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CHAPTER 1
Introduction

What is the problem with ΛCDM? Well, first is “Λ”, and then “C” and then
there is the “DM” part . . .

Nick Gnedin



2 Introduction

1.1 The ΛCDM Universe

Through history, some of the most fundamental questions about our place in
the Universe have stemmed from looking at the heavens. On clear nights the
naked eye is able to perceive myriads of stars and some other extended and
fuzzy objects, such as the clouds discovered by Magellan et al. (1519) much
before BibTEXwas invented.

Many more of such objects were discovered with the advent of improved
observational techniques, and led to the construction of large catalogs contain-
ing tens of thousands of nebulae (Dreyer, 1888). The nature of these nebula
was a matter of debate especially at the beginning the last century: whether
they were nearby objects or distinct entities outside of the Milky Way was the
topic of discussion of more than one coffee break (Smith, 1982). It was Edwin
Hubble who finally solved the puzzle by measuring the distance to some of
the nebulae. One such example was the Andromeda Galaxy, now known to be
located at approximately 2.4 × 1019 km from the Earth, or 778 ± 17 kpc1,
which is 25 times the size of the Milky Way (Karachentsev et al., 2004). This
conclusively showed that some of the observed nebulae are indeed extragalactic
objects.

By using a version of the Doppler effect applied to light known as redshift
of spectral lines, Hubble (1929) showed in addition that these galaxies are not
only moving, but they appear to be receding from us with a velocity that is
proportional to their distance. Rather than implying that we are at the center
of the Universe, this can be explained if the Universe is in expansion.

The list of surprises does not end there though. From measurements of the
velocities of individual galaxies in the Coma cluster, Zwicky (1937) was able to
make an estimate of its total mass. Unexpectedly he found it was ∼ 400 times
larger than the value derived by adding up the galaxies visible mass. This
discovery constitutes one of the most fundamental problems in astrophysics
for almost one century now. We refer to this invisible mass as Dark Matter
and it appears to be dominant component of extragalactic structures.

The need for dark matter also is evident on the scale of individual galaxies,
for example from the rotation curves of spirals. Assume for instance that a
galaxy has a distribution of mass M(r), then the circular velocity profile will
follow the law v2

circ = GM(r)/r. Naively this would imply that beyond the
edge of the galaxy, its circular velocity profile should decrease as vcirc ∼ r−1/2.
Observations however show that the rotation curve of spiral galaxies is flat at
large radii, indicating the presence of additional mass beyond that contributed
by gas and stars (Bosma, 1981a,b; Sofue & Rubin, 2001).

These experiments do not reveal what dark matter consists of. Stellar
remnants, dim enough to remain undetected from earth, were once considered

1A more natural unit used to represent distances in astronomy, namely the parsec, where
1 pc = 3.09× 1016 m.



1.1. The ΛCDM Universe 3

a possibility (White & Rees, 1978; Carr & Rees, 1984). Arguments based on
the amount of baryons expected from nucleo-synthesis at the dawn of time,
confidently rule this out, although some small fraction of dark matter could be
made of left-overs from stellar evolution. Neutrinos, a light neutral particle of
the Standard Model of particle physics, have also been suggested as candidates.
These particles are so common that right now ∼ 109 of them are crossing this
little black square every second (Bahcall, Serenelli & Basu, 2005). This
estimate comes just from the reactions that occur inside our Sun. Neutrinos,
however, have been discarded as the only form of dark matter because they
produced stronger clustering on large scales than observed in the cosmic web
(White, Davis & Frenk, 1984).

These two arguments combined narrow the list of possible candidates for
dark matter in the Standard Model. Currently, the most favored candidates
are weakly interacting particles, and these particles are termed “warm” or
“cold” depending on the velocity at the time of decoupling. Some additional
constraints can be obtained from the Lyman α forest (e.g. Viel et al., 2008),
and the abundance of substructures in the Galactic halo (Lovell et al., 2011a;
Benson et al., 2012) (See also Chapter 4 of this Thesis), although the conclu-
sions are somewhat controversial (Macciò et al., 2012). The direct detection of
dark matter particles will undoubtedly reveal their nature. However these ex-
periments are extremely challenging. Indirect detection through annihilation
of dark matter particles would also be a possibility, although no conclusive
signals have yet been measured (For a complete review on Galactic searches
of Dark Matter please refer to Strigari, 2012).

An even more bizarre discovery was made in an extension of Hubble’s ex-
periment carried out including objects probing larger distances (Riess et al.,
1998; Perlmutter et al., 1999). It showed that the universe is not only expand-
ing, but actually that it is accelerating. Even if the Universe, as a whole, is
dominated by dark matter, this result is counter-intuitive, in the sense that
classical mechanics suggests that the mutual interaction of galaxies through
gravity will lead to a reduction in the acceleration rate, instead of the observed
increment. To account for this phenomenon, an additional force field is nec-
essary. This has been termed as Dark Energy, and can be parametrized as
a fluid whose pressure and density follows the equation of state PΛ ∼ −ρΛ.
About its nature we know close to nothing.

As a result we now have a picture of a dynamical universe, dominated on
large scales by at least two components: dark matter and dark energy. To
model this Universe as an entity we use Einstein’s field equations (Friedmann,
1924). Solutions to this model are mathematically encapsulated in the proper-
ties of the clocks used to measure time and the rules to measure distances, or
more formally, the metric. For a universe that is homogeneous and isotropic,
the infinitesimal distance between two events that occur at the coordinates
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(t, r,Ω) and (t+ dt, r + dr,Ω + dΩ) can be written as,

ds2 = −c2dt2 + a(t)2
[
dr2 + Sκ(r)

2dΩ2
]
, (1.1)

with c the speed of light, and Sκ(r) a function that describes the (only) three
different types of curvature κ that are consistent with the assumption ho-
mogeneity and isotropy. The scale factor a(t) and the type of curvature κ
are univocally determined by the matter/energy content of the Universe. It is
possible to show that for a universe composed of pressureless matter (dark mat-
ter), radiation and a fluid with negative pressure (dark energy), with densities
ρm, ρr and ρΛ, respectively, the scale factor a follows the equation (Peebles,
1980)

ȧ

a
= H0E(a) ≡ H(a) (1.2)

where,

E2(z) = ΩΛ,0 + (1− Ω0)(1 + z)2 + Ωm,0(1 + z)3 + Ωr,0(1 + z)4, (1.3)

with Ω0 = ρ(t0)/ρcrit(t0) the density of the different components in units of
the critical value ρcrit,0 = 3H2

0/8πG, and a = 1/(1 + z). The script “0” is used
to indicate quantities measured at present day, i.e. z = 0. Note that from this
expresion, all the information required to model the dynamics of the Universe
is contained in the quantities Ω0 =

∑
i Ωi,0 and H0.

Current estimates of the values of these parameters are H0 = 100h =
70.4+1.3

−1.4 km/s/Mpc, Ωm,0 = 0.227±0.014, ΩΛ,0 = 0.728+0.015
−0.016, Ωr,0 = 8.1×10−5

(Komatsu et al., 2011). In light of these results, the energy budget of the
Universe is currently dominated by dark energy, followed by dark matter. It
is geometrically flat (κ ∼ 1− Ω0 = 0) and in accelerated expansion.

This Universe, together with a specific spectrum for primordial density
perturbations and where the dark matter is cold, is described by the ΛCDM
model, and constitutes the framework of this Thesis.

1.2 Formation of structures in ΛCDM

One consequence of having an universe in expansion is that at some point in
the past it must have been denser and hotter than it is today. Some time after
the Big Bang it cooled down enough and structure formation started to take
place. From that point onwards, we can model the density perturbations in
the dark matter δ(x, t) = 1 − ρ(x, t)/ρm(t) as a classical pressureless dust in
a universe in expansion using the continuity, Euler and Poisson Equations. It
can be shown that these equations reduce to

d2δ

dt2
+ 2

ȧ

a

dδ

dt
= 4πGρmδ for δ � 1, (1.4)
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where ρm is the mean matter density at time t. This equation has two solutions,
but only one of them grows with time. An approximate solution is δ+ ∝
g(z)/(1 + z) ∝ D(z) where (Carroll, Press & Turner, 1992)

g(z) ≈ 5

2
Ωm(z)

{
Ω4/7
m (z)− ΩΛ(z) + [1 + ΩΛ(z)/2] [1 + ΩΛ(z)/70]

}−1
. (1.5)

This expression models the evolution of primordial perturbations until they
enter the non-linear regime, that is, until δ becomes of order of unity. To
follow the evolution of these perturbations in the non-linear regime δ � 1, a
different approach is necessary. Consider a spherically symmetric mass shell
enclosing a mass M . This shell evolves according to Newton’s 2nd law, which
before the shell collapses onto the distribution M , can be written as,

1

2

(
dr

dt

)2

− GM

r
= E, (1.6)

with E the specific energy of the shell. For E < 0, it can be shown that the
solution to this expression can be given in the parametric form

r = A(1− cos θ), t = B(θ − sin θ), (1.7)

where the factors A and B can be written in terms of the initial conditions
(Gunn & Gott, 1972; Fillmore & Goldreich, 1984),

A =
1

2

ri

[5δi/3− Ω−1
i ]

, B =
3

4

ti

[5δi/3− Ω−1
i ]3/2

. (1.8)

Each shell will therefore expand until it reaches the maximum radius rmax =
2A at t = πB and then collapse. The overdensity at the time of collapse
tcol ≡ 2tmax for a matter dominated universe is,

δ(tcol) =
3

5

(
3π

2

)2/3

[Ω(tcol)]
0.0185 ≈ 1.686[Ω(tcol)]

0.0185. (1.9)

In this model, isolated perturbations with overdensity larger than δc = 1.686
will collapse under their own gravity and form a virialized object.

The evolution of an ensemble of perturbations that follow this prescription
can be modeled in a statistical fashion. Consider the perturbation density field
δ(x) following the dynamics described above. This field can be smoothed on
some scale R, by convolving it with a window function with the same scale
length WR. The smoothed field δs(x) ≡ (δ ? WR)(x) will follow a Gaussian
distribution if δ(x) is Gaussian,

P (δs)dδs =
1√

2πσ(R)
exp

[
− δ2

s

2σ2(R)

]
dδs, (1.10)
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where σ(R) is the variance of the perturbations on the length scale R, or
equivalently, with the mass scale M ∼ ρR3.

At a particular position x consider now a set of overdensities generated by
smoothing the density field on different mass scales S = σ2(M), if the density
perturbation field δ is Gaussian, it can be shown that Eq. (1.10) generates a
Markovian random walk δs = δs(S), where the fraction of all trajectories that
have δs(M

′) > δc equals the fraction of collapsed objects with mass M > M ′

(Press & Schechter, 1974; Bond et al., 1991). Each of these walks has its
origin at δs(S = 0) = 0, which just reflects the homogeneity of the underlying
density field on very large scales σ(M →∞) = 0. In general if M1 > M2 then
S(M1) < S(M2).

Figure 1.1: Examples of Markovian random walks of the perturbation density
field δs smoothed on different scales R ∼M1/3. The fraction of all trajectories
that have δs(M

′) > δc equals the fraction of collapsed objects with mass M >
M ′.

In Fig. 1.1 we show two examples of such trajectories. According to this
prescription, the random walk A does not cross the critical overdensity δc for
S < S1, that means that this particular overdensity will never be part of
a collapsed object with M > M1. The trajectory B on the other hand has
δs > δc at S1, therefore it will be part of a collapsed halo with M > M1.

By increasing the mass scale M , the region around the perturbation that is
smoothed is also increased R ∼M1/3, including, possibly, other density peaks.
Trajectory B for instance describes a perturbation that will be part of a col-
lapsed object with mass M > M2 and also of an object with mass M > M1,
with M1 > M2. By increasing the mass scale from M2 to M1, the smoothed
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density field around this perturbation, randomly grows and decreases, indicat-
ing that several other density perturbations are being included in the process.
An overdensity such as the one described by B therefore reflects one of the
fundamental features in the ΛCDM cosmogony: a collapsed halo is not formed
by one single density peak, but contains several other peaks, that may or not
have virialized themselves.

Overdensities therefore grow by accretion of smaller objects. This hier-
archical way of mass assembly encapsulates some of the most fundamental
aspects of structure formation in ΛCDM. The predicted number density of
collapsed objects with masses between M and M + dM is therefore

m(M, t)dM = 2× ρ

M

∂P
∂M

dM =

√
2

π

ρ

M2

δc
σ

exp

(
− δ2

c

2σ2

) ∣∣∣∣ d lnσ

d lnM

∣∣∣∣ dM
=

ρ

M2
fPS(M,σ)

∣∣∣∣ d lnσ

d lnM

∣∣∣∣ dM, (1.11)

where P =
∫∞
δc
P (δs). Several other predictions can be extracted from this

formalism, for instance the mass spectrum of objects that merge to form ob-
jects of given masses, or the time of assembly of a given dark matter structure
(Sheth & Tormen, 1999; Jenkins et al., 2001; Kauffmann & White, 1993). This
formalism thus constitutes a powerful tool to explore the statistical properties
of objects assembled in ΛCDM.

Note that these results are based on the spherical collapse model introduced
at the beginning of this section. In a more realistic scenario the accretion
of mass is expected to follow a more anisotropic behavior, because of the
presence of randomly placed additional peaks in the perturbation field. Several
expressions have been proposed the multiplicity function f that take this into
account, such as Sheth & Tormen (1999) who consider triaxial collapse instead
of the spherical described above.

However, this complexity is best modeled through computer simulations
(Efstathiou et al., 1985). The idea behind this approach is to sample the
initial density field at early times and then follow its evolution under the
dynamics generated by its own gravity. The so-called N -body simulations use
N points as tracers of the density, their positions and velocities are integrated
to simulate the formation and evolution of the primordial density fluctuations.

Of course, the larger the number N the better sampled the density field
is, but also the more computationally expensive the numerical experiment be-
comes. The evident progress in both computational techniques and computing
power has allowed to dramatically (exponentially) increase this number N in
the last decades (Kuhlen, Vogelsberger & Angulo, 2012). For example, one
of the most recent simulations of this kind, the Millennium XXL simulation,
follows the evolution of nearly 303 billion particles (67203) in a box of side 4.1
Gpc from z = 63 until present day (Angulo et al., 2012).
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Figure 1.2: Snapshot view of the Millennium XXL simulation at z = 0, suc-
cessive frames zoom into an object of mass ∼ 1015 M�. Figure from Angulo
et al. (2012).

Fig. 1.2 shows a snapshot-view at present day of the density field in this
simulation. On the scale of a Gpc, the universe is predominantly homogeneous
and no strong features are observed. On scales of ∼ 100 Mpc the landscape
is dominated by filamentary structures which connect at nodes. The nodes
grow through accretion of matter predominantly along these filaments, which
gives rise to phenomena such as coherent infall of structures (Libeskind et al.,
2011; Lovell et al., 2011b). Smaller scales reveal another important aspect of
the hierarchical nature of ΛCDM model, namely, the presence of substructures,
these are remnants of the accretion of independent halos. Finally, the top-right
panel shows that collapsed objects deviate appreciably from perfect spherical
symmetry, and although the spherical collapse model described above provides
important insights into the process of galaxy formation, objects assembled in
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ΛCDM are intrinsically not-spherical.

1.3 Galaxy Formation

So far we have described the properties of the dark matter component in
the ΛCDM model. Fortunately, this is the dominant mass component in the
Universe, and therefore it dictates the evolution of the baryonic matter to a
large extent, and especially so at early times. When the first overdensities have
collapsed, the baryons will follow, cool down and eventually form the galaxies
that we see today (White & Rees, 1978).

Because the physics governing the evolution of baryons is rather compli-
cated (more than the simple gravity under which dark matter evolves) model-
ing the formation and evolution of galaxies in a cosmological context has been
very challenging. Numerical simulations including gas dynamics, star forma-
tion and feedback processes have to be able to resolve a very large dynamical
range, from the scale of molecular clouds (. 1 pc) to the cosmological scale
(∼ 10 − 100 Mpc). This has led to the development of parametrizations of
various physical processes, and to impressive numerical simulations (Libeskind
et al., 2010; Schaye et al., 2010; Zolotov et al., 2012).

A different, more phenomenological, approach is the so-called semianalytic
modeling (SAM) which has the advantage of being computationally less ex-
pensive (Kauffmann et al., 1999; Springel et al., 2001; De Lucia, Kauffmann &
White, 2004; Croton et al., 2006; De Lucia & Blaizot, 2007). This technique
has allowed to study the properties of galaxy populations, their dependence
on the environment, evolution with redshift, etc., in a rather successful man-
ner. However, it cannot take into account the dynamical interaction between
baryons and dark matter self-consistently, such as e.g. the modification of the
inner structure of dark matter halos as a result of feedback from star formation
(Governato et al., 2012), or the change in the orbital structure as a response
to the presence of baryons (Bryan et al., 2012).

1.4 Properties of halos assembled in ΛCDM

halos

Individual halos can be followed with great detail in numerical dark matter
simulations. The object shown in the top-right panel of Fig. 1.2, for instance,
has a mass of ∼ 1015 M� and is resolved with ∼ 106 particles. Simulations of
smaller boxes allow to resolve objects of similar masses with more particles,
at the expense of a less accurate representation of the large-scale tidal field.
State of the art simulations can deal with this problem by successively zooming
into smaller and smaller scales, and now include several billions of particles
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(109) to resolve an object of a given scale (Springel et al., 2008; Gao et al.,
2012). These suites of N -body simulations have allowed us to make strong and
robust predictions about the properties of dark matter halos (in the absence
of baryonic effects).

1.4.1 Dark matter substructures

In Section 1.2 we described one of the fundamental aspects of ΛCDM, namely,
its hierarchical nature. Structures are assembled through mergers of smaller
entities, and therefore, a halo is not expected to be smooth, but to contain
substructures (subhalos). Such peaks are also observed in simulations of the
ΛCDM cosmogony. The top right panel of Fig. 1.2 shows an example for a
cluster-sized dark halo with 668 resolved subhalos (Angulo et al., 2012).

High resolution simulations of MW-like halos resolve tens to hundreds of
thousands of these substructures (Diemand, Kuhlen & Madau, 2007; Diemand
et al., 2008; Springel et al., 2008; Stadel et al., 2009; Libeskind et al., 2010).
The number of subhalos with masses between M and M + dM is usually well
fit by the distribution,

dN

dM
dM = aM−ndM, (1.12)

where n = 1.7−1.9 (Helmi, White & Springel, 2002; Gao et al., 2004; Springel
et al., 2008; Gao et al., 2012) and the normalization constant a depends on
the mass of the halo. The mass in substructures around a given halo is finite
Mtot =

∫
MdN and usually corresponds to less than 10% of the total mass

of the host (Ghigna et al., 1998; Stoehr et al., 2003). This mass spectrum
could be extrapolated beyond the minimum mass that simulations can resolve,
to predict e.g. the number of light objects, for example as light as Jupiter.
However two important points need to be taken into account. Firstly, free
streaming of dark matter particles does not allow the formation of arbitrarily
small structures, this depends on the mass and velocity of the particle, which
as previously discussed are not well constrained. Secondly, subhalos may be
fully disrupted by the tidal field of the host (Hayashi et al., 2003).

According to Eq. (1.12), for a system like the MW, ΛCDM predicts ∼
100−200 objects with masses larger than 108M�, which clearly contrasts with
the ∼ 20 that have been observed around the MW (Koposov et al., 2008).
This mismatch is known as the missing satellite problem (Klypin et al., 1999b;
Moore et al., 1999).

1.4.2 Density profile

The radial density profile has been traditionally one of the strongest predictions
from ΛCDM. Navarro, Frenk & White (1996) showed that the spherically
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averaged density profile of simulated dark matter halos can be described by
the parametric form,

ρ(r) =
4ρ−2

(r/r−2)(1 + r/r−2)2
, (1.13)

where r−2 is the radius at which the logarithmic slope reaches the isothermal
value d ln ρ/d ln r = −2, and ρ−2 is the density at that point. This profile yields
a good representation of the density for isolated halos of all masses assembled
by dissipationless clustering. The profile is universal and depends on two
parameters. One of these can be parametrized as the total integrated mass
within a given radius rh, Mh = 4π

∫ rh
0
dr′r′2ρ(r′). The other free parameter is

conventionally set as the ratio between the characteristic radius r−2 and the
extent of the halo rh, c = rh/r−2. In this thesis we will define rh as the radius
at which the mean density of the halo equals 200 times the critical density and
conventionally call it the virial radius, rvir.

The characteristic density δchar ≡ 4ρ−2/ρcrit is tightly correlated with the
formation time of the halo zf , δchar ∝ Ωm,0(1 + zf )

3 (Navarro, Frenk & White,
1997). The concentration c is also strongly correlated with the total mass of
the halo (Neto et al., 2007).

The latest generation of simulations with enough resolution to study the
asymptotic behavior of radial density profiles in the central regions of dark
matter halos, show that density is better fit by the parametric form (Einasto,
1965)

ln
ρ

ρ−2

= − 2

α

[(
r

r−2

)α
− 1

]
, (1.14)

where 0.1 . α . 0.3 (Gao et al., 2008). Fig. 1.3 shows the density profiles of
the six MW-like dark halos from the Aquarius Simulations with ∼ 108 particles
within rvir. The residuals to the best fits to NFW and Einasto models are also
shown. The circular velocity profiles actually increase more slowly than the
prediction from the NFW model.

1.4.3 Shapes

Despite the prediction power of the spherical collapse model described in the
previous section, it was realized early that objects assembled in ΛCDM depart
significantly from spherical shapes (Davis et al., 1985; Frenk et al., 1988).
Fig. 1.2 shows an example of the geometrical distribution for a cluster-size
halo. To a good approximation, the density of dark matter halos can be
described with a triaxial ellipsoid with axis lengths a ≥ b ≥ c. The degree of
triaxiality in the density contours can be quantified by measuring the difference
in lengths at a particular position at the halo. For instance, the minor-to-major
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Figure 1.3: Density (left) and circular velocity (right) profiles for the Aquarius
halos. Figure from Navarro et al. (2010).

axis ratio c/a quantifies how much a particular density contour deviates from
perfect sphericity c/a = 1.

Understanding the shapes and orientation of dark matter structures is of
particular interest since these depend on the nature of dark matter itself and
could be used to constrain its properties (Bullock, 2002). It has also been
shown that ignoring the intrinsic non-spherical symmetry of dark halos can lead
to biases in the estimations of cosmological parameters (Buote & Humphrey,
2012; Wang & Fan, 2006). Correlations in the orientations of the halos also
affect predictions from gravitational lensing, and these are particularly relevant
for weak lensing experiments trying to constrain Dark Energy (Faltenbacher
et al., 2009).

As a consequence, many studies have been devoted to measuring the shapes,
their evolution and their dependence on their surrounding tidal field (Hahn
et al., 2007b). The strongest correlation appears with mass, with smaller
objects being more spherical in general (Allgood et al., 2006)

〈c/a〉 = 0.54

(
M

M?(z)

)−0.05

, (1.15)

where the mass scale M? is defined at redshift z such that σ(M?) = δc(z).
Halos are also in average more elongated at early times (Muñoz-Cuartas et al.,
2011). These two results can be interpreted as a consequence of the evolution
of the density field in which individual halos are embedded as discussed in
more detail in Chapter 2.
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1.4.4 The effect of baryons

In general baryonic processes taking place at the center of galaxies can modify
to some extent the properties of their host dark matter halos. For example,
there may be transfer of angular momentum from a rotating stellar or gaseous
disk or bar (Tonini, Lapi & Salucci, 2006). On the other hand, feedback from
supernovae (perhaps also from AGN) can modify significantly the central radial
density distribution, making it less steep in the inner regions of the galaxy,
especially in small systems where the binding energy may be comparable to
the energy injection by the exploding stars (Flores & Primack, 1994; Navarro,
Eke & Frenk, 1996; Mo & Mao, 2004; Read & Gilmore, 2005; Pontzen &
Governato, 2012)

Another example is the formation of a rotating disk from the cooling of
baryons in a dark matter halo. Their mass may be sufficiently large that it leads
to changes in the dynamics of the dark matter particles in the inner region,
which in turn affects the overall distribution of mass. Experiments including
gas show that the mass distribution in the region where the disk forms, becomes
axisymmetric with minor-to-major axis ratios smaller than unity c < b ≈ a,
(Dubinski, 1994; Debattista et al., 2008; Kazantzidis, Abadi & Navarro, 2010;
Abadi et al., 2010; Tissera et al., 2010; DeBuhr, Ma & White, 2012; Bryan
et al., 2012). This oblate configuration clearly contrasts the prolate (c ≈ b < a)
inner shapes predicted for MW-like objects in pure dark matter simulations
(Vera-Ciro et al., 2011).

1.5 Probing the properties of dark halos with

luminous tracers

The rotation curves of spiral galaxies are a very powerful tool to measure the
mass profile of their host dark matter halos. Objects with a negligible bary-
onic contribution to the potential provide the most promising cases, since the
response to the dark halo from the presence of baryons can be safely ignored.
If the dark matter density profile behaves in the inner parts of the galaxy as
ρ ∼ r−1, as for NFW halos, then the mass profile should rise as M ∼ r2 and
the circular velocity as vcirc ∼ r1/2. Instead measurements of the kinematics of
Low Surface Brightness (LSB) galaxies show a rotation curve with an steeper
behavior vcirc ∼ r implying a density profile that is asymptotically flat in the
inner part (cored), d ln ρ/d ln r ∼ 0 (Moore et al., 1999; de Blok et al., 2001; de
Blok, 2010). Several explanations have been proposed to alleviate this conflict,
even including the effect of baryons. But Hayashi & Navarro (2006) suggested
that the inherent triaxiality of dark matter halos (see Fig. 1.2) could affect
the conclusions about the presence of cusp/core, since no circular orbits are
present in highly asymmetric potentials.
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Other experiments have been used to constrain the properties of dark ha-
los. Gravitational lensing constitutes a powerful technique (especially when
combined with stellar dynamics, Barnabè et al., 2011, e.g.) for measuring
the mass content and geometrical shape of the potential for external galaxies
(Hoekstra, Yee & Gladders, 2004; van Uitert et al., 2012) and also for clusters
(Newman et al., 2012a,b). However, it is undeniable that to test predictions
on the smallest scales the best laboratory is provided by Local Group galaxies.

For these galaxies, the dynamics of individual stars are relatively easy to
measure. Consider for instance stars in a spherical system in equilibrium under
the effect of the gravitational potential Φ, and f its distribution function, that
is, f(x,v, t)dxdv represents the probability of finding a star with position
between x and x + dx and velocity between v and v + dv. The velocity
moments of the distribution are easily calculated as

〈ρvirv
j
θv
j
φ〉 =

∫
d3vvirv

j
θv
j
φf(r,v), (1.16)

for any i, j and k. From the collissionless Boltzmann equation it is possible to
derive an expression relating the stellar density ρ, the radial velocity dispersion
of the stars σr and the gravitational potential exerted on them Φ (Binney &
Tremaine, 2008)

d

dr
(ρσ2

r) + 2
β

r
(ρσ2

r) + ρ
dΦ

dr
= 0, (1.17)

with β = 1−σ2
θ/σ

2
r the orbital anisotropy. Note that in this case Φ is the total

potential of the system, and not only the one generated by the distribution
of stars. In other words, if ρ, β and σr are known for the stellar component,
the functional form of Φ, and therefore that of the dark matter halo, can be
calculated using Eq. (1.17). If β is assumed to be constant this equation can
integrated to give

ρσ2
r = r−2β

∫ ∞
r

dr′r′2βρ
dΦ

dr′
. (1.18)

Unfortunately, most of the information we have about galaxies is only
known in projection. Eq. (1.18) can however be related to observables on
the sky. The line of sight velocity dispersion as a function of projected radius
R from the center of the galaxy is in that case (Binney & Mamon, 1982)

σ2
los =

2

I(R)

∫ ∞
R

dr

(
1− βR

2

r2

)
ρσ2

rr√
r2 −R2

, (1.19)

where I(R) is the surface brightness. After parametrizing the potential Φ, best
fits to line of sight velocities of stars (or any tracer population, such as globular
clusters or satellites) in the galaxy can be used to determine the properties of
the underlying mass distribution if the anisotropy is known. Since this is not
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usually the case, assumptions have to be made and this limits the power of
this approach (Merrifield & Kent, 1990). Measurements of higher moments of
the line of sight velocity distribution can, however help break the degeneracy
between mass and anisotropy models ( Lokas, Mamon & Prada, 2005). Other
approaches include full dynamical models through orbit superposition (see e.g.
Breddels et al., 2012a; Jardel et al., 2011).

1.5.1 Results for Dwarf Spheroidal galaxies in the MW

Regardless of the method, some interesting results have been obtained over
the last few decades concerning the properties of the dark matter distribution
in the dwarf galaxies satellites of the MW. Owing their relative small distance,
samples with line of sight velocities for thousands of stars are available now.
Some of the results of mass modeling indicate for instance that dSph are the
most dark matter dominated objects known, with mass-luminosity ratios in
the range 100-1000 M�/L� (Walker, 2012).

Some studies suggest that the slopes are shallower than the predicted value
from the profile in Eq. (1.13) (Amorisco & Evans, 2011; Walker & Peñarrubia,
2011; Amorisco & Evans, 2012). This however, is a subject of active debate,
since various authors have shown that the stellar kinematics of Milky Way
dwarfs are also consistent with the NFW cuspy profile (Battaglia et al., 2008;
Walker et al., 2009; Strigari, Frenk & White, 2010; Breddels et al., 2012a;
Jardel & Gebhardt, 2012).

Most of the works above assume that the dark halos of the dSphs are
spherical. However, Hayashi & Chiba (2012) from their modeling of the in-
ternal kinematics of 6 of the MW dSph derive an average minor-to-major
axis ratio 〈c/a〉obs = 0.6 ± 0.11, whereas the prediction from Eq. (1.15) is
〈c/a〉ΛCDM = 0.9± 0.1, although the latter is an extrapolation below the reso-
lution limit of the simulations used to derive this result. We take a closer look
at this issue in Chapter 3.

1.5.2 Results for the MW

Another system for which the form of the gravitational potential can be esti-
mated is the MW itself. Much recent work has focused on measuring its shape.
In this case several approaches have been used such as the properties of the
velocity moments (Eq. 1.16) (Sesar, Juric & Ivezic, 2011), or the flaring of the
neutral hydrogen layer (Banerjee & Jog, 2011). A popular alternative is the
use of the remnants of accretion events known as stellar streams.

Streams are coherent structures generated by the disruption of a system in
an external tidal field. Consider for instance a galaxy g that is falling into the
potential well of a more massive galaxy G. If the gravitational pull generated
by G is strong enough, stars from g will be stripped through the Lagrange
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points of the composite potential (Binney & Tremaine, 2008). The loci of
these two stable points closely follows the orbit of g around G, although some
deviations are expected (Choi, Weinberg & Katz, 2007; Eyre & Binney, 2009).
The stars from g will therefore follow closely the orbit of its center of mass,
thereby effectively “revealing” its orbit.

Since properties of the orbit of g are determined by the potential generated
by G, by measuring the dynamics of the stars it is, in principle, possible to
obtain information about the mass distribution of the host galaxy.

Because of the hierarchical nature of ΛCDM, streams are expected to be
ubiquitous. This has been confirmed in deep photometric observations of
galaxies in the local volume (Mart́ınez-Delgado et al., 2010; Fardal & PAn-
dAS Collaboration, 2011). The MW itself is surrounded by many streams
(Belokurov et al., 2006; Bonaca, Geha & Kallivayalil, 2012). In particular the
Sagittarius (Sgr) stream has been used to measure the shape of the MW’s dark
matter halo (Ibata et al., 2001; Johnston, Law & Majewski, 2005; Helmi, 2004;
Koposov, Rix & Hogg, 2010; Law & Majewski, 2010), however the results are
rather controversial and difficult to reconcile with the predictions of ΛCDM.
In Chapter 5 we investigate this with more detail.

1.6 This thesis

This work focuses on the properties of the dark matter distribution of objects
with masses between 108 − 1012 M�. We place this study in the context of
Local Group galaxies, as our findings (will) help us understand the internal
dynamics of these systems.

In Chapter 2 we use the high resolution cosmological N -body simulations
from the Aquarius project to investigate in detail the mechanisms that deter-
mine the shape of Milky Way-type dark matter halos. We find that, when mea-
sured at the instantaneous virial radius, the shape of individual halos changes
with time, evolving from a typically prolate configuration at early stages to a
more triaxial/oblate geometry at the present day. This evolution in halo shape
correlates well with the distribution of the infalling material: prolate configu-
rations arise when halos are fed through narrow filaments, which characterizes
the early epochs of halo assembly, whereas triaxial/oblate configurations result
as the accretion turns more isotropic at later times. Interestingly, at redshift
z = 0, clear imprints of the past history of each halo are recorded in their
shapes at different radii, which also exhibit a variation from prolate in the
inner regions to triaxial/oblate in the outskirts. Provided that the Aquarius
halos are fair representatives of Milky Way-like 1012 M� objects, we conclude
that the shape of such dark matter halos is a complex, time-dependent prop-
erty, with each radial shell retaining memory of the conditions at the time of
collapse.

Chapter 3 extends the analysis of Chapter 2 by exploring the properties
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of objects with masses M . 1011 M�. Since the Aquarius simulations were
designed to replicate the most massive object (Mz=0 ≈ 1012 M�) at differ-
ent resolutions, we perform a convergence study using the various Aquarius
resolution levels to test the accuracy of our results for this mass range. For
the converged objects, we determine the principal axis (a ≥ b ≥ c) of the
normalized inertia tensor as a function of radius. In general we find that field
halos are more triaxial with increasing halo mass, with our smallest halos being
rounder by ∼ 40− 50% than Milky Way-like objects at the radius of peak cir-
cular velocity, rmax. We find that the distribution of axis ratios for the subhalo
population is consistent with that of field halos of comparable Vmax within the
scatter. Inner and outer contours within each object are well aligned, with the
major axis preferentially pointing in the radial direction for subhalos close to
the host, although with a large scatter. We specifically analyze the dynami-
cal structure of subhalos likely to host luminous satellites comparable to the
classical dwarf spheroidals in the Local Group. These halos have axis ratios
that increase with radius, and which are mildly triaxial with 〈b/a〉 ∼ 0.75 and
〈c/a〉 ∼ 0.60 at r ∼ 1 kpc and ∼ 0.9 at large radii. Their anisotropy profiles
β(r) become strongly tangentially biased in the outskirts as a consequence of
tidal stripping.

In connection with observational constraints on the number and character-
istics of the satellites of the Milky Way, we present in Chapter 4 a new analysis
of the Aquarius simulations done in combination with a semi-analytic galaxy
formation model. Our goal is to establish whether the subhalos present in
ΛCDM simulations of Milky Way-like systems could host the dwarf spheroidal
(dSph) satellites of our Galaxy. Our analysis shows that, contrary to what
has been assumed in most previous work, the mass profiles of subhalos are
generally not well fit by NFW models but that Einasto profiles are preferred.
We find that for shape parameters α = 0.2 − 0.5 and vmax = 10 − 30 km/s
there is very good correspondence with the observational constraints obtained
for the nine brightest dSph of the Milky Way. However, to explain the internal
dynamics of these systems as well as the number of objects of a given circular
velocity the total mass of the Milky Way should be ∼ 8 × 1011 M�, a value
that is in agreement with many recent determinations, and at the low mass
end of the range explored by the Aquarius simulations. Our simulations show
important scatter in the number of bright satellites, even when the Aquarius
Milky Way-like hosts are scaled to a common mass, and we find no evidence
for a missing population of massive subhalos in the Galaxy. This conclusion
is also supported when we examine the dynamics of the satellites of M31.

Finally, in Chapter 5 we present a new model for the dark matter halo
of the Milky Way that fits the properties of the stellar streams associated
with the Sagittarius dwarf galaxy. In the inner regions, the halo potential is
axisymmetric and oblate with qz = 0.9, and therefore is consistent with the
expected response to the formation of a baryonic disk in its center. In the
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outskirts, the halo follows the shape proposed by Law & Majewski (2010),
namely a nearly oblate ellipsoid oriented perpendicular to the Galactic plane.
This outer halo can be made more triaxial, with minor-to-major axis ratio
c/a = 0.8 and intermediate-to-major axis ratio b/a = 0.9 if the effect of the
Large Magellanic Cloud is taken into account, and thereby made reconcilable
with the predictions of ΛCDM simulations, and presented in Chapter 2.

In this thesis we have put forward possible explanations for two well-known
conflicting results between ΛCDM and Local Group galaxies, namely, on the
properties and number of bright satellites around the Milky Way, and on the
shape of the dark halo of the Galaxy. The next years, with the launch of the
Gaia mission and various deep photometric and spectroscopic surveys, promise
new discoveries and likely will reveal new puzzles. Together with advances in
numerical simulations, especially in the degree of sophistication in modeling
baryonic processes taking place inside dark matter halos, we expect to learn
a great deal about the formation and evolution of galaxies like those found in
the Local Group.
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Abstract

W
e use the high resolution cosmological N -body simulations from the
Aquarius project to investigate in detail the mechanisms that de-
termine the shape of Milky Way-type dark matter halos. We find
that, when measured at the instantaneous virial radius, the shape

of individual halos changes with time, evolving from a typically prolate con-
figuration at early stages to a more triaxial/oblate geometry at the present
day. This evolution in halo shape correlates well with the distribution of the
infalling material: prolate configurations arise when halos are fed through nar-
row filaments, which characterizes the early epochs of halo assembly, whereas
triaxial/oblate configurations result as the accretion turns more isotropic at
later times. Interestingly, at redshift z = 0, clear imprints of the past history
of each halo are recorded in their shapes at different radii, which also exhibit a
variation from prolate in the inner regions to triaxial/oblate in the outskirts.
Provided that the Aquarius halos are fair representatives of Milky Way-like
1012M� objects, we conclude that the shape of such dark matter halos is a
complex, time-dependent property, with each radial shell retaining memory of
the conditions at the time of collapse.

Cover: Aq-A-2 halo rotated using the principal axis of the virial contour at z = 0
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2.1 Introduction

In our current understanding of the Universe, dark matter halos constitute
an integral part of galaxies. Their properties, especially their density profile
and shape, have received significant attention in recent years as they have
been argued to be sensitive to the fundamental properties of the dark mat-
ter particles. Numerical simulations have been extensively used to study the
characteristics of the dark matter halos, exploring for example the effects of
the environment, mass assembly history and the nature of dark matter itself
(e.g., Bullock, 2002; Bett et al., 2007; Macciò et al., 2007; Hahn et al., 2007b;
Spergel & Steinhardt, 2000; Yoshida et al., 2000; Avila-Reese et al., 2001;
Strigari, Kaplinghat & Bullock, 2007; Wang & White, 2009).

The first fully analytical models of the formation of dark matter halos such
as the top-hat spherical collapse model (Gunn & Gott, 1972; Fillmore & Gol-
dreich, 1984), considered highly symmetric configurations. However, the pio-
neering work of Frenk et al. (1988); Dubinski & Carlberg (1991); Warren et al.
(1992); Cole & Lacey (1996); Thomas et al. (1998) demonstrated important
deviations from spherical symmetry by measuring the shape of dark matter
halos in numerical N -body simulations evolved in a fully cosmological context.
These authors consistently found that after virialization, dark matter halos are
triaxial with more prolate shapes towards the center and more oblate shapes in
the outskirts. Recent high resolution N -body simulations have yielded similar
conclusions (Jing & Suto, 2002; Bailin & Steinmetz, 2005; Kasun & Evrard,
2005; Hopkins, Bahcall & Bode, 2005; Bett et al., 2007; Hayashi, Navarro &
Springel, 2007; Kuhlen, Diemand & Madau, 2007; Stadel et al., 2009; Diemand
& Moore, 2011).

Further studies based on numerical simulations have also revealed that the
environment and mass assembly history of a halo may play a crucial role in
determining its shape. Pioneering work by Tormen (1997) and Colberg et al.
(1999) suggested that the anisotropic infall of matter onto cluster-sized halos
was largely responsible for their shape, orientations and dynamics at different
times. Because infall is governed by the surrounding large scale structure, we
expect significant correlations between the halo shapes and their environment,
although evidence both against and in support of such trends have been re-
ported so far in the literature (Lemson & Kauffmann, 1999; Avila-Reese et al.,
2005; Faltenbacher et al., 2005; Altay, Colberg & Croft, 2006; Basilakos et al.,
2006; Gottlöber & Turchaninov, 2006; Patiri et al., 2006; Aragón-Calvo et al.,
2007b; Hahn et al., 2007a; Macciò et al., 2007; Ragone-Figueroa et al., 2010).

The observational determination of the shapes of dark matter halos is chal-
lenging. Preferably dynamical tracers at large radii are to be used, but these
tracers are by definition rare. In external galaxies, constraints on these shapes
have been put using the intrinsic shape of galactic disks (Fasano et al., 1993),
the kinematics and morphology of the Hi layer (Olling, 1996; Becquaert &
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Combes, 1997; Swaters, Sancisi & van der Hulst, 1997), the morphology, tem-
perature profile of X-ray isophotes (Buote & Canizares, 1998; Buote et al.,
2002), gravitational lensing (Hoekstra, Yee & Gladders, 2004) and the spa-
tial distribution of galaxies within groups (Robotham, Phillipps & De Propris,
2008) (for earlier reviews on the subject see Rix, 1996; Sackett, 1999). The
general consensus of all these studies is that halos tend to be roughly oblate,
with the smallest axis pointing perpendicular to the symmetry plane defined
by the stellar component. Most of these constrains, however, pertain to the
inner regions (a few optical radii) of galaxy-scale halos.

In the case of the Milky-Way, the shape constraints often rely on the kine-
matics of individual stars, and include e.g. the use of the tilt of the velocity
ellipsoid for nearby stars (Siebert et al., 2008), the proper motions of hyperve-
locity stars (Gnedin et al., 2005) or the dynamics of stellar streams (Koposov,
Rix & Hogg, 2010). Interestingly, the use of the latter have provided contra-
dictory results, notably in the case of the Sagittarius Stream. For example,
the positional information was used to argue that the Milky Way halo is nearly
spherical (Ibata et al., 2001; Mart́ınez-Delgado et al., 2004; Johnston, Law &
Majewski, 2005) whereas the kinematics of stars in the leading stream could
only be fit in a prolate halo elongated perpendicular to the disk (Helmi, 2004;
Law, Johnston & Majewski, 2005). More recently, Law, Majewski & Johnston
(2009); Law & Majewski (2010) have explored triaxial potentials with con-
stant axis ratios, and found models that were able to fit simultaneously these
constraints, albeit not completely satisfactorily.

From the theoretical perspective, there is a gap in our knowledge about
the way in which dark matter halos acquire their shape, and in particular,
on the impact of the dynamics of the surrounding large scale structure in the
non-linear regime (Lee, Jing & Suto, 2005; Betancort-Rijo & Trujillo, 2009;
Rossi, Sheth & Tormen, 2010; Salvador-Solé et al., 2011). Indeed, most of
the theoretical works cited above restrict their analysis to the present day
correlations with the environment, and do not consider when the shapes have
been established and how they relate to the past history of an object. In this
Chapter we use state-of-the-art high resolution N -body simulations that track
the formation of five ∼ 1012M� Milky Way-like halos in a fully cosmological
context, in order to gain further understanding of this problem.

This Chapter is organized as follows. In Sec. 2.2 we describe the simulations
used in this work which are part of the Virgo Consortium’s Aquarius project,
and test in Sec. 2.3 the convergence of halo shapes for different resolutions.
The shapes at the present day, evolution and their relation with the formation
history of the dark matter halos are analyzed in Sec. 2.4 and 2.5. Finally, we
discuss and summarize our main conclusions in Sec. 2.6. For completeness,
we compare in Appendix 2.7 the results obtained by using several different
schemes to determine halo shapes. Also a novel method for measuring the size
of the filaments based on dynamical arguments is described in Appendix 2.8.
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2.2 Numerical Simulations

We use the Aquarius Simulations, a suite of high resolution N -body cosmo-
logical simulations of six Milky Way sized dark matter halos (Springel et al.,
2008). These halos were selected from a larger ΛCDM cosmological box of
100h−1 Mpc side with parameters Ωm = 0.25, ΩΛ = 0.75, σ8 = 0.9, ns = 1 and
H0 = 100h km s-1Mpc-1 = 73 km s-1Mpc-1. The Aquarius halos, labeled Aq-A

to Aq-F, have a final mass ∼ 1012M� and were chosen to be relatively isolated
at redshift z = 0. The selection procedure was otherwise random, which allows
us to study the impact of different assembly histories on the shape of Milky
Way sized dark matter halos.

Each halo has been re-simulated at various resolution levels that accurately
replicate the power-spectrum and phases for the resolved structures in all runs.
Following the notation introduced in previous papers, we refer to each level of
resolution as -5 to -1, for the lowest to highest resolution. The mass per particle
varies from mp = 2.94 × 106h−1M� in the level 5 to mp = 1.25 × 103h−1M�
for the highest resolution run, which resolves a given halo with approximately
half-million up to 1.5-billion particles within the virial radius for level 5 and
1, respectively1. The results discussed in this Chapter pertain mostly to the
4th level of resolution (mp ∼ 2 × 105h−1M�, nvir ∼ 106 particles within rvir,
gravitational softening ε = 250h−1 pc) of halos Aq-A to Aq-E and aim to target
the possible structure of the Milky Way dark matter halo. The Aquarius halo
Aq-F is not considered in this work because it experiences a major merger less
than ∼ 5 Gyr ago; this is unlikely to be consistent with our current view of
the assembly of the Milky Way halo, expected to have had no major mergers
since z ∼ 1 (Toth & Ostriker, 1992).

In this context, this Chapter focuses on dark matter halos with a relatively
quiescent merger history (mass ratios lower than 1:5) after z ∼ 2 (for a detailed
comparison of the Aquarius halos’ mass accretion history with respect to the
general expectations for halos of similar virial mass see Boylan-Kolchin et al.,
2010). We summarize the most relevant numerical details of our halos at level
4 in Table 2.1, and we refer the interested reader to Springel et al. (2008) for
further information.

2.3 Halo shape determination and convergence

Various methods have been introduced in the literature to measure the shapes
of dark matter halos. In Appendix 2.7 we describe a wide range of these

1Throughout this Chapter we refer to the virial radius, rvir, as the spherical radius that
contains a mean density equal to 200 times the critical density of the Universe at a given time.
Other virial quantities, such as mass and velocities, mvir and vvir respectively, correspond
to those measured within rvir.
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Halo mp rvir mvir nvir/106 rconv

Aq-A-4 2.87 179.36 1.34 4.68 2.27
Aq-B-4 1.64 137.86 0.61 3.72 2.14
Aq-C-4 2.35 177.89 1.31 5.58 2.07
Aq-D-4 1.95 177.83 1.31 6.69 2.14
Aq-E-4 1.90 155.95 0.88 4.64 2.05

Table 2.1: Numerical details of the Aquarius halos for resolution level-4. Each
column lists: (1) the name of the halo, (2) mass per particle mp in 105M� h

−1

, (3) the virial radius rvir in kpc h−1 and (4) virial mass mvir in 1012M� h
−1

at z = 0, (5) nvir the number of dark matter particles within rvir, (6) rconv the
convergence radius in kpc h−1. The gravitational softening length is ε = 250h−1

pc for all halos at this resolution level.

Figure 2.1: Convergence in the axis ratios for the Aq-A halo at four different
numerical resolutions. The agreement is remarkable showing that the method
used provides reliable axis ratios down to the “convergence radius” rconv (de-
noted by the vertical lines).

methods in detail, and show that the measured halo shapes agree reasonably
well when applied to the same object. Throughout this article we use the
“reduced” inertia tensor method as implemented recently by Allgood et al.
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Figure 2.2: Present day dark matter distribution of the Aquarius halos and
their surroundings. Colors are proportional to the logarithm of the squared
dark matter density integrated along the line of sight. In each panel the depth
of the projected image is 1.5h−1 Mpc. The virial ellipsoid is indicated in each
panel with a solid white line and the green arrow shows the direction of the
minor axis of the halo at the virial contour. The system is orientated such
that the minor axis points horizontally and the major axis points vertically.

(2006). This tensor is defined as

Iij =
∑

xk∈V

x
(i)
k x

(j)
k

d2
k

, (2.1)

where dk is a distance measure to the k-th particle and V is the set of particles
of interest. Assuming that dark matter halos can be represented by ellipsoids
of axis lengths a ≥ b ≥ c, the axis ratios q = b/a and s = c/a are the ratios
of the square-roots of the eigenvalues of I, and the directions of the principal
axes are given by the corresponding eigenvectors. Initially the set V is given
by all particles located inside a sphere which is re-shaped iteratively using the
eigenvalues of I. The distance measure used is d2

k = x2
k + y2

k/q
2 + z2

k/s
2, where

q and s are updated in each iteration. Furthermore, in the figures below we
have removed all bound substructures contained in a halo using the Subfind
algorithm (Springel et al., 2001). This alleviates the noise and artificial tilting
of the ellipsoids that is introduced by such substructures. More details on our
implementation can be found in the Appendix 2.7.

We test the convergence of the shape measurements using the different
resolutions of the halo Aq-A, from level 5 to level 2. There is an increase of a
factor ∼ 230 in the number of particles within the virial radius and a factor
∼ 10 reduction in gravitational softening from Aq-A-5 to Aq-A-2. Fig. 2.1
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shows the axis ratios as a function of R for halo Aq-A, where R is defined as
the geometrical mean of the axis lengths R = (abc)1/3. This quantity then
provides a notion of distance to the center of the ellipsoid with the advantage
of being volume invariant. Hereafter, we use R when referring to quantities
measured using ellipsoidal contours, and r for spherical contours. With this
convention, rvir is the spherical radius enclosing an average overdensity of 200
times the critical value, whilst Rvir refers to the ellipsoid enclosing the same
overdensity.

Figure 2.3: Axis ratios (left) and directions (right) as a function of R for each
of the Aq-halos. In the left panels the thick solid lines represent the axis ratios
b/a (red) and c/a (blue), while the dashed curves are the triaxiality parameter
T . In general halos are more prolate in the inner parts and more oblate (and
triaxial) in the outskirts. All concentric shells are also strongly aligned with
the exception of halo Aq-D which exhibits a clear twisting close to the virial
radius.

The agreement between the different resolutions in Fig. 2.1 is remarkable
at all radii, although small deviations are present in the inner regions where
resolution effects are expected to be important. The vertical lines in the lower
panel indicate the “convergence radius” rconv (Power et al., 2003; Navarro et al.,
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2010). This radius is defined by setting κ(rconv) = trelax(rconv)/tcirc(rvir) = 7,
where trelax is the local relaxation time and tcirc(rvir) corresponds to the circular
orbit timescale at rvir. This choice ensures that circular velocity profiles for
r > rconv deviate less than 2.5% from the highest resolution value. Fig. 2.1
shows that rconv provides also a very good estimate for the smallest radius
at which the halo shape has converged. Although not explicitly shown, we
have tested that the orientation of the ellipsoids is a well defined attribute
independent of resolution for rconv < R < Rvir.

Our analysis suggests that convergence in halo shapes is achieved in the
level 4 from approximately 2h−1 kpc onwards (Table 2.1). We will therefore
focus in what follows on the study of the different Aquarius halos Aq-A to
Aq-E at the level of resolution 4, since this yields a robust characterization of
the dark matter halo shapes and orientation, while keeping the numerical cost
constrained.

2.4 The shape of dark matter halos

2.4.1 Present day

Fig. 2.2 shows a snapshot view of the Aquarius halos and their surrounding
environment. The color scale used is proportional to the logarithm of the
squared dark matter density integrated along the line of sight, with a projection
depth per panel of 1.5h−1Mpc. All images have been rotated according to the
orientation of the virial contours (indicated by the solid white curve) in such a
way that the major and minor axis define the vertical and horizontal direction,
respectively.

A careful look at the environment of each object reveals that the Aquarius
halos are all embedded within a filamentary-like structure, which is better
defined in some cases than in others (e.g. Fig. 2.2 Aq-A vs Aq-E), a result
that holds independently of the projection used. These filaments also seem
to contain the most massive substructures in the box and interestingly, the
minor axes of the virial contours tend to be perpendicular to the direction
defined by these. This is in very good agreement with the statistical findings
of Bailin & Steinmetz (2005), who analyzed a sample of ∼ 4000 halos in a wide
range of masses. One relevant consequence of this type of configuration is that
most of the substructure will preferentially be accreted along the major axis of
the halo, a feature that has been used to explain the preferential alignment of
satellite galaxies with respect to their hosts in observational studies of external
galaxies (e.g. Brainerd, 2005, and references therein), in groups (e.g. Binggeli,
1982; Kitzbichler & Saurer, 2003; Yang et al., 2006; Faltenbacher et al., 2007;
God lowski & Flin, 2010; Paz et al., 2011) and also numerical simulations (e.g.
Knebe et al., 2004; Libeskind et al., 2005, 2007; Kang et al., 2007; Sales et al.,
2007; Bailin et al., 2008; Faltenbacher et al., 2008; Libeskind et al., 2011).
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Figure 2.4: Time sequence of the formation of halo Aq-D from t ∼ 1 Gyr to the
present day. Each box shows the dark matter density distribution around this
halo together with the shape and orientation of the virial contour at the given
time. As before, the green arrows indicate the projection of the minor axis
onto the plane, with the length of the arrow being proportional to the minor
axis length. The shape of this halo evolves continuously with time, showing
stretching and tilting in response to the infall of matter. The halo is oriented
along the filament up to t ∼ 7 Gyr and then rotates and becomes perpendicular
to it at the present day. This figure clearly illustrates the complexity involved
in the build up of the present day dark matter halo’s structure.

The halo shapes and orientations as a function of radius are shown in
Fig. 2.3. On the right panel, besides the axis ratios, we also plot the triaxiality
parameter T defined as

T =
a2 − b2

a2 − c2
, (2.2)

which is unity for a perfect prolate distribution and zero in the oblate case
(Franx, Illingworth & de Zeeuw, 1991; Warren et al., 1992). This figure shows
that in the inner regions all dark matter halos are more “prolate” with b/a ∼
c/a ∼ 0.4–0.6 (Hayashi, Navarro & Springel, 2007). On the other hand, at
large radii b/a increases to 0.8–0.9, and the mass distribution becomes more
oblate/triaxial. At intermediate radii halos are typically triaxial, but notice
that the radius at which the prolate-to-oblate transition occurs (defined as the
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radius where T = 0.5) is different for each object, ranging from ∼ 20h−1 kpc
for Aq-E to ∼ 100h−1 kpc in the case of Aq-A.

Regardless of the change in shape of the concentric ellipsoids, these tend to
remain well aligned throughout the halo. The right panel of Fig. 2.3 shows the
cosines of the relative angle between the major, intermediate and minor axis
of the ellipsoids at different radii and at the virial contour. The alignment is
remarkable, with the exception of halo Aq-D, where the intermediate and minor
axis in the inner regions are rotated ∼ 60◦ with respect to their orientation at
the virial radius, an issue that we explore in the next section.

2.4.2 Evolution

Fig. 2.4 shows a series of snapshots of halo Aq-D at different stages of its
evolution. The orientation of the coordinate system is now kept fixed for all
the snapshots. The corresponding time is quoted in the upper left corner
of each panel, the virial ellipsoids are depicted by white ellipses while the
projection of the minor axes onto the plane are indicated by the green arrows.
There are several points worth highlighting:

• The shape and orientation of the halo seem to change throughout time
(with the caveat that we are just seeing its evolution in projection).

• Also evident from this figure is the filamentary structure that character-
izes the surroundings of Aq-D. Notice that the filament where this halo
is located at the present day was already in place at t . 1 Gyr, and fully
dominates the environment from t ∼ 3 Gyr onwards, with remarkable
coherence in time and direction.

• The relative orientation of halo Aq-D with respect to its environment is
interesting since its minor axis is parallel to the direction of the filament
at late times. This seems to be at odds with expectations from statis-
tical studies of dark matter halo alignments (Bailin & Steinmetz, 2005;
Faltenbacher et al., 2005; Aragón-Calvo et al., 2007a; Zhang et al., 2009)
as well as in contradiction with the other halos illustrated in Fig. 2.2 and
the analysis presented in Section 2.4.1. A closer inspection of the history
of this halo shows that the infall of material at t & 7.5 Gyr occurs mostly
along a secondary filament (only barely visible in this projection) whose
direction is almost perpendicular to that of the most prominent and mas-
sive filament that dominates the surrounding large scale structure and
is clearly seen in Fig. 2.4. This change of infall direction explains the
apparent change in orientation of halo Aq-D at late times.

• The relative size of a filament with respect to that of the halo increases
with time: the filament’s cross section is comparable to the virial radius
at t . 5 Gyr, whereas the dark matter halo becomes smaller than and
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is fully embedded in the filament at later times. This has interesting
consequences on the halo shape as we discuss further in Section 2.5. We
have explicitly checked that this conclusion is not dominated by projec-
tion effects nor rendering of our images. We refer the reader to Appendix
2.8, where we introduce a physically motivated definition of a filament
(based on the number of caustic-crossings a particle has experienced)
and compare its size with that of the halo at each timestep.

In Fig. 2.5 we quantify the time evolution of the axis ratios measured at the
instantaneous virial ellipsoids for halos Aq-A to Aq-E. For reference, we have
indicated with grey labels the corresponding physical sizes at a given time.
We will only follow the evolution from t = 2 Gyr onwards (which corresponds
roughly to the time at which the halos have ∼ 20% of their final mass), which
guarantees that the center of mass as well as the shapes at the virial radius
are well defined at all times for the full sample of halos.

Fig. 2.5 shows that the shape of the virial ellipsoids is not constant with
time. In general, halos seem to evolve from a quite prolate configuration at
early times towards more triaxial shapes at the present day. In most of our
halos (with the exception of Aq-D), this evolution in shape is driven by a larger
increase of the intermediate-to-major axis ratio b/a than in c/a. Except for
this weak general trend, the evolution of the axis ratios is quite disparate from
halo to halo.

A qualitative comparison between the left panel of Fig. 2.3 and 2.5 sug-
gests a certain degree of resemblance between the overall evolution of the virial
ellipsoid’s shape with time (as measured, for example, by the triaxiality pa-
rameter) and the shapes measured as a function of radius (Fig. 2.3) for each
of our halos, despite their intrinsic differences. This suggests that the dark
matter halos retain certain memory of their configuration in the past, and
that this is imprinted on their present day structure. We note however that
this refers to the overall trend with radius/time and does not imply that it is
possible to recover the exact numerical value of the axis ratios at a given time
from their present day value at a given radius.

This analogy between radius/time is better seen in Fig. 2.6, where we plot
the present day axis ratios b/a vs c/a at different radii (grey curve) as well
as those measured at the virial ellipsoids for different times (color points).
Because we sample from t = 2 Gyr onwards, a dotted or a solid line is used
to indicate respectively, the shapes at radii smaller or larger than the virial
ellipsoid Rvir at this time. This figure shows that halos evolve away from
the 1:1 line and therefore tend towards less prolate shapes with time (and
also radius), with the clear exception of halo Aq-D. Moreover, the reasonable
agreement between the solid curve and the diamonds in this figure suggests
that the present day shape of the dark matter halos at different radii provides
information about the evolution of the virial ellipticities during their assembly
history.
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Figure 2.5: Temporal evolution of the axis ratios and triaxiality parameter for
the virial contour. The color-coding is the same as in Fig. 2.3. A comparison
to that figure shows that a correlation exists between the shape as a function of
time, and the present-day shape as a function of radius. To aid this comparison
we have added a second axis (gray), indicating the size of the virial contour
Rvir. This is derived for each halo by fitting: Rvir(t) = A(1 − e(t−τ)/(2th)) to
the measured evolution of the virial (ellipsoidal) radius. Here th is the time
at which the virial mass reaches half its present value, and A and τ are free
parameters.
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The analysis presented in this section, if generalized to Milky Way-type
halos, is directly relevant to the modeling and interpretation of observational
constraints on the shape of the Galactic potential. As discussed in the Intro-
duction, the Sagittarius stream has led to contradictory results when modeled
in axisymmetric dark matter halos with constant axis ratios (in the potential)
(Ibata et al., 2001; Helmi, 2004; Law, Johnston & Majewski, 2005; Johnston,
Law & Majewski, 2005; Fellhauer et al., 2006). We have shown here that sig-
nificant variations in the axis ratios as a function of radius exist for all our
five Aquarius halos and those variations are linked to the evolutionary history
of each object. Although this might add an extra degree of freedom to mod-
els that attempt to constrain the Galactic potential, our results from Fig. 2.6
indicate that by doing so it may be possible to retrieve the local conditions
around the Milky Way’s halo throughout its assembly (Banerjee & Jog, 2011).

Figure 2.6: Axis ratios as a function of position (gray line) and time (dia-
monds). The colors indicate the time when the axis ratios at the virial contour
have been measured. Notice that since we consider temporal evolution only
after t = 2 Gyr, we have differentiated the shape as a function of position
(gray curve) using solid (dotted) lines for distances larger (smaller) than the
virial radius of each halo at t = 2 Gyr (see text for details).
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2.5 Environment, Mass Accretion and Halo

Shapes

Dark matter halos continue to grow with time, through a regular, although
not always steady, injection of matter. Halos will respond to this new material
and re-structure themselves onto a new equilibrium configuration as part of the
virialization process. The environment of an object determines to some extent
the way in which the material is incorporated into the halo. For instance, thin
filaments imply accretion through well-defined preferential directions whereas
a more isotropic mode is expected when the halo is embedded in a larger
structure. Several correlations of halo shapes with environment have been
found so far in simulations (e.g. Avila-Reese et al., 2005; Faltenbacher et al.,
2005; Patiri et al., 2006; Basilakos et al., 2006; Macciò et al., 2007; Hahn
et al., 2007a) and observations (e.g. Pimbblet, 2005; God lowski & Flin, 2010;
Niederste-Ostholt et al., 2010; Paz et al., 2011), albeit with significant scatter.
In this section we explore in detail the role played by the environment and
mass assembly histories in shaping the Aquarius halos.

The angular distribution on the sky of the infalling matter can provide
useful information about the preferred directions and modes of the ongoing
accretion (Tormen, 1997; Colberg et al., 1999; Aubert, Pichon & Colombi,
2004; Aubert & Pichon, 2007; Libeskind et al., 2011). For instance, whereas
isotropic accretion would lead to a uniform signal on the sky, the presence of a
thin filament will give rise to a bi-modal distribution of points in two opposite
(180◦ apart) directions. This can be quantified further by means of a multipole
expansion of the infalling particles on the sky at a given time. We measure
the power spectrum for the mode l as,

Cl =
1

4π

1

2l + 1

l∑
m=−l

|ãml |2, (2.3)

where the expansion coefficients are,

ãml =
m

4πr2
vir

N∑
k=1

(Y m
l (Ωk))

∗, (2.4)

with Ωk being the angular position of the k-th particle crossing the virial radius
rvir with negative radial velocity at any given time. The asterisk on the right
hand side of Eq. (2.4) indicates the complex conjugate of the term within
parenthesis.

In the scheme introduced above, the l = 0 term (monopole) is a constant
equal to unity and used for the overall normalization of the expansion. Notice
that although this choice is arbitrary, the relative relevance of the monopole
with respect to all the other modes, C0/ΣlCl, is an indication of how isotropic
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the distribution is; i.e. a perfectly isotropic infall would correspond to all the
power in the l = 0 term. On the other hand, a significant contribution of
the l = 2 (or quadrupolar moment) term arises when the accretion occurs
through a well-defined direction in space, i.e. a filament. Similarly, accretion
corresponding to more than one preferential direction will shift the power away
from l = 2 and towards higher moments. Notice that a point mass on the sky
will excite, by definition, a wide range of modes with similar power; just like the
Fourier transform of a Dirac-delta function has constant power for all modes in
the frequency space. We therefore expect single satellite infall events to excite
higher moments compared to the smooth accretion. In the limit of a satellite
that occupies a large area of the sky, the configuration will then resemble a
dipole and the power spectrum will exhibit high power in the l = 1 mode.

In practice, most of the information is encoded in the terms l ≤ 2 (e.g.
Quinn & Binney, 1992; Eisenstein & Loeb, 1995; Aubert, Pichon & Colombi,
2004). We have checked in our experiments that higher moments than quadrupo-
lar contribute always less than ∼ 15% of all power at any given time once
substructures have been removed. We therefore focus our analysis mostly on
the l = 0 and l = 2 moments since they provide most of the information that
allow to characterize the mass accretion onto dark matter halos.

Fig. 2.7 shows this multipole decomposition introduced in Eq. (2.3) of the
mass infalling onto Aq-A-4 as a function of time. At each output time, we
select particles with negative radial velocity (infalling), vr < 0, that are in
the spherical shell 1.0 ≤ r/rvir ≤ 1.2 and compute the corresponding Cl of
the distribution2. The upper and the middle panels of this figure show the Cl
power spectra obtained respectively, by including and by removing particles
associated with substructures as identified by Subfind. Both distributions
are quite similar, although as expected from the discussion in the previous
paragraph, satellite accretion excites in general higher modes that last a very
short timescale, and are visible as clear “spikes” in the upper panel of the
figure.

The virialized regions of galaxy-sized objects can extend well beyond their
formal rvir (e.g. Cuesta et al., 2008), introducing a signal in the power spec-
trum that is driven by the halo’s intrinsic shape rather than by the surrounding
infall pattern. In order to avoid confusion with the material already in place
and in equilibrium in the outskirts of the halo, we selected also the subsample
of particles within 1.0 ≤ r/rvir ≤ 1.2 that are infalling for the first time onto
the halo (in practice we do this by requiring that a particle in a given output
has never been within the virial radius of the main object at any previous time
step). The corresponding power spectrum (after removing the subhalos’ con-
tribution) is shown in the bottom panel of Fig. 2.7. This distribution agrees

2We have tested that the qualitative behavior shown in this figure and the relative rele-
vance of each mode with respect to the whole spectrum does not depend on the particular
shell that is analyzed for 1 < r/rvir < 2 for all of our halos.
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well with those shown in the other panels of this figure, although the features
appear noisier due to the smaller number of particles being considered.

The left panel of Fig. 2.8 shows the power spectrum of all infalling mate-
rial for all five Aquarius halos after the contribution from subhalos has been
removed. The residual “spikes” visible in this figure correspond to the mat-
ter that is associated to infalling substructures but that is rather loose and,
consequently, has not been assigned to a particular subhalo by the halo finder.

The right panel of Fig. 2.8 shows the relative contribution of the l = 2
(solid black curve) and l = 0 (blue dot-dashed) moments to the total power
spectrum as a function of time3. These have been computed using only the
subset of particles on their first infall (although these curves do not change
significantly when all infalling particles are considered instead). Large C2

values are associated with the presence of net filamentary accretion. Fig. 2.8
shows that this condition is typically found at early times in our halos, with
the exception of Aq-B, which shows no clear sign of smooth accretion through
a filament at any time. The halo Aq-D shows also a peculiarly high power in
the l = 2 mode at late times, whereas for most of the objects the relevance of
C2 remains approximately flat (and negligible) in the last few Gyr (a feature
which is also evident in the left panel of Fig. 2.8).

The monopole term largely dominates the accretion at later times (blue
dot-dashed curve in Fig. 2.8) in all halos. Exceptions are halos Aq-A and
Aq-D, which show a decline in C0/ΣCl beyond t ∼ 12 Gyr and t ∼ 10 Gyr
respectively. In the case of Aq-A this is related to an increase in power of l ≥ 2
modes, while for Aq-D this is driven only by the l = 2 moment, as mentioned
in the previous paragraph. As we show in Appendix 2.8, this more isotropic
infall is a direct consequence of the increase in the relative size of the filaments
feeding the dark matter halos: infalling particles cover wider angles on the sky
which leads to larger C0 contributions with negligible l = 2 component. Notice
that halo Aq-E is, in some sense, the most extreme object, with a monopolar
term that dominates the power spectrum of infall material during almost all
its entire history (C0/ΣlCl > 0.9 for t ∼ 3 Gyr onwards).

A careful comparison of Fig. 2.8 and Fig. 2.5 reveals a good correlation
between the infall of material through filaments (large C2) and the shape of
the halos at a given time: high l = 2 moments are associated with virial
contours that turn prolate (e.g. Aq-A for t < 6 Gyr, Aq-C for t < 4 Gyr, Aq-D
for t > 8 Gyr). In particular, this multipole decomposition shows a filamentary
accretion mode for halo Aq-D that is present at t ≥ 10 Gyr, helping to explain
why its axis ratio b/c remains close to unity at quite late times. When the
accretion is more isotropic (i.e. C0/ΣlCl ' 0.9 ), the halos become most nearly

3Note that we are not explicitly showing the l = 0 term in Fig. 2.8 because it is, by
definition, set to unity in our formalism. However, the “relative” importance of the monopole
with respect to the contribution of all other moments is a well defined quantity, that we
analyze in more detail on the right panel of the same figure.
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oblate. This explains why halo Aq-E is the more oblate in our sample, with
b/a ∼ 0.9 from t ∼ 3.5 Gyr onwards, and also why it has this shape at smaller
radii, compared for example to halo Aq-C.

We found that the injection of material that occurs along filaments leads
to a more prolate halo shape, an effect that is naturally enhanced at early
times due to the relatively smaller size of the filaments with respect to the dark
matter halo (Avila-Reese et al., 2005; Gottlöber & Turchaninov, 2006). On the
other hand, the more isotropic mass accretion that characterizes later phases of
halo assembly for 1012M� Milky Way-like objects, yields more oblate/triaxial
geometries. When combined with the memory effect alluded to in Section
2.4.2, we find that prolate shapes are naturally expected to be set in the
earliest collapsed regions (small radii) of ∼ 1012M� halos, in good agreement
with previous work (Bailin & Steinmetz, 2005; Hayashi, Navarro & Springel,
2007). The filamentary structure typically found at early times thus seems to
be responsible for the general trend of our Milky Way-like halos to be more
prolate in their inner regions.

Figure 2.7: Multipole expansion of the infalling material (vr < 0) in the
region 1.0 ≤ r/rvir ≤ 1.2 as a function of time for halo Aq-A-4. The upper
and middle panels show the results with and without the contribution from
subhalos, respectively. In the bottom panel only those particles that are on
their first infall have been considered.
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Figure 2.8: Left: Multipole expansion of the infalling material in the region
1.0 ≤ r/rvir ≤ 1.2 as a function of time once the contribution from subhalos
has been removed for the five Aquarius halos. Right: Relative contribution
of the l = 0 (blue dot-dashed) and l = 2 (black solid) modes to the total
power spectrum as a function of time for particles on their first infall onto
each halo. While C2/ΣCl provides information about the material infalling
along a filament, large contributions from the monopolar term, C0/ΣCl, imply
that the accretion is isotropic. Notice the good correlation between the time
intervals with a clear signature of mass accretion through filaments (high power
in l = 2 mode) and the more prolate shape in Fig. 2.5.

2.6 Conclusions

In this Chapter we analyzed the shape of five Milky Way-like dark matter
halos selected from the Aquarius N -body simulations. We compared the per-
formance of several methods proposed in the literature to measure the shapes
of halos and found good agreement between all techniques, especially in the
inner regions where substructures play only a minor role. Using an implemen-
tation of the normalized inertia tensor algorithm described in Allgood et al.
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(2006), we have found excellent convergence between the several resolution
levels of Aquarius, where the shapes can be robustly measured down to the
convergence radius.

We find that mass assembly and environment are both responsible for set-
ting the shapes of dark matter halos. The early evolutionary phases of 1012M�
Milky Way-like halos are characterized by the accretion of matter through nar-
row filaments. In these circumstances the halos –as measured by their virial
contours– are prolate and their minor axes tend to point perpendicular to the
infall (filament) direction. Nonetheless, temporary tilting of the virial ellip-
soids may occur when mass is accreted from a different direction. The latter is
the case for just one of our halos located in a well defined filament at redshift
z = 0.

On the other hand, at later times the cross-section of the filaments becomes
larger than the typical size of Milky Way-like halos and as a result, accretion
turns more isotropic and the objects evolve into a more oblate/triaxial config-
uration. This transition does not occur at the same time for all halos in the
explored mass range but is strongly determined by their individual history of
mass assembly and their surrounding environment.

The geometrical properties of halos at different epochs are not lost: halos
retain memory of their structure at earlier times. This memory is imprinted
in their present-day shape trends with radius, which change from typically
prolate in the inner (earlier collapsed) regions to a triaxial in the outskirts
(corresponding to the shells that have collapsed last and are now at the virial
radius). These results are in excellent agreement with previous findings (Bailin
& Steinmetz, 2005; Hayashi, Navarro & Springel, 2007).

A corollary of our results is that the strong link between halo properties and
assembly history, which can show large variations from halo to halo, will make
any instantaneous correlation between halos shape or orientation and mass
or environment rather weak, explaining in part the relatively large scatter in
such trends found in earlier studies (e.g. Bailin & Steinmetz, 2005; Bett et al.,
2007).

It is important to stress that we have neglected the effects induced by the
presence of baryons on the dark matter halo shapes (Kazantzidis et al., 2004;
Bailin et al., 2005; Gustafsson, Fairbairn & Sommer-Larsen, 2006; Debattista
et al., 2008; Pedrosa, Tissera & Scannapieco, 2009; Lau et al., 2011; Valluri
et al., 2010). Therefore our results may only be directly applicable to dark
matter dominated objects such as low surface brightness galaxies. However,
the work of Tissera et al. (2010); Abadi et al. (2010); Bett et al. (2010) shows
that even though the halo axis ratios increase when a disk is formed (i.e. they
become rounder), the trends with radius appear to be preserved.

With the caveat of the neglected baryonic effects and the relatively low
number of objects studied, our findings may be directly relevant to the mod-
eling of stellar streams used to determine the gravitational potential of the



2.7. Appendix: The shape of dark matter halos: methods 39

Milky Way. For example, the inconsistencies found between the constraints
imposed by the positions and by the kinematics of stars in the Sagittarius
stream could be indicative of a change in the shape of the Milky Way halo
with radius (although see Law, Majewski & Johnston, 2009; Law & Majewski,
2010). Such a change could in principle be measured by using stellar streams
which are on different orbits in the Galactic halo. Furthermore, it may even
be possible to employ these to determine the growth history and early envi-
ronment of the Milky Way. A validation of these ideas, however, is bound to
a proper evaluation of the effect of the baryonic matter on our findings, as
well as to the study of larger statistical samples, both issues that we plan to
address in the near future.
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2.7 Appendix: The shape of dark matter ha-

los: methods

In this section we provide a review of the various methods that have been
proposed in the literature to measure dark matter halo shapes and compare
the results when applied to the same object. The methods most commonly
used are the diagonalization of the inertia tensor and the characterization with
ellipsoids of either the interpolated density field or the underlying gravitational
potential (Warnick, Knebe & Power, 2008). We introduce as well an additional
scheme, which incorporates the advantages of different pre-existing methods,
and where halo shapes are determined by fitting ellipsoids to the 3D iso-density
surfaces.

2.7.1 Inertia tensor

One of the drawbacks of methods based on the determination of the inertia
tensor is its quadratic relation with distance, which assigns the largest weight
to particles residing far away from the center, an issue complicated further by
the presence of substructures in the outskirts of the dark matter halos.

The bias introduced by this distance weighting can be alleviated by normal-
izing each coordinate with some measure of distance (Gerhard, 1983; Dubinski
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Figure 2.9: Dark matter density in thin slices centerd on the z = 0 (left) y = 0
(center) and x = 0 (right) planes. The black lines represent the isodensity
contours. The solid white ellipses correspond to our new density-based method,
while the dashed ones are for the inertia tensor method described by Allgood
et al. (2006). In the inner regions both methods agree very well and follow
the isodensity surface, however closer to the virial radius (the external most
contour) the inertia tensor-based scheme predicts somewhat rounder shapes
than the actual density distribution.

& Carlberg, 1991). In this case the “reduced” inertia tensor

Iij =
∑

xk∈V

x
(i)
k x

(j)
k

d2
k

, (2.5)

where dk is a distance measure to the k-th particle and V is a set of particles’
positions. Assuming that dark matter halos can be represented by ellipsoids,
the axis ratios are the ratios of the square-roots of the eigenvalues of I, and the
directions of the principal axes are given by the corresponding eigenvectors.
To determine the axis lengths (e.g. b and c) however requires knowledge of the
third axis (a). Therefore there are different choices to be made in this method,
namely, which is the initial set of points V , the distance measure d and the
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way in which a is defined. Different approaches have been followed to set these
quantities.

• Warren et al. (1992) use an iterative scheme keeping the ellipsoid volume
constant. The set V , initially chosen to be a spherical shell, is iteratively
deformed and reoriented using the eigenvalues and eigenvectors of the
reduced inertia tensor. These authors take d to be the Euclidean distance
to a given particle. Bailin & Steinmetz (2005), however, argue that this
systematically overpredicts the roundness of the halos. In the figures
below we have modified Warren et al.’s method by using d2

k = x2
k +

y2
k/q

2 + z2
k/s

2 instead, and where q = b/a and s = c/a are updated in
each iteration. We define also the shell’s radii using this definition of
distance, instead of the Euclidean one.

• Allgood et al. (2006) also employ an iterative scheme but now keeping
the largest axis length constant. Initially the set V is selected to be given
by all particles located inside a sphere (as opposed to a spherical shell of
a given radius) which is reshaped iteratively using the eigenvalues. As
before, the orientation is determined from the eigenvectors of I, and the
distance measure used is d2

k = x2
k+y2

k/q
2 +z2

k/s
2. In the figures below we

have removed all bound substructures contained in a halo. This alleviates
the noise and artificial tilting of the ellipsoids that is introduced by such
substructures. We use Subfind (Springel et al., 2001) to identify and
remove particles associated to subhalos within the region of interest.

In our implementations the iterations are stopped when convergence in the
axis ratios is reached, which we take to be when the relative change is smaller
than 10−6, or when V is composed by less than 3000 particles. If the latter
condition is not fulfilled the shape of such a contour is not considered in our
analysis.

2.7.2 Density

An alternative approach to determine halo shapes is to consider the under-
lying density field, which carries more information about the internal mass
distribution of the halos than the inertia tensor. We explore here two different
implementations.

• Jing & Suto (2002) determine the shape by fitting ellipsoids to sets of par-
ticles having (nearly) the same nearest neighbours-based density. Noise
due to substructures is effectively removed by an implementation of the
Friends of Friends (fof) algorithm to these sets (Davis et al., 1985), and
where the linking length is selected to vary from set to set of iso-density
particles according to the empirical law l = 3(ρ/m)−1/3.
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Figure 2.10: Axis ratios (a ≥ b ≥ c) for Aq-A-4 as a function of the ellipsoidal
distance R = (abc)1/3. The solid red line corresponds to our new algorithm,
while dot-dashed black, dashed cyan, dot-dashed blue and dotted green cor-
respond respectively, to: iso-potential contours (Hayashi, Navarro & Springel,
2007), particle-based iso-density inertia tensor (Jing & Suto, 2002), normal-
ized inertia tensor diagonalized upon hollow (Warren et al., 1992) and on solid
(Allgood et al., 2006) ellipsoids. Vertical arrows indicate the size of the virial
ellipsoid, Rvir, for each method. All methods agree well, especially in the inner
regions (R . 100h−1 kpc).

• We present a new method based on fitting an ellipsoid to the particle
density. We first create a continuous density field out of the particles
positions. We do so by using a Cloud-In-Cell algorithm that allows the
reconstruction of the density field on a regular grid (Hockney & East-
wood, 1988). For better resolution and to keep the computational cost
relatively low, the region covered by the grid is iteratively increased. The
second step involves the identification of iso-density contours. We select
the cells with nearly the same density and a version of the fof algorithm
is used to get rid of cells associated to substructures artificially linked to
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the main contour. Finally, we minimize the function:

S(M ) =
1

n

n∑
k=1

(
1−

√
xTkMxk

)2

, (2.6)

with M the matrix representation of an ellipsoid, in order to determine
the axis lengths (eigenvalues of M ) and directions (eigenvectors). Notice
that the minimization is carried out in a 6 dimensional space (M has
just 6 independent elements), therefore an educated initial guess for the
iteration may reduce the numerical effort. We provide this guess by
diagonalizing the inertia tensor of the cells with similar values of the
density.

Fig. 2.9 shows 2D slices of the density map computed for halo Aq-A-4,
together with several best-fit ellipsoids found by the method just outlined.
An important feature of our method is that all the information about the
3D isodensity surface is taken into account; this is particularly useful towards
the outskirts of the dark matter halos where, as can be appreciated from
Fig. 2.9, density contours become less symmetric. For comparison, we also
show the results of applying the algorithm by Allgood et al. (2006) (after
subhalos subtraction) in dashed lines. Recall that in our new method ellipsoids
are effectively independent of each other and therefore this method is more
sensitive to local variations of the halo shapes. On the other hand, Allgood
et al. (2006) use the whole set of particles within a given radius, which implies
that the shape of a contour at a given distance is correlated with the shape at
smaller radii, as a careful inspection of this figure shows.

2.7.3 Potential

A viable alternative to the density-based methods to measure the shape of
a dark matter halo is to use the gravitational potential field defined by the
particles. As first noticed by Springel, White & Hernquist (2004) and later
confirmed by Hayashi, Navarro & Springel (2007), substructures cause signifi-
cant fluctuations in the local density distribution, but their contribution to the
gravitational potential is considerable less harmful (Springel, White & Hern-
quist, 2004; Hayashi, Navarro & Springel, 2007). Iso-potential contours are
therefore smoother and more regular than those defined by the density field.
Taking advantage of this feature, Hayashi, Navarro & Springel (2007) have im-
plemented a method to characterize the structural shape of dark matter halos
by fitting ellipses to the iso-potential contours computed on three orthogo-
nal 2D planes. It is important to note here that the potential is intrinsically
rounder than the density distribution, for example for a cored logarithmic po-
tential 1− (c/a)ρ ≈ 3[1− (c/a)Φ] outside the core (Binney & Tremaine, 2008).
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2.7.4 Results

In Fig. 2.10, we compare the shape as a function of the ellipsoidal radius
obtained for the halo Aq-A-4 using the methods described above. This fig-
ure shows very good agreement in the halo shapes measured by the different
methods, especially in the inner regions (R . 100h−1 kpc). There is how-
ever an indication that at large radii, density-based methods (red solid and
light-blue dashed curves) tend to give slightly more oblate shapes (higher b/a)
than those based on implementations of the inertia tensor, but the effect is
only marginal. As expected, the method based on the gravitational potential
(Hayashi, Navarro & Springel, 2007) produces higher axis ratios (blue dotted
line).

2.8 Appendix: The size of filaments at differ-

ent times

Figure 2.11: Distribution of particles around Aq-A halo at four different times.
Particles with a single caustic crossing are plotted in red and are seen to trace
reasonably well the filamentary structure surrounding the halo. Each box has
been rotated according to the inertia tensor defined by this subset of particles.
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Figure 2.12: Projected mass density (in units of hM�kpc−2) for three different
perpendicular planes located along the direction of the filament at positions
zp = [−1, 0, 1]rvir, and at two different times: t = 13.6 Gyr (top) and t = 2.3
Gyr (bottom). The solid white curve indicates the half the virial radius of the
halo at each time and the highlighted filled disk shows the size assigned to the
filament and centerd in the highest density point as described in the text. The
geometry of the filaments is complicated, but their relative size with respect
to that of the halo is clearly larger at present day (t ∼ 13.6 Gyr) than it was
at t ∼ 2.3 Gyr.
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Dark matter halos that reside in a filament will acquire their mass prefer-
entially along the filament’s longest axis. As discussed in Sec. 2.5, such infall
of material gives rise to a power spectrum characterized by a significant l = 2
component. However, when the surrounding filament is sufficiently wide, i.e.
of comparable or larger cross-section than the virial radius of the halo, the
infalling particles will appear to be more isotropically distributed on the sky,
shifting the power to the l = 0 term of the spectrum. We have argued in Sec-
tion 2.5 of this Chapter that the latter case is characteristic of the late stages
of mass assembly in ∼ 1012M� objects. We analyze this statement in more
detail in this Appendix, and provide a suitable measurement of a filament’s
size and compare it to that of the dark matter halo it hosts. For brevity we
focus our analysis on halo Aq-A, but our conclusions should hold in the general
case.

The measurement of the size of a filament is not completely straightforward
and may depend on the particular algorithm used for its identification (Stoica
et al., 2005; Zhang et al., 2009). In this work we define structures according
to the number of caustic crossings of its constituent particles. Caustics arise
during the gravitational collapse of a dynamical system. In the case of cold
dark matter, the initial velocities of particles are negligible, and thus these are
distributed in 3D sheets in phase-space (Bertschinger, 1985). Their collapse
and subsequent virialization may be seen as the folding of these sheets, and the
location of these folds in configuration space gives rise to caustics. Therefore
the number of caustic crossings is indicative of the degree of virialization of a
dynamical system.

For example particles with zero crossings remain under the quasi-linear
regime and have therefore not collapsed into any virialized structure today.
As gravitational collapse proceeds, the number of caustics that a particle ex-
periences increases rapidly. As shown in Vogelsberger & White (2011, Fig. 4),
particles with 1 or 2 caustic crossings delineate the surrounding filamentary
structure of a halo, whereas those with a higher number of crossings belong
to the host halo itself. Therefore, in this work we select particles with 1 caus-
tic crossing to study the properties of the filamentary structure surrounding
Aq-A halo at different epochs (Vogelsberger et al., 2009; Vogelsberger & White,
2011).

Fig. 2.11 shows the distribution of particles in a box of size 6rvir at four
different times, where those with a single caustic crossing are highlighted in
red. The circle indicates the corresponding virial radius of the Aq-A halo, and
the horizontal bar gives the reference for conversion to the physical scale. At
each time-step we have rotated the reference frame to the principal axis of the
inertia tensor defined by the particles with 1 caustic crossing 4. This figure

4Because we are interested in the set of filaments connected to the central object, we run
a fof algorithm over the particles with 1 caustic crossing, using a linking length of 0.7 the
mean interparticle separation and retain for the analysis only those set of particles belonging
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shows these particles successfully trace the filamentary structure around this
halo. Interestingly, there is a hint of evolution in the relative size of the filament
with respect to that of the halo: as we move back in time, the red particles
change from fully encompassing the halo (t ≥ 9 Gyr) to having a similar cross-
section (t ∼ 5.25 Gyr) to becoming even narrower at earlier times (t ∼ 2.3
Gyr). At this point the geometry of the system is much more complex due to
multiple filaments feeding material to the central object.

In order to quantify the evolution in the cross section of a filament we
proceed as follows. We rotate the reference system such that the z-direction is
that given by the inertia tensor of particles with 1 caustic crossing. We identify
planes perpendicular to this direction and label the positions of such planes
as zp, where zp = [−2,−1.5,−1, ...,+1.5,+2] rvir. We project in each plane all
selected particles that satisfy |zi − zp| ≤ 0.5rvir. We compute the (projected)
density of neighbours of each particle in the plane using a 2D SPH kernel and
identify the particle with the highest density. This particle’s location sets the
centroid of the filament and its density at the core. We then define the radius
of the filament rfil as the distance from this centroid where the density has
dropped to 60% of its central value. Although this definition is arbitrary, this
allows a measurement of the relative size at different times.

Fig. 2.12 illustrates our procedure for two different times: t = 13.6 (top)
and t = 2.3 (bottom) Gyr; applied to 3 different planes along the z-direction:
zp = −rvir, 0,+rvir. Each panel shows the projected density of particles be-
longing to the filamentary structure (one single caustic crossing), where the
virial radius of the central halo is indicated with a white (empty) circle, and
the highlighted full disk indicates the size of the filament centerd on the high-
est density point as described above. Fig. 2.12 suggests that filaments are not
really straight in space (as indicated by the different positions of the centroids
for panels located at different zp) and also their geometry is complex since
panels located symmetrically with respect to the center of the halo yield sig-
nificantly different sizes (e.g. top row, −rvir, +rvir panels). However, there
is still a clear trend indicating that the filament’s relative size was smaller at
early times than at the present day.

This trend is more clearly seen in Fig. 2.13, where we show the average
size of the filament (normalized to a fraction of the instantaneous virial ra-
dius) measured as the average over 9 equally distant planes located from
[−2rvir,+2rvir] as a function of time. The shaded region shows the scatter
between the sizes derived for each of the individual planes at a fixed time.
Notice that the relative filament-to-halo size at present day is almost twice
as large than its value at t ∼ 2 Gyr. This provides further support to our
observation that the infall of particles at later times results from an increased
size of the filament with respect to that of the halo.

to the most massive fof group
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Figure 2.13: Filament size relative to the virial radius f = rfil/(0.5rvir) as
a function of time. The solid black line is the average size of the filament
measured on 9 planes perpendicular to the direction of the filament. The
shaded region is 1σ scatter (see text for details) . The vertical axis has been
normalized to its final value at redshift zero f0 = f(z = 0) for an easier
comparison.
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Abstract

W
e analyze the Aquarius simulations to characterize the shape of
dark matter halos with peak circular velocity in the range 8 <
Vmax < 200 km/s, and perform a convergence study using the var-
ious Aquarius resolution levels. For the converged objects, we de-

termine the principal axis (a ≥ b ≥ c) of the normalized inertia tensor as a
function of radius. In general we find that field halos are more triaxial with
increasing halo mass, with our smallest halos being rounder by ∼ 40 − 50%
than Milky Way-like objects at the radius of peak circular velocity, rmax. We
find that the distribution of axis ratios for the subhalo population is consistent
with that of field halos of comparable Vmax within the scatter. Inner and outer
contours within each object are well aligned, with the major axis preferentially
pointing in the radial direction for subhalos close to the host, although with
a large scatter. We specifically analyze the dynamical structure of subhalos
likely to host luminous satellites comparable to the classical dwarf spheroidals
in the Local Group. These halos have axis ratios that increase with radius,
and which are mildly triaxial with 〈b/a〉 ∼ 0.75 and 〈c/a〉 ∼ 0.60 at r ∼ 1
kpc. Their anisotropy profiles β(r) become strongly tangentially biased in the
outskirts as a consequence of tidal stripping.

Cover: vmax and tidal contour for a Sculptor-like subhalo of Aq-A-2 (vmax = 39 km
s−1, MV = −11.1)
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3.1 Introduction

In the Λ cold dark matter cosmological paradigm structures build hierarchi-
cally, from the mergers of smaller objects (Press & Schechter, 1974; Gott &
Rees, 1975; White & Rees, 1978; Blumenthal et al., 1984). As the merging
proceeds, they exert tides on each other and at the present time, may be
fully assembled into a single object or survive as composite system consisting
of bound substructures (or subhalos) orbiting a larger host. Early N -body
experiments of structure formation showed how this process took place with
halos hosting a few dozen substructures down to the numerical resolution limit
typical at that time (Tormen, 1997; Tormen, Diaferio & Syer, 1998; Ghigna
et al., 1998; Klypin et al., 1999a,b; Moore et al., 1999). For systems like the
Milky Way, current numerical simulations have extended the dynamical range
of resolved substructures by 4-5 orders of magnitude (Diemand, Kuhlen &
Madau, 2007; Diemand et al., 2008; Springel et al., 2008; Stadel et al., 2009).

The properties of these substructures are of great interest since luminous
satellites such as the population of dwarf spheroidal (dSph) galaxies in the Lo-
cal Group, are expected to be embedded in (some of) them (Stoehr et al., 2002;
Strigari, Kaplinghat & Bullock, 2007; Boylan-Kolchin, Bullock & Kaplinghat,
2012a; Vera-Ciro et al., 2012). Furthermore, the large mass to light ratios of
dSph, which range in the 10s to 1000s (Mateo, 1998; Gilmore et al., 2007;
Walker, 2012), indicate that their internal dynamics are dominated by the
dark matter. This suggests that the predictions of pure dark matter simula-
tions may be more directly confronted with observations of these systems. For
instance, it has been suggested that they provide an optimal place to look for
signals of dark matter self-annihilation processes (Kamionkowski, Koushiap-
pas & Kuhlen, 2010), due to the natural enhancement in density and the lack
of significant contamination from the baryonic component.

The availability of large samples of line of sight kinematics for individual
stars in dSph galaxies has also opened new possibilities to test the predic-
tions of ΛCDM on the structural properties of dark matter subhalos. For
instance, studies of N -body numerical simulations have shown that the in-
ner slope of the dark matter density profile is expected to be cuspy in CDM
models (Navarro, Frenk & White, 1996, 1997). This seems to contrast with
the somewhat shallower slopes and even constant density cores supported by
observations in local dwarf spheroidals (Amorisco & Evans, 2011; Walker &
Peñarrubia, 2011; Amorisco & Evans, 2012; Jardel & Gebhardt, 2012). This
however, is a subject of active debate, since various authors have shown that
the stellar kinematics of Milky Way dwarfs are also consistent with the NFW
cuspy profiles (Battaglia et al., 2008; Walker et al., 2009; Strigari, Frenk &
White, 2010; Breddels et al., 2012a).

Most of the dynamical modeling performed in the studies of Local Group
dwarf spheroidals rely on simple assumptions about the structure of their dark
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matter component. In particular, spherical symmetry and specific anisotropy
profiles have been extensively assumed. The orbital anisotropy has been taken
to be constant (Richstone & Tremaine, 1986;  Lokas, 2002;  Lokas, Mamon &
Prada, 2005;  Lokas, 2009; Walker et al., 2009), or radially dependent (Kleyna
et al., 2001; Wilkinson et al., 2002; Battaglia et al., 2008; Strigari et al., 2008;
Wolf et al., 2010; Amorisco & Evans, 2011), while in Schwarzschild modeling
or in made-to-measure N-body methods it does not need to be assumed (Long
& Mao, 2010; Jardel & Gebhardt, 2012; Breddels et al., 2012a). The selection
of geometric shape for the dark matter potential can also be relaxed. For
example, Hayashi & Chiba (2012) considered axisymmetric dark matter halos
to model some of the Milky Way dSph galaxies.

For isolated galaxies, numerical experiments of ΛCDM have clear predic-
tions for these quantities. The shapes of (isolated) dark matter halos in the
mass range 1010− 1015 M�, are generally found to be triaxial, with axis ratios
depending on the mass of the object (Muñoz-Cuartas et al., 2011; Schneider,
Frenk & Cole, 2012). In terms of their internal kinematics, the velocity ellip-
soid is close to isotropic near the center of halos and becomes mildly radial
towards the outskirts (Wojtak et al., 2005; Hansen & Moore, 2006; Ludlow
et al., 2011).

For subhalos, however, less is known because of the demanding numerical
resolution needed to model properly low mass halos orbiting within hosts of
Milky Way mass. This situation has recently improved with simulations that
are now able to successfully sample the mass function on these scales, such as
the Via Lactea, CLUES, GHALO and Aquarius simulations (Diemand, Kuhlen
& Madau, 2007; Diemand et al., 2008; Springel et al., 2008; Stadel et al.,
2009; Libeskind et al., 2010). For instance, using the Via Lactea simulations
Kuhlen, Diemand & Madau (2007) found that subhalos are also not spherical,
although the effect of tides tend to make subhalos rounder than comparable
objects in the field. These results prompt questions about the validity of
some of the assumptions involved in the mass modeling of stellar kinematics
in dwarfs. And although the orbital anisotropy of the stars in a dSph is likely
unrelated to that of dark matter (and associated to the formation history), it
might nonetheless be valuable to explore the dynamical structure of subhalos,
although the results’ direct applicability is limited.

A detailed study of the shape of the Milky Way mass Aquarius halos was
presented in Vera-Ciro et al. (2011). Here we extend their analysis to lower
mass objects, both subhalos of the main central halo and field halos, up to
1.5h−1Mpc from the center of the high resolution box. The Chapter is orga-
nized as follows. In Section 3.2 we describe the numerical simulations, intro-
duce the methods we use to determine halo shapes and explore the convergence
of the results. In Section 3.3 we compare the properties of subhalos and iso-
lated objects of similar mass. We analyze subhalo shapes in the context of
the kinematic modeling of dwarfs around the Milky Way in Section 3.4 and
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summarize our main results in Section 3.5.

3.2 Shape measurements and convergence

We use the suite of cosmological N−body simulations from the Aquarius
project (Springel et al., 2008). These consist of six ∼ 1012 M� dark matter
halos (Aq-A to Aq-F), re-simulated with 5 different levels of resolution within
the ΛCDM cosmology. The simulations use the zoom-in technique, with a
high-resolution region that extends up to ∼ 2 h−1Mpc from the center of each
main halo. This exceeds the typical virial radius of the Aquarius halos by 5–10
times and allows to identify structures within the high-resolution region that
have been unaffected by tidal forces from these main halos (see Springel et al.,
2008, for further details).

In most of the analysis that follows we focus on the level-2 resolution runs,
with a mass per particle mp ≈ 104 M�. However, we use the other Aquarius
levels to test the convergence of our results. Halos and subhalos are identified
using the subfind algorithm (Springel et al., 2001). We keep all structures
identified with at least 20 particles.

To measure the shape of halos in the simulations we follow the same ap-
proach as Vera-Ciro et al. (2011) and iteratively compute the inertia tensor in
ellipsoidal regions. At a given radius, the algorithm begins with a spherical
contour which is reshaped and reoriented according to the principal axis of
the normalized inertia tensor for the encompassed material, until convergence
is reached (Allgood et al., 2006). More specifically, we define the normalized
inertia tensor as

Iij =
∑

xk∈V

x
(i)
k x

(j)
k

d2
k

, (3.1)

where dk is a distance measure to the k-th particle and V is the set of particles
of interest. Representing dark matter halos as ellipsoids of axis lengths a ≥
b ≥ c, the axis ratios q = b/a and s = c/a are the ratios of the square-roots of
the eigenvalues of I, and the directions of the principal axes are given by the
corresponding eigenvectors. Initially the set V is given by all particles located
inside a sphere which is re-shaped iteratively using the eigenvalues of I. The
distance measure used is d2

k = x2
k + y2

k/q
2 + z2

k/s
2, where q and s are updated

in each iteration. In practice we find that the algorithm converges (i.e. the
error in the shape between successive iterations is < 1%) only when there are
at least 200 particles in set V .

In Vera-Ciro et al. (2011) we showed that shapes can be robustly measured
from the convergence radius, rconv outwards (Power et al., 2003; Navarro et al.,
2010), where:

κ(r) =
N

8 lnN

r/Vc
r200/V200

=

√
200

8

N(r)

lnN(r)

[
ρ(r)

ρc

]−1/2

, (3.2)
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and N(r) is the number of particles inside the radius r, ρ is the spherically
averaged density and ρc the critical density. This rconv is defined such that the
ratio between the local relaxation time and the dynamical time at the virial
radius equals κ = 7. The value κ = 7 guarantees that the circular velocity
profiles on the main halos deviate less than 2.5% between different resolutions
(Navarro et al., 2010), and also shapes and orientations (Vera-Ciro et al., 2011).
Notice that for subhalos we use the virial radius and virial velocity at the time
of infall, although the critical density still corresponds to z = 0. As ρc increases
with redshift, using its present day value provides a conservative estimate of
the convergence radius.

Fig. 3.1 shows that the same criteria applied to our sample of subhalos
also ensures convergence of the halo shapes for the low mass objects. We
compare the results for the Aq-A run in all resolution levels 1-5 (red to black,
respectively). The left panels show, as a function of halo maximum circular
velocity Vmax, the mean axis ratios computed at the tidal radius rtidal, here
defined as the ellipsoidal contour enclosing the 95% most bound particles.
The thin lines correspond to the entire sample of subhalos, whereas the thick
curve shows only converged objects (those where rtidal ≥ rconv). At level 2,
the one used for most of our analysis, the mean axis ratios agree with the
highest resolution run Aq-A-1 to better than 5% across the full spectrum of
“converged” subhalos.

A similar conclusion is reached for the inner regions of subhalos, as shown
by the right panels of Fig. 3.1. Here, c/a and b/a are computed at the radius
of the peak circular velocity Vmax, which is typically ∼ 9 times smaller than
rvir for field halos and ∼ 6 times smaller than rtidal for subhalos. The number
of objects for which rconv > rmax is roughly ten times lower than those with
rconv > rtidal. This explains the relatively more noisy behavior of the curves on
the right column compared to those on the left (especially for the lowest two
resolution runs, where typically less than 10 objects satisfy the convergence
condition). In general, a subhalo whose shape has converged at the tidal radius
has not necessarily converged at the rmax radius.

Besides the mean trends shown in Fig. 3.1, we also explored the convergence
of halo shapes on an object-by-object basis. In order to do this, we identify
the same subhalos in several resolution levels of the Aq-A halo by matching the
Lagrangian positions of all the particles assigned to a substructure by subfind
back in the initial conditions (see Section 4.2 Springel et al., 2008, for further
details) In addition to this criterion, we impose a maximum deviation on the
orbital path of matched objects in different level runs. This is to ensure that
the evolution of each subhalo has been comparable in the different resolution
runs also in the non-linear regime. More specifically, we define

∆2
r =

1

N

∑
snapshot

|r3(t)− r2(t)|2

|r2(t)|2
, (3.3)
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Figure 3.1: Shape of the tidal contour (left) and Vmax contour (right) as a
function of Vmax for subhalos of the main halo at 5 different resolutions. With
thick lines we plot subhalos for which rconv ≤ rtidal (left) and rconv ≤ rmax

(right), where rconv is such that κ(rconv) = 7.

with rj is the position1 of the subhalo with respect to the main halo center
at the j-th resolution level. This is computed for every snapshot from the
time the object is first identified in the simulation box until present day. We
consider only structures for which ∆r ≤ 0.1.

A total of 260 substructures are successfully matched in all levels 1,2 and 3
of the Aq-A halo by this procedure. For each object, we define δs = s3/s1 − 1,
where s = c/a measured at rmax and the lower index indicate the resolution
level (1 and 3 for our case). By construction, δs ∼ 0 for well converged ob-
jects. We show the distribution of δs in Fig. 3.2. The light gray histogram
corresponds to all matched objects, and this is significantly broader than the
distribution for the converged sample (i.e. cases where rmax > rconv) shown in
dark gray.

We illustrate this more clearly on the right panels in Fig. 3.2, which show
the behavior of c/a as a function of distance R = (abc)1/3 for three subhalos
in the sample. Small colored dots indicate their δs value on the histogram on
the left. The various curves correspond to the results for different resolution

1The positions of all halos and subhalos are defined by the particle with the minimum
potential energy.
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Figure 3.2: Left: Distribution function of the deviation of the major to minor
axis ratio with respect to the highest resolution simulation δs. The light-gray
histogram shows the distribution for the matched sample, while the dark-gray
shows the results for the sample that satisfies that rconv (vertical arrows in
the right panels) is smaller than rmax (vertical gray line in the right panels)
in all resolutions. The converged sample is narrower by a factor of 5. Right:
Axis ratios as function of position for three different subhalos with the quoted
number of particles in the respective resolutions.

levels as indicated by the labels. For each subhalo the convergence radius
rconv is marked with a vertical arrow and the position of the Vmax contour
by a vertical thick gray line. The top panel shows a typical example of an
unconverged object: the peak of the circular velocity occurs at a smaller radius
than rconv for levels 2 and 3. On the other hand, subhalos in the middle and
bottom panels have rmax > rconv and have therefore converged (according to
our criterion) at all these levels.

Notice that a large number of particles does not guarantee convergence. For
instance, the unconverged object on the top right panel of Fig. 3.2 has ∼ 5000
and ∼ 17000 particles in levels 3 and 2, respectively. These are significantly
larger than the values previously used in the literature (e.g., Kuhlen, Diemand
& Madau, 2007; Knebe et al., 2008a,b), and highlights the need to impose a
second criterion to measure individual shapes reliably. With our criterion, for
only ∼ 2% of the halos with 5000−10000 particles have the shapes at the Vmax

contour converged (i.e. rconv > rmax). The situation improves significantly for
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the tidal contour, where 99.6% of such objects have converged.

The distribution of axis ratios for converged objects shown in the left panel
of Fig. 3.2 has a standard deviation σ = 0.08, meaning that 68.3% of the
objects shapes determined at the Aquarius level-3 deviate less than 8% from
their value in the highest resolution run. Since we focus on the level-2 runs
for the analysis that follows, we expect resolution effects in our sample to be
negligible.

The above discussion evidences that our criterion for convergence is rela-
tively strict. There are 21403 subhalos with at least 200 particles within the
tidal radius in all the Aquarius simulations, and we find that the inertia tensor
algorithm converges for 11483 subhalos at the rmax contour, and for 13970 at
the tidal contour. If we now impose our convergence criteria, there remain 412
and 6072 subhalos with well-determined shapes at the rmax and tidal contours
respectively. For halos in the field our convergence criteria leads to a reduc-
tion of 96% and 35% for the rmax and tidal contours respectively. As expected,
there is a larger proportion of field objects whose shapes can be measured at
the tidal contour. However, despite this significant reduction in sample size, we
have gained in the reliability of the shape determination for individual halos.

Therefore, in the next section we focus on those halos which satisfy our
convergence criteria.

3.3 Halo shapes as a function of mass and en-

vironment

We proceed to characterize the variations in the axis ratios b/a and c/a of dark
matter halos according to their mass, or equivalently their maximum circular
velocity. The left column of Fig. 3.3 shows b/a and c/a for isolated objects
measured at the tidal radius (labeled tidal contour) and at rmax (Vmax contour)
in the top and bottom panels, respectively. A thick line indicates the median
trend of our sample and the open symbols at the high mass end show the
results for the main Aquarius halos from Vera-Ciro et al. (2011). In agreement
with previous work, we find that axis ratios tend to decrease gently with Vmax

(Allgood et al., 2006; Macciò et al., 2007; Hahn et al., 2007b; Bett et al., 2007;
Muñoz-Cuartas et al., 2011), although we now explore a different mass regime.

Inspection of the top and bottom panels shows that the dependence of the
axis ratios with circular velocity is somewhat steeper when measured at rmax

than at the tidal contours. Typically, our lowest mass objects have inner axes
that are rounder by 40−50% than those of Milky Way-like halos. Nevertheless,
the scatter from object to object at fixed circular velocity also is larger at rmax,
as indicated by the shaded regions. This is partially driven by the smaller
number of converged objects in the Vmax contour sample (735) compared to
the tidal contour (3046).



58 Shape of dark matter subhalos

Figure 3.3: Shape as a function of Vmax for field halos (left) and subhalos of the
main halos in the suite of Aquarius simulations (right). Thick lines represent
the median of the distribution of converged structures and the shadowed region
represents ±1σ equivalent dispersion around the median. Thin lines are fits to
the objects in the field. The diamonds and squares indicate the axis ratios of
the main Aquarius halos.

A comparison between the left and the right column of Fig. 3.3 reveals
that there are only small differences between subhalos and isolated objects.
To ease this comparison we overplot in the panels on the right the linear fits
obtained for field halos. This shows that, on average, subhalos are slightly
more spherical than field halos at a given Vmax, but differences are well within
the scatter in the samples. The number of converged objects in the case of
subhalos is 385 and 1522 for Vmax and tidal contours, respectively.

Could the differences between field halos and subhalos be caused by mea-
suring shapes at different physical radii? It has been shown in the literature
that tidal evolution can significantly decrease rmax in satellites while affect-
ing Vmax significantly less (Hayashi et al., 2003; Kravtsov, Gnedin & Klypin,
2004). In that case, the measurement of the halo shape at rmax would be at
a smaller radius for a subhalo than for a halo in the field with the same Vmax,
and the same holds for the tidal contour. We address this in Fig. 3.4, where
we show the minor-to-major axis profiles for individual field halos (left) and
subhalos (right) of similar mass (Vmax ∼ 50 km s−1). The solid dots indicate
that the location of the peak circular velocity are comparable in both samples
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and therefore shows that this can not be reason for the different trends re-
ported in Fig. 3.3. We thus confirm that, on average, subhalos of a given Vmax

are slightly more spherical than comparable field halos at all radii, particu-
larly in the outskirts. Kolmogorov-Smirnov tests indicate that the difference
between both samples is statistically significant only at the tidal contours (the
KS probability is 0.09 in that case vs 0.42 at rmax). However, the differences
are well within the object-to-object scatter (see the bottom panel Fig. 3.4).

Figure 3.4: Top: The thin lines show the minor-to-major axis ratios profiles
as a function of radius for objects with Vmax ∼ 50 km s−1. The thick lines
correspond to the median and the shadowed region is 1σ equivalent scatter for
objects in the field (left) and subhalos (right). The median for field halos is
also plotted in the right panel for comparison. Bottom: Distribution of the
axis ratios of the Vmax (left) and tidal (right) contour for the field halos (red)
and subhalos (blue) plotted in the top panels. Although the median axis ratio
(open circle) is slightly larger for subhalos the differences are well within the
scatter.

The similarity between the subhalo and field populations apparent in Fig. 3.3
and Fig. 3.4 explains the lack of appreciable trends as a function of distance d
to the center of the main Aquarius halos, shown in Fig. 3.5. The typical axis
ratios measured at the tidal as well as Vmax contours do not depend on the dis-
tance to the host center up to distances d ∼ 5rvir. However, the bottom panel
of Fig. 3.5 shows that the tidal field of the host imprints a significant radial
alignment on the subhalos, which tend to orient their major axis radially to the
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Figure 3.5: Shape and orientations of subhalos and objects in the field as a
function of distance to the main halos d in each of the Aquarius simulations.
The gray line indicates the positions of the virial radius of the main halos.

center of the host, albeit with a large scatter. The signal is stronger close to
the center of the main host halos and decreases steadily until it disappears at
d & 2rvir, where the distribution is consistent with random. Interestingly, inner
(at rmax) and tidal contours are well aligned within each object, as shown in
the bottom right panel; meaning that subhalos that venture close to the host
appear to respond nearly as solid bodies. These results are consistent with
similar analysis presented in Faltenbacher et al. (2007); Knebe et al. (2008a);
Pereira, Bryan & Gill (2008); Kuhlen, Diemand & Madau (2007).

3.4 Application to the Modeling of Local Group

Satellites

As discussed in the Introduction, the Local Group satellite galaxies are ex-
pected to inhabit dark matter subhalos comparable to those studied in the
previous section. Since the contribution of the baryons to the gravitational
potential of these systems is thought to be sub-dominant, the shape, dynamics
and orbital structure of their host dark halos may be compared in a reason-
ably direct way to those of a suitable subset of the subhalos in the Aquarius
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Parameter Median −1σ +1σ

α 0.27 0.07 0.10
r−2 (kpc) 1.21 0.42 0.58
v−2 (km s−1) 9.06 1.87 1.72
cΦ/aΦ 0.70 0.07 0.10
bΦ/aΦ 0.83 0.10 0.09
ra (kpc) 1.72 1.26 2.86
χ 1.60 0.13 0.09
lnA -2.42 0.15 0.20

Table 3.1: Best fit values for the profiles shown in Figs. 3.6 and 3.7. See text
for details.

simulations.
To select subhalos likely to host luminous satellites comparable to local

dwarfs we use the semi-analytical model of Starkenburg et al. (2012). The
semi-analytic model includes physical prescriptions for the treatment of rele-
vant processes such as radiative cooling, chemical enrichment, star formation,
supernova feedback, etc. The parameters in the model are tuned to simul-
taneously reproduce the luminosity function and spatial clustering of bright
galaxies as well as the properties of satellites in the Local Group (De Lucia &
Blaizot, 2007; De Lucia & Helmi, 2008; Li, De Lucia & Helmi, 2010).

3.4.1 The subhalo shapes of luminous satellites

Fig. 3.6 shows the axis ratios as a function of distance along the major-axis r
for our sample of subhalos. This consists of subhalos within the virial radius of
their hosts at z = 0 and that resemble the classical satellites of the Milky Way
in their luminosity, i.e., their V -band absolute magnitudes are in the range
−13.2 ≤ MV ≤ −8.6. Each curve is plotted from the convergence radius out
to the tidal contour, and the blue color scale indicates the luminosity assigned
by the semi-analytic model to the satellites.

Figure 3.6 shows that the dwarf galaxies in the model are surrounded by
subhalos that are triaxial, with axis ratios b/a and c/a typically increasing
from the inner regions to the tidal radius. The scatter from object to object is
large, but the overall trend with radius is similar for all subhalos. The median
profile, and 1σ-equivalent percentiles of the sample are given, respectively, by
the black solid line and the gray shaded area. These dark matter subhalos
have on average c/a ∼ 0.60 and b/a ∼ 0.75 at a radius of ∼ 1 kpc, and turn
more spherical close to the tidal radius, where c/a ∼ 0.8 and b/a ∼ 0.9.

The median dependence of the axis ratios with distance has a similar func-
tional form to that modeled by Vogelsberger et al. (2008) for the main Aquarius
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halos. These authors propose to use a generalized radius:

r̃ =
ra + r

ra + rE
rE, (3.4)

where r2 = x2 + y2 + z2 is the Euclidean distance, r2
E = (x/aΦ)2 + (y/bΦ)2 +

(z/cΦ)2 is the ellipsoidal radius and ra a characteristic scale. With this defi-
nition, r̃ ≈ rE for r � ra and r̃ ≈ r for r � ra. This formula uses the axis
lengths characterizing the shape of the potential, a2

Φ + b2
Φ + c2

Φ = 3, which will
in general differ from the a, b, and c of the mass density (see e.g., Hayashi,
Navarro & Springel, 2007). The potential at any point is,

Φ(x, y, z) = Φ̃(r̃), (3.5)

where Φ̃ is a spherically symmetric potential model. Here we assume a spher-
ical Einasto profile (Einasto, 1965).

We use Poisson’s equation to derive a relation between the b/a and c/a of
the density (which our method measures), and those of the potential bΦ/aΦ and
cΦ/aΦ. This relation is then used for each of our subhalos, and as a result of this
exercise, we obtain for our sample a median bΦ/aΦ = 0.83 and cΦ/aΦ = 0.70.
When these values are plugged into the derived analytic expressions for b/a
and c/a they are found to give a good representation of the median (density)
axis ratios as a function of radius, as shown by the red dashed curve in Fig.
3.6. The median and ±1σ error of the parameter fits for the density and axis
ratios obtained in this way are given in Table 3.1.

3.4.2 The subhalo kinematics of luminous satellites

Fig. 3.7 shows the radial velocity dispersion σr (top) and the orbital anisotropy
β (bottom), both as a function of distance along the major axis. As before,
individual objects are shown with thin lines color-codded according to their
V -band absolute magnitude. The median trend of the sample is indicated by
a black solid curve, 1σ-equivalent percentiles in gray shading. The quantities
are computed in ellipsoidal coordinates that follow the axis ratios of the mass
density at each radius. In practice, we calculate the component of the velocity
in the direction tangential to a given ellipsoid, σT , and the radial component σr
is derived by subtraction in quadrature of σT from the total velocity dispersion.
Both the radial velocity dispersion and anisotropy computed in this way (black
solid curves) behave in a similar way to those obtained using simply spherical
bins (black dotted lines).

The spread in σr seen in the top panel of Fig. 3.7 is due to the difference in
mass of the subhalos, which span a range m = 1.6× 108 − 5.8× 109 M�. The
declining velocity dispersion profile is expected in CDM halos and is driven
by the fall-off of the density and of the pseudo phase-space density Q = ρ/σ3

r
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Figure 3.6: Shape as a function of the distance along the major axis, r, for
the subhalos hosting luminous satellites. The dashed red lines correspond to
the prediction of the model of Vogelsberger et al. to the axis ratios using the
quoted values.

(Taylor & Navarro, 2001):
%

σ̃3
r

= Ax−χ, (3.6)

with A a normalization constant, % ≡ ρ/ρ−2, σ̃r ≡ σr/v−2 and x ≡ r/r−2,
where ρ−2, v−2 and r−2 are the characteristic density, velocity and radius for the
Einasto density profile respectively (See Appendix 3.6). We show in Fig. 3.10
of the Appendix that a power-law fit is a reasonable description of the pseudo
phase-space of subhalos just like it is for field halos. However, unlike field
halos, stripping induces some departure from the power-law behavior on the
outer regions of subhalos. Such deviations start to be significant only beyond
log10(r/r−2) > 0.6.

We fit the Q-profiles individually for each subhalo, obtaining medians
lnA = −2.42 and χ = 1.60 (see Table 3.1). These parameters, together
with the median density profile, are then used in Eq. (3.6) to derive a mean
radial velocity dispersion profile (green dashed line). As the figure shows, this
provides an accurate description of the median σr obtained directly from the
individual curves.

In the bottom panel in Fig. 3.7 we plot the ellipsoidal velocity anisotropy
β profiles. In analogy to the spherical case, this is defined as β = 1 − σ2

r/σ
2
T ,
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Figure 3.7: Radial velocity dispersion and anisotropy as a function of the
distance along the major axis, r, for the subhalos hosting luminous satellites.
The thick solid black line is the median when the velocity structure is averaged
on elliptical bins and the dotted corresponds to the spherical case. The green
line for σr is the value obtained assuming a power-law for the pseudo phase-
space density distribution. For all models we assume that the density follows an
Einasto profile with shape parameters α and scale radius r−2 given in Table 3.1.
The orange line results from computing the anisotropy using Eq. (3.7) (the
spherical Jeans equation).

where we calculate the component of the velocity tangential and radial to a
given ellipsoid as explained above. Note that with this definition, β reduces
to the usual anisotropy in the spherical limit.

The velocity anisotropy profiles of dark matter subhalos tend to decline
with radius. In the inner regions the motions are slightly radially biased (β ∼
0.2 at r ∼ 1 kpc), while the ellipsoid becomes increasingly tangential (β < 0)
at larger radii. This behavior is markedly different from the radially-biased
ellipsoids found in isolated ΛCDM halos, particularly in the outskirts (Cole &
Lacey, 1996; Taylor & Navarro, 2001; Wojtak et al., 2005; Ludlow et al., 2010).
This difference is a result of tidal forces, which preferentially remove particles
with large apocenters on radial orbits. Fig. 3.7 also shows that subhalos rarely
have a constant β profile.

Based on the similarity between the velocity anisotropy computed in ellip-
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tical and spherical bins, we derive an expression for β using the spherical Jeans
Equation, which relates the density, anisotropy and radial velocity dispersion
of a system (Binney & Tremaine, 2008). In the case of an Einasto profile:

3β(r) = −6πµ

xσ̃2
r

+ 5xα − χ, (3.7)

where σ̃r = σr/v−2 as before and µ = µ(x, α) is given by Eq. (3.12) (see
Appendix 3.6 for a more detailed derivation of this expression). The velocity
anisotropy is therefore dependent on the logarithmic slopes of the mass density
and of the pseudo phase-space density, α and χ, respectively.

The orange dashed line in the bottom panel of Fig. 3.7 shows the anisotropy
obtained from Eq. (3.7) when using the median values of these parameters
quoted in Table 3.1. It provides a reasonable fit out to r ∼ 2.5r−2. In the
inner regions, a Taylor expansion of Eq. (3.7) yields:

3β(x) ≈ −2πA2/3e2/3αx2−2χ/3 + 5xα − χ, x� 1 (3.8)

which allows to compute the asymptotic value of β close to the center from
the parameters involved in the density and velocity profiles (see Appendix
3.6). In this regime limr→0 β = −χ/3, which implies a negative anisotropy
in the center. This however, is not necessarily inconsistent with studies of
more massive, isolated objects which find β ∼ 0 down to the resolution limit
(e.g. Ludlow et al., 2011). For the typical values of α and χ found in our
simulations, Eq. (3.8) predicts β to be positive (and very close to zero) up to
r & 0.03r−2, typically r ∼ 30 pc for our sample.

Whereas the limiting behavior of the anisotropy in the inner regions is
similar for all subhalos, beyond a radius of ∼ 1 kpc large variations are seen
from object-to-object. These variations are still accounted for by Eq. (3.7)
when each β profile is fitted individually. We find that the exact shape of
the anisotropy profile depends most strongly on α, while χ determines where
the velocity ellipsoid becomes tangential at large radii. On the other hand,
variations in lnA have a very minor effect.

Although we have shown that the velocity ellipsoid in ellipsoidal coordi-
nates is not very different from its spherically averaged version, we may ponder
how to describe it in an axisymmetric sense. This is especially interesting since
we have found that the subhalos are not significantly triaxial, and their b/a
approaches unity at large radii. To this end, in Fig. 3.8 we explore the velocity
structure in the radial and vertical direction. Each object is rotated such that
the minor axis coincides with the z-direction. The velocity dispersion compo-
nents along the vertical (z) and radial (R) axes provide information on how
dynamically hot a system is in both directions. We compute this along the
two preferential axis, minor (left) and major (right), using at each radius a
sphere that contains 400 particles. The velocity dispersion σz and σR are then
computed within these volumes and displayed as a function of distance along



66 Shape of dark matter subhalos

the axes. As before, individual halos are shown in thin blue lines, the median
values with solid thick lines.

Figure 3.8: Velocity dispersion as a function of distance along the minor (left)
and major axis (right) for subhalos hosting luminous satellites. In each case
the system is rotated such that the minor axis lies along the z direction. The
cylindrical velocity dispersions σ2

z and σ2
R are estimated in spheres containing

400 particles.

The velocity dispersion profiles show a steady decline with radius, with a
trend somewhat flatter than the 3D radial velocity dispersion shown in Fig. 3.6.
As in that case, there is scatter from object-to-object likely due to the range
in subhalo mass. The anisotropy βz is defined as βz = 1 − σ2

z/σ
2
R and is

shown in the bottom panels of Fig. 3.8. Interestingly, along the minor axis
we find σz ∼ σR, in agreement with the assumptions by Hayashi & Chiba
(2012) when modeling stars in the dSph. However, this is not true for the
velocity dispersions along the major axis as shown in the right panel, where
we find positive values of βz close to the center and βz < 0 at the tidal radius.
This trend, although systematic, is quite weak, with large scatter amongst
the individual objects. It is important to realize that our measurements are
subject to significant noise as we are now restricted to consider a small region
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around a given radius (i.e. we do not average over entire ellipsoidal shells as
before and so each sphere contains fewer particles). The typical uncertainty
for the individual curves is shown by the black vertical error bar, computed as
the dispersion obtained from drawing 100 samples with replacement in each
bin.

The shapes of the subhalos are consistent with dynamical support by the
velocity ellipsoid, as shown by Fig. 3.9. The vertical axis shows the local
anisotropy δ = 1 − σ2

z/σ
2
x, where x is again the direction of the major axis

and z points along the minor axis. These quantities are calculated in a sphere
with 400 particles located at x = 1 kpc and the individual points in this figure
correspond to the different subhalos. In the axisymmetric case, the virial
theorem in tensor form (Binney, 2005) gives:

v2
0

σ2
0

= 2(1− δ)Wxx

Wzz

− 2, (3.9)

whereWij are the components of the potential-energy tensor (Binney & Tremaine,
2008). For ellipsoidal systems Wxx/Wzz is a function of the ellipticity ε =
1− c/a and is independent of the radial density profile (Roberts, 1962). v0 is
the streaming velocity along the y axis and σ0 is the velocity dispersion in the
x direction. The solid line in Fig. 9 indicates the prediction from Eq. (3.9) in
the case of a dispersion supported system with v0/σ0 = 0.

3.5 Conclusions

We have used the Aquarius simulations to study the shapes of field and satellite
dark matter halos with emphasis on the mass range expected for the hosts
of the dwarf galaxies in the Local Group. We have used an iterative method
based on the normalized inertia tensor to characterize the principal axis lengths
a ≥ b ≥ c of halos and subhalos as a function of radius. In particular, we
have explored in detail halo shapes measured in the inner regions (radius of
maximum circular velocity rmax) and in the outskirts or tidal contour.

Through a comparison of objects in common between the different resolu-
tion levels of the Aquarius simulations, we have noticed that simple number
of particles cuts do not guarantee convergence in the measured halo shapes,
especially in the inner regions. We find that instead the convergence radius
rconv (defined as the threshold κ = 7 in the ratio between the local relaxation
time and the dynamical time at the virial radius (Power et al., 2003)) provides
a good estimate of the radius where the axis ratios are robustly determined
(with an error < 8%).

We have found that the typical axis ratios of isolated halos in the Aquar-
ius simulations decrease with increasing mass, or equivalently maximum halo
circular velocity Vmax, i.e. low mass objects tend to be more spherical than
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Figure 3.9: Relation between the anisotropy δ = 1 − σ2
z/σ

2
x and the elliptical

of the halos ε = 1 − c/a measured at a distance x = 1 kpc along the major
axis. The solid black line shows the prediction of the virial tensor theorem
when applied to axysimmetric systems supported by random motion (Binney,
2005).

Milky Way-like objects. These trends are well approximated by a relation
between the axis ratio measured at the tidal radius c/a|rtidal

and Vmax, i.e.
c/a|rtidal

∼ −0.021 log Vmax, while this relation is slightly steeper if the axis
ratio is measured at rmax contour in which case c/a|rmax ∼ −0.032 log Vmax.
The differences in the shapes of field vs satellite halos are small and within the
intrinsic scatter of the samples. Nonetheless, at a fixed Vmax, subhalos tend to
have larger axis ratios than isolated objects in the field.

The similarity between subhalos and field objects is also apparent in the
lack of significant trends in the axis ratios with distance to the main host
halo, d. We find, however, that the alignment of the ellipsoids varies with d:
dark matter halos at close distances from the host center tend to be oriented
preferentially with their major axis pointing radially. The signal disappears
only for d & 2.5 rvir, where the orientations are consistent with random.

We have also focused on the properties of subhalos likely to host analogs
of the classical satellites of the Milky Way (−13.2 ≤ MV ≤ −8.6), according
to the semianalytic model of galaxy formation run on the Aquarius suite by
Starkenburg et al. (2012). Our analysis indicates that these galaxies are hosted
by mildly triaxial dark matter objects with minor-to-major axis ratios c/a ≈
0.60 and intermediate-to-major b/a ≈ 0.75 in the first kiloparsec with a clear
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trend towards becoming axisymmetric in the outskirts. Their internal orbital
structure shows evidence of being affected by tidal forces from their hosts (i.e.
the main Aquarius halos), since the velocity anisotropy becomes tangential
with radius, in clear contrast to what is found for isolated systems. We have
also found that this orbital structure may be modeled in the axisymmetric
context, where the velocity anisotropy βz ∼ 0 along the minor axis, and shows
a very mild decline with distance along the major axis. These results may be
used to motivate more realistic models of the subhalos hosting satellite galaxies
like those observed around the Milky Way.

Acknowledgements

We thank Else Starkenburg for access to the semi-analytical catalog of the
Aquarius simulations. AH gratefully acknowledges financial support from
the European Research Council under ERC-Starting Grant GALACTICA-
240271. The authors thank the hospitality of the Kavli Institute for Theo-
retical Physics, Santa Barbara during the program “First Galaxies and Faint
Dwarfs: Clues to the Small Scale Structure of Cold Dark Matter”, where part
of this work was completed under the support of the National Science Foun-
dation Grant No. NSF PHY11-25915.

3.6 Appendix: Einasto Profiles and The spher-

ical Jeans equation

Following the method of Vera-Ciro et al. (2012) we fit a Einasto profile to
the circular velocity profile of each individual subhalo of our sample. For each
object we take 20 bins equally spaced in logarithmic space between rconv < r <
0.9rtidal. We compute the cumulative circular velocity profile and fit an Einasto
model by minimizing the merit function E =

∑Nbins

i=1 (ln v2
c (ri) − ln v2

c,i)
2/Nbins

against the free parameters r−2, ρ−2 and α. Here, vc,i is the circular velocity
corresponding to an Einasto profile with a scale radius r−2 (the radius at
which the density profile has a slope −2), a characteristic density at r−2 equal
to ρ−2 and a shape parameter that controls the overall slope of the profile, α.
We deliberately chose the circular velocity profile over the more widely used
density profile which is more sensitive to shot noise in each bin (see Vera-Ciro
et al., 2012, for more details).

The density profile can be written as,

ρ(r) = ρ−2%(r/r−2), (3.10)

where

ln%(x) = − 2

α
(xα − 1). (3.11)
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% is therefore a dimensionless function of the dimensionless variable x = r/r−2.
In this spirit, it is possible to define a set of scaling factors in which we can ex-
press the dynamics of the system, namely, a characteristic mass m−2 ≡ r3

−2ρ−2

and characteristic velocity v2
−2 ≡ Gr2

−2ρ−2 (note that v−2 is not vcirc(r−2)). The
enclosed mass within a radius r is therefore m(r) = 4πm−2µ(r/r−2), where

µ(x) =

∫ x

0

dx x2%(x)

=
1

α
exp

(
3 lnα + 2− ln 8

α

)
γ

(
3

α
,
2xα

α

)
, (3.12)

with γ the lower incomplete gamma function. In a similar fashion we can define
a dimensionless version of the radial velocity dispersion σ̃r(x) ≡ σr(r−2x)/v−2.

Figure 3.10: Pseudo-phase space density profileQ/Q−2 = %/σ̃3
r for the subhalos

hosting luminous dwarfs in our sample. The black line shows the mean profile
of all subhalos and the red curve indicates the best power law fit Q ∼ r−1.54.

It has been previously reported in the literature that the pseudo phase-
space density profile of isolated dark matter halos can be well modeled by a
single power law Q ≡ ρ/σ2

r ∼ r−χ, χ > 0 (Taylor & Navarro, 2001; Dehnen &
McLaughlin, 2005; Navarro et al., 2010; Ludlow et al., 2011). Fig. 3.10 shows
Q measured for our sample of subhalos hosting luminous satellites. We have
found that the slope χ is slightly shallower than for objects in the field (χ ∼ 1.6
versus χ ∼ 1.8 for isolated halos). The best fit values of the parameters, and
their variance, are given in Table 3.1.



3.6. Appendix: Einasto Profiles and The spherical Jeans equation 71

Notice that the pseudo-phase-space profiles start to deviate from a power-
law in the outer regions, likely induced by ongoing tidal stripping. This typi-
cally occurs for log r/r−2 ≥ 0.6, which is roughly the same scale at which our
fit for the radial velocity dispersion σr deviates from the mean subhalo trends
shown in Fig. 3.7.

Using the dimensionless quantities introduced before, we can now write the
spherical Jeans equation as:

d

dx
(%σ̃2

r) + 2
β

x
(%σ̃2

r) = −4π%µ

x2

⇒ d ln %

d lnx
+ 2

d ln σ̃r
d lnx

+ 2β = −4πµ

xσ̃2
r

. (3.13)

We can use Eq. (3.11) to further reduce this expression:

3β(x) = −6πµ

xσ̃2
r

+ 5xα − χ. (3.14)

The limiting value of this expression at small radii can be obtained from a
Taylor expansion around zero. For x� 1 we may use that limx→0 γ(s, x)/xs =
1/s (Abramowitz & Stegun, 1972). Finally

ln %(x) ≈ 2

α
,

µ(x) ≈ 1

3
x3e2/α,

σ̃r(x) ≈ A−1/3e2/3αxχ/3, x� 1,

which leads to,

3β(x) ≈ −2πA2/3e2/3αx2(1−χ/3) + 5xα − χ, x� 1. (3.15)
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Abstract

W
e present a new analysis of the Aquarius simulations done in com-
bination with a semi-analytic galaxy formation model. Our goal
is to establish whether the subhalos present in ΛCDM simulations
of Milky Way-like systems could host the dwarf spheroidal (dSph)

satellites of our Galaxy. Our analysis shows that, contrary to what has been
assumed in most previous work, the mass profiles of subhalos are generally not
well fit by NFW models but that Einasto profiles are preferred. We find that
for shape parameters α = 0.2 − 0.5 and vmax = 10 − 30 km/s there is very
good correspondence with the observational constraints obtained for the nine
brightest dSph of the Milky Way. However, to explain the internal dynamics
of these systems as well as the number of objects of a given circular velocity
the total mass of the Milky Way should be ∼ 8 × 1011 M�, a value that is
in agreement with many recent determinations, and at the low mass end of
the range explored by the Aquarius simulations. Our simulations show impor-
tant scatter in the number of bright satellites, even when the Aquarius Milky
Way-like hosts are scaled to a common mass, and we find no evidence for a
missing population of massive subhalos in the Galaxy. This conclusion is also
supported when we examine the dynamics of the satellites of M31.

Cover: Aq-A-2 and its most massive satellites (vmax > 30 km s−1)



4.1. Introduction 75

4.1 Introduction

Despite the great success of the ΛCDM concordance cosmological model on
large scales, on the scales of galaxies and below the theory is often defied.
Some of the issues on small scales have been consistently explained within
the theory itself with the inclusion of physical processes that mostly affect
baryons. This is the case for the “missing satellite problem” (Klypin et al.,
1999b; Moore et al., 1999), namely the overabundance of satellites in dark
matter only simulations compared to the observed number of luminous objects
around the Milky Way and other nearby galaxies. It is now widely accepted
that the shallow potential wells of small dark matter halos must be strongly
affected by reionization and feedback, making star formation highly inefficient
in such systems (Couchman & Rees, 1986; Efstathiou, 1992; Kauffmann, White
& Guiderdoni, 1993; Thoul & Weinberg, 1996; Bullock, Kravtsov & Weinberg,
2000; Somerville, 2002; Benson et al., 2002; Li et al., 2009; Okamoto & Frenk,
2009; Macciò et al., 2010; Stringer, Cole & Frenk, 2010; Font et al., 2011; Guo
et al., 2011).

Recently, Boylan-Kolchin, Bullock & Kaplinghat (2011) have argued that
the dark matter satellites (subhalos hereafter) predicted by ΛCDM are persis-
tently too dense to host the observed population of dwarf spheroidal galaxies
(dSph) in the Milky Way if these are embedded in halos following Navarro,
Frenk & White (1996, 1997, hereafter NFW) profiles. More recently, Boylan-
Kolchin, Bullock & Kaplinghat (2012b) presented an even stronger argument
(free of the assumption of a specific density profile) and argued that the Milky
Way is missing a population of massive satellites. A few studies have been
published in the literature that address this conundrum. Lovell et al. (2011a)
showed that in warm dark matter cosmological simulations of Milky Way-like
halos, the circular velocity curves of subhalos are consistent with the con-
straints derived by Wolf et al. (2010) for the Milky Way satellites (see also
Walker et al., 2009). Following a similar line, Vogelsberger, Zavala & Loeb
(2012) carried out simulations of self-interacting dark matter and showed that
the most massive subhalos develop cores, what could partially solve the prob-
lem. On the other hand, Di Cintio et al. (2011) pointed out that by including
baryons in the cold dark-matter context the problem becomes more severe
probably due to the additional adiabatic contraction experienced by the dark
matter subhalos hosting gas.

There are two assumptions sometimes implicit in the models which may
lead to biased answers if overlooked. These concern (i) the actual mass of the
Milky Way1 and, (ii) the density profiles followed by dark matter satellites

1In fact, shortly after we submitted our manuscript for publication, Wang et al. (2012)
analysed the Millennium Simulation series and used the invariance of the scaled subhalo
velocity function to argue that the absence of massive subhaloes might indicate that the
MW is less massive than commonly assumed.
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assembled in ΛCDM. The first issue has been addressed with a plethora of
methods leading to measures that, usually, are consistent with a total mass of
0.7 − 2.0 × 1012 M� (Kochanek, 1996; Wilkinson & Evans, 1999; Sakamoto,
Chiba & Beers, 2003; Battaglia et al., 2005, 2006; Smith et al., 2007; Li &
White, 2008; Xue et al., 2008; Kallivayalil et al., 2009; Guo et al., 2010;
Watkins, Evans & An, 2010; Gnedin et al., 2010; Busha et al., 2011a). The
measurements suffer from uncertainties in the modeling as well as limitations
in the kinematics of the tracers used. Therefore comparisons to simulations of
Milky Way dark matter halos should take into account this uncertainty.

On the second issue, namely the density profile of subhalos, significant
progress has been made, especially in recent years. Already Stoehr et al.
(2002) found that the circular velocity curves of subhalos in cosmological N -
body simulations are more narrowly peaked (in a log-log plot) than the widely
used NFW models and explored how consistent these were with the internal
kinematics of the Milky Way satellites. The outstanding numerical resolution
achieved in the latest of such cosmological N -body simulations has enabled a
closer examination of the shape of the density profile down to the innermost
few parsecs of dark matter halos (Springel et al., 2008; Madau, Diemand &
Kuhlen, 2008). Such studies have shown that Einasto models provide better
matches to the density profiles found in the simulations than the NFW form
(Navarro et al., 2010; Reed, Koushiappas & Gao, 2011; Di Cintio et al., 2012),
confirming previous results on the subject (Navarro et al., 2004; Merritt et al.,
2005, 2006; Graham et al., 2006; Prada et al., 2006; Gao et al., 2008).

In this Chapter, we will reconsider both these issues and establish how much
they affect the conclusions drawn by Boylan-Kolchin, Bullock & Kaplinghat
(2011, 2012b). Like these authors we use the Aquarius halos, but we sup-
plement the dynamical information provided by the simulations with a semi-
analytic galaxy formation model (Starkenburg et al., 2012). One of the advan-
tages of this approach is that it enables us to directly compare objects in the
simulation with those observed. We introduce some relevant features of the
simulations in Section 4.2, while in Section 4.3 we present in detail the results
of our analysis. We draw our conclusions in Section 4.4.

4.2 Numerical Preliminaries

We use the simulations of the Aquarius project, six Milky Way-sized dark mat-
ter halos assembled in a background cosmology consistent with the constraints
yielded by WMAP-1. Each halo (labeled from A to F) was simulated at dif-
ferent resolutions, starting from a particle mass mp = 3.143× 106 M� for the
lowest and mp = 1.712×103 M� for the highest resolution. In what follows we
focus on the level 2 which is the highest level at which all the Aquarius halos
were simulated (For more details see Springel et al., 2008).

Subhalos in these simulations are identified as bound overdensities with
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Figure 4.1: Spherically averaged circular velocity profiles v2
c (r) = Gm(r)/r

for the subhalos that are predicted to host stars by our semi-analytic model.
Velocities have been scaled to v2

−2 ≡ 4πGρ−2r
2
−2. As already reported in Stoehr

et al. (2002) the velocity profiles of subhalos tend to be more narrowly peaked
than in the NFW form. The sample of subhalos has been grouped according to
the best fit value of α, and plotted with different colors. The number of objects
in each α-bin is 154. An Einasto profile with the average value of α for each bin
is overplotted, while the median vmax in each α-bin is 13.6, 20.3 and 27 km s−1

from left to right, and the vmax ranges given by the 68% percentiles for each
panel are (10, 26.2), (15.9, 26.2) and (20.5, 44.8) km s−1, respectively. The
residuals from the best-Einasto (NFW) fits are shown in the middle (bottom)
panel, and in general are consistent with zero for the Einasto profile and exhibit
systematic deviations from zero for the NFW case. In the column 〈α〉 = 0.24
both models yield similar results, which is naturally expected since the NFW
equivalent is reached with α = 0.22. The systematic change of rconv/r−2 with
α is a consequence of setting the convergence parameter κ to a fixed value.

subfind (Springel et al., 2001). For each subhalo we compute the circular
velocity profile as v2

c (r) = Gm(r)/r, wherem(r) is the mass enclosed within the
spherical radius r. The maximum circular velocity vmax is defined as the peak of
the circular velocity curve, and is reached at position rmax, i.e. vc(rmax) = vmax.

Numerical convergence is established by looking at the convergence radius
as defined by Power et al. (2003). Navarro et al. (2010) showed that the roots
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of the equation

κ =

√
200

8

n(r)

lnn(r)

[
ρ(r)

ρc

]−1/2

, (4.1)

correspond to different degrees of convergence depending on the value of the
parameter κ. In this equation n(r) is the number of particles enclosed within
the radius r and ρ(r)/ρc is the spherical density at this position in units of the
critical value. Comparing the various resolutions of the Aquarius simulations,
Navarro et al. (2010) showed that κ = (7.0, 1.0, 0.4) correspond to deviations
in the circular velocity profile of about (2.5%, 10%, 15%) respectively. Here,
we use rconv(κ = 0.4) for each subhalo. We also define the tidal radius rtidal

of a subhalo as that which encompasses 95% of the bound particles. The
results from our definition show good agreement with the output from more
sophisticated expressions for the tidal radius (Tormen, Diaferio & Syer, 1998).

To make more direct comparisons to the satellite population of the Milky
Way, we have also run a semi-analytic model of galaxy formation for all the
Aquarius halos. This model is based on that originally developed by Kauff-
mann et al. (1999); Springel et al. (2001); De Lucia, Kauffmann & White
(2004); Croton et al. (2006); De Lucia & Blaizot (2007) and later modified to
describe more accurately processes on the scales of dwarf galaxies (Li, De Lucia
& Helmi, 2010). The implementation used here also includes recipes for stel-
lar stripping and tidal disruption. The resulting satellite luminosity function
agrees well with that of the Milky Way as reported by Koposov et al. (2008)
(see Section 4.3.3). Also the internal properties of the satellites, such as scaling
relations, metallicities and star formation histories are in good agreement with
those observed (for more details see Starkenburg et al., 2012).

4.3 Results

4.3.1 About the density profiles

It is has been already reported in the literature that the mass profiles of ΛCDM
halos deviate from the NFW functional form (Stoehr et al., 2002; Navarro,
Abadi & Steinmetz, 2004; Merritt et al., 2005, 2006; Graham et al., 2006; Prada
et al., 2006; Gao et al., 2008). Using the Aquarius simulations, Navarro et al.
(2010) showed that a parametric model with a density profile with logarithmic
slope described by a power-law (Einasto profile) provides better fits for objects
of virial mass ∼ 1012 M�. The power index α adds another free parameter,
therefore the fits are expected to improve. Nevertheless, it was shown by
Springel et al. (2008) that even after fixing α = 0.16 the Einasto profile still
yields much better results. The nature of the shape parameter α has been
recently investigated for isolated objects with masses in excess of 5× 1012 M�
and the results suggest a deep connection with the pseudo-phase-space density
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distribution (Ludlow et al., 2011). For subhalos Springel et al. (2008) also
showed that the mass profiles follow much closer the Einasto than the NFW
model. For both models, the mass enclosed within the spherical radius r can
be written as

m(r) = 4πr3
−2ρ−2g(r/r−2), (4.2a)

where r−2 is the radius at which the logarithmic slope of the density profile
reaches the isothermal value and ρ−2 is the density at that position. The
details of each model are inherited by the function g, which takes the form

gNFW(x) = 4 ln(1 + x)− 4x

1 + x
, (4.2b)

for the NFW profile, and

gEinasto(x) =
1

α
exp

(
3 lnα + 2− ln 8

α

)
γ

(
3

α
,
2xα

α

)
, (4.2c)

for the Einasto model. Here γ(a, x) is the lower incomplete gamma function.
Although intrinsically different, these profiles resemble each other for α ≈ 0.22
in 0.01 ≤ r/r−2 ≤ 100. That means that objects that have a shape parameter
close to this value are well fitted by either model. Fig. 4.1 shows the spherically
averaged circular velocity profiles v2

c = Gm(r)/r for all the subhalos that are
predicted to host stars according to our semi-analytical model. In total we
calculate 20 bins in the region rconv ≤ r ≤ 0.9 rtidal, we use this upper cutoff to
ensure that our fits are not driven by tidal effects. All objects have at least 200
particles, but generally significantly more than 1000. For each of the plotted
subhalos we calculate the merit function

E =
1

Nbins

Nbins∑
i=1

(ln v2
c (ri)− ln v2

c,i)
2, (4.3)

and minimize it against the free parameters of each model. We have deliber-
ately chosen to use the cumulative mass instead of the differential profile since
it is less sensitive to the shot-noise of each bin, as a consequence we can go to
low number of particles, whenever the restriction n(0.9 rtidal)− n(rconv) ≥ 200
is met.

Fig. 4.1 shows the results of our fitting procedure. Here the subhalos
have been distributed in bins with equal number of objects (namely 154), and
according to their best fit α value. The three different columns show the
subhalos that fall into each α-bin, the average α within each bin is quoted in
the top-left panel. Each curve in the top row has been conveniently normalized
to a characteristic velocity v2

−2 ≡ 4πGρ−2r
2
−2 and the characteristic radius r−2.

We have also overplotted the predicted Einasto profiles for the average α. The
middle panels show the residuals of the best-Einasto fit for each subhalo, the
thick line represent the median and 1σ equivalent dispersion. The residuals are
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consistent with zero indicating that the Einasto profile fits better than NFW
(whose residuals are shown in the bottom panel), especially for large α values.
Interestingly, for 〈α〉 = 0.24 the NFW model provides a good and comparable
fit to the Einasto model (see bottom-right panel). This is actually expected,
since α = 0.22 represents a model that nearly follows the NFW profile.

On average lower mass subhalos tend to have larger values of α. However
this correlation has a large scatter, for instance the maximum circular velocity
for objects in the central panel of Fig. 4.1, i.e. those with 0.3 < α < 0.5 is in
the range 10.5 < vmax/km s−1 < 48.2.

4.3.2 MW’s dSphs constraints revisited

Wolf et al. (2010) have shown that the mass enclosed within the half light radius
r1/2 of a dynamical system can be robustly determined as m1/2 = 3G−1〈σ2

v〉r1/2,
without (precise) knowledge of its velocity anisotropy. Here 〈σ2

v〉 is the light-
weighted average line-of-sight velocity dispersion of the system. In the case of
dSph galaxies, this effectively implies a measurement of the circular velocity at
r1/2, which therefore constrains the possible family of circular velocity curves
for a given dark matter density profile. Following Boylan-Kolchin, Bullock
& Kaplinghat (2011) we plot in Fig. 4.2 the 2σ constraints derived in this
way for the 9 most luminous dSphs satellites of the MW (i.e. excluding the
Sagittarius dwarf galaxy and the Small and Large Magellanic Clouds). Like
Boylan-Kolchin, Bullock & Kaplinghat (2011) here we assume these systems
are embedded in NFW profiles, which leads to the gray band shown in the
figure. This band is also nearly consistent with the masses enclosed within 300
pc as reported by (Strigari et al., 2008) 2.5×106 ≤ m(300 pc)/M� ≤ 3.0×107.

The advantage of using this plot is that one can directly compare against
the results extracted from ΛCDM simulations. The filled circles in Fig. 4.2
show the distribution of (rmax, vmax) measured directly from our simulations for
the satellites hosting stars. The colors indicate the predicted luminosities and
the sizes correspond to the bound mass fraction at present day, i.e. fbound =
m(0)/m(zinfall), where zinfall is the lowest redshift at which the progenitor of a
given subhalo was not associated to one of the main Aquarius halos. Here, the
values (rmax, vmax) have been corrected for softening length effects following the
expressions given by Zavala, Springel & Boylan-Kolchin (2010). As highlighted
in the Introduction, there are important differences in the location of the points
from the simulations and those derived for the dSph satellites of the Milky Way,
which may lead to the conclusion that there is a significant problem with our
currently preferred cosmological model.

However, this comparison may be need to be revisited since we demon-
strated in the previous section that an NFW profile is not expected to describe
well the dark matter halos of satellites in ΛCDM. Therefore, we have computed
the family of (rmax, vmax) values that are consistent with the measurement of
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vc(r1/2) for the dSph of the Milky Way, but now we have considered Einasto
profiles. The 2σ constraints are shown in Fig. 4.2. Given the freedom we
have in choosing the extra parameter α, we have plotted 3 different bands
corresponding to α = (0.22, 0.30, 0.50). The α = 0.22 (solid lines) is consis-
tent with the NFW predictions, as expected. For values of α . 0.5 (dashed
line) the constraints from observations actually overlap with those found in
the simulations. This range of values of α lies well within the range observed
in Fig. 4.1, since ∼ 2/3 of our sample has α < 0.5.

Figure 4.2: Constraints for the MW’s dwarf spheroidals using NFW (gray
band) and Einasto (blue curves) profiles. Points are the results from the six
Aquarius halos, colored according to their predicted luminosity and sized using
the fraction of mass retained after infall. The cyan point at vmax ∼ 50 km s−1

represents a subhalo that underwent a merger with another substructure after
infall, therefore increasing its mass. The black dots correspond to isolated
halos in the simulations.

From Fig. 4.2 we note that there is a correlation between the value of
α and fbound i.e. the amount of stripping a subhalo has experienced. Very
heavily stripped objects require, on average, higher α, and deviate the most
from NFW profiles. The black dots in this figure correspond to the location
of isolated dark matter halos in the same vmax range as the satellites. This
confirms that such isolated dark matter halos are well-fit by NFW profiles,
and that tidal stripping is acting on the subhalos to change the shape of their
circular velocity profile to the Einasto form (see also Hayashi et al., 2003).

The mismatch between the observations (with the assumption of NFW,
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Boylan-Kolchin, Bullock & Kaplinghat, 2011) and the simulations is only
partly alleviated with the use of an Einasto profile as Fig. 4.2 shows. The Milky
Way does not have many very luminous dwarf galaxy satellites. Brighter than
Fornax (MV ∼ −13.2), only the Sagittarius dwarf and the Magellanic Clouds
are known, and none is included in Fig. 4.2. According to our semi-analytic
model such luminous objects would populate the upper-right of this plot, i.e.
vmax & 40 km/s and rmax & 2.5 kpc. Therefore, in this region of the diagram,
the mismatch between the observations and the simulations has to be entirely
attributed to the absence of other bright dSph in the Milky Way, which is
the point originally raised by Boylan-Kolchin, Bullock & Kaplinghat (2011).
In other words, the lack of objects brighter (or more massive) than Fornax
around the Milky Way cannot be explained away through a change in the den-
sity profile of the dark matter subhalos in the context of the ΛCDM model,
unless these have been very heavily stripped. However, such massive subhalos
are typically accreted late, and hence have not suffered significant amounts of
stripping. It is the region with vmax ∼ 20−40 km/s, where we expect to find the
subhalos hosting most of the classical dSph according to this plot, where the
difference between assuming an NFW or an Einasto profile needs to be taken
into account to bring the simulations in agreement with the observations.

4.3.3 Effects of the host halo mass

Springel et al. (2008) have shown that the mass function of dark matter ha-
los is independent of mass, i.e. that it is self-similar. This implies that the
number of subhalos of a given mass scales directly with the mass of the host
(although Gao et al., 2012, suggest that the slope is slightly larger for 1015 M�
objects). Therefore, we can expect that, down to a certain scale, brighter or
more massive central galaxies will host a larger number of satellites. This is
indeed shown in the top panel Fig. 4.3, where we have plotted the luminosity
function of all Aquarius halos. It is clear from this figure that this is the case,
since the three heavier of the Aquarius halos Aq-A-2, Aq-C-2 and Aq-D-2 have
57, 62 and 67 satellites respectively, while the lightest, Aq-B-2 has only 36
satellites with MV ≤ −5, and hence has the shallowest luminosity function in
the faint end. It is possible to show that a doubling of the mass of the host
halo roughly leads to an increase by a factor of ∼ 2 in the number of satellites
brighter than MV = −5 (Starkenburg et al., 2012).

We thus explore the effect of host halo mass on the properties of our sim-
ulated satellites, by re-scaling all halos to a common value following Helmi,
White & Springel (2003). Because of the scale-free nature of gravity, we may
assume that if a halo of mass MAq is scaled to have a mass MMW then the
subhalos’s masses m should be scaled as

m̃ = m
MMW

MAq

≡ µm. (4.4a)
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Figure 4.3: Luminosity function for the original Aquarius simulations (top)
and once they have scaled to the mass of Aq-B-2 (bottom). For reference we
have added the luminosity function derived by Koposov et al. (2008) for the
Milky Way. This takes into account incompleteness issues for satellites with
MV > −11 and, for brighter objects it considers the average for the Milky Way
and M31. Although in the scaled version the simulations follow much more
closely the observations, some differences remain in the number of satellites of
a given luminosity.

Naturally the distances will become

r̃ = µ1/3r, (4.4b)

while the circular velocity profiles

ṽc =

(
Gm̃

r̃

)1/2

= µ1/3vc. (4.4c)

To determine the factor µ ≡ MMW/MAq, we need to specify MMW. As dis-
cussed in the Introduction, the value of the total mass of the Milky Way is
quite uncertain. However, motivated by the remarkable match between the
luminosity function of Aq-B-2 and that of the Milky Way (Koposov et al.,
2008), we set MMW = Mvir(Aq-B-2) = 8.2× 1011M�

2. This value is consistent

2In this Chapter we denote Mvir = M200, i.e. the the mass enclosed in a sphere with
mean density 200 times the critical value.
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with many recent studies using different techniques (e.g. Battaglia et al., 2005,
2006; Smith et al., 2007; Xue et al., 2008). This implies that the value of µ
ranges from unity to 2.2 at most, which implies that distances and velocities
in the scaled simulations will be at most decreased by a factor of 1.3.

We run our semi-analytic galaxy formation model now for the re-scaled
Aquarius simulations. The resulting luminosity function is shown in the bot-
tom panel of Fig. 4.3, where the new predicted magnitudes are denoted by
M̃V . It is evident from this figure that each halo now follows much more closely
the Milky Way’s luminosity function. It is important to note that there is still
some halo-to-halo dispersion, which can be attributed to the stochastic nature
of the mass assembly of each object. That is, not all the galaxies with the
same mass are expected to have the same number of satellites with the same
luminosity, although some form of statistical equivalence should be present.

We now study more closely the circular velocity profiles of the subhalos
hosting satellites, since previous works have highlighted a discrepancy between
the observations and the simulations (Boylan-Kolchin, Bullock & Kaplinghat,
2011; Lovell et al., 2011a). Fig. 4.4 shows the scaled circular velocity profiles for
all the subhalos hosting satellites with luminosities in the quoted range. As in
previous sections, we have also included the estimates for the 9 most luminous
dSphs of the Milky Way following Wolf et al. (2010). The first conclusion is
that our semi-analytic model places (satellite) galaxies of a given luminosity
in the right mass (sub)halos, since the amplitude of the rotation curves in all
cases are consistent with those observed. Secondly, the number of objects per
luminosity bin is in good agreement with the number observed, as established
in Fig. 4.3. For example, in the most luminous bin (top panel) the median
number of bright satellites per halo is 3, while for intermediate luminosities
it is 4, and for the faintest considered here, it is 4. We emphasize however
that the range within a given luminosity bin is quite broad. For example
for the brightest bin, the scaled Aq-A-2 has just 1 satellite, while the scaled
Aq-D-2 has 7. Such large variations are not unexpected, but stresses that
strong conclusions cannot be drawn when the number of objects is so small as
in the case of the bright end of the luminosity function.

The galaxies shown in the fainter two bins agree quite well with the predic-
tions of our models. There is no systematic mismatch, with the dSph circular
velocity measurements at the half-light radius lying close to the median ve-
locity profile of the simulated satellites. An apparent discrepancy is present
in the most luminous bin −13.2 ≤ M̃V ≤ −11.9 in the sense that there is a
larger number of subhalos with circular velocities above the measured values
for Fnx and Leo I than there is below. Nevertheless as discussed above, this
comparison is limited by statistics and affected by stochastic aspects in the
luminosity function.

We quantify this by comparing the observed value of the circular velocity at
r1/2 for each dSph, with the probability distribution function of vc calculated at
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Figure 4.4: Circular velocity profiles for scaled subhalos in three different
luminosity bins, following the absolute magnitudes of the nine classical dSph
of the Milky Way. The subhalos are colored according to the host halo they
are associated with. This figure shows that the number of satellites per bin, as
well as the velocities profiles are consistent with the measurements obtained
for the dSph.
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dSph Nσ
away

Observed
vc(r1/2)

Median
vc(r1/2)

med(vc)
−1σ

med(vc)
+1σ

Fnx −0.72 18.3 25.4 6.0 32.0
LeoI −0.73 15.7 19.4 8.2 24.5
Scl −0.47 16.1 17.6 12.8 20.8
LeoII −1.03 11.6 14.2 11.9 16.8
Sex −0.22 12.1 16.4 4.4 25.3
Car −0.40 11.1 13.6 6.6 20.0
Umi +0.62 20.2 16.2 5.8 22.4
CVnI −0.23 12.6 16.3 5.1 23.0
Dra +1.03 17.7 13.6 6.7 17.6

Table 4.1: Statistical comparison of the 9 most luminous classical dSphs with
the simulated velocity profiles in Fig. 4.4.

the same radius using all the subhalos that lie in the corresponding luminosity
bin. We compute the median vc and two percentiles of the distribution, namely
a lower (15.9%) and an upper (84.1%) value, which would correspond to ±1σ
in the case of a Gaussian. The results of this experiment are shown in Table 4.1
for the different satellites. Note that here we have translated the probability
into an “equivalent” Nσ away from the median. The table shows that all
satellites are consistent with being drawn from the population of subhalos
hosting galaxies found in our simulations.

Thus far we have focused on the nine classical dSph, and have excluded
from the analysis the Sagittarius dwarf and the Magellanic Clouds. One of the
questions originally posed by Boylan-Kolchin, Bullock & Kaplinghat (2012b)
is that there may be a hidden population of very massive subhalos in the Milky
Way, since the circular velocities of the classical dwarfs are lower than those
found for the nine most massive (at infall) subhalos in any of the Aquarius
simulations. So far we have shown that our model predicts the satellites of a
given luminosity to be hosted in subhalos of the right mass, when comparing to
the classical dSph. However we also need to explore what happens for systems
brighter than Fnx, and whether we indeed expect a missing population from
our models. As expected, the scaled Aquarius halos show a diverse number of
systems with M̃V < −14, ranging from 2 for Aq-C-2 to 5 for Aq-A-2. A simple
comparison to the Milky Way satellite system would suggest that we cannot
argue that there is a population of massive satellites that is missing.

This conclusion is also reached when considering vmax instead of luminosity.
Although in general the most luminous objects are hosted by the most massive
subhalos, for vmax < 40 km/s and M̃V > −14 there is significant scatter, and
objects as bright as Fnx are hosted in subhalos with vmax ∼ 5−35 km/s as the
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Figure 4.5: Circular velocities for the subhalos present in halo Aq-C-2 as-
sociated to satellites with luminosities MV ≤ −12. The symbols represent
observations of the satellites of M31 in the same luminosity range. Open
symbols represent the estimated dark matter contribution to vc(r) when the
decomposition is available (see text for details).

top panel of Fig. 4.4 shows. On the other hand, objects brighter than Fnx are
generally hosted by subhalos with vmax > 40 km/s. We find a median number
of such subhalos of 2 within 280 kpc from the center for the scaled-down main
Aquarius halos, with 3 for Aq-A-2 and none for Aq-C-2.

As suggested by multiple authors, the dark matter mass of M31 is almost
twice that of the Milky Way (e.g. Li & White, 2008; Kallivayalil et al., 2009;
Guo et al., 2010). This would imply that M31 should host more, and also
brighter, satellites than the Milky Way itself. This indeed appears to be the
case, as M31 has 8 satellites within 280 kpc that are brighter than Leo I
(MV = −11.9) compared to 2 (or 5 when Sgr and the Magellanic Clouds are
included) for the Milky Way.

Aquarius halo Aq-C-2 has Mvir = 1.77 × 1012 M� which is ∼ 2.2 times
larger than our candidate for the Milky Way, making this object a good match
for M31. In Figure 4.5 we show the velocity profiles of all the nine satellites
in Aq-C-2 with MV ≤ −12. We have also included measurements for M31’s
satellites with luminosities in that range. It is important to bear in mind that
these measurements have been derived using a variety of methods that range
from Hi rotation curves for IC10 (Wilcots & Miller, 1998) and M33 (Corbelli,
2003), to 3 integral dynamical modelling for NGC147, NGC185 and NGC2005
De Rijcke et al. (2006). For the dSph AndII and AndVII the method presented
by Wolf et al. is used to estimate vc(r1/2) (Kalirai et al., 2010), while for M32
the mass is derived through Jeans modelling (Magorrian & Ballantyne, 2001).
Many of these bright dwarf galaxies are not as dark matter dominated within
the region populated by the stars as the dSph, and hence a direct comparison
to the circular velocity of the subhalos is not quite correct. For example, for
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NGC147, NGC185 and NGC2005 the dark matter content is estimated to be
50%, 40% and 40%, respectively (De Rijcke et al., 2006). The open symbols
in Fig. 4.5 correspond thus to the dark matter contribution to the circular
velocity as estimated by these authors, while the solid points represent the
total enclosed mass at the given radius. Clearly for M32, a very compact
dwarf elliptical, the shown circular velocity is also an upper limit for the dark
matter contribution.

This comparison shows that the velocity profiles for our most luminous
satellites in Aq-C-2 are very consistent with the observations of the dwarfs in
M31 over a similar luminosity range. We therefore must conclude there is no
evidence of a missing population of very massive of dark satellites.

4.4 Discussion and Conclusions

We have used the state of the art cosmological N -body simulations of Milky
Way-like dark matter halos of the Aquarius project, supplemented with a semi-
analytic galaxy formation model, to study the dynamical properties of the
satellite population in the Local Group.

We have found that the mass profiles of the subhalos associated to bright
satellites according to our model deviate from the standard NFW form (see
also Stoehr et al., 2002), and that Einasto profiles provide much better fits.
The shape parameter α exhibits a correlation with the amount of mass stripped
since the time of accretion, indicating that tidal effects may be responsible for
the changes in the profiles of dark matter halos once they become satellites
(Hayashi et al., 2003).

The comparison of our models to current measurements of the mass en-
closed within the half mass radius for the classical dwarf spheroidals suggests
that they are embedded in dark matter halos of vmax ∼ 10 − 30 km/s with
α ∼ 0.2− 0.5. In principle, this prediction for the values of the shape param-
eter α could be tested observationally. However this requires very extensive
sampling of the kinematics of stars near the center of the dwarf galaxies. It is
also necessary to perform more sophisticated dynamical models, that are free
of assumptions regarding the velocity anisotropy of the systems. For exam-
ple Schwarzschild models of the Sculptor dSph constrain the inner logarithmic
slope of the dark matter density profile to be d log ρ/d log r > −1.5 (Breddels
et al., 2012b). Better constraints could be obtained if the sample size were
increased by a factor ∼ 10.

We have also shown that the number and internal dynamics of the classical
dSph in the Milky Way are consistent with the predictions of the ΛCDM model,
if the Milky Way’s mass is ∼ 8 × 1011 M�. This value well within the range
measured using the dynamics of stellar tracers, but suffers from significant
uncertainties. However, it is important to note that this low value lowers the
probability of a galaxy like the Milky Way to host two satellites as bright as
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the Small and Large Magellanic Clouds (Busha et al., 2011b; Boylan-Kolchin
et al., 2010), although such systems appear to be rare in any case, as shown
by Liu et al. (2011) using the Sloan Digital Sky Survey.

We have also found significant scatter in the number of subhalos expected
to host bright satellites for the Aquarius halos, even when scaled to a common
mass of 8×1011 M�. For example, the scaled Aq-A-2 has five satellites brighter
than Fornax, while the scaled Aq-C-2 has only two (making it consistent with
our Galaxy). Therefore, care should be taken to draw strong conclusions from
this region of the luminosity function since the number of objects is small and
heavily influenced by the host mass as well as by stochastic effects associated
to particular histories. Another example that emphasizes this point is given by
M31, which plausibly is nearly a factor of two more massive than the MW, and
also has a larger number of bright satellites. Just like for the Milky Way, our
models for the satellite population of M31 are consistent with the observational
constraints on the internal dynamics of the brighter satellites, after taking into
account the differences in host mass.

A similar conclusion was reached by Wang et al. (2012) in a paper submit-
ted shortly after ours, and based on the Millenium simulation series. These
authors show that the cumulative number of subhalos with a given peak cir-
cular velocity depends roughly linearly on host halo mass, and that it is a
highly stochastic quantity. In fact, once normalized to the mass of the host,
this function is close to Poissonian. Based on this result, they conclude that
∼ 46% of the halos with M = 1012 M� have no more than 3 subhalos more
massive than vmax = 30 km/s, and that the percentage increases to ∼ 61% for
halos with M = M(Aq-B-2) = 8.2 × 1011 M�, in good agreement with our
own inferences. Hence we must conclude that we have found no evidence of a
missing massive satellite problem in the Local Group.
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Abstract

W
e present a new model for the dark matter halo of the Milky Way
that fits the properties of the stellar streams associated with the
Sagittarius dwarf galaxy. In the inner regions, the halo potential is
axisymmetric and oblate with qz = 0.9, and therefore is consistent

with the expected response to the formation of a baryonic disk in its center. In
the outskirts, the halo follows the shape proposed by Law & Majewski (2010),
namely a nearly oblate ellipsoid oriented perpendicular to the Galactic plane.
This outer halo can be made more triaxial, with minor-to-major axis ratio
c/a = 0.8 and intermediate-to-major axis ratio b/a = 0.9 if the effect of the
Large Magellanic Cloud is taken into account, and thereby made reconcilable
with the predictions of ΛCDM simulations.
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5.1 Introduction

In the last decade, the stellar stream associated with the Sagittarius (Sgr)
dwarf galaxy, has been extensively used as a probe of the mass distribution
in the Milky Way (MW). Of particular interest is the constraining power that
the properties of the stream have on the dark matter component out to ∼ 60
kpc from the Galactic center. However, it has turned out to be particularly
challenging to put this idea into practice.

Early results showed, for example, that the halo may be spherical and that
extreme oblate configurations (qz < 0.7) could be confidently rejected (Ibata
et al., 2001). However, the advent of new data led to new puzzles. The most
well known being that the line of sight velocities of Sgr’s leading stream favor
a prolate halo (Helmi, 2004), while the tilt of its orbital plane would require
an oblate mass distribution (Johnston, Law & Majewski, 2005). On the other
hand, the so-called bifurcation of the leading arm was proposed by Fellhauer
et al. (2006) to be an older stream wrap, but this would be possible only if
the halo potential were close to spherical. Recent observations by Koposov
et al. (2012) have cast doubt that both bifurcation arms have originated in
the Sgr dwarf galaxy. In fact, Helmi et al. (2011) found in the cosmological
Aquarius simulations (Springel et al., 2008; Cooper et al., 2010) that streams
associated with different progenitors may overlap on the sky as a consequence
of their correlated infall directions (Libeskind et al., 2011; Lovell et al., 2011b)
and their tendency to infall in groups (Li & Helmi, 2008). In this case, the
bifurcation would not offer any direct constraints on the Milky Way halo shape.

A possible solution to the oblate vs. prolate conundrum was recently pro-
posed by Law & Majewski (2010) (see also Deg & Widrow, 2012) and requires
that the Milky Way is embedded in a triaxial halo, with its intermediate axis
aligned with the spin of the Galactic disk. Although the halos assembled in
ΛCDM are expected to be triaxial (Jing & Suto, 2002; Hayashi, Navarro &
Springel, 2007; Schneider, Frenk & Cole, 2012), this configuration is difficult
to reconcile with the prediction of the formation of MW-like objects. For
example, cosmological N-body simulations predict that Milky Way-like halos
have shapes that vary as a function of radius. Typically they are prolate in
the inner kiloparsecs and smoothly transit towards a more triaxial geometry
at the virial radius (Vera-Ciro et al., 2011). Furthermore, the settling of a disk
at the center of the halo leads to a change in its orbital structure, and to a
more oblate shape in its inner regions (Dubinski, 1994; Debattista et al., 2008;
Kazantzidis, Abadi & Navarro, 2010; Abadi et al., 2010; Tissera et al., 2010;
DeBuhr, Ma & White, 2012; Bryan et al., 2012). Moreover, even if the halo is
assumed to be static, and insensitive to the presence of baryons, the stability
of the disk would not be naturally ensured in the potential of Law & Majew-
ski (2010) (because of the lack of tube orbits around the intermediate axis,
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see Heiligman & Schwarzschild, 1979). Interestingly, evidence a halo changing
shape with radius has been reported by Banerjee & Jog (2011). These authors
used the flaring of the Hi layer of the MW disk to show that an axisymmetric
halo model with increasing major to minor axis ratios as a function of radius,
is favored by these observations.

When modeling the dynamics of the stellar streams associated with the
Sagittarius dwarf galaxy, the presence of substructures in the halo has often
been neglected (although see Zhao, 1998; Johnston, Spergel & Haydn, 2002).
Although we expect a large number of dark matter satellites in the halos of
galaxies (Klypin et al., 1999b; Moore et al., 1999), and these may affect the
appearance of streams (Yoon, Johnston & Hogg, 2011), only the most massive
exert significant heating. Furthermore, objects as massive as the Large Mag-
ellanic Cloud (LMC) could also affect the orbital path of the stream. If the
present day LMC mass is ∼ 1011 M� (Besla et al., 2007), its contribution to
the gravitational pull on the stars in the Sgr streams is as important as the one
generated by the enclosed mass inside the orbit of Sgr, and therefore, strong
enough to alter their dynamics.

Motivated by the above discussion and given the limitations of the available
models, in this Chapter we take a fresh look at the dynamics of the Sgr streams.
In Section 5.2 we introduce a model for the halo that takes into account the
effect of a baryonic disk. Section 5.3 is devoted to study the effect of the LMC
on the Sgr stream. In this section we also compare the predictions of the new
models, and explore in addition the differences for older wraps. Finally in
Section 5.4 we summarize our conclusions.

5.2 Inner halo: Accounting for baryonic ef-

fects on the halo shape

5.2.1 Description of the potential

As discussed in the introduction and despite the success of the triaxial model
by Law & Majewski (2010), it is difficult to reconcile the proposed mass dis-
tribution with the prediction from simulated halos assembled in ΛCDM. The
triaxial model that better fits the observations is nearly oblate, with its minor
axis pointing almost parallel to the direction of the Sun. This halo model has
constant axis ratios, and although the potential in the inner few kiloparsecs
is almost axisymmetric, it does not follow the symmetry of the visible com-
ponents, as its symmetry plane is perpendicular to the disk. Furthermore,
the natural expectation is that the dark halo should become more oblate as a
response to the presence of gas forming a disk in the center of the potential
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well.
In this context, a sensible conjecture would be that the Milky Way halo

transits from an oblate to a triaxial configuration with increasing Galactocen-
tric distance. To model such profile we follow the approach of Vogelsberger
et al. (2008). Consider the spherical potential,

Φs(r) = v2
halo ln(r2 + d2), (5.1)

where the s subscript is used to emphasize the spherical nature of this model.
We want to construct a model for the potential of the halo that satisfies the
following requirements:

1. It is axisymmetric in the inner parts, with its symmetry plane coinciding
with the plane of the disk. This will guarantee the stability of the latter,
as well as account for the effects of the disk on the dark halo.

2. It is triaxial in the outer parts. More specifically, we want it to follow the
model of Law & Majewski (2010) which is known to fit well the dynamics
of the stream.

3. It has a smooth transition between these two regimes.

It is clear that the information about the geometrical properties of the potential
are encapsulated in the variable r = (x2 + y2 + z2)1/2. Therefore we replace
r → r̃, with

r̃ ≡ ra + rT
ra + rA

rA, (5.2)

where ra is a scale radius, and

r2
A ≡ x2 + y2 +

z2

q2
z

= R2 +
z2

q2
z

, (5.3)

r2
T ≡ C1x

2 + C2y
2 + C3xy +

z2

q2
3

, (5.4)

with

C1 =
cos2 φ

q2
1

+
sin2 φ

q2
2

,
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cos2 φ

q2
2

+
sin2 φ

q2
1

,

C3 = 2 sinφ cosφ

(
1

q2
1

− 1

q2
2

)
. (5.5)
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Note that for r � ra r̃ ≈ rA, and similarly r � ra r̃ ≈ rT . We have thus
defined the quantity rT in the same way as Law & Majewski (2010). The
potential

Φhalo(x, y, z) = Φs(r̃(x, y, z)), (5.6)

therefore behaves as asymmetric for r � ra (Helmi, 2004), and triaxial for
r � ra (Law & Majewski, 2010). Note that the Sun is assumed to be located
along the x axis, at x = −R�, and the z axis points perpendicular to the disk.

As often assumed in the literature, we model the disk and bulge com-
ponents following a Miyamoto-Nagai (Miyamoto & Nagai, 1975) distribution
and a Hernquist spheroid (Hernquist, 1990), respectively. The corresponding
gravitational potentials of these components are

Φdisk(R, z) = − GMdisk√
R2 + (a+

√
z2 + b2)2

, (5.7)

and

Φbulge(r) = −GMbulge

r + c
, (5.8)

we set the values of the parameters to those used by Helmi (2004).

Figure 5.1: Circular velocity profile for the disk (dotted blue), bulge (dashed
green) and halo (dash dotted red). The halo makes a transition from oblate
to triaxial at ra = 30 kpc, and its amplitude is constrained by the circular
velocity at the position of the Sun. The profile including all components is
shown with the solid orange line.

In Fig. 5.1 we show the circular velocity profile of this composite model.
Since it is not symmetric, we define v2

c = r · ∂Φ/∂r, and plot this quantity
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along the axis R = x. For this particular model we chose the flattening of the
axisymmetric component to be qz = 0.9, the value required to fit the tilt in the
orbit of the leading arm of the stream in the axisymmetric case (e.g. Johnston,
Law & Majewski, 2005). The axis ratios for triaxial component (q1, q2, q3),
as well as its tilt φ, are taken from the model proposed by Law & Majewski
(2010). The amplitude of the potential vhalo (Eq. 5.1) is fixed to ensure that
vcirc(R = R� = 8 kpc) = vLSR + V� = 225.2 km s−1. The transition radius
ra = 30 kpc, is selected such that the region of dominance of the disk (as
measured from the rotation curve) resides inside the axisymmetric component
of the halo potential.

Figure 5.2: Dark matter halo potential on the plane z = 0 (top left), y = 0
(bottom left) and x = 0 (top right). For reference we have included the
positions and directions of motions for the Sun (circle), the Sagittarius dwarf
galaxy (square) and the Large Magellanic Cloud (diamond).

Fig. 5.2 shows slices of the dark halo potential given by Eq. (5.6) on three
different planes. For reference we have added the positions and directions of
motion for the Sun (circle), the Sagittarius dwarf galaxy (square) and the Large
Magellanic Cloud (diamond), where the length of each arrow is proportional
to the projection of the velocity vector on each of the planes. By construction,
the potential is nearly oblate near the center, with its axis of symmetry in
the z direction. Then it becomes increasingly triaxial as one moves outwards.
Recall that in the triaxial regime, the potential in Eq. (5.6) actually describes



98 The shape of the MW’s dark matter halo

an extreme oblate mass distribution aligned with the x axis, and with an
effective flattening ∼ 1/q1 ≈ 0.7.

Figure 5.3: Lengths along x (solid blue), y (dotted green) and z (dashed red)
of the equipotential of the dark halo model of (5.6)

Note also that although the transition radius is set at ra = 30 kpc, the
effective transition between the axisymmetric and triaxial regimes, occurs at a
smaller distance (r ≈ 10 kpc). This can be best concluded from Fig. 5.3, where
we plot the axis lengths calculated assuming that r̃ ≈ (x/ax)

2 + (x/ay)
2 +

(x/az)
2, which given that φ ≈ 90◦, is a reasonable approximation. At the

center of the halo ax = ay > az, which means that it is axisymmetric here
(oblate in the xy plane). However, in the outskirts az & ay > ax, leading to
an almost oblate potential, but now with its minor axis pointing along the x
direction.

Figures 5.1, 5.2 and 5.3 encapsulate the properties of our fiducial model for
the potential: the mass of each component is consistent with observations, and
the geometry of the dominant (by mass) halo is, by construction, more consis-
tent with simulations of MW-like objects. Whether this potential reproduces
the dynamics of the Sgr stream is the focus of the next section.

5.2.2 Generating the stream

We proceed to integrate test particles in the compound potential described
in the previous section. In what follows we work under the assumption that
the orbit of the center of mass of Sgr will follow closely the path of the tidal
streams, although it has been reported in the literature that this might not be
the case (Choi, Weinberg & Katz, 2007; Eyre & Binney, 2009). However, our
approach is cost-effective and it serves as a good approximation when compared
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to actual N -body simulations (Law & Majewski, 2010). In the future we also
plan to include the effect of dynamical friction (Jiang & Binney, 2000).

For each orbit we generate a set of initial conditions consistent with the
present day six dimensional phase-space coordinates of the Sgr dwarf galaxy.
More specifically, we sample each observable from a Gaussian distribution,
with its mean and variance taken from the values reported in the literature.
The position is assumed to be at (l, b) = (5.6◦,−14.2◦) (Majewski et al., 2003),
the heliocentric distance d = 25±2 kpc (Kunder & Chaboyer, 2009), the line of
sight velocity vr = 140± 2 km s−1 (Ibata et al., 1997) and the proper motions
(µl cos b, µb) = (−2.4 ± 0.2, 2.1 ± 0.2) mas yr−1 (Dinescu et al., 2005). Orbits
are integrated forward and backward in time for 2 Gyr, to generate the set of
observables associated with the known parts of the leading and trailing arm,
respectively.

We probe each integrated orbit at 10 randomly selected times, in the inter-
val of ±1 Gyr, which corresponds to the time that takes to give rise to one full
stream wrap on the sky. The full 6D coordinates at each point are transformed
into the set of observables often used to represent the stream: position in the
sky (Λ�, B�) following (Majewski et al., 2003), heliocentric distance d, line
of sight velocity in the Galactic standard of rest coordinate system vgsr, and
proper motions in the Galactic coordinate system (µb, µl cos b).

Since we generate 5 × 104 initial conditions for the orbit integration, our
sampling procedure leads to 5× 105 points in the observable quantities, which
are then assigned to a grid using the Cloud in Cell algorithm (Hockney &
Eastwood, 1988). Fig. 5.4 shows the projected density for different observables
as a function of the angular coordinate Λ�. For example, in the top left
panel we show the density associated with the line of sight velocity vgsr along
the leading arm. The algorithm to reconstruct the density yields a function
of the form P (Λ�, vgsr). We marginalize this quantity over vgsr at each Λ�,
P (vgsr|Λ�) =

∫
dvgsrP (vgsr,Λ�). The solid black line shows the median of this

new quantity as a function of Λ�, and with gray bands we represent the 1 and
2σ equivalent scatter around this median.
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In Fig. 5.4 we have included also the mean orbit in the triaxial model
proposed by Law & Majewski (2010) (orange dashed line), and their N -body
model (green dots). Additionally, we compare our results with the measure-
ments of Majewski et al. (2004) (cyan stars), Correnti et al. (2010) (green
triangles) and Carlin et al. (2012) (red diamonds).

Interestingly, both the radial velocities vgsr and the positions on the sky
B� are well reproduced by our model, showing that it is possible to find a halo
potential that takes into account the effect of a baryonic disk and that also
fits the orbit of the Sgr stream. The largest differences between this model
and the purely triaxial by Law & Majewski (2010) are found in the leading
stream at 0◦ < Λ� . 200◦ (especially distances and radial velocities at a ±25%
level) and in the trailing stream for 100◦ . Λ� . 300◦ in the distances and
150◦ . Λ� . 360◦ in the line of sight velocities.

The differences are not very large, and so it may be worthwhile to confirm
our model with N -body simulations, or the technique proposed by Varghese,
Ibata & Lewis (2011) to account for the energy offset between stream stars
and the center of mass of the system. For instance, a comparison between the
green dots (from the N-body) and the dashed orange curve (representing the
trajectory of the center of mass) shows that the heliocentric distances d are
somewhat offset in the case of the leading arm, and that the radial velocities
also deviate at Λ� . 100◦. On the other hand, for the trailing arm the orbit of
the center of mass systematically underestimates the distances of the particles
in the full simulation.

In test runs we found that the dependence of plausible orbits on the halo
parameter ra is not strong, whenever this is kept within reasonable values. Of
course, a value of ra � rapo will lead to potential that is purely oblate in the
region probed by the stream, and therefore will not be able to fit the line of
sight velocities of the leading arm. The dependence of the stream orbits on the
flattening parameter, qz, is shown in Fig. 5.5. We explore here four different
values of qz = {0.7, 0.8, 0.9, 1.1} keeping ra = 30 kpc. For qz < 1 the effect of
changing this parameter is not very strong for Λ� & 200◦ for all observables.
However, there are significant differences for Λ� . 300◦ especially in the radial
velocities. Note that qz < 0.9 are disfavored by the available measurements of
the line of sight velocities.

Prolate halo mass distributions close to the center affect more the tilt of
the orbit and do not significantly improve the fit to the velocities compared
to the qz = 0.9 case. We find that in general 0.90 < qz < 0.95 yield a good
fit to the observables in the leading arm. The trailing arm is not shown here
as we find that it is rather insensitive to these changes in the region where
observations are available, namely for 120◦ & Λ� > 0◦.

In this section we have taken a pragmatic approach since our goal was to
show that it is possible to find a halo potential that reproduces the dynamics of
the Sgr stream, while at the same time being consistent with the predictions of
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Figure 5.5: Line of sight velocities (top), position on the sky (middle) and
heliocentric distances (bottom) for the leading arm and for four different values
of qz while keeping ra = 30 kpc. The dashed orange line is the orbit of the
center of mass from Law & Majewski.

galaxy formation models. To establish the best fit parameters of this potential
would require e.g. a MCMC approach, as in Deg & Widrow (2012), which is
however, beyond the scope of this Chapter.

5.3 Outer halo: The effect of LMC

In the previous section we showed that the mass distribution of the inner
dark halo could be made consistent with the expectation that it should be
flattened towards the Galactic disk. The outer halo on the other hand seems
to be too flattened to reconcile it with the predictions of ΛCDM simulations
(Allgood et al., 2006). For instance the typical minor-to-major axis ratio for
Mvir = 1012 M� is 〈c/a〉 = 0.9 ± 0.1 (Hayashi, Navarro & Springel, 2007),
compared with (c/a) = 0.72 for the triaxial model of Law & Majewski (2010).

It is very suggestive from Fig. 5.2 that the direction along which Law &
Majewski’s potential is elongated, approximately lies in the direction of the
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Large Magellanic Cloud (LMC). It appears plausible that this elongation is a
consequence of the presence of the LMC, given its significant mass ∼ 1011 M�
(Besla et al., 2007). We explore this possibility below and proceed to model
the effect of a perturbation like the LMC on the dynamics of the Sgr stream.

Note that since φ ≈ 90◦, the principal axes of the potential of the halo at
r � ra are nearly aligned with the Galactocentric coordinate system intro-
duced in the previous section. Consequently, we can simplify Eq. (5.6) with

r̃2 ≈ x2 +
y2

q2
1

+
z2

q2
3

for r � ra. (5.9)

The torque that this halo potential exerts on the (approximate) plane of motion
of the Sgr dwarf is simply τ = −r×∂Φhalo/∂r. Of the three components of this
field, the x and z components are controlled by gradient of the force along the
y direction, which is that of the strongest elongation in the Law & Majewski’s
halo (q1 = 1.38). For instance the z component of the torque induced by this
halo is

τhalo
z = −∂Φhalo

∂r̃

xy

r̃

(
1

q2
1

− 1

)
≈ −v

2
circ

r̃2
xy

(
1

q2
1

− 1

)
≈ −GMhalo(r̃)

r̃3
xy

(
1

q2
1

− 1

)
. (5.10)

Let us now consider the torque induced by the LMC. In our reference system
the present day position of the LMC is nearly on the plane x = 0 (see Fig. 5.2).
The force generated at r = xi+yj+zk by a point mass MLMC at the position
of the LMC, rLMC, is

FLMC = −GMLMC
r − rLMC

|r − rLMC|3
, (5.11)

that generates a torque on the plane of motion of Sgr,

τ LMC = r × FLMC, (5.12)

and whose z component is,

τLMC
z = − GMLMC

|r − rLMC|3
(yxLMC − xyLMC) ≈ GMLMCxyLMC

|r − rLMC|3
. (5.13)

With the results of Eq. (5.10) and Eq. (5.13) we can quantify the impor-
tance that the triaxial halo has on the tilt of the orbit of Sgr, relative to the
effect of the LMC,

τLMC
z

τhalo
z

∼ MLMC

Mhalo(r̃)

r̃3

r3
sgr/LMC

yLMC

y

1

1/q2
1 − 1

. (5.14)
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In our model the mass of the halo enclosed within the Sgr orbit is Mhalo ∼
3 × 1011 M� which is not very different from MLMC ∼ 1011 M� (Besla et al.,
2007). At the present day, the distance to Sgr and between Sgr and the LMC
are comparable (15 vs ∼ 40 kpc), and since yLMC � y, the numerical value
of this expression is of order unity. Additionally, since q1 > 1 the torque
generated by the LMC points in the same direction of the one produced by the
triaxial halo (yLMC < 0, c.f. Fig. 5.2). This means that the torque generated
by the LMC is as important as the one generated by the triaxial halo of Law
& Majewski, at the position of Sgr. This implies that the elongation along
the y-direction in the triaxial model could effectively be decreased if the LMC
would be considered as well in the orbital integrations.

To implement the contribution of the LMC to the total potential in the
integration of the Sgr stream orbits we proceed as follows. We integrate back-
ward and forward in time the orbit of the LMC, starting from measurements
of its current position (α, δ) = (5h, 27.m6,−69◦, 52.2′) (Piatek, Pryor & Ol-
szewski, 2008), heliocentric distance d = 50.1 kpc (Freedman et al., 2001),
radial velocity 278 km s−1 (van der Marel et al., 2002) and proper motions
(µl cos b, µb) = (1.96, 0.44) mas yr−1 (Piatek, Pryor & Olszewski, 2008). We
then place a Hernquist spheroid of mass MLMC,0 = 8 × 1010 M� and scale
radius rLMC,0 = 2 kpc on this orbit. The Sgr orbit is then integrated in the
presence of this new additional perturbation.

Fig. 5.6 show the results obtained for a model that includes the LMC, and
where the flattening of the dark halo potential along its principal axes has been
changed to: q1 = 1.1, q2 = 1.0 and q3 = 1.25. The orientation of this potential
is kept the same as before, with φ = 97◦. The model of Law & Majewski (2010)
is shown for comparison with the dashed orange line. It is interesting to note
that after including the LMC, the orbital tilt of the leading arm is well fit in
our model, despite the quite significant change we have introduced to the axis
ratios of the dark halo. The torque of the orbital plane is, of course, also felt
by the trailing arm and compared to the Law & Majewski (2010) model this
results in different location of this stream on the sky (B�,Λ�) for Λ . 100◦,
which is a region not yet probed by observations.

The analysis of this section therefore shows that perturbations on the po-
tential, such as the one generated by the LMC, have a non-negligible effect on
the orbit of the Sgr stream. In a more realistic scenario including dynamical
friction, the LMC might have been even more massive than at the present
day, and as a consequence, its role in shaping the orbit of Sgr even is more
dramatic. However, the LMC may be on its first infall and its effect would be
negligible on the dynamics of streams formed more than 2-3 Gyr ago. This is
clearly visible from Fig. 5.7, where we show the relative distance between the
LMC and Sgr. The present day position (t = 0 Gyr in this plot) is actually the
time of the closest encounter between these two objects where dsgr/LMC ≈ 37
kpc.
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Figure 5.7: Relative distance between Sgr and the LMC as a function of time
for a typical orbit integrated in the potential described in Section 5.3 (the same
of Fig. 5.6). The present day corresponds to t = 0 Gyr.

It is important to stress that the model presented in this section, including
the effect of the LMC, is by no means a unique solution, nor the most likely
one. A thorough search of the parameter space for this case is required if
we are to make stronger predictions. Nevertheless, the arguments shown here
strongly suggest that the effect of the LMC cannot be neglected and that it
should be taken into account if one wants to properly model the dynamics of
the Sgr stream.

With this caveat in mind, we nonetheless show in Fig. 5.8 predictions for
the observables associated to the first (solid line) and second (dashed line)
wraps of the leading (left) and trailing (right) streams. With different colors
we show the three different models of the potential discussed so far. Black is
our fiducial model discussed in Section 5.2, green is the model that includes
the LMC and red is the triaxial model of Law & Majewski (2010). We have
also included here observations of different stellar tracers of the Sgr streams:
RR Lyraes (Ivezić et al., 2000; Vivas, Zinn & Gallart, 2005; Prior, Da Costa &
Keller, 2009), Carbon Giants (Ibata et al., 2001), Red Clump Giants (Dohm-
Palmer et al., 2001; Starkenburg et al., 2009; Correnti et al., 2010), M Giants
(Majewski et al., 2004) and Red Horizontal Branch stars (Shi et al., 2012). It
is important to stress that Shi et al. preselected stars according to the triaxial
model of Law & Majewski (2010), and so constraints obtained from this dataset
may be biased.
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We also show the observations in Southern Galactic hemisphere reported by
Koposov et al. (2012) for the extension of the bifurcation of the leading stream.
We have plotted the positions on the sky for the bright (orange filled squares)
and the faint (orange open squares) stream in the left panels of Fig. 5.8 at
75◦ < Λ� < 115◦.

Fig. 5.8 shows that several features could be used to constrain and differen-
tiate the models. For instance the predictions for the line of sight velocities and
heliocentric distances of the leading arm in the first wrap for 200◦ & Λ� > 0◦

exhibit differences larger that the expected observational uncertainties. There-
fore, more detailed studies in the Southern Galactic hemisphere will likely help
to better constrain our current knowledge of the properties of the MW dark
matter halo.

5.4 Conclusions

In this Chapter we have presented an alternative model that fits the observa-
tions of the Sagittarius stream and that is consistent with current predictions
of galaxy formation theories. Our model for the potential of the Milky Way’s
dark matter halo is axisymmetric and flattened towards the disk plane for
R . 10 kpc, and asymptotically approaches the triaxial model presented by
Law & Majewski (2010) at larger radii. With a flattening of qz = 0.9 in the
halo potential at small radii, we are able to successfully reproduce both the
observed line of sight velocities and the tilt in the orbit of the leading arm. A
gratifying property of this potential is that its oblate shape close to the center
accounts for the effect of the formation of the Galactic disk and ensures its
stability.

The triaxial part of this potential, however is still not entirely consistent
with the expectations of the ΛCDM model. The odd configuration of the
outer halo of Law & Majewski (2010) can be changed, and brought to a more
reasonable shape, if the gravitational field generated by the Large Magellanic
Cloud is taken into account. The integration of orbits in a composite potential
including the LMC and an outer triaxial halo with q1 = 1.10, q2 = 1.00 and
q3 = 1.25 (that is as before, oblate in the inner regions), is also found to
reproduce well the properties of the Sgr streams in the region where these
have been constrained observationally.

We also show how observations in the Southern Galactic hemisphere can
be used to break degeneracies in the model, and in particular to assess the
relative importance of the LMC on the dynamics of the Sgr streams. This
would help also to understand whether the Magellanic system is in first infall
or has been a member of the MW for a longer time.

The conclusions drawn in this work are based on heuristic searches of the
high-dimensional parameter space that characterizes the gravitational poten-
tial of the Milky Way. By no means do they represent best fit models in a
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statistical sense. Therefore, the predictions made cannot be considered exclu-
sive or definitive, but serve to guide where future observations could focus to
distinguish between various models. Notwithstanding these caveats, we have
been able to demonstrate in this Chapter that the dynamics of the Sgr streams
can be understood in a context that is consistent with expectations from the
ΛCDM cosmological model.
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Macciò A. V. et al., 2007, MNRAS, 378, 55

Macciò A. V. et al., 2010, MNRAS, 402, 1995
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Summary

The journey that began by simply counting stars on the skies millennia ago has
led to one of the most controversial open questions of contemporary science:
“What is the Universe made of?”. Finding a satisfactory answer has been
particularly difficult, despite numerous and diverse attempts. Astrophysics has
not been idle at all in this enterprise, since the last century was particularly
fruitful in developing a physical picture of the formation and evolution of the
universe as a whole and also of its individual components, such as planets,
stars and galaxies.

By measuring the speeds of stars in distant galaxies, for instance, we have
concluded that there is significantly more matter than what meets the eye.
Stars move because of the total gravitational pull of the galaxy they live in.
This pull depends on mass, and therefore if the masses of all stars are known to
some extent (from their brightness for example), their velocities could tell us if
our understanding of Newton’s Laws is correct, a physical theory known since
the xvii century. Large discrepancies were found when such measurements
were made, which led to the conclusion that either these laws are fundamentally
wrong, or that the galaxies have some hidden mass. In this Thesis we worked
under the second hypothesis, and call the missing component dark matter,
emphasizing the fact that it is matter that is not directly visible. The mismatch
in the dynamics of stars in galaxies suggests that dark matter is the most
dominant component of these systems, and that stars have only a negligible
contribution to the overall mass budget. Models and observations suggest that
the dark matter is distributed in a spheroid surrounding the visible galaxy, and
we will refer to this as a halo.

Spectacular explosions of stars at the end of their lives in distant galaxies
also have allowed us to draw another important conclusion about the composi-
tion of the universe. Besides dark matter, there is a force that makes galaxies
move in an accelerated fashion away from each other. Because the nature of
this force is unknown to mankind, with the exception perhaps of vacuum itself,
a new component had to be added to the picture. This new component has
been termed dark energy and has been estimated to account for approximately
3/4 of the matter/energy content of the Universe at the present day, with the
remaining mostly 1/4 being dark matter.
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Unfortunately, only educated guesses are available for the nature of either
dark matter or dark energy. Several experiments are currently being carried
out aiming to understand these and place them within a consistent physical
model of the Universe. However this task has proven to be rather difficult, and
the results so far are disappointingly inconclusive.

The ΛCDM model constitutes a particular, currently favored by observa-
tions, description of the Universe, which includes both dark components. In
this model galaxies form and evolve through time by mergers of smaller sys-
tems. The gravitational pull generated by the dark matter halo of a massive
galaxy attracts nearby objects making them collide and, with time, completely
merge to produce a new more massive galaxy. Although this process is intu-
itively well understood, the equations to model it become effectively intractable
once the number of objects involved in the process starts to grow. Thus the
use to computational tools is not only required, but sometimes the only way
to study the formation and evolution of galaxies.

In this Thesis we extensively use numerical experiments based on N bodies,
where the dark matter component of galaxies is represented by point masses,
and the equations predicting the positions and velocities are numerically solved
with powerful computers. State of the art simulations of this kind include
several billions of such bodies and are capable of model, with unprecedented
detail, the formation and evolution of dark matter halos such as that surround-
ing the Milky Way, keeping track of all the process that led to their present
day configuration.

Fig. 1 is a snapshot view of the present day distribution of dark matter
around a simulated system that is expected to have the mass of the Milky
Way. The smooth component, whose center defines the center of the picture,
shows that the shape of the dark matter of the halo surrounding the Milky
Way is expected to be far from spherical in the ΛCDM model. In fact, in
Chapter 2 of this Thesis it is shown that it is better described by an ellip-
soid whose axis ratios change as a function of distance from the center of the
halo. In general at a distance comparable to that of the Sun to the Galactic
center, the halo is described by a distribution of mass that partially resembles
an american football, and which becomes progressively less axisymmetric as
we move outwards. The shapes of the dark halos result as a response to the
configuration of the surrounding nearest portions of the universe, and directly
correlate with the way in which the mass assembly takes place. These conclu-
sions however may be affected if other physical effects are taken into account.
For instance, the interplay of visible and dark matter plays an important role
in shaping the halo close to its center, generating figures that resemble closely
a nut-less M&MTM.

Perhaps the most striking impression after looking at Fig. 1 is the large
amount of small structures embedding the halo. These are dark objects of their
own (subhalos), currently merging with the main halo. In Chapter 3 we show
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Figure 1: Present day snapshot view of a numerical simulation producing a
system like the dark matter component of the Milky Way. The white dots
represent a stellar stream, remnant of a merger event (Springel et al., 2008).

that subhalos are also elongated in nature, but with overall shapes that are
rounder than their higher mass counterparts. The quest for understanding the
properties of subhalos is highly motivated by the fact that they are predicted to
host the satellite galaxies of the Milky Way, which are in turn, close enough to
directly test the models of galaxy formation and evolution, as well as theories
of gravity.

One of the first tests of this kind concerns the number of subhalos seen
in simulations. Although the Milky Way itself is surrounded by a system of
satellites, there are only a dozen of these known to-date. There is thus a
flagrant discrepancy with the hundreds of thousands of small subhalos (which
are satellites themselves) present in numerical experiments such as the one
shown in Fig. 1. Although initially considered a problem, this fact has been
used to complete our understanding of the way in which small galaxies form,
providing insights into the role of different physical processes affecting the
gas from which stars form. The number of big subhalos is also a tool used
in Chapter 4 to refine our estimate of the total mass of the Milky Way, a
number that, even today, is not known to better than a factor three, as different
methods have yielded a variety of, sometimes, discrepant results.

Another tool highly used to measure the mass distribution of the Milky
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Figure 2: Observations of the Galactic halo, showing several stellar streams,
such as the ones predicted from the numerical simulation shown in Fig. 1.
The properties of the stars in the stream can be used to understand the mass
distribution of the Mily Way (Belokurov et al., 2006).

Way is the dynamics of stellar streams. The white dots in Fig 1 represent
a stellar tidal stream, remnant of a merger event. Since galaxy formation
is a hierarchical phenomenon in the ΛCDM, these remnants are expected to
be ubiquitous and also to be apparent in large numbers observations of our
Galaxy. Such is indeed the case, as can be seen in Fig. 2. These stellar
streams are coherent structures left-overs from accretion events and evolving
under the influence of the gravitational pull generated by the Milky Way.
Consequently, the dynamics of the individual stars can be used to constrain
the mass distribution in the Galaxy.

Of particular interest is the stellar stream associated with the Sagittarius
dwarf galaxy. Up to now, several models of the halo of the Milky Way have
been used to explain the complex dynamics of this stream. However, the
particular details of the most successful model are difficult to understand in the
context of galaxy formation. In Chapter 5 of this Thesis we put forward a new
model that successfully describes the stream, and that agrees with predictions
of ΛCDM. For instance it includes the expected shape of the dark matter halo
in the solar neighborhood keeping in mind the effects of a Galactic disk. Our
model for the dynamics of the stream also incorporates the effect of the Large
Magellanic Cloud (LMC), the most massive satellite of our Galaxy. We have
found that the LMC affects the dynamics of the stream and has an impact on
previous conclusions about the mass distribution inside the Milky Way.

There are many aspects of the ΛCDM model that have been only tangen-
tially discussed, and that are by themselves interesting issues to address in the
near future. Despite being limited in scope, it is my hope that the humble
contribution shown in this Thesis has helped pave the road towards a better
understanding of the formation and evolution of galaxies.



Samenvatting

De reis die begon door het simpelweg tellen van de sterren aan de hemel mil-
lennia geleden, heeft geleid tot een van de meest controversiële open vragen
van de hedendaagse wetenschap: “Waar is het universum van gemaakt?”. Het
vinden van een bevredigend antwoord bleek bijzonder moeilijk, ondanks vele
en uiteenlopende pogingen. De astrofysica heeft niet stilgestaan in deze onder-
neming, aangezien de laatste eeuw bijzonder vruchtbaar was in het ontwikkelen
van een fysische omschrijving van de formatie en evolutie van het universum
als geheel en alsmede de individuele componenten, zoals planeten, sterren en
sterrenstelsels.

Het meten van snelheden van sterren in verre sterrenstelsels heeft bijvoor-
beeld tot de conclusie geleid dat er aanzienlijk meer materie aanwezig is dan
op het eerst gezicht te zien valt. Sterren bewegen door de totale gravitatio-
nele aantrekkingskracht van het sterrenstelsel waarin ze zich bevinden. Deze
aantrekkingskracht hangt af van de massa, en als de massa van de sterren tot
op zekere hoogte bekend is (bijvoorbeeld van hun helderheid), dan kunnen
de snelheden ons vertellen of ons begrip van de wetten van Newton correct
zijn, een natuurkundige theorie bekend sinds de xvii eeuw. Er werden gro-
te verschillen waargenomen wanneer deze meting verricht werden, wat tot de
conclusie leidde dat ofwel deze wetten fundamenteel fout waren, of dat ster-
renstelsels verborgen massa bevatten. In dit proefschrift hebben we gewerkt
onder de tweede hypothese, en duiden de missende massa aan met donkere
materie, wat de nadruk legt op het niet zichtbaar zijn van deze vorm van ma-
terie. De discrepantie in the dynamica van sterren in sterrenstelsels suggereert
dat donkere materie het dominante component is in deze systemen en dat de
sterren een verwaarloosbare bijdrage hebben aan de totale massa van het sys-
teem. Modellen en observaties suggereren dat donkere materie verdeeld is in
een sferöıde die het zichtbare sterrenstelsel omringt.

Spectaculaire explosies van sterren aan het einde van hun leven in verre
sterrenstelsels heeft ons ook toegestaan een belangrijke conclusie te trekken
over de samenstelling van het universum. Naast donkere materie is er een
kracht die sterrenstelsels in een versnelde manier van elkaar af doet bewegen.
Omdat de aard van deze kracht onbekend is, met uitzondering misschien van
het vacuüm zelf, moest er een nieuw onderdeel worden toegevoegd aan het
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geheel. Dit onderdeel wordt aangeduid als donkere energie en verklaart naar
schatting 3/4e van de materie/energie-inhoud van het heelal vandaag de dag,
het overige 1/4e deel bestaat grotendeels uit donkere materie.

Helaas kunnen we alleen weloverwogen gissen naar de aard van donkere
materie of donkere energie. Verschillende experimenten worden uitgevoerd om
deze beter te begrijpen en te plaatsen in een samenhangend fysisch model voor
het universum. Deze taak blijkt helaas erg lastig, en de resultaten tot nu toe
zijn teleurstellend onbeslist.

Het ΛCDM model is een bepaald model, ondersteund door observaties, voor
het universum, welke beide donkere componenten beschrijft. In dit model
vormen en evolueren sterrenstelsels door de tijd middels het samensmelten
van kleinere systemen. De aantrekkingskracht die door de donkere materie
halo wordt opgewekt trekt nabije objecten aan, laat ze botsen en later volledig
samensmelten om een nieuw massiever sterrenstelsel te vormen. Hoewel dit
proces intüıtief goed is begrepen, worden we wiskundige vergelijkingen om
dit te modelleren praktisch onoplosbaar zodra het aantal betrokken objecten
stijgt. Zodoende is het gebruik van rekenmodellen niet alleen nodig, maar soms
de enige manier om de formatie en evolutie van sterrenstelsels te bestuderen.

In dit proefschrift hebben we uitgebreid gebruik gemaakt van numerieke ex-
perimenten gebaseerd op N lichamen, waarbij het donkere materie component
van sterrenstelsels wordt gerepresenteerd door puntmassa’s, en de vergelijkin-
gen welke de posities en snelheden voorspellen worden opgelost met krachtige
computers. Het neusje van de zalm van dit soort simulaties bestaan uit miljar-
den van deze lichamen en zijn in staat, met ongekende details, de formatie en
evolutie van donkere materie halos, zoals die van de Melkweg, te modelleren,
hierbij worden de processen die leidde tot de huidige configuratie bijgehouden.

Figuur 1 is een momentopname van de huidige verdeling van donkere ma-
terie rondom een gesimuleerd systeem waarvan verwacht wordt dat het een
massa heeft gelijk aan die van de Melkweg. Het diffuse component, waarvan
het centrum het midden van het figuur definieert, laat zien dat de vorm van
de donkere materie halo rondom de Melkweg verwacht wordt niet sferisch te
zijn binnen het ΛCDM model. In feite, in hoofdstuk 2 van dit proefschrift
wordt aangetoond dat het beter beschreven wordt door een ellipsöıde waarbij
de asverhouding veranderd als functie van de afstand tot het centrum van de
halo. In het algemeen wordt de vorm van de halo, op een afstand vergelijkbaar
met de afstand van de zon tot het centrum van de Melkweg, beschreven door
een verdeling die gedeeltelijk lijkt op een rugbybal, waarbij hij steeds minder
assymmetrisch wordt bij grotere afstand tot het centrum. De vormen van don-
kere materie halos zijn het resultaat van een reactie op de configuratie van de
dichtstbijzijnde delen van het universum en er is een direct verband met de
manier waarop de samenstelling plaats vindt. Deze conclusies kunnen echter
worden beinvloed wanneer andere fysische effecten in aanmerking worden ge-
nomen. Het samenspel tussen zichtbare en donkere materie bijvoorbeeld speelt
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Figuur 1: Huidige momentopname van een numerieke simulatie welke een don-
kere materie component zoals de Melkweg produceert. De witte stippen zijn
een stellaire stroom, een overblijfsel van een samensmelting (Springel et al.,
2008).

een belangrijke rol in het vormen van de halo dichtbij zijn centrum, waarbij
dit resulteert in een vorm die lijkt op een pindaloze M&MTM.

Misschien wel de meest opvallende indruk na het zien van Figuur 1 is de
grote hoeveelheid kleine structuren ingesloten in de halo. Dit zijn op zichzelf
staande donkere objecten, bezig met het samensmelten met de hoofdhalo. In
hoofdstuk 3 laten we zien dat subhalos ook langwerpig zijn, maar ronder dan
hun zwaardere tegenhangers. De zoektocht naar het begrijpen van de eigen-
schappen van subhalos is gemotiveerd door het feit dat voorspeld wordt dat
ze de gastheer zijn van satelliet sterrenstelsels van de Melkweg, die op hun
beurt dichtbij genoeg zijn om direct modellen van formatie en evolutie van
sterrenstelsels en theorieën van zwaartekracht te testen.

Een van de eerste proeven van dit soort betreft het aantal subhalos in
simulaties. Hoewel de Melkweg zelf omringd is door satellieten, zijn er slechts
een dozijn van bekend heden ten dage. Er is dus een tegenstrijdigheid met
de honderd duizenden kleine subhalos aanwezig in numerieke experimenten
zoals die getoond in Figuur 1. Hoewel in eerste instantie beschouwd als een
probleem, is dit feit gebruikt om beter te begrijpen hoe kleine sterrenstelsels
vormen en ons inzicht te geven in de rol van verschillende fysische processen
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en hoe die het gas bëınvloeden waaruit de sterren ontstaan. Het aantal grote
subhalos is ook een instrument dat wordt gebruikt in hoofdstuk 4 om onze
schatting van de totale massa van de Melkweg te verfijnen, een getal dat,
zelfs vandaag, niet beter bekend is dan binnen een factor van 3, aangezien
verschillende methodes andere, soms afwijkende resultaten geven.

Figuur 2: Waarnemingen van de Galactische halo, met een aantal sterstromen
zoals voorspeld uit de numerieke simulaties getoond in 1. De eigenschappen
van de sterren in de stroom kunnen worden gebruikt om de massaverdeling
van de Melkweg te begrijpen (Belokurov et al., 2006).

Een andere manier om de massadistributie in de Melkweg te bekijken is via
sterrenstromen. De witte stipjes in Fig 1 stellen een dergelijke sterstroom voor,
feitelijk gaat het om een restant van een dwergstelsel dat door de Melkweg is
opgeslokt. Aangezien de vorming van sterrenstelsels een hiërarchisch proces is,
verwachten we heel veel van zulke restanten, en dus ook in de waarnemingen
van onze Melkweg. Dat blijkt inderdaad het geval te zijn, zoals te zien is in
Fig. 2. Dergelijke sterstromen zijn coherente restanten van een botsing door
een kleiner stelsel met de Melkweg en evolueren door diens zwaartekracht.
Daardoor kan de dynamica van de individuele sterren in de stroom gebruikt
worden om de massadistributie beter te meten in onze Melkweg.

De Sagittarius sterstroom trekt hierbij bijzonder de aandacht. Om de inge-
wikkelde dynamica te begrijpen zijn er diverse modellen gemaakt van de halo
van onze Melkweg. Echter, de resultaten van het meest succesvolle model zijn
lastig te begrijpen vanuit de context van de evolutie van sterrenstelsels. In
hoofdstuk 5 van dit proefschrift stellen we een nieuw model voor dat de ster-
stroom met succes beschrijft en ook overeenstemt met voorspellingen van het
ΛCDM-model. Zo houdt het bijvoorbeeld rekening met de verwachte vorm van
de donkere materie halo in de buurt van onze zon, terwijl daarbij ook het effect
van de schijf van de Melkweg niet wordt vergeten. Tevens neemt het model
ook het effect mee van de Grote Magelhaense wolk (het grootste satellietstelsel
van onze Melkweg). We hebben daarbij gevonden dat de Grote Magelhaense
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wolk wel degelijk effect heeft op de dynamica van deze sterstroom. Daarbij
moeten eerdere conclusies over de massadistributie in de Melkweg ook worden
aangepast.

Er zijn veel aspecten van het ΛCDM-model die nu slechts zijdelings zijn
besproken. Daarbij zijn ook veel interessante onderwerpen om in de toekomst
nader te onderzoeken. Hoewel de reikwijdte van dit onderzoek beperkt is, hoop
ik toch dat mijn bijdrage in dit proefschrift een steentje kan bijdragen aan het
begrip van het ontstaan en de ontwikkeling van sterrenstelsels.
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Resumen

La traveśıa que empezó miles de años atrás simplemente contando estrellas ha
llevado a una de las preguntas más controversiales de la ciencia contemporánea:
“¿De qué está hecho el Universo?”. Encontrar una respuesta satisfactoria a es-
ta pregunta ha sido particularmente dif́ıcil, a pesar de los muchos y diversos
intentos hechos hasta el momento. En esta empresa la Astrof́ısica ha sido bas-
tante fruct́ıfera, desarrollando un marco f́ısico para la formación y evolución del
universo como un todo, y de igual manera para sus componentes individuales,
tales como planetas, estrellas y galaxias.

Midiendo las velocidades de estrellas en galaxias distantes, por ejemplo, he-
mos concluido satisfactoriamente que hay significativamente mucha más masa
de la que se puede ver. Las estrellas se mueven como consecuencia de la atrac-
ción gravitacional generada por la galaxia en la que ellas viven. Esta atracción
depende de la masa y, por lo tanto, si las masas de todas las estrellas se pueden
estimar de alguna manera (por ejemplo a través de su brillo), sus velocidades
pueden decirnos si nuestra interpretación de las Leyes de Newton es correcta,
la cual es una teoŕıa conocida desde el siglo xvii. Grandes discrepancias fue-
ron encontradas cuando estas medidas se hicieron, lo que llevó a concluir que
las leyes estan fundalmente equivocadas, ó que las galaxias tienen alǵın tipo
de masa posiblemente escondida. En esta Tesis trabajamos bajo la segunda
hipótesis y llamamos a la componente faltante materia oscura, enfatizando el
hecho de que es materia que no es directamente detectable. El desacuerdo en
la dinámica de las estrellas en galaxias sugiere que la materia oscura es la
componente de masa más dominante en estos sistemas, y que las estrellas sólo
hacen un contribución prácticamente despreciable a la cuenta total de la masa.
Modelos y observaciones sugieren también que la materia oscura esté distri-
buida en forma casi esférica alrededor de la parte de la galaxia que es visible,
en lo que llamaremos un halo.

Explosiones espectaculares de estrelllas al final de sus vidas en galaxias
distantes también nos ha permitido llegar a otra importante concluśıon acerca
de la composición del universo. Ademas de materia oscura, hay una fuerza
que hace que las galaxias de alejen entre ellas en forma acelerada. Dado que
la naturaleza de esta fuerza es desconocida para la humanidad, con la posible
excepción del vaćıo en śı mismo, una nueva componente tuvo que ser agregada
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al panorama. Esta nueva componente es llamada enerǵıa oscura y se estima
que hoy forma 3/4 del contenido de materia/enerǵıa del Universo, mientras
que el restante 1/4 es materia oscura.

Desafortunadamente, sólo hay disponibles estimaciones educadas de la na-
turaleza de la materia oscura o de la enerǵıa oscura. Muchos experimentos
están siendo llevados a cabo actualmente tratando de entender estas compo-
nentes y ubicarlas dentro de un modelo fisico consistente para el Universo. Sin
embargo esta parece ser una tarea insuperable y los resultados hasta ahora son
decepcionantemente no concluyentes.

El modelo ΛCDM (por sus siglas en inglés) constituye una descripción par-
ticular del Universo, que es actualmente avalada por las observaciones. En este
modelo las galaxias se forman y evolucionan gracias a la atracción gravitacional
generada por una galaxia masiva sobre objetos cercanos haciéndolos colisionar
y, con el tiempo, fusionar completamente para producir una nueva galaxia más
pesada. A pesar de que este proceso es intuitivamente bien entendido, las ecua-
ciones que lo modelan se vuelven prácticamente intratables cuando el número
de objetos involucrados empieza a crecer. Por lo tanto, el uso de herramientas
computacionales no solamente es requerido, sino que es algunas veces la única
forma de estudiar la formación y evolución de galaxias.

En esta Tesis usamos predominantemente experimentos numéricos basa-
dos en N cuerpos, donde la componente de materia oscura de las galaxias es
representada por masas puntuales, y las ecuaciones que predicen las posicio-
nes y velocidades son solucionadas numéricamente por computadores. Últimos
avances en simulaciones de este tipo permiten incluir miles de millones de tales
cuerpos y son capaces de modelar, con inaudito detalle, la formación y evolu-
ción de halos de materia oscura como los que rodean a la Vı́a Láctea, siguiendo
todos los procesos que llevan a su configuración actual.

La Figura 1 es una muestra de la configuración actual de materia oscura
alrededor de una sistema simulado del cual se espera que tenga la masa de la
Via Láctea. La componente suave, cuyo centro define el centro de esta figura,
muestra que la forma esperada según el modelo ΛCDM para el halo de materia
oscura que envuelve la Vı́a Láctea no es esférico. De hecho, en el Caṕıtulo 2 de
esta Tesis es demostrado que un elipsoide cuyas razones de los ejes principales
cambia como función de la distancia al centro del halo se aproxima mejor a esta
forma. A una distancia comparable a la del Sol respecto al Centro Galáctico,
el halo es descrito por una distribución de masa que parcialmente se parece a
un balón de fútbol americano, y se vuelve progresivamente menos simétrico a
medida que uno se aleja del centro. Las formas de los halos de materia oscura
es una respuesta a la configuración de las regiones cercanas del universo que
lo rodean y se correlacionan directamente con la forma en la cual el proceso
de ensamblaje del halo toma lugar. Sin embargo, estas conclusiones pueden
cambiar si otros efectos f́ısicos se tienen en cuenta. Por ejemplo, la interacción
de la materia visible con la materia oscura juega un papel importante en la de-
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Figura 1: Configuración actual de una simulación que reproduce un sistema
como la componente de materia oscura del Vı́a Láctea. Los puntos blancos
representan una corriente estelar, la cual es el resultado de una fusión (Springel
et al., 2008).

terminación de la forma del halo cerca de su centro, generando configuraciones
que pueden ser descritas por la forma de un M&MTM sin mańı.

Al mirar la Figura 1, la impresión mas fuerte es tal vez la enorme cantidad
de pequeñas estructuras que habitan el halo. Éstos son también objetos com-
puestos de materia oscura (subhalos), que están actualmente fusionándose con
el halo principal. En el Caṕıtulo 3 mostramos que estos subhalos son también
elongados, pero sus formas son en general más redondas que los halos más
masivos. La misión de entender las propiedades de estos subhalos esta funda-
mentalmente motivada por el hecho de que estos alojan las galaxias satélites de
la Vı́a Láctea, las cuales a su vez, están lo suficientemente cerca para evaluar
directamente modelos de formación y evolución galáctica y teoŕıas de gravita-
ción.

Una de las primeras pruebas de este tipo se refiere al número de subhalos
que se predicen en las simulaciones. A pesar de que la Vı́a Láctea está rodeada
por un sistema de satélites, solo hay una docena de ellos conocidos actualmente.
Hay entonces una evidente discrepancia con respecto a los cientos de miles
de pequeños subhalos (que son también satélites) presentes en experimentos
numéricos tales como el que se muestra en Figura 1. A pesar de que este
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hecho fue inicialmente considerado un problema, más tarde fue usado para
completar nuestro entendimiento de la forma en que las galaxias más pequeñas
se forman, permitiendo comprender los efectos que algunos feńomenos f́ısicos
tienen sobre el gas del cual las estrellas se forman. El número de subhalos más
grandes también fue usado como herramienta en el Caṕıtulo 4 para refinar
nuestro estimativo de la masa total de la Vı́a Láctea, el cual es un número
que incluso hoy, no se conoce con exactitud dentro de un factor de tres, dado
que los diferentes métodos usados para medirlo dan una variedad de resultados
discrepantes.

Figura 2: Observaciones del halo Galáctico, mostrando varias corrientes es-
telares, tales como las predichas por el experimento numérico mostrado en la
Figura 1. Las propiedades de las estrellas en la corriente pueden ser usadas para
entender la distribución de masa de la Vı́a Láctea (Belokurov et al., 2006).

Otra herramienta altamente utilizada para medir la distribución de masa
es la Vı́a Láctea. Los puntos blancos en la Figura 1 representan una corriente
estelar, la cual es el residuo de un evento de fusión. Dado que el proceso de
formación galáctica es un fenómeno jerárquico en el modelo ΛCDM, se espera
que estos residuos sean frecuentes y deban ser observados en grandes números
en observaciones de nuestra Galaxia. Tal es el caso, como se puede ver en la
Figura 2. Estas corrientes estelares son estructuras coherentes residuales de
eventos de acreción y evolucionan bajo la influencia de la atracción gravitacio-
nal generada por la Vı́a Láctea. Consecuentemente, la dinámica de las estrellas
individuales puede ser usada para restringir las posibles configuraciones de la
distribución de masa en la Vı́a Láctea.

Particularmente interesante es la corriente estelar asociada a la galaxia
enana de Sagitario. Hasta ahora, varios modelos para el halo de la Vı́a Láctea
han sido utilizados para explicar la compleja dinámica de esta corriente. Sin
embargo, los detalles de los modelos más exitosos son dif́ıciles de explicar en el
contexto de formación galáctica. En el Caṕıtulo 5 de esta Tesis hemos propues-
to un nuevo modelo que exitosamente describe la corriente y que concuerda
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con las predicciones de ΛCDM. El modelo incluye, por ejemplo, la forma es-
perada del halo de materia oscura en la vecindad solar teniendo en cuenta los
efectos del disco Galáctico. Nuestro modelo para la dinámica de la corriente
estelar tambien incorpora el efecto de la Gran Nube Magallánica, la galaxia
satélite mas masiva de nuestra Galaxia. Hemos encontrado que la Gran Nube
Magallánica afecta la dinámica de la corriente estelar y tiene además un im-
pacto apreciable sobre conclusiones previas acerca de la distribución de masa
en la Vı́a Láctea.

Hay muchos aspectos del modelo ΛCDM que sólo han sido discutidos tan-
gencialmente, y que son por śı mismos problemas interesantes para tratar en
el futuro cercano. A pesar de ser limitada en su alcance, es mi esperanza que
la humilde contribución mostrada en esta Tesis haya ayudado a pavimentar el
camino hacia una mejor comprensión de los procesos de formación y evolución
de galaxias.
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