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ABSTRACT We consider a testing procedure for the occurrence probability of rare events such as a severe 
adverse drug reaction observed after the release of a drug to market. Occurrence probabilities in two periods 
or populations 0 and 1 are compared. Under the condition that k events were observed among n patients 
for one population 0, we test whether the occurrence probability for the second period or population 1 is 
the same as that in 0. We derive the null distribution and the non-null distribution of the test statistic both 
in exact and approximate forms, and make numerical assessment of the accuracy of the approximation. 
Further, the power function is also derived and the power of the test will be evaluated using the power 
function. 
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Safety issues are now becoming central concern in various 

research fields. Among many examples of safety problems, our 

concern of this paper is on the occurrence probability of a severe 

adverse reaction (ADR) of a drug after its marketing. Although 

we mainly discuss a safety problem in pharmaceuticals, the 

results of this paper can be applied in many other research 

problems. Before marketing of new drugs, pharmaceutical 

companies conduct several clinical trials to get information about 

efficacy and safety of the drug. Some ADR's would be observed 

in such clinical trials, and a rough estimate of the occurrence rates 

of such ADR's might be obtained. However, since the number of 

patients medicated in clinical trials is quite limited, such 

occurrence probabilities might be underestimated than actual. 

More importantly, some ADR's may be overlooked before 

marketing, and would be observed only after marketing. 

Occurrence rate of such a severe ADR is very low, but once it 

happens it cause serious damage to our health. Hence, it is quite 

important for all of us to monitor the occurrence rate of severe 

ADR's carefully after marketing of a drug. 

Frequencies of ADR's are monitored by the government of 

each country in the world and released in every several months. 

In Japan, the frequencies are released every four months. In each 

pharmaceutical company, specific ADR's related to its own 

marketed drugs are monitored in a similar fashion. Let us confine 

our attention to a particular rare event A such as death caused by 

a post-marketed drug. The occurrence rate of A can be changed 

in successive periods of the same population or among different 

regions. Just after marketing of a drug, doctors are very careful 

in using such a new drug so as to make careful selection of 

patients and monitor the patients frequently. However, if the 

number of serious ADR reported are zero or fewer than expected, 

doctors would broaden the range of patients, and that may cause 

increase of the occurrence probability of the event. For different 

regions, if the reported number of A is quite few in one region, 

people in other regions become comfort and use the drug to many 

patients without knowing that fact that the drug was used in the 

first region very carefully. Hence it is important to check whether 

occurrence probabilities of an event A in two different periods or 

regions are the same. This problem will be discussed in the 

following by formulating as a testing procedure. 

Let 0 and 1 denote the two periods or two populations, and 

p0 and p be the occurrence probabilities of a rare event A in each 

population. It is assumed here that we have observed the event A 

for k times among n patients in 0. The number n is quite large 

and often unknown, and k is small because the event A is rare. 

The number k can be zero, which corresponds to the fact that the 
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event A was never observed in 0. Under the condition that we 

have observed k events in 0, we let p = cp0 and wish to test 

 H0k : c = 1  vs.  H1k : 1 < c (< 1/p0) ,  (1) 
where the subscript k reminds us that the test is conditioned upon 

we have observed k events out of n patients in 0. The upper limit 

to c is posed in H1k to assure p < 1. Let Y be a random variable 

that represents the number of the event A observed out of n 

patients in the second period or population 1. The number n 

might be unknown but assumed to be the same or almost the 

same order for 0 and 1. This condition will be relaxed later. 

This Y is our test statistics for testing the hypothesis (1). For k = 

0, the test is relevant to a warning so-called `Rule of Three', see 

Senn (1997), Uchiyama (2005) and Iwasaki and Yoshida (2005). 

It tells us that even if we observed no events in one period it is 

quite likely that three events will occur in another period. It can 

be a quantitative representation of a warning that 'absence of 

evidence is not evidence of absence'. Our test tells us that when 

no events were observed in one period, if we observe at least four 

events in the following period, then we have to be aware that the 

occurrence probability may become increased.  

Note that the problem can be formulated by using a binomial 

distribution. The test statistic Y follows a binomial distribution 

with parameters n and p, denoted by Bin(n, p). The problem can 

also be dealt with by using a Poisson distribution because n is 

large and p is small. Let us denote the relevant Poisson 

distribution with parameter  by Poisson( ) with = np. We 

shall call the former approach that uses a binomial distribution 

as 'exact', and the latter approach using Poisson distribution as 

'approximate' or 'limiting'. Iwasaki and Yoshida (2005) dealt 

with the similar problem and derived some results for testing 

the hypothesis (1) by using approximate methods. In order to 

evaluate the accuracy of the approximation we have to develop 

exact arguments for testing (1). In this paper we shall derive 

exact formulae relevant to the testing of (1), and then 

investigate the relationship between the present formulae and 

the approximation formulae of Iwasaki and Yoshida (2005). We 

also evaluate the accuracy of approximations, which never be 

obtained without exact formulae. Non-null distributions will be 

derived and powers of the test are also calculated.  

The organization of this paper is as follows. In Section 2, we 

derive the null distribution of Y by the exact method and 

evaluate the accuracy of the approximation. In Section 3, the 

non-null distribution will be obtained, and the power functions 

are evaluated in Section 4. Finally, a brief discussion will be 

given in Section 5. 

In this section, we formulate a procedure to test the 

hypothesis (1) using an exact method and obtain the null 

distribution. Then, we compare the exact null distribution with 

the approximate null distribution derived by an approximate 

method, and evaluate the precision of the approximation.  

 

In our testing problem, it is assumed that we already have 

observed the event A for k times out of n patients in one 

population 0. Iwasaki and Yoshida (2005) used this 

information as a prior distribution of the occurrence probability 

p of A in 1. Specifically, Y, the number of event A observed 

out of n patients in 1, follows Bin(n, p) in which the 

probability p has a beta distribution with parameters k + 1 and 

n – k + 1, denoted by Beta(k + 1, n – k + 1), which is the 

conjugate prior to binomial distributions and corresponds to k 

occurrences of A in 0. Then the null distribution Pr(Y = y | 

H0k) can be expressed as  
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where 
1

0
11 )1(),( dtttbaB ba  is a beta function and 

(a)y = a (a + 1) · · · (a + y – 1) is Pochhammer's symbol. It is 

noted that (2) is the probability function of a beta-binomial 

distribution with parameters n, k + 1 and n – k + 1. Hence, the 

expectation and the variance are given by  
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respectively, see Johnson et al. (2005) p.253. 
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The random variable Y can be approximated by a Poisson 

distribution Poisson( ) with  = np because n is large and p is 

small enough. Iwasaki and Yoshida (2005) used this fact and 

derived an approximate null distribution of Y under H0k in 

representing the fact that we observed k events in 0 by a 

gamma distribution as the prior distribution of Poisson( ). The 

approximate distribution of Y can be expressed as 
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which is the probability function of a negative binomial 

distribution with parameters k + 1 and 1/2, denoted by NB(k + 

1, 1/2). Then we have 
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see Johnson et al. (2005) p.216. It can be shown that the 

probability distribution (2) of a beta-binomial distribution with 

parameters n, k + 1 and n – k + 1 converges in law to NB(k + 1, 

1/2) as n   as 
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This shows that the two routes ''binomial + beta prior  beta 

binomial  negative binomial (n  )'' and ''binomial  

Poisson (n  ) + gamma prior  negative binomial'' give the 

identical result. It is worth noting that the expectation (3) and 

variance (4) of the exact distribution respectively converge to 

corresponding expressions (6) and (7) as n  . 

.

.

 

Now, we shall evaluate the accuracy of the approximation of 

(5) compared with the exact one (2) in order to get information 

about the magnitude of n to provide satisfactory close 

approximations, because approximate distributions are much 

easier to use than the exact counterparts. Tables 1, 2 and 3 show 

the null distributions Pr(Y = y | H0k) for k = 0, 1 and 2, 

respectively. Probabilities found in tables are calculated by the 

exact distribution (2) for several n's and also by the 

approximate distribution (5), which are denoted by . We 

observe in the tables that the probabilities for each y approach 

to those given by (5) as n increases. We also see that the 

probabilities are close enough to the limiting ones even when 

n's are of several hundreds. The problems to which we wish to 

apply this test may have much more n's, several thousands or 

sometimes millions, and hence the use of approximation to 

such problems can be numerically justified.  

For small numbers of k and significance level  = 0.05, 

Iwasaki and Yoshida (2005) obtained one-sided critical regions 

for (1) by using approximate methods, for example,  
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If Y  4, then H00 is rejected,  

If Y  6, then H01 is rejected,  

and  

If Y  8, then H02 is rejected, 

which are calculated by using not ordinary P-values but mid-P 

values. For mid-P values, see Armitage and Berry (1994) and 

Iwasaki (1993) among others. 

In this section, we derive the non-null distribution under the 

alternative hypothesis H1k for testing (1). Since 0 < p0 < 1/c, we 

should consider a conditional distribution of p0 as follows: 
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11 )1(),(  is an incomplete beta 

function. Since Y follows Bin(n, cp0)  under H1k, the 

probability function of Y can be expressed as  
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Since n + k + 2 > y + k + 1 > 0 and 0 < p0 < 1/c < 1, the integral 

in (8) becomes 

where 
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finite n, by using the expressions (8) and (9), we can derive 

exact non-null distributions as follows: 
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where Ix(a, b) = Bx(a, b)/B(a, b) is an incomplete beta function 

ratio. Iwasaki and Yoshida (2005) showed that the limiting non-

null distribution of Y under H1k as n   is negative binomial 

NB(k + 1, 1/(c + 1) ), that is, the asymptotic probability function 

is  
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Their argument was through the route ''Binomial  Poisson 

 negative binomial''. They did not obtain exact non-null 

distributions but our expression (10) is exact. Tables 4, 5 and 6 

show non-null probabilities Pr(Y = y | H1k) with c = 2.0 for k = 

0, 1 and 2, respectively. The probabilities are calculated by 

using the formula (10) for several n's and by (11) when n  . 
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We also see that the probabilities with finite n's tend to limiting 

ones as n  . Probabilities are close enough to the limiting 

values even when n is of several hundreds. For other values of 

c, similar results can be obtained, which are not shown here. 

The expressions (8) and (10) are derived under the 

alternative hypothesis. Implicit assumption of the derivation is 

that the numbers n for two populations are the same. When the 

numbers of patients are different in two populations, similar 

expressions can be obtained. Specifically, if the number of 

patients is c times of n and the occurrence probabilities are the 

same, then the probability distribution for Y can be given by the 

same formulae as (8) and (10). When the number of patients 

and the occurrence probability for 1 are c1p0 and c2n, 

respectively, then the expressions (8) and (10) are also valid if 

we substitute c = c1c2 in them. 

As mentioned previously, the number n is quite large, and 

the approximation of the limiting distributions is quite accurate. 

Then we use the approximate distribution (11) in this section. 

We will derive power functions for the testing (1) based on the 

non-null distribution (11). First, we give a theorem. 

 
Theorem 1. Under the alternative hypothesis H1k, for an 

observed value y* of Y, the probabilities Pr(Y  y* | H1k) for k 

= 0, 1 and 2 are given by 
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Proof.  We prove the theorem for k =2. Let r = c/(1 + c), then, 

for an integer m 
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Therefore, we obtain 
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We can prove the theorem for k = 0 and k = 1 in a similar 

fashion.    

 

We obtain the following corollary concerning power functions 

immediately from Theorem 1.  

 

Corollary 1. Power functions for the testing (1) are given as 

follows: 
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Proof.  Substitutions of y* = 4, y* = 6 and y* = 8 into the 

formulae Pr(Y  y* | H1k) for k = 0, 1 and 2, respectively, in 

Theorem 1 yield the desired results.    

 

Table 7 and Fig. 1 show the numerical values and graphs of 

the power functions. We see that the powers are not so high. 

For example, for k = 0 the power function is the lowest among 

the three, and it cannot attain 0.8 even if c = 10.0.  

We have discussed a testing procedure for the occurrence 

probability of rare events. The null distribution and non-null 

distributions are derived both exactly and approximately. These 

expressions enable us to compare the exact and approximate 

distributions. As a result, it was shown that the test procedure 

based on the approximate distribution could be used without 

any loss of accuracy if n is large enough. Further, power 

functions are also obtained. The powers are not too high. One 

of the reasons why the power is low lies in the shape of non-

null distributions. When the constant c increases, the parameter 

1/(c + 1) of the non-null distribution decreases. This makes the 

shape of the non-null distribution flatter, not shift of location. 

Such flat shape does not necessarily contribute to make the 

power high, and which is unavoidable in testing using Poisson 

or negative binomial distributions. 

A possible application of the test discussed here is the signal 

detection. Signal detection is the name given to a collection of 

idea and methodologies that aims to detect unknown severe 

ADR's from the database of spontaneous reporting of events 

from pharmaceutical companies and medical institutes, for 

details see Evans et al. (2001) and Van Puijenbroak et al. (2002). 

Since the database of ADR's is quite large it is necessary to 

develop a computer system that provides us warnings of severe 

ADR's as soon as possible. As referred to in Section 1, 

frequencies of ADR's are reported every several months. In 

such situations, since our test is quite simple it can be easily 

implemented in such computer system. It may contribute to 

early signal detection of severe ADR's from database. The test 

procedure can also be used in monitoring rare events, such as 

some signal of an earthquake that may cause big disasters to us. 
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