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Chapter 6

The Role of Polycomb Group Proteins

in Hematopoietic Stem Cell (HSC)

Self-Renewal and Leukemogenesis

Vincent van den Boom, Hein Schepers, Annet Z. Brouwers-Vos,

and Jan Jacob Schuringa

Abstract Throughout embryonic development as well as during adult hematopoi-

esis Polycomb group (PcG) proteins fulfill important functions. Stem cell self-

renewal but also lineage fate decisions are controlled by PcGs. Besides a role in

normal hematopoiesis, PcGs are often deregulated in various types of cancer,

including human leukemias. Within this chapter we will discuss the current under-

standing of complex composition of canonical and noncanonical Polycomb repres-

sive complexes, how these can contribute to normal hematopoiesis, and how PcG

proteins can participate in leukemic transformation.

Keywords Polycomb repressive complex • Human hematopoietic stem cells

• Leukemia • Noncanonical • Stem cell self-renewal • Differentiation • AML • ALL

6.1 Introduction

Polycomb group (PcG) proteins are involved in epigenetic repression of gene

transcription and generally reside in two distinct complexes: Polycomb repressive

complex 1 (PRC1) and 2 (PRC2) (Fig. 6.1) (Simon and Kingston 2009). According

to the classical model for PcG-mediated repression, the PRC2 complex, containing

the methyltransferase EZH2, EED, and SUZ12, first trimethylates histone H3 at

lysine 27 (H3K27me3) (Cao et al. 2002; Kirmizis et al. 2004; Kuzmichev

et al. 2002). This epigenetic modification recruits the five-subunit PRC1 complex,

most likely via the chromobox domain of the CBX subunit of the PRC1 complex

(Bernstein et al. 2006; Levine et al. 2002). Subsequently, the PRC1 complex, via its

RING1 subunit, can ubiquitinate histone H2A at Lysine 119 (H2AK119ub)
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(de Napoles et al. 2004; Wang et al. 2004). In humans, each of the PRC1 compo-

nents has multiple paralog family members: six PCGF members (PCGF1/NSPC1,

PCGF2/MEL18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR), three PHC

members (PHC1, PHC2, and PHC3), five CBX members (CBX2, CBX4, CBX6,

CBX7, and CBX8), three Sex combs on midleg (SCM) members (SCML1, SCML2,

and SMLH1), and two RING1 members (RING1A and RING1B). These paralogs

allow a large diversity of distinct PRC1 complexes involved in PcG-mediated

silencing (Whitcomb et al. 2007). This idea was supported by the identification of

BMI1- and MEL18-containing PRC1 complexes and similarly PRC1 complexes

with mutually exclusivity of CBX paralogs (Elderkin et al. 2007; Maertens

et al. 2009; Vandamme et al. 2011). Indeed, PRC1 complexes were identified,

which lack a CBX paralog family member but do contain RYBP or YAF2 and are

targeted to PcG target genes independently of H3K27me3 (Gao et al. 2012; Tavares

et al. 2012). Furthermore, some paralog family members like RING1A/B, PCGF1,

and PCGF6 also reside in noncanonical PRC1 complexes such as the BCOR and

E2F6 complexes (Gearhart et al. 2006; Ogawa et al. 2002; Sanchez et al. 2007;

Trimarchi et al. 2001; Gao et al. 2012). Recently, the PRC1.1/BCOR complex was

shown to target PcG genes by means of the KDM2B H3K36 demethylase

(FBXL10), which specifically binds to unmethylated CpG islands (Fig. 6.1) (Farcas

et al. 2012; He et al. 2013; Wu et al. 2013). These data show that noncanonical

PRC1 complexes are involved in maintaining H2AK119ub levels as well. Also

components of the core PRC2 complex display substoichiometric interactions with

other (PcG) proteins. One such example is ASXL1, which is thought to mediate

Fig. 6.1 Overview of canonical and noncanonical PcG complexes
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recruitment and/or stabilization of the PRC2 complex to specific loci in the genome

(Abdel-Wahab and Dey 2013).

The expression of PcG proteins throughout the hematopoietic compartment

appears to be quite specific, with some PcGs being predominantly expressed in

the immature stem/progenitor compartments, while other PcGs display a much

more lineage-specific expression profile (Fig. 6.2). Taken together, these data

suggest that many distinct PcG complexes exist that are likely to fulfill different

functions. Yet, very little is known about possible differences in complex compo-

sition in, for instance, self-renewing hematopoietic stem cells (HSCs) versus non-

self-renewing progenitors, or in normal versus leukemic stem cells (LSCs). More-

over, it is currently unclear whether specific loci would be preferentially occupied

by certain PcG complexes across these different cell types. Lastly, we do not know

exactly how repression of these different loci would be controlled by the various

PRC complexes. Accumulating recent data indicates that molecular pathways

regulating cell cycle, apoptosis, senescence, reactive oxygen species (ROS) metab-

olism and DNA repair are at least in part under control of PcG proteins. Whether

PcG proteins fulfill similar roles in leukemia is currently unclear.

Understanding the molecular mechanisms by which PcG proteins affect stem

cell fate will increase our insights into the biology of HSCs and will also aid in

understanding the process of leukemic transformation, and ultimately in the iden-

tification of novel drug targets that might facilitate the eradication of LSCs. Here,

we will provide an overview of the current understanding of the role of PcG

proteins in HSC self-renewal and leukemogenesis.

Fig. 6.2 Expression of PcG proteins in human CB cells throughout the hematopoietic compart-

ment [based on data published by (Novershtern et al. 2011)]
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6.2 Polycomb Function in Normal Hematopoiesis

6.2.1 Polycomb Repressive Complex 2

6.2.1.1 EZH1 and EZH2

Of all PRC2 complex subunits, the methyltransferase EZH2 has been studied in

most detail. To study EZH2 function in murine hematopoiesis, conditional knock-

out models were required due to embryonic lethality of Ezh2 knockout mice

(O’Carroll et al. 2001). Using Mx-Cre;Ezh2fl/fl mice it was first shown that B cell

development was impaired in an Ezh2 null background (Su et al. 2003). More

specifically, pre-B cell generation was affected and accumulation of immature B

cells in the bone marrow (BM) was observed. This was caused by impaired

rearrangement of the immunoglobin heavy chain gene leading to reduced μ-chain
expression. Transplantation experiments emphasized that this phenotype was cell

autonomous and niche independent. In contrast, pro-B cell development was

unaffected indicating that EZH2 has stage-specific functions in B-lymphopoiesis.

EZH2 also plays a role in T-lymphocyte generation as Ezh2 null thymocytes fail to

develop further than early CD4/CD8 double negative CD44int/CD25hi stage in the

thymus in a transplant setting (Su et al. 2005). In contrast to adult BM cells, fetal

liver cells are highly sensitive to deletion of Ezh2 (Mochizuki-Kashio et al. 2011).

Using a Tie2-Cre;Ezh2fl/fl conditional model it was shown that levels of LSK, CMP,

GMP, and MEP cells were reduced in conditional Ezh2�/� whole fetal livers at

E12.5, indicating an important role for EZH2 during fetal hematopoiesis. Strik-

ingly, Ezh2 null cells could efficiently reconstitute hematopoiesis in adult BM in a

competitive transplant setting. In addition, H3K27me3 levels, which are very low in

fetal liver Ezh2 KO cells, were largely restored in Ezh2�/� fetal liver cells that

reconstituted the BM of recipient mice. The authors suggest a model where Ezh1,
which is strongly induced in adult versus fetal LSK cells, may rescue Ezh2 null cells
in an adult BM environment by inducing and/or maintaining proper H3K27me3

levels in the context of an EZH1–PRC2 complex (Mochizuki-Kashio et al. 2011).

Murine EZH2 overexpression studies showed enhanced long-term repopulation

potential in a serial transplant setting (Kamminga et al. 2006).

It was previously shown that in Ezh2 null embryonic stem (ES) cells H3K27me3

levels are reduced but not completely lost (Shen et al. 2008). Furthermore, EZH1

was shown to interact with PRC2 components and locates to EZH2 target genes

whereby most likely (lower) levels of the H3K27me3 mark can be maintained at

these loci (Margueron et al. 2008; Shen et al. 2008). Conditional deletion of both

Ezh1 and Ezh2 in the mouse skin showed a complete loss of H3K27me3 levels

further supporting a model where Ezh1 can at least partially compensate for loss of

Ezh2 (Ezhkova et al. 2011). Recently, the specific role of Ezh1 in hematopoiesis

was addressed in a hematopoietic conditional knockout model (Hidalgo

et al. 2012). Conditional deletion of Ezh1 in the hematopoietic system using a

Vav-Cre;Ezh1fl/fl mouse model showed development of BM hypoplasia most likely
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due to reduced numbers of LT-HSC, ST-HSC, MPP, and CLP cells, whereas CMP,

GMP, and MEP cells were unaffected. Competitive transplantation experiments

using a tamoxifen-inducible Ezh1 conditional knockout model showed a loss of

repopulating ability, which was attributed to increased levels of senescence in the

primitive stem cell compartment. Increased senescence in this model is likely

driven by de-repression of p16INK4A since a Vav-Cre;Ezh1fl/fl;Ink4a-Arffl/fl showed
restoration of the senescence phenotype. Similar to Ezh2 knockout mice, B-cell

lymphopoiesis was also affected in Ezh1 conditional knockout mice (Su et al. 2003;

Hidalgo et al. 2012). In contrast to the Ezh2 conditional knockout model, deletion of

Ezh1 in the hematopoietic system also led to a reduction in pro-B cell numbers.

Furthermore, fetal liver hematopoiesis was not affected by Ezh1 deletion,

suggesting that Ezh2 is indeed the dominant H3K27 methyltransferase during

fetal embryogenesis (Mochizuki-Kashio et al. 2011; Hidalgo et al. 2012).

Taken together, EZH1 and EZH2 seem to have both separate as well as

overlapping functions in the hematopoietic system, whereby the loss of one

methyltransferase can be partially compensated for by the other depending on the

hematopoietic cell lineage and developmental stage.

6.2.1.2 EED

Apart from the methyltransferases EZH1 and EZH2, the PRC2 complex is also

composed of the core subunits EED and SUZ12. The role of EED in murine

hematopoiesis was first described by Lessard and colleagues using mice heterozy-

gous for an Eed null allele or homozygous for an Eed hypomorphic allele (Lessard

et al. 1999). Previously, homozygous Eed null embryos were shown to exert severe

gastrulation defects (Schumacher et al. 1996; Faust et al. 1995). Biochemical

analysis showed that EED interacts with H3K27me3 via its carboxy-terminal

domain and that this interaction stimulates PRC2 methyltransferase activity

suggesting a role for EED in propagation of H3K27me3 through DNA replication

(Margueron et al. 2009). In murine hematopoiesis, EED likely acts as a negative

regulator of cell proliferation and Eed3354/+ mice showed increased levels of

myeloid progenitors and pre-B cells. In addition, at older age these mice displayed

hyperproliferation of both lymphoid and myeloid cells (Lessard et al. 1999). How-

ever, classical target genes like p16INK4A and p19ARF and Hox genes were not

upregulated in this mouse model (Lessard et al. 1999).

6.2.1.3 SUZ12

Similar to Ezh2 null and Eed null mice, also homozygous deletion of the Suz12 gene
resulted in early embryonic lethality (Pasini et al. 2004). This was accompanied by

a complete loss of H3K27me2/3 suggesting that PRC2 activity is completely lost in

these embryos. In murine hematopoiesis, an ENU-induced loss-of-function muta-

tion in the Suz12 gene was identified as a suppressor of thrombocytopenia and HSC
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defects in cMpl�/� mice (Majewski et al. 2008). More recently, it was shown that

crossing heterozygous Eed null or Ezh2 null mutations in a cMpl�/� background

also resulted in an improvement in the thrombocytopenic phenotype, whereby

increased white blood cell counts were observed (Majewski et al. 2010).

6.2.2 Polycomb Repressive Complex 1

As described above, the PRC1 complex consists of five subunits (PCGF, CBX,

PHC, RING1, and SCM), and each of these subunits has a family of paralogs both in

mice and humans. Below we will describe the involvement of the various paralog

family members in hematopoiesis.

6.2.2.1 PCGF Paralog Family

The PCGF paralog family is composed of PCGF1 (NSPC1), PCGF2 (MEL18),

PCGF3, PCGF4 (BMI1), PCGF5, and PCGF6 (MBLR). Of these, BMI1 has been

studied most extensively in hematopoiesis. BMI1 was initially observed to be

oncogenic in a retroviral integration site screen where it was identified as a

collaborating hit in MMLV-induced B-cell lymphomas in Eμ-myc transgenic

mice (Haupt et al. 1991; van Lohuizen et al. 1991). Homozygous deletion of

Bmi1 in mice resulted in reduced numbers of hematopoietic progenitors and more

differentiated cells, eventually leading to hematopoietic failure (van der Lugt

et al. 1994). More detailed analysis showed that BMI1 has a central regulatory

role in self-renewal of HSCs by inducing symmetrical cell division both in mouse

and human model systems (Park et al. 2003; Iwama et al. 2004; Lessard and

Sauvageau 2003; Rizo et al. 2008). Accordingly, Bmi1�/� mice displayed dramat-

ically reduced HSC frequencies. Mechanistically, the role of BMI1 in regulating

HSC self-renewal is partially explained by its ability to repress the Ink4a-Arf locus
(Jacobs et al. 1999; Park et al. 2003). Expression of p16INK4A and p19ARF in HSCs

induces cell cycle arrest and p53-mediated cell death. Loss of BMI1 expression

most likely results in a decreased H2AK119 ubiquitinating activity of the PRC1

complex at the Ink4a-Arf locus, inducing expression of p16INK4A and p19ARF.

Importantly, the hematopoietic phenotype of Bmi1�/� mice is not only dependent

on the induction of Ink4a/Arf. Bmi1�/�;Ink4a-Arf�/� double knockout mice

showed a partial recovery of hematopoietic cell counts but did not show a complete

reversal of the Bmi1 null phenotype, suggesting that other pathways are also

involved (Bruggeman et al. 2005). In a separate study, competitive transplant

experiments showed that Bmi1�/�;Ink4a-Arf�/� cells showed peripheral blood

chimerism levels comparable to wild-type cells, whereas Bmi1�/� cells did not

contribute at all (Oguro et al. 2006). Although HSC self-renewal clearly correlated

with p16INK4A and p19ARF expression, the typical hypoplastic BM phenotype of

Bmi1 null mice was not completely rescued by deletion of the Ink4a-Arf locus.
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Gene expression analysis of the HSC/MPP fraction in Bmi1 null mice surprisingly

showed premature transcriptional activation of Ebf1 and Pax5, two regulators of B

cell lymphopoiesis (Oguro et al. 2010). BMI1 is directly recruited to the promoters

of these genes and Bmi1�/�;Ink4a-Arf�/� cells are biased toward the B cell lineage

at the expense of T cell lymphopoiesis.

A candidate Ink4a-Arf-independent pathway for BMI1 in controlling HSCs is

regulation of ROS in the cell. Bmi1�/� mice displayed impaired mitochondrial

function due to increased expression of PcG target genes involved in ROS metab-

olism (Liu et al. 2009). Long-term HSCs from Bmi1�/� mice showed increased

levels of ROS and treatment of mice with the antioxidant N-acetylcysteine (NAC)
resulted in a rescue of thymocyte cell numbers compared to non-treated Bmi1�/�

mice. Furthermore, de-regulated ROS metabolism induced activation of the DNA

damage response pathway. Knockout of Chk2, a component of the DNA damage

response pathway, in a Bmi1�/� background resulted in partial reversal of the

thymocyte phenotype observed in Bmi1�/� mice and increased LSK cell numbers

in the BM. However, Bmi1�/�;Chk2�/� cells failed to give long-term repopulation

in a competitive transplant setting similar to Bmi1�/� mice, indicating that the HSC

self-renewal phenotype of Bmi1 null mice is not rescued by Chk2 deletion. Inter-

estingly, knocking down BMI1 in CD34+ human cord blood cells also induced

increased ROS levels and apoptosis (Rizo et al. 2009). These data clearly show that

apart from the role of BMI1 in regulating cell cycle and senescence through the

Ink4a-Arf locus, BMI1 is also implicated in other pathways regulating oxygen

metabolism.

PCGF1 has previously been identified as a member of the BCOR complex,

containing RING1A, RING1B, BCOR, SKP1, and KDM2B (FBXL10) (Gearhart

et al. 2006). Recently, the H3K36-specific demethylase KDM2B was shown to

target this noncanonical PRC1 complex to unmethylated CpG islands in the pro-

moters of lineage-specific genes in ES cells (Fig. 6.1) (Farcas et al. 2012; He

et al. 2013; Wu et al. 2013). Depletion of KDM2B resulted in derepression, a loss

of RING1B binding and decreased H2AK119ub levels at these target genes. In

mouse hematopoietic cells, PCGF1 was picked up as a factor negative regulating

self-renewal of lineage negative cells in a Runx1 conditional knockout setting (Ross
et al. 2012). PCGF1 knockdown was shown to induce expression of HOXA cluster

genes and led to a loss of H2AK119ub at the promoters of these genes. Knockdown

of PCGF1 in human CD34+ CB cells was recently shown to give a mild growth

reduction in in vitro cultures and a loss of CFC frequency (van den Boom

et al. 2013).

Mel18�/�mice display severe posterior transformations of the axial skeleton in a

manner similar to Bmi1 null mice (Akasaka et al. 1996; van der Lugt et al. 1994).

Similarly, analysis of the hematopoietic compartments showed a strong reduction

in cellularity in the thymus and spleens in both knockout models. Both models do

not completely overlap in terms of phenotype since Mel18 null mice develop

abnormalities of the lower intestine, whereas Bmi1-deficient mice specifically

display a cerebellum defect. However, generation of Mel18�/�;Bmi1�/� mice
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showed that both proteins synergistically regulate Hox cluster expression (Akasaka
et al. 2001). Competitive transplants using E14 fetal liver cells fromMel18�/�mice

showed a only a mild reduction in repopulating activity compared to a severe loss of

repopulating activity in Bmi1�/� cells (Iwama et al. 2004). Knockdown of MEL18

in human cord blood (CB) cells resulted in a dramatic reduction in proliferation in

both BM stromal cocultures and liquid cultures and a strong reduction in CFC

plating efficiency (van den Boom et al. 2013). However, while BMI1 depletion led

to an upregulation of p14ARF and p16INK4A, MEL18 knockdown did not induce the

expression of these genes. These data show that, although both involved in the

regulation of hematopoiesis, BMI1 and MEL18 have distinct functions and BMI1

clearly has a much more prominent role in maintaining HSC self-renewal.

Concerning PCGF3, PCGF5, and PCGF6 no information is currently available

on their potential function in murine hematopoiesis. PCGF6 knockdown in human

CD34+ CB cells did not or only mildly affect cell growth in hematopoietic growth

assays and did not alter CFC plating efficiency, suggesting that this gene is not

involved in human hematopoiesis (van den Boom et al. 2013).

6.2.2.2 CBX Paralog Family

The CBX paralog family encompasses the CBX2, CBX4, CBX6, CBX7, and CBX8

proteins, which are homologues of the Drosophila melanogaster Polycomb protein

and target the PRC1 complex to the chromatin through their interaction with

H3K27me3. However, the chromodomains of the various CBX proteins show

significant differences in substrate specificity in in vitro assays, since some interact

with both H3K27me3 and H3K9me3, or selectively with H3K9me3 (Bernstein

et al. 2006). Recently, two independent studies reported different functional modal-

ities between CBX paralog family members in mouse ES cells (Morey et al. 2012;

O’Loghlen et al. 2012). These data showed a key role for CBX7 in undifferentiated

ES cells, whereas CBX2 and CBX4 were essential for lineage commitment. Gene

expression data from human hematopoietic cell subsets also showed that the

various CBX proteins are differentially expressed in HSCs, progenitors, and dif-

ferentiated cells (Fig. 6.2) (van den Boom et al. 2013; Novershtern et al. 2011).

Two Cbx2 (M33) knockout models were generated both of which showed

skeletal transformations (Katoh-Fukui et al. 1998; Core et al. 1997). Interestingly,

Coré and colleagues observed a reduction of cell numbers in the spleen, thymus,

and BM of Cbx2�/� mice and found both B and T cell lymphopoiesis to be affected

(Core et al. 2004; Core et al. 1997). However, competitive transplant experiments

using fetal liver cells from Cbx2�/� mice did not show any change in repopulation

capability compared to wild-type cells (Iwama et al. 2004). In contrast, knockdown

of CBX2 in human CD34+ CB cells resulted in a severe phenotype in both the HSC

and progenitor compartment (van den Boom et al. 2013). CBX2 knockdown cells

displayed a reduced proliferation and increased apoptosis. Furthermore, the

CDKN1A gene (p21) was directly targeted by CBX2 and concurrent knockdown

of CBX2 and p21 partially rescued the CBX2 knockdown phenotype. It is possible
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that these differences in CBX2 function between human and mouse hematopoiesis

are a consequence of species-specific differences in CBX2 function. For example,

where p21 is a bona fide target of CBX2/PRC1 and PRC2 complexes in human

CD34+ CB cells, it has not been annotated as a PcG target gene in mouse cells.

CBX4 has the unique biochemical property among other CBXs that it is a

SUMO E3 ligase stimulating UBC9-dependent sumoylation of the transcriptional

repressor CtBP by tethering both to Polycomb bodies (Kagey et al. 2003). Interest-

ingly, in human epidermal stem cells CBX4 preserved a slow-cycling and undiffer-

entiated state and also prevents from senescence induction (Luis et al. 2011).

Recent generation of a conditional Cbx4 knockout mouse model showed that

thymic development was impaired. However, this phenotype was caused by dys-

function of the thymic epithelial cells rather than a consequence of intrinsic defects

of the developing thymocytes (Liu et al. 2013). CBX4 overexpression in murine

hematopoietic cells mildly suppressed proliferation, inhibited replating potential in

CFC assays, and reduced CAFC activity (Klauke et al. 2013). In contrast, knock-

down of CBX4 in human CD34+ CB cells strongly reduced cell proliferation in BM

stromal cocultures and liquid cultures and diminished CFC plating efficiency (van

den Boom et al. 2013).

Cbx7 knockout mice are born in Mendelian ratios and display a slight increase in

body length (Forzati et al. 2012). MEFs from these mice showed increased prolif-

eration and decreased induction of senescence and adult Cbx7�/� mice develop

tumors in the liver and the lungs. However, effects of Cbx7 knockout on the

hematopoietic system were not studied in this report. Contrasting the tumor-

suppressor role of CBX7 in other tissues, overexpression of CBX7 in murine

hematopoietic cells increases proliferation in liquid cultures and enhances the

in vitro proliferative capacity of LT-HSCs and ST-HSCs (Klauke et al. 2013).

CBX7 overexpression in LT-HSCs and subsequent transplantation showed

enhanced numbers of ST-HSCs and MPPs but not LT-HSCs at late stages after

transplantation. The authors suggest a model where CBX7 preserves a HSC self-

renewing state by specifically repressing genes involved in differentiation. CBX7

knockdown in human CB CD34+ cells led to a mild proliferative disadvantage and

reduction in CFC frequencies (van den Boom et al. 2013).

To study the role of CBX8 in normal hematopoiesis, both constitutive and

conditional CBX8 knockout models were used (Tan et al. 2011). CBX8 deletion

did not lead to changed peripheral blood cells numbers and bone marrow cellular-

ity. Furthermore, LT-HSC functionality was not affected as shown by competitive

transplant assays, suggesting that CBX8 is not involved in normal hematopoiesis. In

contrast, in a separate study, overexpression of CBX8 in murine hematopoietic cells

showed a phenotype opposite of CBX7, where frequencies of LT-HSCs, ST-HSCs,

and MPP are all decreased (Klauke et al. 2013). Knockdown of CBX8 in human

CD34+ CB cells resulted in a mild negative phenotype in terms of cell proliferation,

similar to CBX7 knockdown (van den Boom et al. 2013). Myeloid differentiation

was not affected by knockdown of either CBX7 or CBX8.
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6.2.2.3 RING1 Paralog Family

The RING1 paralog family consists of RING1A and RING1B. Both proteins

possess H2AK119 ubiquitinating activity (Buchwald et al. 2006; de Napoles

et al. 2004; Wang et al. 2004). Deletion of both Ring1a and Ring1b was necessary

to achieve genome-wide depletion of H2AK119ub (Endoh et al. 2008; Stock

et al. 2007). Furthermore, H2A ubiquitination is essential for repression of devel-

opmental genes and preserving ES cell identity (Endoh et al. 2012). Although

H2AK119 ubiquitination is in part BMI1 dependent, recent studies showed

RING1B-dependent H2AK119 ubiquitination in the context of noncanonical

PRC1 complexes (i.e., PRC1-RYBP, BCOR complexes) that are targeted to the

chromatin independently of H3K27me3 (Farcas et al. 2012; He et al. 2013; Wu

et al. 2013; Kallin et al. 2009). Ring1a�/� mice showed skeletal abnormalities and

slight deregulation of Hox gene expression (del Mar Lorente et al. 2000). In

contrast, where Ring1a null mice are viable, deletion of Ring1b led to a severe

gastrulation defects and embryonic lethality (Voncken et al. 2003). The generation

of a conditional Mx-Cre;Ring1bfl/fl mouse model allowed the investigation of

Ring1B function in hematopoiesis (Cales et al. 2008). This study showed that

Ring1b depletion led to a mild increase in the primitive stem/progenitor compart-

ment (LSK, Lin� cells), whereas the total BM compartment was slightly decreased.

In line with this phenotype, p16INK4A was selectively activated in more differenti-

ated cells but not in the Lin� compartment, whereas the positive cell cycle regulator

CycD2 was upregulated in most compartments. Simultaneous deletion of p16INK4A,
p19ARF, and Ring1b resulted in a rescue of the negative effects on proliferation of

the mature compartments, although the hyperproliferative phenotype of the prim-

itive compartment was not corrected. Knockdown of RING1B in human CB CD34+

cells showed severe defects in long-term expansion and progenitor frequencies (van

den Boom et al. 2013).

6.2.2.4 PHC Paralog Family

Both in mice and humans the Polyhomeotic paralog family encompasses three

members: PHC1, PHC2, and PHC3. Phc1�/� (Rae28) mice showed skeletal abnor-

malities and a reduced spleen size (Takihara et al. 1997). Further studies showed

involvement of Phc1 in early B cell lymphopoiesis (Tokimasa et al. 2001). Fur-

thermore, Phc1 null mice displayed reduced hematopoietic progenitor activity in

the fetal liver and loss of long-term repopulating activity of fetal liver cells in

competitive transplant experiments (Ohta et al. 2002; Kim et al. 2004). Phc2�/�

mice also showed skeletal abnormalities and deregulated expression of Hox genes

and p16INK4A and p19ARF (Isono et al. 2005). In contrast to Phc1, null mice deletion

of Phc2 did not have an apparent phenotype in hematopoiesis.
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6.2.2.5 SCM Paralog Family

The sex combs on midleg (SCM) paralog family consists of SCMH1, SCML1 and

SCML2. SCMH1 was first identified as a substoichiometric subunit of the PRC1

complex (Levine et al. 2002). Protein interaction studies have showed that also

SCML1 and SCML2 of this paralog family can interact with other PRC1 subunits

in human cells (van den Boom et al. 2013; Gao et al. 2012). Scmh1�/� mice display

characteristic features resembling other PcG knockout mouse models like skeletal

abnormalities; however, studies concerning the hematopoietic system have not been

reported (Takada et al. 2007).

6.3 Polycomb Function in Leukemia

6.3.1 Polycomb Repressive Complex 2

6.3.1.1 EZH1 and EZH2

Unlike its related family member EZH1, a potential role for the PRC2 member

EZH2 in hematological malignancies has been heavily investigated. Both tumor

suppressor as well as oncogenic functions have been described, which will be

discussed here. Besides being overexpressed in a variety of malignancies

(Bachmann et al. 2006), EZH2 has shown aberrant expression in mantle cell

lymphoma (Visser et al. 2001), Hodgkin lymphoma (Raaphorst et al. 2000), and

non-Hodgkin lymphoma (Table 6.1) (van Kemenade et al. 2001). In complex

karyotype AML, overexpression of EZH2 has also been observed (Grubach

et al. 2008), although in a panel of 60 AMLs separated in CD34+ and CD34�

fractions, higher expression was only observed within the CD34� fraction, while

the expression was significantly reduced within the CD34+ compartment compared

to normal bone marrow CD34+ cells (Fig. 6.3) (Bonardi et al. 2013; de Jonge

et al. 2011). In contrast, overexpression of EZH1 was observed within the AML

CD34+ compartment compared to NBM CD34+ cells (Bonardi et al. 2013; de Jonge

et al. 2011). More recently, mutations in the EZH2 gene were discovered in ~22 %

of follicular and diffuse large B cell lymphomas. Mutation of Tyrosine residue

641 (Y641) in the SET domain led to a severe decrease in enzymatic H3K27

trimethylation activity (Morin et al. 2010). EZH2 mutations were also reported

for various myeloid malignancies like CMML, MDS, and AML (Abdel-Wahab

et al. 2011; Ernst et al. 2012; Makishima et al. 2010; Cancer Genome Atlas

Research Network. 2013). Although Y641 mutations were not found, these myeloid

malignancies carried other EZH2 mutations (R690, N693 and H694) that also

affected the SET domain and thereby H3K27 trimethylation activity (Abdel-

Wahab et al. 2011; Ernst et al. 2012; Makishima et al. 2010). In T-ALL ~18 % of

the patients displayed truncating or missense mutations before the SET domain in
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Table 6.1 Involvement of PcG proteins in human hematological malignancies

Canonical PRC 
complex Protein Disease Aberrancy ref

PRC2 EZH1 AML Overexpressed (AML CD34+) (de Jonge et al. 2011)

EZH2 AML Overexpressed (AML CK) (Grubach et al. 2008)

AML Reduced expression (AML CD34+) (de Jonge et al. 2011)

AML Reduced expression in CBF-mutated AML (Grubach et al. 2008)

AML, MDS,
MPN, CMML

Loss-of-function mutations SET domain (R690, N693, 
H694)

(Abdel-Wahab et al. 
2011;Ernst et al. 
2012;Makishima et al. 
2010;Ernst et al. 
2010;Nikoloski et al. 
2010)

MCL, NHL, HL Overexpressed
(Visser et al. 
2001;Raaphorst et al. 
2000;van Kemenade 
et al. 2001)

FL,DLBCL Loss-of-function mutations SET domain (Y641) (Morin et al. 2010)

T-ALL Missense mutations (Ntziachristos et al. 
2012)

T-ALL Reduced expression (Simon et al. 2012)

ETP-ALL Loss-of-function deletion/mutations SET domain (R684) (Zhang et al. 2012)

EED MDS/MPN Loss-of-function deletion/mutations (protein stability, 
EZH2 interaction, H3K27 me3 binding) (Ueda et al. 2012)

ETP-ALL Loss-of-function deletion/mutations (R684) (Zhang et al. 
2012;Ueda et al. 2012)

SUZ12 T-ALL Loss-of-function deletion/mutations (S369fs, others)
(Ntziachristos et al. 
2012;Zhang et al. 
2012)

MPN Loss-of-function deletion/mutations
(Brecqueville et al. 
2012;Score et al. 
2012)

PRC2
interactors ASXL1 MDS, MPN, 

AML, CML Mutations (decrease protein stability)

(Abdel-Wahab et al. 
2011;Shih et al. 
2012;Abdel-Wahab et 
al. 2012;Schnittger et 
al. 2013)

JARID2 MDS/MPN, 
AML Deletion (Puda et al. 2012)

PRC1 PCGF2/MEL18 AML Overexpressed (AML CK) (Grubach et al. 2008)

AML Reduced expression in CBF-mutated AML (Grubach et al. 2008)

PCGF4/BMI1 AML Overexpressed (AML CD34+)
(de Jonge et al. 
2011;Chowdhury et al. 
2007;van Gosliga et 
al. 2007)

AML Overexpressed, predicts prognosis (Chowdhury et al. 
2007)

MDS Overexpressed, predicts prognosis (Mihara et al. 2006;Xu 
et al. 2011)

CML Overexpressed, predicts prognosis (Mohty et al. 2007)

HL, NHL Overexpressed
(Raaphorst et al. 
2000;van Kemenade 
et al. 2001;Dukers et 
al. 2004)

CBX7 FL Overexpressed (Scott et al. 2007)

AML Reduced expression (AML CD34+) (de Jonge et al. 2011)

RING1A AML Overexpressed (AML CD34+) (de Jonge et al. 2011)

AML/MDS Overexpressed (Xu et al. 2011)

PHC1/RAE28 B-ALL Reduced expression (Tokimasa et al. 2001)

AML Overexpressed (AML CD34+) (de Jonge et al. 2011)

Non-canonical 
PRC complex Protein Disease Aberrancy

PRC1.1/BCOR BCOR AML Mutated (Grossmann et al. 
2011)

complex AML Overexpressed (AML CD34+) (Bonardi et al. 2013;de 
Jonge et al. 2011)

BCORL1 AML Mutated (Li et al. 2011)

Role of PcGs proteins in hematological malignancy model systems

gene model phenotype

EZH2 Conditional Ezh2-/- mouse model T-ALL (Simon et al. 2012)

mBM MLL-AF9 Tx model Leukemia development in 2nd mice impaired in Ezh2-/-

cells
(Neff et al. 
2012;Tanaka et al. 
2012)

mBM Ezh2 overexpression Myeloproliferative disease, (Herrera-Merchan et 
al. 2012)

(continued)
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EZH2 (Ntziachristos et al. 2012). Furthermore, 7 % of the T-ALLs demonstrated

alterations in another PRC2 member, SUZ12 (Ntziachristos et al. 2012). Although

no deletions or mutations of EZH2 could be found in the remaining human T-ALL

cases, transcriptome analysis indicated that EZH2 expression levels were strongly

reduced (Simon et al. 2012). Conditional deletion of Ezh2 in a mouse model led to

the occurrence of T-ALL leukemias (Simon et al. 2012). H3K27 di- and

trimethylation were reduced, but not absent, indicating that EZH1 may partially

compensate for the loss of EZH2 (Simon et al. 2012). These data suggest that EZH2

functions as a tumor suppressor in T-ALL and that loss of EZH2 contributes to this

malignancy. In a large proportion of the T-ALLs with EZH2 or other PRC2

mutations, also oncogenic mutations in NOTCH1 were observed (65 %)

(Ntziachristos et al. 2012). This suggests that NOTCH1 mutations and EZH2
mutations collaborate in the induction of T-ALL.

In contrast, in an MLL-AF9 model of leukemia, deletion of Ezh2 did not affect

leukemic initiation, but maintenance of the leukemia was impaired. This is most

likely the result of a reduction in the frequency of LSCs (Neff et al. 2012; Tanaka

et al. 2012). H3K27me3 levels were strongly reduced, but not absent in these cells

(Neff et al. 2012; Tanaka et al. 2012). As leukemic growth was not completely

absent and H3K27 trimethylation persisted on a subset of genes, also here EZH1

may partially compensate for the loss of EZH2 (Neff et al. 2012; Shi et al. 2013).

These results imply that EZH2 is required for the proper maintenance of MLL-AF9-

dependent LSCs, which is opposite from its tumor suppressor function in T-ALL.

As also knockdown of Eed and Suz12 led to a reduction in MLL-AF9/NRASG12D-

induced leukemic growth, this further strengthens the dependence of these

Table 6.1 (continued)

EED mBM MLL-AF9/NRAS(G12D) Tx 
model Reduced leukemic growth upon EED knockdown (Shi et al. 2012)

SUZ12 mBM MLL-AF9/NRAS(G12D) Tx 
model Reduced leukemic growth upon SUZ12 knockdown (Shi et al. 2012)

PCGF4/BMI1 Primary AML Reduced long-term growth upon BM1 knockdown (Rizo et al. 2009)

huCB CD34+ BCR-ABL/BMI1 Myeloid/lymphoid transformation in vitro, B-ALL in vivo (Rizo et al. 2010)

mBM BCR-ABL/Bmi1 Tx model B-ALL
(Sengupta et al. 
2012;Waldron et al. 
2011)

mBM MYC/BmiI1 Tx model B-ALL (van Lohuizen M. et al. 
1991)

mBM HoxA9/Meis1  Tx model Loss of serial transplantation in BMI1-/- BM (Lessard and 
Sauvageau 2003)

mBM AML1-ETO Tx model Loss of leukemic CFC replating in BMI1-/- BM (Smith et al. 2011)

mBM PLZF-RARa Tx model Loss of leukemic CFC replating in BMI1-/- BM (Smith et al. 2011)

mBM MLL-AF9  Tx model Loss of transformation in HoxA9-/-/Bmi1-/- background (Smith et al. 2003)

CBX8 mBM MLL-AF9/ENL Tx model Loss of transformation in Cbx8-/- background (Tan et al. 2011b)

ASXL1 mBM  NRAS(G12D) Tx model loss of ASXL1 accelerated onset of leukemia (Abdel-Wahab et al. 
2012)

AML acute myeloid leukemia, MDS myelodysplastic syndrome, MPN myeloproliferative neo-

plasms, CMML chronic myelomonocytic leukemia, MCL mantle cell lymphoma, NHL
non-hodgkin lymphoma, HL hodgkin lymphoma, DLCLB diffuse large B-cell lymphoma, T-ALL
T cell acute lymphoblastic leukemia, ETP-ALL Early T-cell precursor acute lymphoblastic

leukemia, FL follicular lymphoma, CML chronic myeloid leukemia, mBM mouse bone marrow;

Tx transplantation; CB human cord blood; CK complex karyotype
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leukemias on PRC2 function (Shi et al. 2013). MLL-AF9-induced gene expression

has been suggested to resemble an ES-like gene expression signature, which also

comprises a PRC2 and MYC module (Kim et al. 2010; Somervaille et al. 2009).

This MYC module is strongly reduced upon deletion of Ezh2, but only in secondary
and not in primary leukemias. This suggests that PRC complexes play a role in the

MLL-AF9-induced MYC module expression necessary for disease progression

(Neff et al. 2012). In contrast, EZH2-deficient T-ALLs show an enhanced expres-

sion of MYC (Simon et al. 2012), suggesting that MLL-AF9 changes the gene

regulatory functions of EZH2. Recent data showed that Menin, a partner of Mixed

Lineage Leukemia (MLL), binds to the Ezh2 promoter and enhances its expression

(Thiel et al. 2013). Enhanced expression of EZH2 results in a myeloproliferative

disease (Herrera-Merchan et al. 2012), but together with Menin causes a block in

Fig. 6.3 Expression of PcG proteins in AML CD34+ and NBM CD34+ cells. Transcriptome

profiling was performed on AML CD34+ (n ¼ 60) and normal BM CD34+ cells (n ¼ 40) (Bonardi

et al. 2013; de Jonge et al. 2011). Differentially expressed genes were identified using an unpaired

t-test with multiple testing correction (Benjamini-Hochberg, p < 0.01) and are marked with an

asterisk
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myeloid differentiation (Thiel et al. 2013). Since mutations that affect EZH2

methyltransferase activity have also been shown to induce MPD/MDS (Abdel-

Wahab et al. 2011; Makishima et al. 2010), this suggests that this activity needs

to be carefully regulated, as both hypo- and hyperactivity can result in myeloid

malignancies. Therefore, the contrasting role of EZH2 as a tumor suppressor or

oncogene can most likely be explained by the different genetic context in which

EZH2 plays a role. The fact that PRC2 complexes are recruited by PML-RARα and

PLZF-RARα to RAREs while PRC1 is only recruited by PLZF-RARα further adds

to this notion (Boukarabila et al. 2009; Villa et al. 2007).

6.3.1.2 EED

Unlike Ezh2, deletion of Eed, another PRC2 family member, completely abrogated

MLL-AF9-mediated leukemia initiation (Neff et al. 2012). But although primary

MLL-AF9 targets were not affected by Ezh2 deletion, Eed deletion did affect the

expression of these primary targets. These discrepancies can be reconciled with the

following assumptions: 1; EZH1 partially can compensate for EZH2 activity and 2;

both EZH1 and EZH2 activity is dependent upon EED. The first assumption has

been confirmed in an MLL-AF9/NRASG12D leukemic model, where reduction in

both EZH1 and EZH2 were necessary to reduce leukemic growth in vitro (Shi

et al. 2013). Furthermore, EZH2 activity is dependent on EED (Denisenko

et al. 1998) and EED mutants have been observed in patients with myelodysplastic

syndrome and early T-cell precursor ALL (Ueda et al. 2012; Zhang et al. 2012).

These mutations in EED will affect EZH1 and EZH2 activities and thereby con-

tribute to aberrant myelopoiesis and lymphopoiesis. Recent evidence for this

hypothesis stems from the fact that besides EZH2 mutations in ALL, also EED
and SUZ12 mutations have been discovered in early T-cell precursor ALL (Zhang

et al. 2012), indicating that it is the overall PRC2 activity that is inactivated.

Although EED and SUZ12 knockdown reduced in vitro leukemic growth of

MLL-AF9/NRASG12D cells, the reduction in in vivo leukemia development was

rather modest (Shi et al. 2013). Together this suggests that PRC2 activity is required

for leukemic expansion, rather than leukemic engraftment.

6.3.1.3 SUZ12

A role for SUZ12 in T-ALL development can be extrapolated from the fact that in

~7–12 % of the T-ALL cases, loss of function mutations was detected

(Ntziachristos et al. 2012; Zhang et al. 2012). Downregulation of SUZ12 resulted

in the expression of NOTCH1 target genes, comparable to EZH2 downregulation

(Ntziachristos et al. 2012). The observation that ~33 % of early T-cell precursor

ALLs has mutations in SUZ12, EED, and EZH2 suggests that PRC2 has a tumor

suppressor function in NOTCH1-mediated T-ALL.
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In myeloid malignancies such as CML or other myeloproliferative neoplasms

(MPNs), the role of SUZ12 is less clear. In non-CML MPNs, like polycythemia

vera (PV), essential thrombocytopenia, (ET) and myelofibrosis (MF), rare muta-

tions in SUZ12 have been observed (Brecqueville et al. 2012; Score et al. 2012), but
a higher incidence (31 %) of ASXL1 mutations was identified (Brecqueville

et al. 2012). As ASXL1 mutations have been shown to result in loss of PRC2

activity (Abdel-Wahab et al. 2012), it is likely that these are mutually exclusive,

since they all point to a tumor suppressive mechanism of PRC2 in these non-CML

MPNs. This is consistent with deletion of another substoichiometric PRC2 member

JARID2 in MPNs (Puda et al. 2012) and these data are in line with a tumor

suppressive function of PRC2.

However, progression of chronic phase CML has been linked to the increased

expression of SUZ12 in a WNT-dependent manner (Pizzatti et al. 2010). Knock-

down of SUZ12 induced differentiation of these chronic phase blasts, indicating

that PRC2 activity blocks differentiation. Similar, in an MLL-AF9/NRASG12D

model of myeloid leukemia, reduction of SUZ12 severely hampered leukemic

expansion, as did reduction in EED and EZH2 (Shi et al. 2013). These data are

more in line with an oncogenic role of PRC2 activity, although it affects leukemic

expansion more than leukemic engraftment/initiation. It is currently unclear if this

PRC2 activity is only oncogenic in myeloid malignancies and tumor suppressive in

lymphoid malignancies or whether this is imposed by the collaborating oncogenic

insults like MLL-AF9 or NOTCH1.

6.3.1.4 ASXL1

ASXL1 is putative member of the PcG protein family and was recently identified as

an important factor involved in regulating PRC2 activity (Abdel-Wahab

et al. 2012). Mutations in ASXL1 have been detected in a variety of hematologic

malignancies, like CML, MPN, AML, and MDS (Abdel-Wahab et al. 2011; Shih

et al. 2012; Cancer Genome Atlas Research Network. 2013), with a worse overall

survival in MDS (Bejar et al. 2011) and AML (Metzeler et al. 2011). These

mutations were shown to decrease the stability of the protein, as ASXL1 was

undetectable in cells with ASXL1 mutations (Abdel-Wahab et al. 2012). This

suggests that ASXL1 has a tumor suppressive function in these myeloid malignan-

cies. Downregulation of ASXL1 led to upregulation of a gene signature that

resembled the gene signature observed when MLL-AF9 is expressed in cells

(Abdel-Wahab et al. 2012). The upregulated genes included genes in the posterior

HOXA cluster (i.e., HOXA9) that are both classical MLL-AF9 and PcG target

genes. These data suggested that ASXL1 might modulate the activity of PcG

complexes on the HOXA locus. Indeed, knockdown of ASXL1 led to a decrease

in H3K27me3 levels on the HOXA cluster, which was due to impaired recruitment

of the PRC2 complex, and hence loss of EZH2 activity at the HOXA cluster (Abdel-

Wahab et al. 2012). ASXL1 was found to directly interact with members of the

PRC2 complex suggesting a direct role for ASXL in PRC2 targeting. In an NRAS
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(G12D) model of leukemia, it was subsequently shown that loss of ASXL1 not only

increased the self-renewal of leukemic cells but also accelerated the onset of

leukemia (Abdel-Wahab et al. 2012). This data is consistent with leukemias

induced by MLL-AF9/NRAS(G12D), where the HOX-mediated self-renewal com-

ponent was supplied by the MLL-AF9 fusion (Shi et al. 2013).

ASXL1 has also been shown to form a complex with the deubiquitinase BAP1,

which removes the monoubiquitin from histone H2A at Lysine 119 (Scheuermann

et al. 2010). This complex (PR-DUB) which was originally identified inDrosophila
melanogaster binds PcG target genes and is essential for repression of Hox genes in
Drosophila (Scheuermann et al. 2010). This suggested a model where ASXL1
mutations interfere with both PRC2 and PRC1 function, coordinately contributing

to upregulation of the HOX cluster. However, both in mouse and human hemato-

poietic cells, knockout/knockdown of BAP1 did not induce expression of the

HOXA genes, and loss of ASXL1 did not result in a decrease in H2AK119Ub

(Abdel-Wahab et al. 2012; Abdel-Wahab and Dey 2013; Dey et al. 2012). Using a

Bap1fl/fl;creERT2 conditional knockout model it was shown that loss of Bap1
induces a MDS/CMML-like disease (Dey et al. 2012). Interestingly, the authors

show that apart from influencing PcG-mediated repression, the ASXL1/BAP1

complex also mediates ubiquitination, and thereby the stability of the epigenetic

regulators such as OGT (Dey et al. 2012). OGT mediates O-GlcNAcylation of

Ser-112 of histone H2B and can be recruited to CpG-rich transcription start sites of

active genes via its interaction with TET proteins. It will be interesting to see how

abrogation of these distinct functional pathways of ASXL1 contributes to leukemic

transformation in ASXL1 mutant cells.

6.3.2 Polycomb Repressive Complex 1

6.3.2.1 PCGF Paralog Family

From the 6 PCGF family members, the best-described role in leukemic transfor-

mation is for PCGF4/BMI1. Although PCGF2/MEL18 expression has been shown

to decrease upon differentiation of the leukemic cell line HL60, no causal role has

been described yet (Jo et al. 2011). The role of BMI1 has been better documented.

The first evidence for a possible involvement of BMI1 in the development of

hematological malignancies came from murine models in which BMI1 was iden-

tified as a cooperating factor with MYC in the induction of B cell lymphomagenesis

(van Lohuizen et al. 1991). Next, Sauvageau and colleagues demonstrated that

BMI1 not only determines the proliferative capacity of normal stem cells but also of

LSCs (Lessard and Sauvageau 2003). In a mouse model in which coexpression of

the oncogenes HOXA9 and MEIS1 resulted in a quick onset of myeloid leukemia,

no disease was observed in secondary recipients in a Bmi1-deficient background
(Lessard and Sauvageau 2003). These data indicated that BMI1 is essential for the

maintenance of HOXA9-MEIS1 LSCs in vivo. Similar, serial replating of leukemic
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colony-forming units after AML-ETO or PLZF-RARα-mediated transformation

was severely hampered by deletion of Bmi1 (Smith et al. 2011). However, lower

proliferation and serial replating of leukemic stem and progenitor cells deficient for

Bmi1 were not observed in leukemias with an MLL-AF9 background (Smith

et al. 2011; Tan et al. 2011). In that setting, HOXA9 was strongly upregulated by

MLL-AF9 and was able to bypass oncogene-induced senescence in the absence of

BMI1, as MLL-AF9 transformation was lost in the Bmi1�/�;Hoxa9�/� background

(Smith et al. 2011).

While BMI1 is required for maintenance and self-renewal of HSCs, no data has

been reported indicating that overexpression of BMI1 is sufficient to induce leuke-

mia as a single event. However, a role for BMI1 during myeloid and lymphoid

leukemic transformation has been inferred from studies indicating a correlation

between high expression of BMI1 and disease progression in various leukemias and

MDS/MPD (Chowdhury et al. 2007; Grubach et al. 2008; Mihara et al. 2006; Mohty

et al. 2007; Xu et al. 2011; Yong et al. 2011; de Jonge et al. 2011; van Gosliga

et al. 2007; Raaphorst et al. 2000; van Kemenade et al. 2001; Dukers et al. 2004). In

primary human acute myeloid leukemia patient samples, BMI1 was among the

highest upregulated PcG genes in AML CD34+ cells compared to normal BM

CD34+ cells (Fig. 6.3) and downregulation of BMI1 impaired long-term expansion

and self-renewal properties of LSCs (Rizo et al. 2009). Upon aging, BMI1 expres-

sion goes down in lymphoid progenitors, resulting in an upregulation of p16INK4A

and p19ARF (Signer et al. 2008). However, reintroduction of Bmi1 was sufficient to

render aged lymphoid progenitor cells susceptible for BCR-ABL-induced transfor-

mation (Signer et al. 2008). While one paper indicated that a C18Y polymorphism

exists in BMI1 that resulted in an increase in proteasome-mediated degradation

(Zhang and Sarge 2009), activating mutations in BMI1 have not been described.

Although BMI1 function appears to be predominantly regulated at the expression

level in tumor cells, posttranslational modifications have also been reported that

alter the activity of BMI1. For instance, AKT-induced serine phosphorylation has

been shown to inhibit BMI1-mediated HSC self-renewal, INK4A-ARF repression,

and its ability to promote tumor growth (Liu et al. 2012). In contrast, in prostate

cancer it was demonstrated that AKT-mediated phosphorylation can enhance the

oncogenic potential of BMI1, independent of INK4A-ARF repression (Nacerddine

et al. 2012). In AML1-ETO-positive leukemias, it was shown that aberrant signal-

ing via mutated cKit can cause loss of Polycomb-mediated repression (Ray

et al. 2013). Together, these data indicate that cytokine/growth factor signaling

can directly influence PcG proteins, and it will be very interesting to further

delineate the role of posttranslational modifications of PcG proteins in the future.

Over the past decades, a concept has emerged in which leukemia is regarded as a

multistep process in which a number of (epi)genetic events are required in order to

induce overt disease. As discussed above, to date it has not been demonstrated that

expression of BMI1 alone is sufficient to induce leukemia. However, various lines

of evidence suggest that BMI1 might act as an important collaborating factor in the

transformation process. In a tumor model in which the oncogene TLS-ERG was

introduced into human hematopoietic progenitors, in a limited number of cases the
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transduced cells underwent a stepwise transformation and immortalization in which

upregulation of BMI1 was identified as one of the cooperating hits (Warner

et al. 2005). BMI1 can cooperate with H-RAS to induce aggressive breast cancer

with brain metastases (Datta et al. 2007). Primary human epithelial cells could

efficiently be immortalized by co-expressing hTERT and BMI1 (Haga et al. 2007).

One report indicated that some of the X-linked SCID patients transplanted with

retrovirally transduced CD34+ BM cells in order to re-express the IL2γ receptor

developed T cell leukemias. Integration site analysis revealed that in one patient the

vectors had integrated near the BMI1 gene (Hacein-Bey-Abina et al. 2008), leaving
open the possibility that an upregulation of BMI1 might have contributed to the

development of leukemia in this patient as well. Together with BCR-ABL, BMI1 is

able to induce myeloid and lymphoid transformation in vitro and a serially trans-

plantable CD19+ B-lymphoid leukemia in vivo (Rizo et al. 2010; Waldron

et al. 2011). This collaboration between BCR-ABL and BMI1 was recently con-

firmed in a mouse model where B-lymphoid progenitors were transformed to

B-ALL blasts upon overexpression of BMI1 (Sengupta et al. 2012). Where BMI1

induced self-renewal, the collaborating BCR-ABL oncogene prevented apoptosis

and maintained proliferation (Sengupta et al. 2012).

Our understanding of the mechanisms by which BMI1 exerts its phenotypes is

steadily increasing. While gain of BMI1 function might be involved in extending

the lifespan of normal and LSCs by bypassing senescence, more direct control over

the fate of HSC divisions appears to exist also. Although the molecular mechanisms

remain to be elucidated, the symmetry of cell division of HSCs is directed toward a

more symmetric mode of cell division upon overexpression of BMI1 (Iwama

et al. 2004). While under normal homeostasis HSCs might divide asymmetrically,

resulting in one new HSC and one daughter cell that has lost stem cell integrity and

will differentiate, high BMI1 levels might dictate a more symmetric distribution of

specific proteins, mRNAs, or other metabolites during mitosis whereby stem cell

integrity is maintained in both daughter cells. How BMI1 would be involved in such

processes remains unclear.

Protection against oxidative stress and apoptosis emerges as an important BMI1-

downstream pathway as well, either by reducing p53 levels via BMI1-mediated

repression of the INK4A/ARF locus or via modulation of the oxidative stress

response in an INK4A/ARF-independent manner. Downmodulation of BMI1

resulted in an accumulation of ROS levels, both in knockout mouse models as

well as in human CD34+ cells transduced with lentiviral BMI1 RNAi vectors (Liu

et al. 2009; Rizo et al. 2009). In other non-hematopoietic model systems, it was also

shown that downmodulation of BMI1 results in p53-mediated apoptosis, whereby

ROS levels were increased (Alajez et al. 2009; Chatoo et al. 2009). The induction of

ROS in the absence of BMI1 could be counteracted by treatment with antioxidants

such as NAC, but appeared to be independent of INK4A/ARF in hematopoietic

cells (Liu et al. 2009). However, in Atm-deficient astrocytes, oxidative stress

resulted in an increase in ROS levels, which inhibited cell growth via a

MEK-ERK1-BMI1-p16INK4A-dependent pathway (Kim and Wong 2009). In

Bmi1�/� mice, the increase in ROS coincided with an increase in DNA damage
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and an activation of the DNA damage repair pathways, and treatment with NAC or

removal of CHK2 at least partially restored some the phenotypes (Liu et al. 2009).

A number of genes that have been described to regulate intracellular redox homeo-

stasis were found to be derepressed in Bmi1�/� mice (Liu et al. 2009). In human

CD34+ cells, downmodulation of BMI1 coincided with decreased expression of

FOXO3 (Rizo et al. 2009). Foxo3a�/� HSCs were defective in their competitive

repopulation capacity, lost their quiescence, and displayed elevated ROS levels

(Miyamoto et al. 2007). Thus, BMI1 might be required to protect hematopoietic

stem/progenitor cells from apoptosis or loss of quiescence induced by oxidative

stress conditions. In human leukemias, besides facilitating symmetric stem cell

divisions, the LSC might utilize enhanced expression of BMI1 as a mode to protect

itself from oxidative stress.

6.3.2.2 CBX Paralog Family

From the five CBX family members, CBX2,4,6,7, and 8, only CBX7 and CBX8

have been described to play a role in leukemia or lymphoma. CBX7 is a PcG

member that has been shown to extend cellular lifespan in similar fashion as BMI1

(Gil et al. 2004). CBX7 was demonstrated to bypass senescence through repression

of the Ink4a/Arf and the Cdkn1a locus (Gil et al. 2004). Enhanced expression of

CBX7 was observed in human follicular lymphomas, and T cell lymphomas also

appeared when CBX7 was ectopically expressed in murine lymphoid cells (Scott

et al. 2007). In these lymphomas a decrease in p16INK4A and p14ARF expression was

observed, suggesting that the CBX7-mediated bypass of cellular senescence con-

tributes to the malignant phenotype. However, the long latency and incomplete

penetrance of these lymphomas suggested that increased expression of CBX7 is not

sufficient to drive lymphomagenesis on its own and that additional collaborating

events are necessary (Scott et al. 2007). Overexpression of CBX7 in 5FU-treated

BM cells recently confirmed the contribution of CBX7 to T-cell malignancies,

although in 30 % of the malignancies also erythroid and immature leukemias were

observed (Klauke et al. 2013).

The CBX family member CBX8 has been shown to interact with AF9 and ENL

(Hemenway et al. 2001; Monroe et al. 2011; Garcia-Cuellar et al. 2001; Mueller

et al. 2007). These proteins are common fusion partners for the Mixed Lineage
Leukemia (MLL) gene in juvenile and adult leukemias. Although CBX family

members are usually viewed as transcriptional repressors, in the context of

MLL-AF9, MLL-ENL, and potentially also other MLL fusion proteins, CBX8 is

actually required to induce gene expression (Tan et al. 2011). CBX8 was shown to

be essential for MLL-AF9-induced HoxA9 expression (Tan et al. 2011), which had

been demonstrated to be required for MLL-AF9-induced leukemic transformation

(Faber et al. 2009; Zeisig et al. 2004). Indeed, deletion of Cbx8 completely

abolished MLL-AF9- and MLL-ENL-induced leukemogenesis (Tan et al. 2011).

Depletion of CBX8 did not affect the binding of MLL fusion proteins to their target

promoters, but rather affected the binding of RNA polymerase II and subsequent
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promoter activation (Tan et al. 2011). As CBX family members were originally

discovered to have repressive functions, this furthermore highlights that oncogenic

MLL-AF9 and MLL-ENL fusions alter the function of CBX8.

6.3.2.3 RING1 Paralog Family

For the PRC1 complex member RING1, not much is known regarding its role in

leukemia. RING1 expression is generally higher in MDS and AML as compared to

normal bone marrow cells (Xu et al. 2011), and particularly within the AML CD34+

compartment, RING1A is significantly upregulated compared to normal BM

CD34+ cells with no significant differences in RING1B expression (Fig. 6.3)

(Bonardi et al. 2013; de Jonge et al. 2011). By means of protein pulldown assays,

RING1 was found to interact with the MLL-fusion partners AF9 and ENL (Monroe

et al. 2011; Mueller et al. 2007). This suggested that MLL-AF9 and MLL-ENL

could potentially bind PRC1 through RING1 as well. However, for AF9 it was

shown that AF9 does not directly bind RING1B, but uses CBX8 as an intermediate

that binds both (Hemenway et al. 2001). As also ENL has been shown to bind to

CBX8 (Mueller et al. 2007), it is therefore conceivable that CBX8 also acts as an

intermediate between MLL-ENL and RING1. Very little is currently known about

the different or overlapping roles of RING1A and RING1B in leukemogenesis

which will need to be further investigated in detail. Intriguingly, Ring1b depletion

had no effect on MLL-AF9-mediated transformation (Tan et al. 2011). Since

depletion of Cbx8 did severely affect MLL-AF9-induced leukemia (Tan

et al. 2011), this suggests that MLL-AF9-induced leukemic transformation might

be independent from canonical PRC1 signaling.

6.3.2.4 PHC Paralog Family

Expression analysis of the PHC family member PHC1 in BM mononuclear cells

from patients with B-ALL indicated a complete loss of PHC1 expression (Tokimasa

et al. 2001). Deletion of Phc1 in mice leads to a complete block in B cell maturation

between the pro-B and pre-B cell stages in neonatal splenocytes (Tokimasa

et al. 2001), whereas T cell development appeared normal. This is consistent with

its constitutive expression during B cell development and suggests that loss of

PHC1 is underlying the B cell developmental arrest in ALL. How PHC1 expression

is lost during B-ALL development is unclear, as Southern blot analysis has shown

that both alleles were present in the B-ALL samples (Tokimasa et al. 2001). In

AML CD34+ cells, PHC1 and PHC3 expression was found to be significantly

upregulated in the AML CD34+ compartment (Fig. 6.3) (Bonardi et al. 2013; de

Jonge et al. 2011).
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6.3.2.5 SCM Paralog Family

Not much is known about a role for the SCML family members SCMH1, SCML1,

and SCML2 in leukemic transformation. Grubach and colleagues have investigated

the expression of various PcG genes in a panel of 126 AML patients (Grubach

et al. 2008). SCML2 appeared to be significantly higher expressed in AML com-

pared with normal bone marrow cells, especially in AML patients with an under-

lying t(8;21) or inv(16) translocation. We investigated gene expression in a panel of

AML patients subdivided in CD34+ and CD34� fractions and observed that

SCMH1 was significantly upregulated and SCML1 was significantly

downregulated in AML CD34+ cells compared to normal BM CD34+ cells (Bonardi

et al. 2013; de Jonge et al. 2011).

6.4 Noncanonical PRC1 Complexes

Apart from the canonical five-subunit PRC1 complex, various other noncanonical

PRC1 complexes have been described. One category of noncanonical PRC1 com-

plexes contains RYBP or YAF2 instead of a CBX subunit and are targeted to

chromatin in a manner independent of H3K27me3 (Gao et al. 2012; Tavares

et al. 2012). In addition, the noncanonical BCOR and E2F6 complexes contain

PCGF1/NSPC1 and PCGF6/MBLR, respectively (Gao et al. 2012; Gearhart

et al. 2006; Ogawa et al. 2002; Sanchez et al. 2007; Trimarchi et al. 2001; Qin

et al. 2012; Trojer et al. 2011). Recently, the E2F6 complex was shown to have

H2AK119 ubiquitination activity through its RING1 subunits and to induce a

repressive chromatin structure (Trojer et al. 2011; Gao et al. 2012). Whereas the

complex is essential for mouse development, recent knockdown studies in human

CB CD34+ cells did not show a dramatic phenotype upon PCGF6 shRNA expres-

sion and suggests that PCGF6 does not play an important role in normal hemato-

poiesis (Qin et al. 2012; van den Boom et al. 2013).

Interestingly, recent whole-exome sequencing approaches in AML have identi-

fied recurrent mutations in the BCOR complex subunits BCOR and BCORL1
(Tiacci et al. 2012; Grossmann et al. 2011; Li et al. 2011). BCOR and BCORL1

are large nuclear proteins that act as corepressor of BCL6 or other transcriptional

regulators. Translocations have also been described like t(X;17)(p11;q12) resulting

in the formation of a BCOR-RARα fusion in a patient with acute promyelocytic

leukemia (APL) (Yamamoto et al. 2010). Most of the identified alterations are

nonsense mutations, out-of-frame insertions/deletions, or splice site mutations that

most likely result in truncated proteins that lack the C-terminal nuclear receptor

recruitment motif. This would suggest that BCOR/BCORL1 would act as a tumor-

suppressor gene that is inactivated by mutations in a subset of AML (Tiacci

et al. 2012; Li et al. 2011). On the other hand, it has been observed that BCOR

together with its binding partners PCGF1 and RING1A in the noncanonical PRC1

complex are among the most highly upregulated PcG genes in AML CD34+ cells
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compared to normal BM CD34+ cells (Fig. 6.3) (de Jonge et al. 2011), suggesting

that these increased expression levels might participate in the process of leukemic

transformation. In line with this notion, it was recently shown that ectopic expres-

sion of KDM2B, which targets the PRC1.1/BCOR complex to chromatin, is

sufficient to transform hematopoietic progenitors (He et al. 2011). Reversely,

depletion of Kdm2b significantly impaired Hoxa9/Meis1-induced leukemic trans-

formation by mediating silencing of p15INK4B expression through active demeth-

ylation of H3K36me2, suggesting that KDM2B functions as an oncogene

(He et al. 2011). Recently, KDM2B was shown to tether the BCOR complex to

non-methylated CpG islands in developmental genes, enforcing gene repression by

RING1-dependent H2AK119 ubiquitination (Farcas et al. 2012; He et al. 2013; Wu

et al. 2013). Further mechanistic studies are required to gain further insight into the

possible mechanisms by which the noncanonical BCOR complex might contribute

to leukemia development.

6.5 Summarizing Remarks

Challenges for the future lie in the further unraveling of gene networks that are

under the control of PcG proteins and how regulation of these genes affects the fate

of normal hematopoietic and LSCs. It is becoming clear that multiple distinct PRC1

complexes can be composed of (most likely) specific functions, and it will be

interesting to determine whether differences in complex composition exist between

HSCs and progenitors, or between leukemic and normal stem cells, and ultimately

how complex composition might relate to specific target gene regulation. Also, PcG

proteins can act independently of the canonical PRC1 complexes, but whether and

how these noncanonical PRC1 complexes may participate in leukemia develop-

ment still needs to be unraveled. Posttranslational modifications of PcG proteins are

beginning to be identified, although our understanding of how these affect

Polycomb signaling are far from complete. Future studies will help to further

delineate the role of PcG proteins in the normal hematopoietic system as well as

in the process of leukemic transformation.
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