coordin-
ates (ũ, ṽ, w, ζ) 7→ (ũ, ṽ, w, Z) bringing Y into the normal form

X
N
sh :


ũ′ = αwũ

ṽ′j = βjwṽj
w′ = γw2

Z′ = −GZ,

whereG = G(ũ, ṽ, w) is a C` function such thatG(0) > 0.

A.6.3 Partition of a smooth function
In this section we investigate the problem of partitioning a smooth function. The result presented below is import-
ant since it is used to simplify the computation of transition maps. To be more specific, let us give a brief example.
Consider the three dimensional differential equation

x
′ = x

y
′ = −y

z
′ = g(x, y)z,

where g is a smooth function. We want to take advantage from the fact that xy is a first integral. We show below
that the function g can be partitioned as g(x, y) = g1(xy, x) + g2(xy, y). This makes the integration of z′

simpler.

Lemma A.6.1. Let u ∈ R and v ∈ Rm. Let f = f(u, v) be a smooth function such that f(0, 0) = 0. Then there exist
smooth functions f0 = f0(uv, u) and f1(uv, v) such that the function f can be written as

f = f0 + f1,

where f0(0, 0) = 0 and f1(0, 0) = 0.

Proof of lemma A.6.1. We proceed in two steps. The first consists in proving the formal version of the statement.
The second step is to extend the formal result to the smooth case.

Formal step

Let f̂ denote the formal expansion of the smooth function f . Let p ∈ N and q ∈ Nm. We use the following
notation:
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• By q ≥ 0 we mean qi ≥ 0 for all i ∈ [1,m].

• For a vector v ∈ Rm we write vq = v
q1
1 · · · v

qm
m .

• The L1 norm of q is denote by |q|, and thus for q > 0 we have |q| =
∑m

j=1
qj .

• We denote by q̃i the vector

q̃i = (q1, . . . , qi−1, qi+1, . . . , qm)

and therefore we have that vq̃i reads as

v
q̃i =

vq

v
qi
i

= v
q1
1 · · · v

qi−1
i−1 v

qi+1
qi+1 · · · v

qm
m .

Besides, we have that the L1 norm of q̃i is given by |q̃i| = |q| − qi =
∑m

j=1,j 6=i
qj .

The formal series expansion of f reads as

f̂ =
∑

p≥0,q≥0

apqu
p
v
q
,

where a00 = 0. With the notation introduced above, we can partition f̂ as follows

f̂ =
∑
p≥|q|

a
′
pq(uv)qup−|q| +

m∑
i=1

∑
qi≥p+|q̃i|

a
′
pq(uvi)

p(viv)q̃ivqi−p−|q̃i|
i

,

where

(uv)q = (uv1)q1 · · · (uvm)qm

(viv)q̃i =
(viv)q

v
2qi
i

,

and where a′pq ∈ R are suitable chosen coefficients. Let r ∈ Nm, s ∈ N. Define the following formal polynomials

ĥ(uv, u) =
∑
r,s≥0

αrs(uv)rus =
∑
p≥|q|

a
′
pq(uv)qup−|q|,

where αrs ∈ R, and

ĝi(uvi, v) =
∑
r,s,t≥0

βirs(uvi)svr

=
∑

qi≥p+|q̃i|

a
′
pq(viv)q̃i (uvi)pv

qi−p−|q̃i|
i

,

where βirs ∈ R. The coefficients αrs and βirs are conveniently chosen to make the definitions hold. Let uv =
(uv1, . . . , uvm). Define ĝ = ĝ(uv, v) by ĝ(uv, v) =

∑m

i=1
ĝi(uvi, v), then we can write f̂ as

f̂(u, v) = ĥ(uv, u) + ĝ(uv, v).

This shows that the proposition holds for formal series.
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Smooth step

By Borel’s lemma [10], there exist smooth functions h = h(uv, u) and g = g(uv, v) (whose formal series expan-
sions are ĥ and ĝ respectively) such that

f = h+ g + R,

whereR (reminder) is a flat function. We now show the following.

Proposition A.6.3. Let u ∈ R, v ∈ Rm, and R(u, v) be a smooth flat function at (0, 0) ∈ R × Rm. There exist flat
functions r0 = r0(uv, u) and r1 = r1(uv, v) such that

R = r0 + r1.

Remark A.6.1. Proposition A.6.3 together with the formal step f̂ = ĥ+ ĝ imply our result.

Proof of proposition A.6.3. For this proof we shall use the blow-up technique. Let Φ : Sm × R+ → Rm+1 be
a blow-up map. The map Φ maps Sm × {0} to the origin in Rm+1. Let R̃ be a function defined by R̃ = R ◦ Φ.
Since R is flat at the origin, the function R̃ is flat along the sphere Sm. We assume that the function R = R(u, v)
is defined on a small neighborhoodR of the origin in R× Rm; this neighborhood is defined as

R = {|u| ≤ A, |vi| ≤ Bi} ,

for someA,Bi positive scalars. Let 0 < δ < 1. The sphere Sm can be partitioned intom+ 1 regions as follows:

U = S
m\ {|ū| ≤ δ}

Vi = S
m\ {|v̄i| ≤ δ} ,

where (ū, v̄) = (ū, v̄1, . . . , v̄m) ∈ Sm. We can then take a partition of unity to split R̃ as

R̃(ū, v̄) = R̃0(ū, v̄) +
m∑
i=1

R̃i(ū, v̄), (A.4)

where Supp(R̃0) ⊂ U and Supp(R̃i) ⊂ Vi for i ∈ [1,m]. We define asR0 andRi the corresponding functions
on Rm+1 flat at the origin given by the blow-up map Φ, that is R̃j = Rj ◦ Φ, for j = 0, 1, . . . ,m. Note that
R → R̃ is an isomorphism between the space of functions on (u, v) ∈ Rm+1 flat at the origin, and the space of
functions on ((ū, v̄), ρ) ∈ Sm × R+ flat at Sm × {0}. Therefore, the splitting (A.4) induces the splitting

R(u, v) = R0(u, v) +
m∑
i=1

Ri(u, v)

of functions on Rm+1. We will now prove that there exist flat functions r0 and ri such that

R0(u, v) = r0(uv, u)
Ri(u, v) = ri(uvi, v).

Let us detail only the case ofR0. The other functions are obtained in a similar way.
The function R̃0 has support in U . We can parametrize U by the directional blow-up map Φu which reads as

(ū, v̄1, . . . , v̄m) 7→ (ū, uv̄1, . . . , uv̄m) = (u, v1, . . . , vm).
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Now, suppose that there exists a flat function P̃0 defined by

R̃0(u, v̄) = P̃0(u, u2
v̄).

This implies that there is a function r̃0 = P̃0 ◦ Φ−1
u such that

R0(u, v) = r̃0(u, uv),

which is precisely what we want to prove. So, now we only need to show that indeed a function P̃0 as above exists.
For this let us define coordinates (U, V1, . . . , Vm) given by

U = u, V1 = u
2
v̄1, . . . , Vm = u

2
v̄m,

and let P̃0(u, V ) be a function defined as

P̃0(u, V ) = R̃0

(
V

u2 , u

)
.

Note that P̃0 is flat at (u, V ) = 0. This is seen as follows. Since R̃0 is flat along {u = 0}, it follows that
P̃0(0, 0) = R̃0|u=0 = 0 and

∂P̃0

∂u
(0) =

∂R̃0

∂u
|u=0 = 0

∂P̃0

∂Vi
(0) =

1
u2

∂R̃0

∂v̄i
|u=0 = 0,

and so on for the higher order derivatives.
Finally, for convenience of notation we define r0(uv, u) = r̃0(u, uv), thus we can write R0(u, v) =

r0(uv, u) Following similar arguments as above we find the functions ri = ri(uvi, v) such that Ri(u, v) =
ri(uvi, v) for i ∈ [1,m]. Then we define r1(uv, v) =

∑m

i=1
ri(uvi, v). It follows that

R(u, v) = r0(uv, u) + r1(uv, v).

With this last proposition we can now write the function f as

f = h(uv, u) + g(uv, v) + R(u, v)
= h(uv, u) + g(uv, v) + r0(uv, u) + r1(uv, v).

Finally, to show the lemma we define the smooth functions f1, f2 of the statement by

f1 = h+ r0

f2 = g + r1.
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A.6.4 Transition near a hyperbolic point
In this section we study the flow near the hyperbolic equilibrium point of the vector field XNh obtained in ap-
pendix A.6.1.

We recall thatXNh reads

X
N
h :


u′ = u

v′1 = −α1v1 + w
(

1− L(v)−1
L(v)

)
v′j = −αjvj
w′ = −γw,

where j = 1, . . . ,m. Observe that XNh has m + 1 contracting directions and only one expanding direction.
Therefore, it is convenient to study a transition map given as

Π : (u, v1, . . . , vm, w) 7→ (uout, ṽ1, . . . , ṽm, w̃), .

where uout > u. We then choose the time of integration to be T = ln
(
uout
u

)
. We have the following.

Proposition A.6.4. LetXNh be as above and let

Π : (u, v1, . . . , vm, w) 7→ (uout, ṽ1, . . . , ṽm, w̃).

Then we have

ṽ1 = v1

(
u

uout

)α1
(

1 +O

(
u

uout

))
ṽj = vj

(
u

uout

)αj
∀j ∈ [2,m]

w̃ = w

(
u

uout

)γ
Proof of proposition A.6.4. The solutions w̃ and ṽj for j ∈ [2,m] are straightforward. So now the only problem
we have is to integrate a one dimensional equation of the form

v
′
1 = −α1v1 + w(t)F (t, v1), (A.5)

where F (t, v1) reads

F (t, v1) =
1

1 + v1 +
∑m

j=2
vj(0)e−αjt

.

In our applications w(t) is small in magnitude. Thus, observe that if w ≡ 0, we would have v1(t) =
v1(0)e−α1t.

Let us define V1 by v1 = e−α1tV1. Then substituting in (A.5) we get

V
′
1 = we

(−γ+α1)t
F̃ (t, V1), (A.6)

where we have substituted w(t) = we−γt and

F̃ (t, V1) =
1

1 + e−α1tV1 +
∑m

j=2
vj(0)e−αjt

.
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The term−γ+α1 is always negative, and the termwe(−γ+α1)t is dominant in forward time. This is because
F̃ → 1 as t→∞. Then, even though we cannot explicitly integrate V ′1 , from the form of (A.6) we expect that

V1 = Awe
(−γ+α1)t(1 + E),

with some constant A and E = E(t) ∼ e−ct with c > 0. Therefore we would have (adding the solution to the
linear equation and the solution for V ′)

v1(t) = v1(0)e−α1t + e
−α1tV1

= v1(0)e−α1t + Awe
−γt(1 + E).

Then taking into account the time of integration T = ln
(
uout
u

)
we have

ṽ1 = v1

(
u

uout

)α1
+ Aw

(
u

uout

)γ (
1 +O

(
u

uout

))
.

Since γ > α1 we finally have

ṽ1 = v1

(
u

uout

)α1
(

1 +O

(
u

uout

))
.

A.6.5 Transition near a semi-hyperbolic point
In this section we investigate the transitions for the vector field XNsh computed in appendix A.6.2. Relabeling the
coordinates we recall thatXNsh reads

X
N
sh :


u′ = αwu

v′j = βjwvj
w′ = γw2

z′ = −gz,

where j = 1, . . . ,m, and where g = g(u, v, w) is a C` function such that g(0) = Λ > 0. We assume that
w ∈ R+. For our applications, we are interested in only two particular situations.

1. The saddle 1 case where α = −1, βi > 0 and γ > 0.

2. The saddle 2 case where α = 1, βi < 0 and γ < 0.

Saddle 1
In this case we investigate the transitions of a vector field of the form

Y :


u′ = −wu
v′j = βjwvj
w′ = γw2

z′ = −gz,

(A.7)

where the coefficients βj , for all j = 1, . . . ,m, and γ are positive. Observe that the flow in the direction of u and
z is a contraction while it expands in all the other directions. Roughly speaking, this implies that a transition can
go out at any expanding direction vj of w.
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We investigate two types of transitions that will be used later in our applications. For this, let us define the
following sections

Σen = {(u, v, w, z) |u = ui}

Σwex = {(u, v, w, z) |w = wo}

Σ
±vj
ex = {(u, v, w, z) | vj = vj,o} .

In this section we compute the transitions

Πw :Σen → Σwex

(v, w, z) 7→ (ũ, ṽi, z̃),

for all i ∈ [1,m], and

Π±vj :Σi → Σ
±vj
ex

(v, w, z) 7→ (ũ, ṽi, w̃, z̃),

for all i ∈ [1,m] with i 6= j. The way each transition is used is made clear in section 3.4.

Proposition A.6.5. Consider the vector field Y given by (A.7) and let Σen, Σwex, Σ
±vj
ex and Πw , Π±vj be as above. Then

• The transition Πw is given by

ũ = u

(
w

wo

)1/γ
, ṽi = vi

(
wo

w

)βi/γ
z̃ = z exp

[
−

Λ
γw

(
1 + α̃w ln(w) + wG̃

)]
where α̃ = α̃(uv1/βi

i
, uw1/γ) and G̃ = G̃(uv1/βi

i
, uw1/γ , w1/γ , µi) are C` functions with µi =

v
1/βi
i

w−1/γ .

• The transition Π±vj is given by

ũ =
(
vj

ηj

)1/β
, ṽi = vi

(
ηj

vj

)βi/βj
, w̃ = w

(
ηj

vj

)γ/βj
z̃ = z exp

[
−

Λ
γw

(
1 + α̃

′
w ln(vj) + wG̃

′
)]

,

with i 6= j and where

α̃
′ = α̃

′(uv1/βi
i

, uw
1/γ)

G̃
′ = G̃

′(uv1/βi
i

, uw
1/γ

, µw, µi)

are C` functions with µw = w1/γv
1/βj
j

and µi = v
1/βi
i

v
1/βj
j

.

Proof of proposition A.6.5. We detail first the computations for the transition Πw . The transition Π±vj is com-
puted in a similar way so we only highlight the key parts of the computation.
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The transition Πw

In this case, the time of integration is T = ln
(
wo
w

)1/γ
, where wo = w(t)|Σwex

and w = w(t)|Σen . Such a time

of integration is obtained form the equation w′ = γw. We also make the assumption that vi ∈ O(eβi/γ). Such
an assumption will appear in our applications. From the form of Y we evidently have

u(T ) = ũ = u

(
w

wo

)1/γ

vi(T ) = ṽi = vi

(
wo

w

)βi/γ
.

It only rests to compute the transition for the z coordinate. Let us rewrite Y as follows

u
′ = −u
vi = βivi

w = γw

z
′ = −

Λ +G(u, v, w)
w

z,

where G is a C` function vanishing at the origin. Observe that we have the first integrals ubivi and uγw. We
shall take advantage of such a fact. We define new coordinates (U, V,W ) given by

U = u, V
βi
i

= vi, W
γ = w.

In this new coordinates we have the system

U
′ = −U

V
′
i = Vi

W
′ = W

z
′ = −

Λ +G(U, V βi ,Wγ)
Wγ

z.

In the new coordinates, the time of integration is given as T = ln
(
Wo
W

)
. To have an idea of the expression

of z̃, let us first study a simple example.

The case G = 0

Let us supposeG = 0. Therefore we have z′ = − Λ
Wγ z, which has the solution

z(t) = z(0) exp

(
−Λ

∫ t

0

W (s)−γds

)
,

whereW (s) = W (0) exp(s). Substituting the time of integration T we have

z(T ) = z̃ = z exp

(
−

Λ
Wγ

∫ ln
(
Wo
W

)
0

e
−γs

ds

)
= z exp

(
−

Λ
γWγ

(
1−
(
W

Wo

)γ))
.

Observe that sinceW < Wo we have that z̃ → 0 asW → 0. Let us now study the general case.
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The case G 6= 0
We now consider thatG 6= 0, we have

z(T ) = z̃ = z exp (I0 + I1) ,

where

I0 = −Λ

∫ T

0

1
W (s)

ds

I1 =

∫ T

0

G(U(s), V (s)βi ,W (s)γ)
W (s)γ

ds.

The integral I0 has already been computed above. Let us write F (U, V,W ) = G(U(s),V (s)βi ,W (s)γ )
W (s)γ . We

can do this because G(U, 0, 0) = 0 and V βi ∈ O(Wγ). Now we estimate the integral I1. Using lemma A.6.1,
we can write

I1 =

∫ T

0

[F1(s) + F2(s)] ds,

where

F1 = F1(UV1, . . . UVm, UW,U)
F2 = F2(UV1, . . . , UVm, UW, V1, . . . , Vm,W ).

Observe that UW and all the UVj ’s’ are first integrals. Let J1 =
∫
F1 and J2 =

∫
F2. Then we have

J1 =

∫ T

0

F1(UV,UW,U(s))ds

=

∫ ln
(
Wo
W

)
0

F1(UV,UW,Ue−s)ds.

Let us make the change of variables y = e−s, we obtain

J1 = −

∫ W
Wo

1

F1(UV,UW,Uy)
dy

y
.

We expand the function F1 in power of y that is

F1(UV,UW,Uy) = F1(UV,UW, 0) +O(y).

Then we have

J1 = −

∫ W
Wo

1

α1
dy

y
+ F̃1,
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where α1 = α1(UV,UW ) and F̃1 = F̃1(UV,UW,Uy(T )) is some (unknown) C` function. Finally we get

J1 = α1 ln
(
W0

W

)
+ F̃1

(
UV,UW,U

W

W0

)
.

The function F̃1 is C` but unknown, and W0 is a fixed positive constant, then we can simplify the notation
of F̃1 as F̃1 = F̃1(UV,UW,W ).

Next we have

J2 =

∫ T

0

F2(UV,UW, V (s),W (s))ds

=

∫ ln
(
Wo
W

)
0

F2(UV,UW, V1e
β1s, . . . , Vme

βms,We
γs)ds.

Let us make the change of variables y = es. Then we obtain

J2 =

∫ Wo
W

1

F2(UV,UW, V1y
β1 , . . . , Vmy

βm ,Wy
γ)
dy

y
.

As above, we expand in powers of y, that is

F2 = α2 +O(y),

and then we have

J2 = α2 ln
(
W0

W

)
+ F̃2,

where α2 = α2(UV,UW ), F2 = F2(UV,UW, µi) is a C` function with µi = ViW
−1 for all i ∈ [1,m].

Recall that since vi ∈ O(wβi/γ) we also have that V ∈ O(W ).
Now we can write the integral I1 as

I1 = J1 + J2

= α1 ln
(
W0

W

)
+ F̃1 + α2 ln

(
W0

W

)
+ F̃2

= α ln
(
W0

W

)
+ F̃ ,

where α = α(UV,UW ) and F̃ = F̃ (UV,UW,W, µi) are C` functions. FInally we write z̃ in the original
coordinates as follows

z̃ = z exp(I0 + I1)

= z exp
[
−

Λ
γw

(
1−

w

wo

)
+

1
γ
α ln
(
wo

w

)
+ F̃

]
= z exp

[
−

Λ
γw

(
1 + α̃w ln(w) + wG̃

)]
,

where α̃ = α̃(uv1/βi
i

, uw1/γ) and G̃ = G̃(uv1/βi
i

, uw1/γ , w1/γ , µi) are C` functions with µi = viw
−βi/γ .
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The transition Π±vj

In this case the time of integration is given by T = ln
(
ηj
vj

)1/βj
. Such a time of integration is obtained from the

equation v′j = βjvj . The we have

ũ = u

(
vj

ηj

)1/β

ṽi = vi

(
ηj

vj

)βi/βj
w̃ = w

(
ηj

vj

)γ/βj
.

Then, only remains to compute z̃. Following similar arguments as for the transition Πw we get in this case

z̃ = z exp
[
−

Λ
γw

(
1 + α̃

′
w ln(vj) + wG̃

′
)]

,

where now

α̃
′ = α̃

′(uv1/βi
i

, uw
1/γ)

G̃
′ = G̃

′(uv1/βi
i

, uw
1/γ

, µw, µi)

are C` functions with µw = wv
−γ/βj
j

and µi = viv
−βi/βj
j

.

Saddle 2
In this case we investigate the transitions of a vector field of the form

Y :


u′ = wu

v′j = −βjwvj
w′ = −γw2

z′ = −gz,

(A.8)

where the coefficients βj , for all j = 1, . . . ,m, and γ are positive. We assume that u ∈ R+. Observe that now,
in contrast with case 1, we only have one expanding direction. This makes the study of the transition easier. Let
uout > 0 In this case, it is more convenient to study a transition

Πu : Σen → Σex,

where we let Σen be any codimension 1 subset of Rm+3 given by setting one of the coordinates (v, w) to a constant
and with u < uout, and

Σex = {( u, ṽ, w̃, z̃) | ũ = uout} .

Proposition A.6.6. Consider the vector field Y given by (A.8) and let Σen, Σex and Πu be as above. Then

ṽi = vi

(
u

uout

)βi
w̃ = w

(
u

uout

)γ
z̃ = z exp

[
−

Λ
γw

((
uout

u

)γ
− 1 + αw ln(u) + wF̃

)]
where α = α(uβivi, uγw) and F̃ = F̃ (uβivi, uγw, u) are C` functions.
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Proof of proposition A.6.6. We have that the time of integration is T = ln
(
uout
u

)
. We then immediately have

ṽi = vi

(
u

uout

)βi
w̃ = w

(
u

uout

)γ
.

It only rests to compute z̃. Following very similar arguments as in case 1 we have

z̃ = z exp
[
−

Λ
γw

((
uout

u

)γ
− 1 + αw ln(u) + wF̃

)]
,

where α = α(uβivi, uγw) and F̃ = F̃ (uβivi, uγw, u) are C` admissible functions.



Summary

In this thesis we study Constrained Differential Equations (CDEs) and Slow Fast
Systems (SFSs). A SFS is a singularly perturbed ordinary differential equation
given by

ẋ = f(x, z, ε)
εż = g(x, z, ε),

(A.9)

while a CDE is obtained by taking the limit ε→ 0 of (A.9). A motivation to study
SFSs is that several real life phenomena occur in two or more time scales, and
thus can often be modeled by SFSs. For example, see in Chapter 1 the Zeeman’s
heartbeat and nerve impulse models. Our main goal is to contribute to the
understanding of the local dynamics of SFSs and of CDEs, and to explore their
mutual relationship. To accomplish this, we rely not only on classical techniques
from dynamical systems, but new methods are being introduced.

Regarding CDEs, our primary interest is their topological classification, where
elementary catastrophes (see Thom’s list in appendix A.1) play an important role.
This was shown by Takens [39] who classified those CDEs associated to the Fold
(A2) and the Cusp (A3) catastrophes.

As our first contribution, in Chapter 2, we extend Takens’s results by clas-
sifying CDEs related to the Ak (k ≥ 2), and the D±4 (hyperbolic and elliptic
umbilical) catastrophes, see [4, 10]. Further interest is given to the CDEs linked
to the Ak catastrophes, which we call Ak-CDEs. Afterwards in Chapters 3 and
4, we embed these Ak-CDEs in the theory of slow fast systems. More precisely,
we study Ak-SFSs which are ε-perturbations of the Ak-CDEs. The analysis per-
formed is as follows: first, a formal normal form of Ak-SFSs is proposed. Next,
the local flow of the Ak-SFSs is studied and the usefulness of this formal normal
form is exploited. Such a study follows the Geometric Desingularization (or
blow-up) method, see [8, 13, 14, 26]. In this way, we are able to generalize results
dealing with SFSs near fold and cusp points like in [8, 26].

From the results obtained, many open problems arise, for example:
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1. To study slow fast systems with more complicated dynamics, for example:
1) with two fast directions, and 2) with “canards”.

2. To obtain a smooth and/or an analytic normal form of Ak-SFS.

An extensive digression of these and more open problems is given in Chapter
5.



Samenvatting

In dit proefschrift bestuderen we Constrained Differential Equations (CDEs) en
Slow Fast Systems (SFSs). Een SFS is een singulier gestoorde gewone differenti-
aalvergelijking gegeven door

ẋ = f(x, z, ε)
εż = g(x, z, ε).

Door het nemen van de limiet ε → 0 ontstaat een CDE. Een van de motivaties
om een SFS te bestuderen is het feit dat veel natuurlijke fenomenen plaatsvinden
op verschillende tijdschalen. De modellen van Zeeman voor de hartslag en
zenuwimpulsen in Hoofdstuk 1 vormen een voorbeeld hiervan. Het belangrijkste
doel van dit proefschrift is het verkrijgen van inzicht in de lokale dynamica van
zowel CDEs als SFSs en het verkennen van de relatie tussen deze twee. Hierbij
maken we niet alleen gebruik van reeds bestaande technieken uit de theorie van
Dynamische Systemen, maar ontwikkelen we ook nieuwe methoden.

Met betrekking tot CDEs is ons voornaamste doel de topologische classificatie
van deze systemen, waarin elementaire catastrofen (zie de lijst van Thom in
appendix A.1) een belangrijk rol vervullen. Dit is aangetoond door Takens, die
de CDEs behorende bij de Vouw (Fold, A2) en de Doorn (Cusp, A3) catastrofen
heeft geclassificeerd.

Als onze eerste bijdrage, in Hoofdstuk 2, breiden we de resultaten van Takens
uit door middel van de catastrofen van de typen Ak (k ≥ 2), en D±4 (hyperbolic
and elliptic umbilical catastrophes), zie [4, 10]. De CDEs gerelateerd aan de
Ak noemen we Ak-CDEs. In Hoofdstuk 3 en 4 bestuderen we de rol van deze
normaalvormen in de context van een SFS. In het bijzonder beschouwen we
Ak-SFSs gegeven door ε-storingen van de Ak-CDEs. De analyse geschiedt langs
de volgende weg. Als eerste wordt een normaalvorm gegeven voor een Ak-
SFS. Vervolgens wordt de lokale oplossingsstroming van deze normaalvorm
bestudeerd. Hierbij maken we gebruik van een techniek genaamd “meetkundige
desingularisatie”, zie [8, 13, 14, 26]. Op deze manier zijn we in staat om resultaten
voor een SFS nabij een Vouw en een Doorn te generaliseren zoals in [8, 26].
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We noemen hier twee richtingen waarin het vervolgonderzoek zich kan
ontwikkelen.

1. Een studie naar SFSs met meer gecompliceerde dynamica, bijvoorbeeld:
met twee snelle richtingen, en met “canards”.

2. Het verkrijgen van een gladde en/of analytische normaalvorm voor een
Ak-SFS.

Hoofdstuk 5 van dit proefschrift is gewijd aan een uitgebreide beschrijving
van deze en andere open vragen.
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