

 University of Groningen

A hybridized iterative algorithm of the BiCORSTAB and GPBiCOR methods for solving non-
Hermitian linear systems
Gu, Xian-Ming; Huang, Ting-Zhu; Carpentieri, Bruno; Li, Liang

Published in:
Computers & Mathematics with Applications

DOI:
10.1016/j.camwa.2015.10.012

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Gu, X-M., Huang, T-Z., Carpentieri, B., & Li, L. (2015). A hybridized iterative algorithm of the BiCORSTAB
and GPBiCOR methods for solving non-Hermitian linear systems. Computers & Mathematics with
Applications, 70(12), 3019-3031. https://doi.org/10.1016/j.camwa.2015.10.012

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1016/j.camwa.2015.10.012
https://research.rug.nl/en/publications/198da34c-171e-4d0f-a6fb-bd6c20b15633
https://doi.org/10.1016/j.camwa.2015.10.012

Computers and Mathematics with Applications 70 (2015) 3019–3031

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A hybridized iterative algorithm of the BiCORSTAB and
GPBiCOR methods for solving non-Hermitian linear systems
Xian-Ming Gu a,b, Ting-Zhu Huang a,∗, Bruno Carpentieri b, Liang Li a,
Chun Wen a

a School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
b Institute of Mathematics and Computing Science, University of Groningen, Nijenborgh 9, PO Box 407, 9700 AK
Groningen, The Netherlands

a r t i c l e i n f o

Article history:
Received 16 March 2015
Received in revised form 15 October 2015
Accepted 18 October 2015
Available online 6 November 2015

Keywords:
Non-Hermitian linear systems
Krylov subspace method
BiCORSTAB
GPBiCOR
GPBiCG
Residual polynomial

a b s t r a c t

In this study, we derive a new iterative algorithm (including its preconditioned ver-
sion) which is a hybridized variant of the biconjugate A-orthogonal residual stabilized
(BiCORSTAB) method and the generalized product-type solvers based on BiCOR (GPBi-
COR) method. The proposed method, which is named GPBiCOR(m, ℓ) similarly to the
GPBiCG(m, ℓ) method proposed by Fujino (2002), can be regarded as an extension of the
BiCORSTAB2 method introduced by Zhao and Huang (2013). Inspired by Fujino’s idea for
improving the BiCGSTAB2 method, in the established GPBiCOR(m, ℓ) method the parame-
ters computed by the BiCORSTAB method are chosen at successive m iteration steps, and
afterwards the parameters of the GPBiCOR method are utilized in the subsequent ℓ itera-
tion steps. Therefore, the proposed method can inherit the low computational cost of Bi-
CORSTAB and the attractive convergence of GPBiCOR. Extensive numerical convergence
results on selected real and complex matrices are shown to assess the performances of the
proposed GPBiCOR(m, ℓ) method, also against other popular non-Hermitian Krylov sub-
space methods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In many computational science and engineering applications, there is a strong need of fast and efficient solutions of large
sparse linear systems

Ax = b, (1)

where A is an n × n non-Hermitian and possibly indefinite matrix, and b is the right-hand side vector of length n. There
are two classes of numerical methods for solving the linear system (1) on modern computers, namely direct and iterative
solvers. Sparse direct methods are generally very accurate, robust, and predictable in terms of both storage and algorithmic
cost (e.g. see [1]). However, they tend to be very expensive for solving large problems. A large number of researchers are still
interested in developing robust iterative solvers, especially the well-known class of Krylov subspace methods, as they only
require matrix–vector products; refer to [2–5]. As we already know, if the coefficient matrix A is Hermitian positive definite,
the conjugate gradient (CG) method [6] is a very good choice. In addition, if the coefficient matrix A is complex symmetric,

∗ Corresponding author. Tel.: +86 28 61831608.
E-mail addresses: guxianming@live.cn, x.m.gu@rug.nl (X.-M. Gu), tingzhuhuang@126.com (T.-Z. Huang), bcarpentieri@gmail.com (B. Carpentieri),

plum_liliang@uestc.edu.cn (L. Li), wchun17@163.com (C. Wen).

http://dx.doi.org/10.1016/j.camwa.2015.10.012
0898-1221/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.camwa.2015.10.012
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2015.10.012&domain=pdf
mailto:guxianming@live.cn
mailto:x.m.gu@rug.nl
mailto:tingzhuhuang@126.com
mailto:bcarpentieri@gmail.com
mailto:plum_liliang@uestc.edu.cn
mailto:wchun17@163.com
http://dx.doi.org/10.1016/j.camwa.2015.10.012

3020 X.-M. Gu et al. / Computers and Mathematics with Applications 70 (2015) 3019–3031

i.e. A = AT and A ≠ AH , Krylov subspace methods can exploit symmetry during the iterative process; refer, e.g., to our
recent work [7,8] about the SCBiCG class of iterative algorithms. In the case, the coefficient matrix A is substantially non-
Hermitian (e.g., see [2,3] and references therein), two popular non-Hermitian iterative solvers are the generalized minimal
residual (GMRES)method proposed by Saad and Schultz [9], and the generalized conjugate residual (GCR)method proposed
by Eisenstat, Elman and Schultz [10]. Both the GMRES and GCRmethods search the optimal approximation xm for which the
2-norm of the residual rm is minimal over the Krylov spaceKm(A, r0) = span{r0, Ar0, . . . , Am−1r0} form = 1, 2, . . . , where
r0 denotes the initial residual. However, due to the linearly increasing memory and computational costs with the iteration
count, the two algorithms are often restarted after each cycle of, say, m iterations. The restarted GMRES and GCR variants,
dubbed by GMRES(m) [2,9, pp. 179–180] and GCR(m) [10], however, do not share the optimality property of the original
methods, and in practice they show some difficulties to converge on difficult problems. Some strategies to recover the
optimal convergence behavior, while keeping the cost per iteration roughly constant, such as deflation and augmentation
accelerating techniques, are described in [4,11–15].

On the other side, a prominent non-optimal Krylov subspace method for non-Hermitian systems is the biconjugate
gradient (BiCG) method proposed in [16,17]. However, the BiCG method displays irregular convergence behavior in many
practical applications and requires two matrix–vector products, one with A and one with the transpose conjugate matrix
AH per iteration step. Several variants of the BiCG method have been proposed to enhance its overall performance, such as
the conjugate gradient squared (CGS) method proposed by Sonneveld [18], the generalized CGS (GCGS) method proposed
by Fokkema, Sleijpen and van der Vorst [19], Freund and Nachtigal’s transpose-free quasi-minimal residual (TFQMR)
method [20], van der Vorst’s biconjugate gradient stabilized (BiCGSTAB) method [21], the BiCGSTAB2method by Gutknecht
[22], the BiCGSTAB(ℓ) method by Sleijpen and Fokkema [23], and the generalized product-type method based on BiCG
(GPBiCG) method introduced by Zhang [24,25]. Moreover, the reborn induced dimension reduction (abbreviated as IDR(s))
method, which is also an efficient short-recurrence family of Krylov subspace methods, was proposed by Sonneveld and
van Gijzen in [26]. A different approach to generalize BiCGSTAB was proposed by Yeung and Chan, whose ML(k)BiCGSTAB
method [27] is a BiCGSTAB variant based onmultiple left Lanczos starting vectors; for a comparative study of the IDR(s) and
ML(k)BiCGSTAB methods, see [28].

It is a question to determine the classes of problems for which one algorithm is more numerically stable and memory
efficient than others. For example, in many problems the CGS method is significantly faster than the BiCG method, but the
convergence behavior is much more irregular, and this can potentially affect the final convergence rate and accuracy of the
solution. Instead of squaring the BiCG polynomial [16] as in CGS, the authors of [19] consider products of two nearby BiCG
polynomials, which results in the GCGS method. The BiCGSTAB2 and BiCGSTAB(ℓ) methods integrate both first and second
(or higher) degree auxiliary polynomials, amending the convergent stability of the BiCGSTAB method on many problems.
In contrast, the GPBiCG method utilizes only second degree auxiliary polynomials. Therefore each GPBiCG iteration step is
slightly more expensive than other product-type iterative methods; similarly, refer to Table 1 about the cost for computing
the scalar parameters. However, the idea behind the GPBiCGmethod implies that it is further possible to develop hybridized
variants which attempt to select the different parameters of the algorithm to minimize its final cost; see [24] for details.

In recent years, we [29,30] proposed a novel class of efficient non-optimal iterative methods for solving non-Hermitian
linear systems (1), dubbed biconjugate A-orthogonal residual (BiCOR) family. The BiCOR family of solvers requires onlyO(n)
extra storage in addition to thematrix and performs O(n) operations per iteration, often shows competitive and sometimes
superior performance against other popular Krylov subspace solvers in solving different scientific and engineering
applications [31,32]. The first variant, named the BiCOR method, can have much smoother and faster convergence behavior
than the BiCGmethod. The same residual polynomial of the BiCORmethod is utilized and squared in the second variant, the
CORS method [29]. The convergence of the CORS method may be typically more irregular than that of the BiCOR method
when the BiCOR method has a jagged convergence curve. In order to overcome this convergence problem, the BiCORSTAB
method has been established exploiting the same philosophy behind the BiCGSTAB method. While the BiCORSTAB method
workswell in a lot of cases, it still has quite erratic oscillation in some difficult problemswith complex spectrum; see e.g., the
experiments reported in [29,32] on the representativematrix problems. By applying the ideas behind the BiCORSTAB, CORS,
CGS and BiCGSTAB methods, a few generalized methods have been recently proposed such as the generalized product-type
solvers based on BiCOR (GPBiCOR)method introduced by Zhao, Huang, Jing et al. [33], the generalized CORS (GCORS)method
by Zhang andDai [34], theQMORmethod also by Zhang andDai [35], the TFQMR-like variant of the CORS (TFQMORS)method
by Zhang and Dai [36], and the BiCORSTAB2 method by Zhao and Huang [37]. Again, the GPBiCOR method utilizes always
the second degree polynomial only similar to the case of GPBiCG. Therefore, cost of the GPBiCOR method per iteration step
is slightly more expensive than those of other product-type iterative methods such as CORS and BiCORSTAB. By the way,
it is also noted that almost simultaneously the authors of [38] independently constructed the hybrid BiCR methods for
solving nonsymmetric linear systems via replacing the BiCG part in the residual polynomial of the hybrid BiCG variants with
BiCR [39], but the comparison of the BiCOR family of solvers [29,30] and the hybrid BiCR variants [38] is not the emphasis
of this present study.

Amechanism of the GPBiCORmethod has indicated further possibility of constructing a new hybridized variant in which
one can vary from the CORS and BiCORSTAB methods to the BiCORSTAB2 method with suitable choice of parameters [33].
In this paper, we investigate this possibility. The research was prompted by the pioneering work about the GPBiCG(m, ℓ)
method [40], which makes an attempt to construct a hybridized iterative procedure for reducing the cost of the GPBiCG
iterations. The GPBiCOR method is considerably more competitive than the GPBiCG method, see [33] for details, but this

X.-M. Gu et al. / Computers and Mathematics with Applications 70 (2015) 3019–3031 3021

Table 1
Choice of parameters ηn and ζn of some product-type iterative methods.

Methods Choice of parameters ηn and ζn

CORS ηn =
βn−1
αn−1

αn, ζn = αn

BiCORSTAB ηn = 0, ζn =
⟨sn,tn⟩

⟨sn,sn⟩

GPBiCOR ηn =
⟨sn,sn⟩⟨yn,tn⟩−⟨yn,sn⟩⟨sn,tn⟩

⟨sn,sn⟩⟨yn,yn⟩−⟨yn,sn⟩⟨sn,yn⟩
, ζn =

⟨yn,yn⟩⟨sn,tn⟩−⟨yn,tn⟩⟨sn,yn⟩

⟨sn,sn⟩⟨yn,yn⟩−⟨yn,sn⟩⟨sn,yn⟩

BiCORSTAB2 At even iteration step: ηn = 0, ζn =
⟨sn,tn⟩

⟨sn,sn⟩

At odd iteration step: ηn =
⟨sn,sn⟩⟨yn,tn⟩−⟨yn,sn⟩⟨sn,tn⟩

⟨sn,sn⟩⟨yn,yn⟩−⟨yn,sn⟩⟨sn,yn⟩
,

ζn =
⟨yn,yn⟩⟨sn,tn⟩−⟨yn,tn⟩⟨sn,yn⟩

⟨sn,sn⟩⟨yn,yn⟩−⟨yn,sn⟩⟨sn,yn⟩

GPBiCOR(m, ℓ) At consecutivem iteration steps: ηn = 0, ζn =
⟨sn,tn⟩

⟨sn,sn⟩

Afterwards at consecutive ℓ iteration steps:
ηn =

⟨sn,sn⟩⟨yn,tn⟩−⟨yn,sn⟩⟨sn,tn⟩

⟨sn,sn⟩⟨yn,yn⟩−⟨yn,sn⟩⟨sn,yn⟩
,

ζn =
⟨yn,yn⟩⟨sn,tn⟩−⟨yn,tn⟩⟨sn,yn⟩

⟨sn,sn⟩⟨yn,yn⟩−⟨yn,sn⟩⟨sn,yn⟩

algorithm suffers from the slightly more expensive cost during the iteration procedure, as shown in Table 1. We exploit
the ingenious idea behind GPBiCG(m, ℓ) to establish a hybridized cost-efficient variant of BiCORSTAB and GPBiCOR. The
proposed method not only generalizes earlier established iterative methods as the BiCORSTAB, GPBiCOR and BiCORSTAB2
methods, but can improve their convergence to some extent, as illustrated by our numerical results presented in Section 3.

The remainder of the paper is organized as follows. In Section 2, we briefly review the GPBiCG(m, ℓ) method and the
derivations of GPBiCOR and GPBiCG(m, ℓ), then we establish the GPBiCOR(m, ℓ) method and describe the corresponding
algorithms and parameters of the BiCORSTAB, BiCORSTAB2 andGPBiCORmethods of the product-typemethods. In Section 3,
some test problems involving both real and complex matrices are employed to illustrate the effectiveness of the proposed
solvers. Finally, the paper closes with conclusions in Section 4.

2. GPBiCG(m, ℓ) method and a new variant of the GPBiCOR method

In this section, we will first briefly introduce the main idea of GPBiCG(m, ℓ) proposed by Fujino, and then give some
remarks on this method. Since the GPBiCORmethod is closely related to the GPBiCGmethod, so we can exploit Fujino’s trick
to derive a new hybridized variant of GPBiCOR.

2.1. The GPBiCG(m, ℓ) method

Let us begin by reviewing the GPBiCG method [24], recall x0 and r0 = b − Ax0 denote the initial guess and the
corresponding initial residual, respectively. Then, the residual vector rBiCGk generated by BiCG iterations can be formed by
rBiCGk = Rk(A)r0, where Rk(λ) with degree k is the residual polynomial of BiCG. It writes as a multiple of the so-called Bi-
Lanczos polynomial [3,16,24], which is in accordance with the following recurrence relationsR0(λ) = 1, R1(λ) = 1 − α0λ,

Rk+1(λ) =


1 + αk

βk−1

αk−1
− αkλ


Rk(λ) − αk

βk−1

αk−1
Rk−1(λ), k = 1, 2, . . . (2)

for certain coefficients αk and βk−1. The residual vector rk of the hybrid BiCG methods is expressed as Mk(A)rBiCGk by
combining BiCG with an auxiliary polynomial Mk(λ) of degree k. The polynomial Mk(λ) used in the GPBiCG method is
computed from the following recurrence

M0(λ) = 1, M1(λ) = 1 − ζ0λ,
Mk+1(λ) = (1 + ηk − ζkλ)Mk(λ) − ηkMk−1(λ), k = 1, 2, . . . (3)

which can make the residual of BiCG converge to zero faster. Then the GPBiCGmethod needs to compute the coefficients ηk
and ζk by minimizing the term

min
ηk,ζk

∥rk∥2 = min
ηk,ζk

∥Mk(A)rBiCGk ∥2 = min
ηk,ζk

∥Mk(A)Rk(A)r0∥2. (4)

In many applications, the GPBiCG method is indeed more efficient and robust than the BiCGSTAB method. However, the
total computational time can be higher than that of the BiCGSTAB method due to the solution of the minimization problem
(4). Motivated by this computational problem, Fujino recently proposed to utilize the sectional iteration steps of BiCGSTAB
followed by another segmental iteration steps of GPBiCG during the whole iterative procedure. The resulting GPBiCG(m, ℓ)

3022 X.-M. Gu et al. / Computers and Mathematics with Applications 70 (2015) 3019–3031

method is clearly a hybrid variant of GPBiCG and BiCGSTAB and is expected to enjoy both the low computational cost
of BiCGSTAB and at the same time the good convergence of GPBiCG, refer to [40,41]. From [40], the original version of
GPBiCG(m, ℓ) can be written as Algorithm 1.

Algorithm 1 Algorithm of the GPBiCG(m, ℓ) method

1: Select initial guess x0 and compute r0 = b − Ax0
2: Choose r∗

0 = r0 such that ⟨r∗

0 , r0⟩ ≠ 0. Set t−1 =

w−1 = 0, β−1 = 0.
3: for n = 0, 1, . . ., until convergence do
4: pn = rn + βn−1(pn−1 − un−1), qn = Apn

5: αn =
⟨r∗

0 ,rn⟩
⟨r∗

0 ,qn⟩

6: tn = rn − αnqn, sn = Atn
7: yn = tn−1 − tn − αnwn−1

8: if (mod(n,m + ℓ) < m or n = 0) then
9: ζn =

⟨sn,tn⟩
⟨sn,sn⟩

(Hint: ηn = 0)
10: un = ζnqn, zn = ζnrn − αnun

11: rn+1 = tn − ζnsn
12: else
13: ζn =

⟨yn,yn⟩⟨sn,tn⟩−⟨yn,tn⟩⟨sn,yn⟩
⟨sn,sn⟩⟨yn,yn⟩−⟨yn,sn⟩⟨sn,yn⟩

14: ηn =
⟨sn,sn⟩⟨yn,tn⟩−⟨yn,sn⟩⟨sn,tn⟩
⟨sn,sn⟩⟨yn,yn⟩−⟨yn,sn⟩⟨sn,yn⟩

15: un = ζnqn + ηn(tn−1 − rn + βn−1un−1)
16: zn = ζnrn + ηnzn−1 − αnun
17: rn+1 = tn − ηnyn − ζnsn
18: end if
19: βn =

αn
ζn

·
⟨r∗

0 ,rn+1⟩

⟨r∗
0 ,rn⟩

20: xn+1 = xn + αnpn + zn
21: wn = sn + βnqn
22: end for

In addition, the GPBiCG(1, 0), GPBiCG(0, 1) and GPBiCG(1, 1) methods are equivalent to the BiCGSTAB, GPBiCG and
BiCGSTAB2 methods, respectively; see [40] for details. Therefore, the GPBiCG(m, ℓ) method can be viewed as a direct
extension of the BiCGSTAB2method. The two parameters ηn and ζn at lines 13 and 14 are computed tominimize the residual
norm ∥rn+1∥2 = ∥tn − ηnyn − ζnAtn∥2, also see Eq. (4). The selection of m and ℓ in the GPBiCG(m, ℓ) methods is in general
problem dependent.

2.2. A new variant of the GPBiCOR method

According to the derivation of GPBiCG, it is not hard to find that the GPBiCOR method can be also obtained by utilizing
the aforementioned framework (2)–(4), by employing the identities rBiCORk = Rk(A)r0 and defining the residual vector
rk of the hybrid BiCOR methods as Mk(A)rBiCORk , where the residual vector rBiCORk generated by BiCOR; refer to [24,25] for
details. Similarly to the GPBiCG method, the implementation of minimization problem (4) is slightly more expensive (see
the computational formulae of the scalar coefficients ζn and ηn in Algorithm 2) than other hybrid methods such as CORS
and BiCORSTAB. In order to remedy this difficulty, we exploit Fujino’s idea implemented in GPBiCG(m, ℓ) and we derive
the hybridized variant of the GPBiCOR method. We refer to the resulting method as dubbed GPBiCOR(m, ℓ). Firstly, we
reformulate the algorithm of GPBiCOR proposed in [33] as in Algorithm 2.

Algorithm 2 Algorithm of GPBiCOR

1: Select initial guess x0 and compute r0 = b − Ax0
2: Choose r∗

0 = Ar0 such that ⟨r∗

0 , Ar0⟩ ≠ 0. Set t−1 =

w−1 = 0, β−1 = 0.
3: for n = 0, 1, . . ., until convergence do
4: pn = rn + βn−1(pn−1 − un−1)
5: p̌n = řn + βn−1(p̌n−1 − ŭn−1),
6: Compute fn = Ap̌n and then αn =

⟨r∗
0 ,řn⟩

⟨r∗
0 ,fn⟩

7: tn = rn − αnp̌n
8: yn = tn−1 − tn − αnwn−1
9: sn = řn − αnfn, (◃ sn , Atn)

10: ζn =
⟨yn,yn⟩⟨sn,tn⟩−⟨yn,tn⟩⟨sn,yn⟩
⟨sn,sn⟩⟨yn,yn⟩−⟨yn,sn⟩⟨sn,yn⟩

11: ηn =
⟨sn,sn⟩⟨yn,tn⟩−⟨yn,sn⟩⟨sn,tn⟩
⟨sn,sn⟩⟨yn,yn⟩−⟨yn,sn⟩⟨sn,yn⟩

12: if n = 0 then
13: ζn =

⟨sn,tn⟩
⟨sn,sn⟩

, ηn = 0
14: end if
15: un = ζnp̌n + ηn(tn−1 − rn + βn−1un−1)
16: ǔn = ζnfn + ηn(sn−1 − řn + βn−1ǔn−1)
17: zn = ζnrn + ηnzn−1 − αnun
18: xn+1 = xn + αnpn + zn
19: rn+1 = tn − ηnyn − ζnsn
20: Compute řn+1 = Arn+1

21: βn =
αn
ζn

·
⟨r∗

0 ,řn+1⟩

⟨r∗
0 ,řn⟩

, wn = sn + βnp̌n

22: end for

Here, two recurrences and the variables characterized with symbol ‘‘ˇ’’ at steps 5, 9, and 16 are newly added to alleviate
the number ofmatrix–vector products per iteration step. If wewant to obtain the algorithmof BiCORSTAB,wewould need to
simplify four working variables yn, un, zn and wn given above. In Table 1 we summarize the choices of the two parameters
ηn and ζn leading to the CORS, BiCORSTAB, GPBiCOR, BiCORSTAB2 and the proposed GPBiCOR(m, ℓ) methods. From this
table we can see that the BiCORSTAB, GPBiCOR and BiCORSTAB2 methods correspond to GPBiCOR(1, 0), GPBiCOR(0, 1)
and GPBiCOR(1, 1) methods, respectively. In other words, the BiCORSTAB2 method will be extended to the GPBiCOR(m, ℓ)

X.-M. Gu et al. / Computers and Mathematics with Applications 70 (2015) 3019–3031 3023

Table 2
Computation cost of GPBiCG(m, ℓ), GPBiCOR(m, ℓ) and their preconditioned variants.

Method Vector update Inner product MVPs Preconditioner solve
H if else T H if else T

GPBiCG(m, ℓ) 5 3 7 3 1 2 5 1 2 0
GPBiCOR(m, ℓ) 8 4 10 3 1 2 5 1 2 0
PGPBiCG(m, ℓ) 6 3 7 3 1 2 5 1 2 2
PGPBiCOR(m, ℓ) 9 4 10 3 1 2 5 1 2 2

method by this study. Like the GPBiCG(m, ℓ)method, the two parameters ηn and ζn are determined so that the residual norm
∥rn+1∥2 = ∥tn−ηnyn−ζnAtn∥2 is minimized, also see Eq. (4). Combination of both parametersm and ℓ of the GPBiCOR(m, ℓ)
method can be decided according to the difficulty of the problem.

For the efficient implementation, we present the preconditioned version of the GPBiCOR(m, ℓ) algorithm (see Algorithm
21) by the derivation of preconditioned GPBiCG method [25]. The pseudo code, here rewritten using the same style of
Algorithm 1, reads as:

Algorithm 3 Algorithm of preconditioned GPBiCOR(m, ℓ) (K is the preconditioner)

1: Select initial guess x0 and r0 = b − Ax0
2: Choose r∗

0 = AK−1r0 s.t. ⟨r∗

0 , AK−1r0⟩ ≠ 0. Set t−1 =

w−1 = u−1 = û−1 = 0, β−1 = 0, e0 = K−1r0, ê0 =

Ae0.
3: for n = 0, 1, . . ., until convergence do
4: pn = en + βn−1(pn−1 − un−1)
5: p̂n = ên + βn−1(p̂n−1 − ûn−1)
6: Solve Khn = p̂n

7: Compute gn = Ahn and then αn =
⟨r∗

0 ,ên⟩
⟨r∗

0 ,gn⟩

8: tn = rn − αnp̂n
9: yn = tn−1 − tn − αnqn−1

10: sn = en − αnhn (◃ sn , K−1tn)
11: wn = ên − αngn (◃ wn , Asn)
12: if (mod(n,m + ℓ) < m or n = 0) then
13: ζn =

⟨wn,tn⟩
⟨wn,wn⟩

(Hint : ηn = 0)
14: un = ζnhn, ûn = ζngn

15: zn = ζnen − αnun
16: rn+1 = tn − ζnwn
17: else
18: ζn =

⟨yn,yn⟩⟨wn,tn⟩−⟨yn,tn⟩⟨wn,yn⟩
⟨wn,wn⟩⟨yn,yn⟩−⟨yn,wn⟩⟨wn,yn⟩

19: ηn =
⟨wn,wn⟩⟨yn,tn⟩−⟨yn,wn⟩⟨wn,tn⟩
⟨wn,wn⟩⟨yn,yn⟩−⟨yn,wn⟩⟨wn,yn⟩

20: un = ζnhn + ηn(sn−1 − en + βn−1un−1)
21: ûn = ζngn + ηn(wn−1 − ên + βn−1ûn−1)
22: zn = ζnen + ηnzn−1 − αnun
23: rn+1 = tn − ηnyn − ζnwn
24: end if
25: Solve Ken+1 = rn+1
26: Compute ên+1 = Aen+1

27: βn =
αn
ζn

·
⟨r∗

0 ,ên+1⟩

⟨r∗
0 ,ên⟩

28: xn+1 = xn + αnpn + zn
29: qn = wn + βnp̂n
30: end for

At the end of this section, we analyze the computational cost for GPBiCG(m, ℓ), GPBiCOR(m, ℓ) and their preconditioned
variants (abbreviated as PGPBiCG(m, ℓ) and PGPBiCOR(m, ℓ), respectively) in Table 1 by using the idea of Ref. [42]. The for
loops in Algorithms 1 and 3 are divided into 4 parts: the part before if and after else denoted as the head (H) part and
the tail (T) respectively. As seen from Table 2, the computational cost of the GPBiCOR(m, ℓ) and PGPBiCOR(m, ℓ) methods
is slightly more expensive than the GPBiCG(m, ℓ) and PGPBiCG(m, ℓ) methods, respectively, if the number of iterations of
the GPBiCOR(m, ℓ) and PGPBiCOR(m, ℓ) methods is greatly close to that of the GPBiCG(m, ℓ) and PGPBiCG(m, ℓ) methods.
However, the GPBiCOR(m, ℓ) and PGPBiCOR(m, ℓ)methods require less number of iteration steps than the GPBiCG(m, ℓ) and
PGPBiCG(m, ℓ) methods in some cases, respectively. Then it implies that the GPBiCOR(m, ℓ) and PGPBiCOR(m, ℓ) methods
can still converge faster than the GPBiCG(m, ℓ) and PGPBiCG(m, ℓ) methods in terms of the elapsed CPU time for some test
problems, respectively; also refer to Section 3 for further discussion.

3. Numerical experiments

Far from being exhaustive, in this section the following experiments are reported to investigate some performance of the
GPBiCOR(m, ℓ) methods when applied to solving five sets of test problems. For the sake of comparison, we are concerned
with the GPBiCG(m, ℓ), BiCORSTAB, GPBiCOR, BiCORSTAB2, CORS, and other popular Krylov subspace methods (such as
CGS, GMRES(50), IDR(s),2 and TFQMR). Here we also need to specify that the BiCGSTAB, GPBiCG and BiCGSTAB2 methods
correspond to the GPBiCG(1, 0), GPBiCG(0, 1) and GPBiCG(1, 1) methods, respectively, refer to [40] for details. Meanwhile,
our numerical experiments focus on both real and complex test matrices, and also consider the preconditioning benefits of

1 In order to reduce the number of MVPS, some notations should be defined: p̂n := Apn, ên := Aen, ûn−1 := Aun−1 . Then it shows that Algorithm 2 (like
the GPBiCG(m, ℓ) method) needs two MVPS in each iteration step.
2 We directly use the MATLAB codes from http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html.

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

3024 X.-M. Gu et al. / Computers and Mathematics with Applications 70 (2015) 3019–3031

Table 3
Set and characteristics of test matrices in Section 3 (listed in increasing matrix size).

Matrix problem Size Field nnz(A)

circuit_1 2,624 Circuit simulation problem 35,823
ex31 3,909 Computational fluid dynamics 91,223
circuit_2 4,510 Circuit simulation problem 21,199
sherman3 5,005 Computational fluid dynamics 20,033
Poisson3Da 13,514 Computational fluid dynamics 352,762
memplus 17,758 Circuit simulation problem 99,147
bcircuit 68,902 Circuit simulation problem 375,558
hcircuit 105,676 Circuit simulation problem 513,072

iterative solvers. The experiments have been carried out in double precision floating point arithmetic with MATLAB 2014a
(64 bit) on PC-Intel(R) Core(TM) i5-3470 CPU 3.20 GHz, 8 GB of RAM. Here we use Iters and TRR to denote the number of
iterations and log10 of the final true relative residual 2-norm defined as log10(∥b − Axfinal∥2/∥r0∥2), respectively. In our
experiments we take the zero vector as initial guess. The stopping criterion used here is the reduction of the 2-norm of the
initial residual by eight orders of magnitude, i.e., ∥rk∥2/∥r0∥2 ≤ Tol = 10−8. The convergence histories show MVPS (on
the horizontal axis) versus 2-norms of the approximate relative residuals (on the vertical axis) in all figures. The notations
‘‘OSTAB’’, ‘‘STAB’’, ‘‘GPO’’ and ‘‘GP’’ correspond to the BiCORSTAB, BiCGSTAB, GPBiCOR and GPBiCG methods, respectively.
Similarly, the symbols ‘‘GPO(·, ·)’’ and ‘‘GP(·, ·)’’ denote each sub-solvers of the GPBiCOR(m, ℓ) and GPBiCG(m, ℓ) methods,
respectively. For the sake of clarity, the non-Hermitian test matrices fromUniversity of Florida SparseMatrix Collection [43]
in this section are listed in Table 3.

Example 1. First, we consider two publicly available linear systems with the two coefficient matrices ‘‘circuit_1’’ and
‘‘circuit_2’’, which arise from circuit simulations modeled as a system of differential algebraic equations. Upon solving
with a BDF method, and Newton’s method, a linear system Ax = b is required to be solved at each time step. The numerical
results are reported in Table 4. Here, the symbol ‘‘Ď’’ indicates that the method did not converge, and this specified symbol
is also available for similar cases in the next numerical examples.

We can see that the GPBiCOR(m, ℓ) class of methods are more efficient than the GPBiCG(m, ℓ) solvers in terms of the less
number of Iters, except the GPBiCOR(2, 1)method for the first problem.Meanwhile, the level of accuracy of all the converged
approximate solutions (in terms of TRR) was almost of the same order of magnitude of the tolerance value used in the given
stopping criterion, except the CGS and TFQMRmethods for the second test problem.We found thatwhen the number of Iters
for these two families of iterative solvers are similar, the GPBiCOR(m, ℓ) methods may be slightly more expensive than the
GPBiCG(m, ℓ)methods. It is because theGPBiCOR(m, ℓ)methods require some additional BLAS-1 operations in each iteration
step, see the lines 5, 10, 13 and 20 of Algorithm3 and also Table 3. Both the GPBiCG(m, ℓ) andGPBiCOR(m, ℓ)methods indeed
improve the convergence of the BiCGSTAB and BiCORSTAB methods in terms of both the number of Iters and elapsed CPU
time. Roughly, the GPBiCG(m, ℓ) method also alleviates the elapsed CPU time of GPBiCG, but the GPBiCOR(m, ℓ) method fails
to reduce the elapsed CPU time of GPBiCOR dramatically in Example 1. Meanwhile, although the restarted GMRESmethod is
close to the optimal Krylov subspace methods, it is still more expensive than the other iterative solvers. For simplicity, Fig. 1
only shows typical plots of the convergence behavior of different iterative solvers; theGPBiCOR(m, ℓ)methods showed fairly
attractive convergence behaviors compared to those of GPBiCG(m, ℓ) in the last phase. In conclusion, the GPBiCOR(1, 3) and
GPBiCOR(1, 2) methods are the best choices for the number of Iters and elapsed CPU time for solving the first and second
problems, respectively. From the point of view of solution time, the CORS method can be used as an alternative for the first
test problem, and the IDR(4) and IDR(6) methods can be regarded as two good alternatives for the second test problem. By
the way, the results for both CGS and TFQMR methods listed in Table 4 indicate that these two methods may suffer from
serious breakdowns on the circuit_2 problem. In the interest of counteraction against such breakdowns, oneself can
make use of remedies such as the so-called look-ahead strategies [44] which can enhance stability while increasing cost
modestly or others. Since this is outside the scope of this study, we shall not pursue that here.

Example 2. Here we choose other two linear systems from University of Florida Sparse Matrix Collection, arising from
computational fluid dynamics (CFD) applications. More precisely, the nonsymmetric matrix ‘‘sherman3’’ comes from the
black oil model simulations. Test matrix ‘‘Poisson3Da’’ from FEMLAB, which is a finite-element method toolbox for
MATLAB, developed by Comsol, Inc. (see http://www.femlab.com for more details). We let b = Ae, where e was chosen
as a vector with random entries from −1 to 1, such that e is the exact solution. The numerical results of different iterative
solvers are reported in Table 5. A symbol ‘‘max’’ is used to indicate that the method did not meet the required Tol before
MAXIT = 5000.

As seen from Table 5, since the number of successful sub-solvers of the GPBiCOR(m, ℓ) methods for solving the first
test problem is higher compared to GPBiCG(m, ℓ), we conclude that the GPBiCOR(m, ℓ) methods are more efficient than
the GPBiCG(m, ℓ) methods on this problem. Moreover, the GPBiCG(m, ℓ) method does not improve the convergence of
the BiCGSTAB and GPBiCG methods at all, whereas the GPBiCOR(m, ℓ) method improves the convergence of BiCORSTAB
and partially the convergence of GPBiCOR in the first test problem. For the second test problem, the GPBiCG(m, ℓ) method

http://www.femlab.com

X.-M. Gu et al. / Computers and Mathematics with Applications 70 (2015) 3019–3031 3025

Table 4
Numerical results of different iterative solvers for Example 1.

Method circuit_1 circuit_2
Iters TRR Time (s) Iters TRR Time (s)

OSTAB/STAB 498/824 −8.0026/−8.0161 0.1640/0.2197 342/390 −8.0325/−8.1821 0.1467/0.1526
GPO/GP 136/170 −8.2221/−8.0101 0.0748/0.0964 295/339 −8.2942/−8.0677 0.1513/0.1659
GPO(1, 1)/GP(1, 1) 158/189 −8.0588/−8.0196 0.0810/0.0872 268/320 −8.1521/−8.1293 0.1411/0.1487
GPO(1, 2)/GP(1, 2) 132/163 −8.2126/−8.0026 0.0741/0.0814 257/319 −8.0200/−8.1943 0.1317/0.1509
GPO(1, 3)/GP(1, 3) 120/180 −8.0791/−8.0398 0.0687/0.0833 294/346 −8.0071/−8.1511 0.1574/0.1634
GPO(1, 4)/GP(1, 4) 136/181 −8.0612/−8.0073 0.0784/0.0816 288/321 −8.0119/−8.0542 0.1505/0.1545
GPO(1, 5)/GP(1, 5) 182/171 −8.0263/−8.1147 0.0784/0.0816 301/325 −8.0253/−8.0387 0.1633/0.1610
GPO(2, 1)/GP(2, 1) 214/202 −8.0108/−8.0410 0.0967/0.0887 295/325 −8.0388/−8.0348 0.1508/0.1491
GPO(3, 1)/GP(3, 1) 208/245 −8.0795/−8.0033 0.0941/0.0992 329/334 −8.2955/−8.0477 0.1605/0.1498
GPO(4, 1)/GP(4, 1) 182/219 −8.0026/−8.0096 0.0807/0.0914 288/380 −8.3542/−8.0066 0.1549/0.1544
GPO(5, 1)/GP(5, 1) 204/240 −8.0204/−8.0712 0.0877/0.0895 310/317 −8.0981/−8.0206 0.1587/0.1441
CORS/CGS 151/137 −8.1720/−8.2129 0.0698/0.0898 469/Ď −8.0914/Ď 0.1467/Ď
IDR(2) 622 −8.0476 0.1607 645 −8.3012 0.1629
IDR(4) 379 −8.1426 0.1297 366 −8.1850 0.1369
IDR(6) 623 −8.0722 0.1844 325 −8.1151 0.1383
IDR(8) 268 −8.0670 0.1146 306 −8.4450 0.1414
TFQMR 131 −8.0051 0.1098 Ď Ď Ď

GMRES(50) 139 −8.0670 0.2327 270 −8.0127 0.4994

Fig. 1. Convergence histories of different iterative methods for Example 1. Left: circuit_1; Right: circuit_2.

indeed improves the convergence of the BiCGSTABmethod in terms of both number of Iters and elapsed CPU time. Roughly,
the GPBiCG(m, ℓ)method also alleviates the elapsed CPU time of GPBiCG, but the GPBiCOR(m, ℓ)method fails to improve the
performance of the BiCORSTAB and GPBiCOR methods dramatically. Meanwhile, the level of accuracy of all the converged
approximate solutions (in terms of TRR) was almost of the same order of magnitude of the tolerance value used in the given
stopping criterion. At the same time, when the number of Iters required to converge is similar, the GPBiCOR(m, ℓ) methods
may be slightly more expensive than the GPBiCG(m, ℓ) methods. Once again, although the restarted GMRES method gets
close to the optimal Krylov subspacemethods, it is still more expensive than the other iterative solvers. From Table 5 we can
conclude that the GPBiCOR(5, 1) method is the best choice among these listed iterative solvers in terms of the less number
of Iters and elapsed CPU time for the first test problem. Even the TRR of the GPBiCOR(5, 1) method is the best one among
these iterative solvers for the first test problem. The BiCORSTAB method is the fastest solver on the second test problem.
In addition, the performance of both the GPBiCOR(3, 1) and GPBiCOR(4, 1) methods are not disappointing and they can
be considered as two alternatives for this problem. By the way, the results of testing the first problem also indicate that
application specific preconditioners may be mandatory to use to speed up the iterative procedure.

Example 3. In this example, we solve the test problems adopted from [45], for which the coefficient matrix of the linear
system has the form

A =


D K

−K T µI


∈ R2n×2n, K = (ti,j) =

1
√
2π

σ e
−|i−j|2

2σ2 is a Toeplitz matrix,

3026 X.-M. Gu et al. / Computers and Mathematics with Applications 70 (2015) 3019–3031

Table 5
Numerical results of different iterative solvers for Example 2.

Method sherman3 Poisson3Da
Iters TRR Time (s) Iters TRR Time (s)

OSTAB/STAB max/max −7.1836/−5.8986 1.6602/1.3644 81/93 −8.1803/−8.1077 0.2102/0.2402
GPO/GP 4357/max −8.1954/−6.2042 1.8392/1.7978 82/89 −8.1629/−8.1142 0.2267/0.2377
GPO(1, 1)/GP(1, 1) 4611/max −8,1446/−5.4949 1.7633/1.5874 95/86 −8.2449/−8.0148 0.2538/0.2276
GPO(1, 2)/GP(1, 2) max/max −7.6632/−4.8486 1.9452/1.6455 81/86 −8.2744/−8.1585 0.2201/0.2287
GPO(1, 3)/GP(1, 3) max/max −4.9216/−6.2510 1.9827/1.6811 93/88 −8.4584/−8.4727 0.2507/0.2371
GPO(1, 4)/GP(1, 4) 4206/max −8.0509/−6.3787 1.6896/1.6980 91/87 −8.0041/−8.4751 0.2479/0.2329
GPO(1, 5)/GP(1, 5) 4829/max −8.0100/−6.4886 1.9849/1.7083 96/87 −8.0376/−8.2911 0.2647/0.2487
GPO(2, 1)/GP(2, 1) 4317/max −8.1330/−5.2159 1.5649/1.5291 92/86 −8.2067/−8.0555 0.2414/0.2292
GPO(3, 1)/GP(3, 1) 4127/max −8.0615/−7.0136 1.4605/1.5043 81/87 −8.3735/−8.4569 0.2118/0.2331
GPO(4, 1)/GP(4, 1) 4135/max −8.1391/−5.7639 1.4462/1.4712 81/87 −8.3015/−8.2211 0.2108/0.2265
GPO(5, 1)/GP(5, 1) 4034/max −8.2421/−6.8179 1.3598/1.4609 92/86 −8.1581/−8.0401 0.2399/0.2198
CORS/CGS 4940/Ď −8.0780/Ď 1.4946/Ď 96/99 −8.0509/−8.2469 0.2336/0.2538
IDR(2) Ď Ď Ď 178 −8.2200 0.2814
IDR(4) Ď Ď Ď 173 −8.1231 0.2785
IDR(6) max −4.3192 1.4080 162 −8.1489 0.3012
IDR(8) max −5.9427 1.6074 161 −8.0416 0.3411
TFQMR Ď Ď Ď 99 −8.0495 0.3117
GMRES(50) Ď Ď Ď 159 −8.0003 0.7326

Table 6
Numerical results of different iterative solvers for Example 3.

Method µ = 0.04, n = 1024 µ = 0.05, n = 2048
Iters TRR Time (s) Iters TRR Time (s)

OSTAB/STAB 577/Ď −8.0546/Ď 1.1474/Ď 370/312 −8.3614/−8.0636 2.1064/1.7390
GPO/GP 213/299 −8.1234/−8.0187 0.4573/0.6214 125/133 −8.0566/−8.0895 0.7403/0.7773
GPO(1, 1)/GP(1, 1) 217/247 −8.2488/−8.1655 0.4607/0.5114 128/137 −8.0283/−8.1372 0.7531/0.8038
GPO(1, 2)/GP(1, 2) 215/273 −8.0106/−8.1546 0.4590/0.5580 125/142 −8.0859/−8.3192 0.7361/0.8306
GPO(1, 3)/GP(1, 3) 214/270 −8.0074/−8.0001 0.4601/0.5522 128/137 −8.0243/−8.0736 0.7597/0.8011
GPO(1, 4)/GP(1, 4) 203/261 −8.2817/−8.0971 0.4305/0.5338 143/144 −8.0213/−8.4762 0.8472/0.8448
GPO(1, 5)/GP(1, 5) 201/241 −8.2871/−8.2194 0.4256/0.4963 129/140 −8.7243/−8.1677 0.7608/0.8235
GPO(2, 1)/GP(2, 1) 221/285 −8.0116/−8.0184 0.4609/0.5671 130/138 −8.4843/−8.0296 0.7487/0.8102
GPO(3, 1)/GP(3, 1) 225/286 −8.1022/−8.0602 0.4630/0.5646 128/157 −8.0722/−8.2626 0.7384/0.8986
GPO(4, 1)/GP(4, 1) 245/320 −8.1949/−8.3759 0.5048/0.6226 135/154 −8.2429/−8.0873 0.7753/0.8742
GPO(5, 1)/GP(5, 1) 277/349 −8.4751/−8.0953 0.5767/0.6749 210/173 −8.0567/−8.0402 1.1874/0.9803
CORS/CGS 202/210 −8.0732/−8.0127 0.4258/0.4287 120/135 −8.6516/−8.5601 0.6812/0.7641
IDR(2) 539 −8.0166 0.5609 466 −8.0242 1.3613
IDR(4) 459 −8.2629 0.5468 349 −8.2373 1.0492
IDR(6) 394 −8.0333 0.5027 297 −8.0971 0.9211
IDR(8) 361 −8.0372 0.4775 266 −8.0014 0.8431
TFQMR 209 −8.0145 0.4578 135 −8.0196 0.8058
GMRES(50) 761 −8.0025 1.2231 222 −8.0071 0.9699

where D ∈ Rn×n is a positive diagonal matrix,3 and I ∈ Rn×n is a identity matrix. Taking σ = 2, a very ill-conditioned
Toeplitz matrix with rapidly decaying singular values is obtained. This family of linear systems often arises in the weighted
Toeplitz regularized least squares computation for image restoration problems, refer to [46] for details. For simplicity, we let
b = Ae, where e was chosen as a vector with random entries from −1 to 1, such that e is the exact solution. The numerical
results of different iterative solvers are reported in Table 6.

As seen from Table 6, we find that the GPBiCOR(m, ℓ) methods are more efficient than GPBiCG(m, ℓ) methods in terms of
the less number of Iters and the elapsed CPU time (except the GPBiCOR(1, 4) method for the second problem). Meanwhile,
the level of accuracy of all the converged approximate solutions (in terms of TRR) was almost of the same order ofmagnitude
of the tolerance value used in the given stopping criterion. Aswe alreadymentioned and explained,when the number of Iters
are similar, the GPBiCOR(m, ℓ) methodsmay still bemore expensive than the GPBiCG(m, ℓ) methods. Both the GPBiCG(m, ℓ)
and GPBiCOR(m, ℓ) methods indeed improve the convergence of the BiCGSTAB and BiCORSTAB methods in terms of the
number of Iters and elapsed CPU time. Roughly, the GPBiCG(m, ℓ) methods also alleviate the elapsed CPU time of GPBiCG,
but the GPBiCOR(m, ℓ) methods fail to reduce the elapsed CPU time of GPBiCOR on the first test problem. Moreover, both
the GPBiCOR(m, ℓ) and GPBiCG(m, ℓ) methods fail to reduce the elapsed CPU time of GPBiCOR and GPBiCG for the second
test problem in Example 3. Meanwhile, the restarted GMRES method still remains more expensive than the other iterative
solvers. For simplicity, Fig. 2 only illustrates typical plots of the convergence behavior of some different iterative solvers;

3 For the sake of convenience, we employ the MATLAB codes ‘‘d = 3 + [rand(n-400,1); randn(400,1)];’’ to generate its diagonal entries.

X.-M. Gu et al. / Computers and Mathematics with Applications 70 (2015) 3019–3031 3027

Fig. 2. Convergence histories of the different iterative methods for Example 3. Left: µ = 0.04, n = 1024; Right: µ = 0.05, n = 2048.

Table 7
Numerical results of different iterative solvers with ILU(0) preconditioning for Example 4.

Method ex31 memplus
Iters TRR Time (s) Iters TRR Time (s)

OSTAB/STAB 108/116 −8.2714/−9.1031 0.1207/0.1443 254/189 −8.1232/−8.0034 0.6562/0.4712
GPO/GP 111/139 −8.0746/−8.0504 0.1301/0.1727 142/163 −8.0212/−8.0456 0.4328/0.4606
GPO(1, 1)/GP(1, 1) 100/115 −8.5182/−8.1318 0.1212/0.1456 191/169 −8.0136/−8.0053 0.5537/0.4648
GPO(1, 2)/GP(1, 2) 111/122 −8.2211/−8.0089 0.1338/0.1521 162/169 −8.0427/−8.0229 0.4598/0.4612
GPO(1, 3)/GP(1, 3) 100/127 −8.0471/−8.7276 0.1276/0.1574 139/146 −8.2043/−8.0404 0.4154/0.4285
GPO(1, 4)/GP(1, 4) 111/120 −8.0904/−8.7315 0.1381/0.1529 137/154 −8.0393/−8.0324 0.4084/0.4324
GPO(1, 5)/GP(1, 5) 107/130 −8.4882/−8.3741 0.1356/0.1636 134/158 −8.1217/−8.3357 0.4056/0.4435
GPO(2, 1)/GP(2, 1) 110/118 −8.5139/−8.0136 0.1240/0.1514 175/165 −8.0078/−8.1747 0.5106/0.4314
GPO(3, 1)/GP(3, 1) 103/117 −8.4296/−8.0549 0.1192/0.1461 221/175 −8.0501/−8.0483 0.6192/0.4608
GPO(4, 1)/GP(4, 1) 102/118 −8.1995/−8.0860 0.1185/0.1463 151/171 −8.1220/−8.0007 0.4297/0.4478
GPO(5, 1)/GP(5, 1) 104/117 −8.2862/−8.4862 0.1212/0.1459 188/187 −8.3474/−8.0580 0.5188/0.4946
CORS/CGS 113/135 −8.6617/−8.8585 0.1548/0.1741 152/175 −8.4215/−8.3671 0.4189/0.4841
IDR(2) 137 −8.0958 0.1224 483 −8.0599 0.6627
IDR(4) 130 −8.3549 0.1212 314 −8.0073 0.5464
IDR(6) 116 −8.0992 0.1226 328 −8.0628 0.6576
IDR(8) 115 −8.6055 0.1283 303 −8.0766 0.7054
TFQMR 132 −8.1805 0.1823 180 −8.1355 0.6009
GMRES(50) 215 −8.4268 0.4423 188 −7.3883 1.1046

we can see that GPBiCOR(m, ℓ) methods showed fairly attractive convergence behaviors compared to those of GPBiCG(m, ℓ)
methods in the last phase. Note that the CORS and CGS methods show their typically irregular convergence behaviors. For
the first test problem, the GPBiCOR(1, 5) method outperforms all other iterative solvers in terms of the number of Iters
and elapsed CPU time. Meanwhile, the performance of the CORS method is not bad in terms of the number of Iters and
elapsed CPU time and it can be an efficient alternative for the first test problem. Then the CORS method outperforms the
other iterative methods in terms of the less number of Iters and elapsed CPU time for solving the second problems. The
GPBiCOR(1, 2) method can be used an alternative for this problem. By the way, the results in bold print of Table 6 indicate
that the GPBiCOR(5, 1) and GPBiCOR(1, 5) methods can reach the most accurate final solutions in terms of TRR in Example 3,
respectively.

Example 4. Moreover, we consider two other publicly available linear systems with the coefficient matrices ‘‘ex31’’ and
‘‘memplus’’, which arise from CFD and circuit simulations, respectively. Whenever no right-hand side is available for the
original linear system Ax = b, we let b = Ae, where e was chosen as a vector with random entries from −1 to 1, such
that e is the exact solution. Then we want to evaluate the performance of GPBiCOR(m, ℓ) and GPBiCG(m, ℓ) with ILU(0)
preconditioning [2, pp. 307–310] for solving the test linear systems. For stability reasonswe compute an ILU(0) factorization
of A + σ I , where σ = 10−12 if all diagonal elements of A are zero, or σ = 10−12 max{|aii|} if some but not all diagonal
elements aii of A zero, or σ = 0 otherwise. This procedure follows the recommendations proposed in [47]. The numerical
results of different preconditioned iterative solvers are reported in Table 7.

3028 X.-M. Gu et al. / Computers and Mathematics with Applications 70 (2015) 3019–3031

Fig. 3. Convergence histories of the different iterative methods with ILU(0) preconditioning for Example 4. Left: ex31; Right: memplus.

We clearly see from the results of Table 7 and from the convergence histories shown in Fig. 3 the good potential of the
hybridized strategy and selected preconditioning can improve the performance of the GPBiCOR(m, ℓ) and GPBiCG(m, ℓ)
methods to some extent. For the first problem, the PGPBiCOR(m, ℓ) methods are more efficient than the PGPBiCG(m, ℓ)
methods in terms of the number of Iters and elapsed CPU time. Moreover, the PGPBiCOR(4, 1) method outperforms the
other preconditioned iterative solvers in aspects of elapsed CPU time. However, the PGPBiCOR(4, 1) method still needs
slightly more Iters than the PGPBiCOR(1, 1) and PGPBiCOR(1, 3) methods. All in all, we conclude that the PGPBiCOR(4, 1)
method is the best choice for solving the first test problem, the PGPBiCOR(3, 1) method being an efficient alternative. Then
for the second problem, the PGPBiCOR(1, 5) method outperforms all other preconditioned iterative solvers in terms of the
number of Iters and elapsed CPU time. Meanwhile, the convergence performance of PGPBiCOR(1, 4) is not disappointing
for the second problem. In addition, the level of accuracy of the approximations computed by these mentioned iterative
methods (in terms of TRR) was almost of the same order of magnitude of the tolerance value used in the given stopping
criterion, except the preconditioned GMRES(50) method on the second test problem. Roughly, the PGPBiCOR(m, ℓ) and
PGPBiCG(m, ℓ) methods indeed improve the convergence of the preconditioned BiCORSTAB and preconditioned BiCGSTAB
methods for these two test problems in terms of the number of Iters, except that the preconditioned GPBiCG(m, ℓ) method
almost fails to improve the convergence of the preconditioned BiCGSTAB method for the first test problems in terms of
the number of Iters and elapsed CPU time. Also, the PGPBiCG(m, ℓ) method also alleviates the elapsed CPU time of the
preconditioned GPBiCG method, but the PGPBiCOR(m, ℓ) method fails to reduce the CPU time cost of the preconditioned
GPBiCOR method dramatically on Example 4. The restarted preconditioned GMRES method still remains more expensive
than the other preconditioned iterative solvers. For simplicity, Fig. 3 only shows typical plots of the convergence behavior of
some different preconditioned iterative solvers; we see that the PGPBiCOR(m, ℓ) methods had fairly attractive convergence
behaviors compared to the PGPBiCG(m, ℓ) methods in the last phase.

Example 5. At last but not least, we still consider two other large-scale linear systems with the coefficient matrices
‘‘bcircuit’’ and ‘‘hcircuit’’, which are from the circuit simulation problems, for illustrating the effectiveness of our
proposed methods. For these two problems, we set b = Ae where e is the n × 1 vector whose elements are all equal
to unity, such that e = (1, . . . , 1)T is the exact solution. Then we want to evaluate the performance of GPBiCOR(m, ℓ)
and GPBiCG(m, ℓ) with ILUT(droptol) preconditioning [2, pp. 321–327] for solving the test linear systems. The numerical
results of different iterative solvers with ILUT(droptol) preconditioning are reported in Table 8.

As observed from the numerical results of Table 8 and from the convergence curves demonstrated in Fig. 4 the good
potential of the hybridized strategy and selected preconditioning can enhance the performance of the GPBiCOR(m, ℓ) and
GPBiCG(m, ℓ) methods to some extent. For these two problems, the PGPBiCOR(m, ℓ) methods are more efficient than the
PGPBiCG(m, ℓ)methods in terms of Iters and elapsed CPU time.Moreover, the PGPBiCOR(5, 1)method outperforms the other
preconditioned iterative solvers in aspects of elapsed CPU time for solving the first problem. However, the PGPBiCOR(5,
1) method still requires slightly more Iters than the PGPBiCOR(1, 1) method. All in all, we conclude that the PGPBiCOR(5,
1) method is the best choice for solving the first test problem, the PGPBiCOR(1, 1) method being an efficient alternative.
Then for the second problem, the PGPBiCOR method outperforms all other preconditioned iterative solvers in terms of
the number of Iters and elapsed CPU time. Meanwhile, the convergence performance of PGPBiCOR(4, 1) and PGPBiCOR(5,
1) is not disappointing for the second problem. In addition, the level of accuracy of the approximations computed by
these mentioned iterative methods (in aspects of TRR) was almost of the same order of magnitude of the tolerance value

X.-M. Gu et al. / Computers and Mathematics with Applications 70 (2015) 3019–3031 3029

Table 8
Numerical results of different iterative solvers with ILUT(droptol) preconditioning for Example 5.

Method bcircuit, droptol = 0.01 hcircuit, droptol = 0.025

Iters TRR Time (s) Iters TRR Time (s)

OSTAB/STAB 210/458 −8.0348/−8.0130 2.5495/5.2273 34/45 −8.0745/−8.0331 2.4070/3.1008
GPO/GP 211/294 −8.0513/−8.0137 2.7157/3.5526 32/45 −8.3050/−8.1156 2.3026/3.1359
GPO(1, 1)/GP(1, 1) 163/347 −8.0184/−8.0789 2.0395/4.1056 34/43 −8.3455/−8.0444 2.4238/2.9862
GPO(1, 2)/GP(1, 2) 182/429 −8.0609/−8.2450 2.3046/5.0766 34/42 −8.2854/−8.0705 2.4318/2.9195
GPO(1, 3)/GP(1, 3) 174/294 −8.0105/−8.0029 2.2065/3.4806 33/42 −8.1891/−8.1431 2.3336/2.9146
GPO(1, 4)/GP(1, 4) 250/300 −8.0464/−8.0450 3.1757/3.5878 33/44 −8.2895/−8.0958 2.3577/3.0664
GPO(1, 5)/GP(1, 5) 192/244 −8.0129/−8.1348 2.4482/2.9235 33/40 −8.1724/−8.0593 2.3535/2.7955
GPO(2, 1)/GP(2, 1) 182/249 −8.0035/−8.1568 2.2714/2.9183 33/41 −8.0450/−8.0801 2.3505/2.8371
GPO(3, 1)/GP(3, 1) 177/285 −8.0360/−8.0952 2.1837/3.2849 36/50 −8.0899/−8.3091 2.5428/3.4503
GPO(4, 1)/GP(4, 1) 181/275 −8.0262/−8.0378 2.2351/3.1786 33/42 −8.2124/−8.1421 2.3315/2.9043
GPO(5, 1)/GP(5, 1) 164/286 −8.0021/−8.4862 2.0142/3.3061 33/43 −8.0592/−8.0156 2.3251/2.9598
CORS/CGS 171/253 −8.2548/−8.7087 2.1138/3.0651 48/47 −8.1907/−8.5568 3.2666/3.2134
IDR(2) 576 −8.1313 3.9856 76 −8.0475 2.7006
IDR(4) 345 −8.0031 2.8035 66 −8.0257 2.4739
IDR(6) 276 −8.0647 2.5821 64 −8.2077 2.5217
IDR(8) 297 −8.1607 3.1113 64 −8.2038 2.6528
TFQMR 250 −8.0153 3.6938 45 −8.3607 3.2786
GMRES(50) 465 −8.4728 11.8152 54 −7.8927 3.3677

Fig. 4. Convergence histories of the different iterativemethodswith ILUT(droptol) preconditioning for Example 5. Left: bcircuit, droptol = 0.01;
Right: hcircuit, droptol = 0.025.

used in the given stopping criterion, except the preconditioned GMRES(50) method on the second test problem. Roughly,
the PGPBiCOR(m, ℓ) and PGPBiCG(m, ℓ) methods indeed improve the convergence of the preconditioned BiCORSTAB and
preconditionedBiCGSTABmethod for these two test problems in termsof thenumber of Iters and elapsedCPU time. Likewise,
the PGPBiCOR(m, ℓ) methods also alleviate the elapsed CPU time of preconditioned GPBiCOR method for the first test
problem, not the second test problem. In addition, the PGPBiCG(m, ℓ)method seems to fail to reduce the CPU time elapsed of
preconditionedGPBiCGmethod dramatically on Example 5. The restarted preconditionedGMRESmethod still remainsmore
expensive than the other preconditioned iterative solvers. For the sake of simplicity, Fig. 4 only illustrates representative
plots of the convergence behaviors of some different preconditioned iterative methods; we see that the PGPBiCOR(m, ℓ)
methods had fairly preferable convergence behaviors compared to the PGPBiCG(m, ℓ) methods in the last phase.

4. Conclusions

In this paper we present the development steps of the GPBiCOR(m, ℓ) method, which can be regarded as a
hybridized variant of the BiCORSTAB and GPBiCORmethods, along with comprehensive convergence results. The numerical
experiments indicate that the GPBiCOR(m, ℓ) methodmay be overall more efficient than the GPBiCG(m, ℓ) method recently
proposed by Fujino and can be a significant method for solving the non-Hermitian systems of linear equations with real and
complexmatrices. However, further research is still necessary to find an optimal parameter selection strategy for the values
ofm and ℓ in the GPBiCOR(m, ℓ) methods. In our numerical experiments, the performance of the IDR(s) methods were also

3030 X.-M. Gu et al. / Computers and Mathematics with Applications 70 (2015) 3019–3031

competitive. Asmentioned by the author of [48], recently, the relations between IDR(s) and BiCGStab(ℓ) and combinations of
bothmethods have been investigated, refer to [49,50]. Sowe think it should be possible to combine some of the ideas behind
GPBiCG(m, ℓ) and GPBiCOR(m, ℓ) with the IDR philosophy to derive novel cost-efficient iterative solvers for non-Hermitian
linear systems in futurework. Finally,wemention that the parallel strategies for theGPBiCG(m, ℓ)methods presented in [42]
can be investigated for the proposed GPBiCOR(m, ℓ) methods. This will be the subject of a future study.

Acknowledgments

We are grateful to the anonymous referees and editor Dr. Leszek Feliks Demkowicz for their useful suggestions and
comments that improved the presentation of this paper. This research is supported by 973 Program (2013CB329404), NSFC
(61370147, 61170311, 61402082, 11301057, and 61170309), the Fundamental Research Funds for the Central Universities
(ZYGX2013J106, ZYGX2013Z005, and ZYGX2014J084).

References

[1] T.A. Davis, Direct Methods for Sparse Linear Systems, in: SIAM Series on the Fundamentals of Algorithms, SIAM, Philadelphia, USA, 2006.
[2] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, Philadelphia, USA, 2003.
[3] M.H. Gutknecht, Lanczos-type solvers for nonsymmetric linear systems of equation, Acta Numer. 6 (1997) 271–397.
[4] V. Simoncini, D.B. Szyld, Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear Algebra Appl. 14 (2007)

1–59.
[5] Z.-Z. Bai, Motivations and realizations of Krylov subspace methods for large sparse linear systems, J. Comput. Appl. Math. 283 (2015) 71–78.
[6] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand. 49 (1952) 409–436.
[7] X.-M. Gu, M. Clemens, T.-Z. Huang, L. Li, The SCBiCG class of algorithms for complex symmetric linear systems with applications in several

electromagnetic model problems, Comput. Phys. Comm. 191 (2015) 52–64.
[8] X.-M. Gu, T.-Z. Huang, L. Li, H.-B. Li, T. Sogabe, M. Clemens, Quasi-minimal residual variants of the COCG and COCR methods for complex symmetric

linear systems in electromagnetic simulations, IEEE Trans. Microw. Theory Tech. 62 (12) (2014) 2859–2867.
[9] Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986)

856–869.
[10] S.C. Eisenstat, H.C. Elman, M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 20 (1983)

345–357.
[11] P. Jiránek, M. Rozložník, M.H. Gutknecht, How to make simpler GMRES and GCR more stable, SIAM J. Matrix Anal. Appl. 30 (2008) 1483–1499.
[12] E. de Sturler, Truncation strategies for optimal Krylov subspace methods, SIAM J. Numer. Anal. 36 (1999) 864–889.
[13] R.B. Morgan, GMRES with deflated restarting, SIAM J. Sci. Comput. 24 (2002) 20–37.
[14] L.M. Carvalho, S. Gratton, R. Lago, X. Vasseur, A flexible generalized conjugate residual method with inner orthogonalization and deflated restarting,

SIAM J. Matrix Anal. Appl. 32 (2011) 1212–1235.
[15] A. Gaul, M.H. Gutknecht, J. Liesen, R. Nabben, A framework for deflated and augmented Krylov subspacemethods, SIAM J. Matrix Anal. Appl. 34 (2013)

495–518.
[16] C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Natl. Bur. Stand. 49 (1952) 33–53.
[17] R. Fletcher, Conjugate gradient methods for indefinite systems, in: G.A. Watson (Ed.), Numerical Analysis Dundee 1975, in: Lecture Notes in

Mathematics, vol. 506, Springer-Verlag, Berlin, Germany, 1976, pp. 73–89.
[18] P. Sonneveld, CGS: A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 10 (1989) 36–52.
[19] D.R. Fokkema, G.L.G. Sleijpen, H.A. van der Vorst, Generalized conjugate gradient squared, J. Comput. Appl. Math. 71 (1996) 125–146.
[20] R.W. Freund, A transpose-free quasi-minimum residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput. 14 (1993) 470–482.
[21] H.A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat.

Comput. 13 (1992) 631–644.
[22] M.H. Gutknecht, Variants of BiCGSTAB for matrix with complex spectrum, SIAM J. Sci. Comput. 14 (1993) 1020–1033.
[23] G.L.G. Sleijpen, D.R. Fokkema, BiCGstab(ℓ) for linear equations involving matrices with complex spectrum, Electron. Trans. Numer. Anal. 1 (1993)

11–32.
[24] S.-L. Zhang, GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems, SIAM J. Sci. Comput. 18 (1997)

537–551.
[25] S.-L. Zhang,M. Natori, C.-H. Jin, Product-type Krylov-subspacemethods for solving nonsymmetric linear systems, RIMSKôkyûroku 989 (1997) 92–102.

Available online at: www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0989-9.pdf.
[26] P. Sonneveld, M.B. van Gijzen, IDR(s): A family of simple and fast algorithms for solving large nonsymmetric linear systems, SIAM J. Sci. Comput. 31

(2008) 1035–1062.
[27] M.-C. Yeung, T.F. Chan, ML(k)BiCGSTAB: A BiCGSTAB variant based on multiple Lanczos starting vectors, SIAM J. Sci. Comput. 21 (1999) 1263–1290.
[28] M.H. Gutknecht, IDR explained, Electron. Trans. Numer. Anal. 36 (2009) 126–148.
[29] Y.-F. Jing, T.-Z. Huang, Y. Zhang, L. Li, G.-H. Cheng, Z.-G. Ren, Y. Duan, T. Sogabe, B. Carpentieri, Lanczos-type variants of the COCRmethod for complex

nonsymmetric linear systems, J. Comput. Phys. 228 (2009) 6376–6394.
[30] B. Carpentieri, Y.-F. Jing, T.-Z. Huang, The BiCOR and CORS iterative algorithms for solving nonsymmetric linear systems, SIAM J. Sci. Comput. 33 (2011)

3020–3036.
[31] Y.-F. Jing, B. Carpentieri, T.-Z. Huang, Experiments with Lanczos biconjugate A-orthonormalization methods for MoM discretizations of Maxwell’s

equations, Prog. Electromagn. Res. (PIER) 99 (2009) 427–451.
[32] Y.-F. Jing, T.-Z. Huang, Y. Duan, B. Carpentieri, A comparative study of iterative solutions to linear systems arising in quantum mechanics, J. Comput.

Phys. 229 (2010) 8511–8520.
[33] L. Zhao, T.-Z. Huang, Y.-F. Jing, L.-J. Deng, A generalized product-type BiCOR method and its application in signal deconvolution, Comput. Math. Appl.

66 (2013) 1372–1388.
[34] J. Zhang, H. Dai, Generalized conjugate A-orthogonal residual squared method for complex non-Hermitian linear systems, J. Comput. Math. 32 (2014)

248–265.
[35] J. Zhang, H. Dai, A new quasi-minimal residual method based on a biconjugate A-orthonormalization procedure and coupled two-term recurrences,

Numer. Algorithms (2015) in press. Avaiable online at: https://dx.doi.org/10.1007/s11075-015-9978-5.
[36] J. Zhang, H. Dai, A transpose-free quasi-minimal residual variant of the CORS method for solving non-Hermitian linear systems, J. Comput. Phys. 291

(2015) 20–33.
[37] L. Zhao, T.-Z. Huang, A hybrid variant of the BiCOR method for a nonsymmetric linear system with a complex spectrum, Appl. Math. Lett. 26 (2013)

457–462.
[38] K. Abe, G.L.G. Sleijpen, BiCR variants of the hybrid BiCG methods for solving linear systems with nonsymmetric matrices, J. Comput. Appl. Math. 234

(2010) 985–994.

http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref1
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref2
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref3
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref4
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref5
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref6
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref7
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref8
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref9
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref10
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref11
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref12
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref13
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref14
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref15
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref16
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref17
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref18
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref19
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref20
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref21
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref22
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref23
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref24
http://www.kurims.kyoto-u.ac.jp/%7Ekyodo/kokyuroku/contents/pdf/0989-9.pdf
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref26
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref27
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref28
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref29
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref30
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref31
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref32
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref33
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref34
https://dx.doi.org/10.1007/s11075-015-9978-5
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref36
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref37
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref38

X.-M. Gu et al. / Computers and Mathematics with Applications 70 (2015) 3019–3031 3031

[39] T. Sogabe, M. Sugihara, S.-L. Zhang, An extension of the conjugate residual method to nonsymmetric linear systems, J. Comput. Appl. Math. 226 (2009)
103–113.

[40] S. Fujino, GPBiCG(m, ℓ): A hybrid of BiCGSTAB and GPBiCG methods with efficiency and robustness, Appl. Numer. Math. 41 (2002) 107–117.
[41] J. Tang, Y. Shen, Y. Zheng, D. Qiu, An efficient and flexible computational model for solving the mild slope equation, Coastal Eng. 51 (2004) 143–154.
[42] S.-X. Zhu, T.-X. Gu, X.-P. Liu, Minimizing synchronizations in sparse iterative solvers for distributed supercomputers, Comput. Math. Appl. 67 (2014)

199–209.
[43] T.A. Davis, Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software 38 (1) (2011) Article No. 1. Available online at:

http://www.cise.ufl.edu/research/sparse/matrices/.
[44] R.W. Freund, M.H. Gutknecht, N. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Stat.

Comput. 14 (1993) 137–158.
[45] Y.-M. Huang, Onm-step Hermitian and skew-Hermitian splitting preconditioning methods, J. Eng. Math. 93 (2015) 77–86.
[46] M.K. Ng, J. Pan, Weighted Toeplitz regularized least squares computation for image restoration, SIAM J. Sci. Comput. 36 (2014) B94–B121.
[47] E. Chow, Y. Saad, Experimental study of ILU preconditioners for indefinite matrices, J. Comput. Appl. Math. 86 (1997) 387–414.
[48] J.-P.M. Zemke, IDR(s) and IDR(s)Eig in parallel computing, Supercomput. News 12 (2) (2010) 31–48. Avaiable online at: http://www.tuhh.de/∼matjz/

papers/journals/IPC_bw.pdf.
[49] K. Abe, G.L.G. Sleijpen, A BiCGStab2 variant of the IDR(s) method for solving linear equations, AIP Conf. Proc. 1479 (2012) 741–744. Avaiable online

at: http://dx.doi.org/10.1063/1.4756242.
[50] G.L.G. Sleijpen, M.B. van Gijzen, Exploiting BiCGstab(ℓ) strategies to induce dimension reduction, SIAM J. Sci. Comput. 32 (2010) 2687–2709.

http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref39
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref40
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref41
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref42
http://www.cise.ufl.edu/research/sparse/matrices/
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref44
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref45
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref46
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref47
http://www.tuhh.de/~matjz/papers/journals/IPC_bw.pdf
http://www.tuhh.de/~matjz/papers/journals/IPC_bw.pdf
http://www.tuhh.de/~matjz/papers/journals/IPC_bw.pdf
http://www.tuhh.de/~matjz/papers/journals/IPC_bw.pdf
http://www.tuhh.de/~matjz/papers/journals/IPC_bw.pdf
http://www.tuhh.de/~matjz/papers/journals/IPC_bw.pdf
http://www.tuhh.de/~matjz/papers/journals/IPC_bw.pdf
http://www.tuhh.de/~matjz/papers/journals/IPC_bw.pdf
http://www.tuhh.de/~matjz/papers/journals/IPC_bw.pdf
http://www.tuhh.de/~matjz/papers/journals/IPC_bw.pdf
http://dx.doi.org/10.1063/1.4756242
http://refhub.elsevier.com/S0898-1221(15)00507-6/sbref50

	A hybridized iterative algorithm of the BiCORSTAB and GPBiCOR methods for solving non-Hermitian linear systems
	Introduction
	GPBiCG(m, ell) method and a new variant of the GPBiCOR method
	The GPBiCG(m, ell) method
	A new variant of the GPBiCOR method

	Numerical experiments
	Conclusions
	Acknowledgments
	References

