
SEIKEI UNIVERSITY

Dynamic Data Allocation Method

for Web-based Multiserver Systems

DISSERTATION

submitted in satisfaction of the requirements

for the degree of

DOCTOR OF SCIENCE AND TECHNOLOGY

in Computer and Information Science

by

Masaki Kohana

Dissertation committee:

Professor Shusuke Okamoto, Committee Chair

Professor Makoto Takizawa

Professor Atsuko Ikegami

2012

Contents

1 Introduction 1

1.1 Web-based Application . 1

1.2 Multi-player Online Game . 2

1.3 Motivation . 2

1.4 Organization of this paper . 3

2 Literature Survey 5

2.1 Analysis of virtual environment . 5

2.2 Implementation of virtual environment 6

2.3 Virtual environment Architecture . 7

2.4 Load balancing approach . 7

2.5 Division of virtual environment . 9

2.6 Web-based virtual environments . 10

2.7 Live migration of virtual machine . 10

2.8 Conclusion of literature survey . 11

3 System Architecture 12

3.1 System Overview . 12

3.2 Server Structure . 13

3.3 Remote Access . 14

3.4 Moving Home . 15

3.5 Software Implementation . 17

3.5.1 Database Setting . 17

3.5.2 Login.cgi . 19

3.5.3 Getinst.cgi . 20

3.5.4 Getorg.cgi . 21

3.5.5 Communication Protocol . 22

4 Home allocation based on local data 24

4.1 LRC Rule . 24

4.2 Time-based Rule . 26

4.3 Count-based Rule . 28

4.4 Performance Evaluation . 30

4.4.1 Experimental Setting . 30

4.4.2 Client Software . 31

4.4.3 Experimental Result with Random Walk Pattern 32

4.4.4 Discussion of Random Walk Pattern 33

4.4.5 Experimental Result with Dense Crowd Pattern 36

4.4.6 Discussion of Dense Crowd Pattern 36

4.5 Conclusion of Home Allocation based on local data 37

5 Home allocation based on global data 41

5.1 Formulation . 42

5.2 Exact algorithm . 44

5.3 Heuristic solution approach . 48

5.3.1 Algorithm Steps . 48

5.4 Evaluation for Tabu Search Algorithm 51

5.5 MORPG System with home allocation based on global data 54

6 Conclusion 58

List of Figures

1 Login Page . 13

2 Game Screen . 14

3 Game world and View area . 15

4 Server structure . 16

5 A Case of Remote Access . 17

6 A Case of Moving Home . 18

7 Example of POST message . 20

8 Process flow of Getinst.cgi . 21

9 Process flow of Getorg.cgi . 22

10 JSON for characters . 23

11 LRC rule . 25

12 Time-based rule . 27

13 Count-based rule . 29

14 Latency of getinst.cgi with block allocation based on local data with

random walk pattern . 32

15 Frequency of moving home with random walk pattern 33

16 Frequency of remote access with random walk pattern 34

17 Frequency of already moved case with random walk pattern 35

18 Latency of getinst.cgi with block allocation based on local data with

dense crowd pattern . 37

19 Frequency of moving home with dense crowd pattern 38

20 Frequency of remote access with dense crowd pattern 39

21 Frequency of already moved case with dense crowd pattern 40

22 Two types of communication . 42

23 Example of lp-file format . 45

24 Comparison of stepwise objective function value of the exact algorithm

and the data allocation based on local data. 46

25 Difference between maximum and minimum objective function value by

the exact algorithm and the allocation based local data 47

26 Comparison of server load by the exact algorithm and allocation based

local data with dense move pattern . 48

27 Difference between maximum and minimum objective function value by

the exact algorithm and the allocation based load data with dense move

pattern . 49

28 Comparison of stepwise objective function values of the exact algorithm,

the tabu search algorithm and the data allocation based on local data 50

29 Difference between maximum and minimum objective function value by

the exact algorithm, the tabu search algorithm and the allocation based

on local data . 51

30 Comparison of average objective function values 52

31 Comparison of average load per server 53

32 Difference between maximum and minimum server load 54

33 Calculation time for the exact algorithm and the tabu search algorithm 55

34 System Architecture for MORPG system with home allocation based on

global data . 56

35 Latency with allocation based on global data 56

36 Frequency of remote access with allocation based on global data 57

List of Tables

1 Table of Avatar . 19

2 Table of NPC . 19

3 Home.db . 20

4 Database Table for Time-based Rule 26

5 Database Table for Count-based Rule 30

6 Runtime environment . 31

Acknowledgment

The author would like to gratitude to many people who support the completing the

degree.

First of all, the author is deeply grateful to his supervisor, Professor Shusuke

Okamoto at Seikei University, Department of Information and Sciences, Computer

System Laboratory, who provided generous support and suggestions. The author is

always helped by his comment and suggestion.

The author would also like to express his gratitude to Professor Makoto Takizawa

and Professor Atsuko Ikegami at Seikei University, Department of Information and

Science. Their opinions and information have helped the author throughout the pro-

duction of this study.

Professor Tatsuhiro Yonekura and Professor Masaru Kamada at Ibaraki University,

Faculty of Engineering, gave the author meticulous comments and discussions.

The author would like to thank the members of Computer System Laboratory at

Seikei University. They gave the author lively discussion.

Lastly, the author’s deepest appreciation goes to his parents and his friends.

1 Introduction

1.1 Web-based Application

Web-based application is a popular type of software and takes a form of server-client

software. Web-based application runs on a web server and displays the result on a

client. In the early days of Web, web server delivered only static HTML file to client.

By the appearance of CGI, web server could create HTML documents dynamically

according to an input data from a user. Thereby, various web-based applications could

be developed. The using client-side scripting language such as JavaScript provides

dynamic user-interface on a web browser. And Ajax provides asynchronous communi-

cation between server and client. Then, the more flexible web-based application could

be developed. Due to the speeding up JavaScript on web browsers, web browser could

process the more complex computing.

Web-based application uses web browser as a client software. At the server-side,

CGI script is used to handle requests from web browsers. CGI script is typically

written by php, perl and ruby. Web browser executes browser-supported programming

language such as JavaScript and communicates with a web server. It can be available

if there are a web browser and the Internet connection. And it is independent from

Operating System (OS) and computer architecture. Thus, the user does not need any

special client software and any special settings of computer. It is preferable for the

user who does not have the expertise of the computer. Furthermore, the user data is

stored into database on the database server. Then, the user can access to own data

from various computers and various places.

Additionally, Ultra Mobile PCs (UMPCs) and smartphone such as iPhone or An-

droid phone becomes popular and FREESPOT is increasing. Hereby, the number of

web-based applications has been increasing. In fact, there are some popular web-based

applications such as Facebook, Gmail, Twitter and so on.

In the future, the number of users for web-based applications might continuously

1

increases. Thus, techniques to serve a large number of users are needed.

1.2 Multi-player Online Game

Multi-player Online Game (MORPG) is one of the most popular online game. Play-

ers create their own avatar in a virtual game world. The player operates own avatar

using mouse and arrow key and interacts with the other players using chat message

and character gesture. MORPG which has a large number of players is called Mas-

sively Multi-player Online Game (MMORPG). There are a large number of popular

MMORPGs such as Final Fantasy 14, Dragon Quest 10, World of War Craft and so

on.

The most MMORPGs require a special client software and they are provided for

Windows OS. On the other hand, there are some MORPGs which are provided as

a web-based application such as ELEMENTALIA, Fragoria and Rune Scape. This

type of MORPG does not require any special software and independents from OS and

architecture.

Most online games divide a virtual game world into some regions. Each region is

managed by a separate server. Thus, when the avatar across the region, the client

software connects to a new server and reload the virtual game world. In addition,

some online games limits the number of avatars in a region. This reason is to control

the server load.

1.3 Motivation

Web-based application has some advantages. However, there are some disadvantages.

The access congestion to a web server causes database access conflict in case of higher

frequent communication. And the different access latency leads to unfair situation.

Short latency and high fairness are important for this kind of online game. Further-

more, a player might converge on certain region in the virtual game world. It leads

2

to higher server load. The game provider must be required huge investment to handle

the peak demand of players.

This research focuses on web-based MORPG which has more frequent request to

a web server and introduces a load-distribution system using multiple web servers to

resolve the problem. The entire game world is divided into small blocks and each

ownership of block is assigned to a web server. A web browser that is a client software

connects to a web server. Thus, the access congestion is resolved. However, when the

block data does not available locally, the server that receives a request should retrieve

the data from the other server that has the data. This communication among servers

also becomes an overhead.

In order to reduce the frequency of the communication, this research proposes

a dynamic data reallocation method. This method attempts a data allocation that

has the least frequent communication. Two types of data reallocation methods are

proposed in this research. The one is the data reallocation based on local data. The

another is the data reallocation based on global data.

With the allocation based on local data, each server determines which server should

manage the block independently. Three rules are introduced to determine when a block

moves.

With the allocation based on global data, the system collects the entire game infor-

mation from all servers. To obtain an optimal data allocation, the block assignment is

formulated as a combinational optimization problem. To understand an optimal data

allocation, this formulation is solved by using an exact algorithm. Furthermore, it is

solved by using a meta-heuristic algorithm to obtain an optimal allocation quickly.

1.4 Organization of this paper

This paper is organized as follows. Literature Survey is discussed in Section 2. It

shows some virtual environment system and dynamic load distribution system for

3

online games. Section 3 shows the system architecture of this research, which includes

the overview of the game setting and describes the communication among servers

called ‘remote access‘ and the dynamic data reallocation method called ‘moving home.‘

Section 4 proposes the data reallocation method based on local data. Using this

method, each server determines which server should manage the data independently of

each other. The data reallocation method based on global data is described in section

5. This method uses the data from all servers to determine which server should manage

the data. In order to achieve an optimal data allocation using this method, the data

allocation problem is solved as a combinational optimization problem. This problem

is solved by an exact algorithm using IBM CPLEX and a tabu search algorithm which

is a meta-heuristic algorithm. Finally, this paper is concluded in section 6.

4

2 Literature Survey

This section describes the literature relevant to this paper. There are numerous virtual

world services, including Second Life, World of Warcraft, and Meet-Me [27][28][29].

The main topic of this paper is the load distribution on servers in a multi-server web-

based MORPG system. We aim to make load balanced by using a data allocation

technique. There is some existing research relevant to this work.

2.1 Analysis of virtual environment

Daniel Pittman and Chris GauthierDickey measured the virtual population in Mas-

sively Multiplayer Online Games (MMOGs) and investigated the player movement and

distribution[1]. To measure the population on virtual world, they designed an add-on

for World of Warcraft which is a most popular MMOG. They cleared that the peak

population appears at the evening of the day and week end. In addition, they also

cleared that the users converge on a few areas such as the large city and they visit

a few areas during their game playing session. This means that some servers which

manages crowded area has higher server load. Thus, the load-distribution method to

handle the higher server load is needed.

Wu-chang Feng et al. provided a comprehensive analysis of popular online multi-

player game servers[6]. They stated that the workload is characterized by highly pe-

riodic bursts of small packets, with predictable long-term rates. Additionally, they

showed that game players themselves have interesting session-times and geographic

locations.

Waldo discussed the necessity of finding and constructing environments for online

games and virtual worlds[7]. He stated that problem solving in this new environment

was a great challenge, and that a new approach to software development was required

for multi-threaded multi-core distributed systems.

Kuan-Ta Chen et al. stated that system-level performance such as bandwidth

5

and latency is unlikely to influence how satisfactory a user finds a system to be[5].

Nevertheless, a user’s perception is inevitably influenced by the application design and

implementation. They showed that game play time is strongly related to network QoS;

thus, network QoS is a potential indicator of user satisfaction.

Frank Glinka et al. provided a comprehensive analysis of multi-server distribution

mechanisms, zoning, instancing, and replication[11]. Their approach is efficiently sup-

ported by a current real-time framework implementation, which provides both a high

level of abstraction and preserves design flexibility in single- and multi-server game

engines.

2.2 Implementation of virtual environment

Ahmed Abdelkhalek and Angelos Bilas investigated the parallelization and the scala-

bility of interactive multiplayer game servers [2]. They proposed the threaded game

server. Their main challenges were the task decomposition and the synchronization

for correct game processing. They parallelize Quake game server using multi-threads.

It uses a shared memory architecture. In the system, the locking synchronization time

grows from 2 % to 35 % of the server execution time. However, using locking method

based on application specific knowledge could reduce the locking time about 20 % of

total execution time. Their threaded game server can support 25 % more players than

the sequential game server.

To maintain consistency of online game, Dead-Reckoning (DR) is an important

method. It predicts the player movement. It could filter most unnecessary state

updates. Yi Zhang et al. proposed a method named Globally Synchronized Dead-

Reckoning with Local Lag, which combined local lag and Globally Synchronized Dead-

Reckoning (GS-DR) [4]. This method can eliminate the after-inconsistency and de-

crease the before-inconsistency. This method showed that by combining local lag and

GS-DR, the constraint on selecting lag value is removed and a lag, which is smaller

6

than typical network transmission delay, could be used. As a result, the system which

has large network transmission delay uses the application of local lag.

2.3 Virtual environment Architecture

Jeremy Burn et al. focused on the network topology [3]. They introduced the notion

of critical response time in order to optimize playability and fairness. They formulated

the optimal critical response time for the server selection problem and solved it for the

small networks of three different types of network topology. They also introduced an

approximate heuristic solution for large networks. The heuristic approach closed to an

optimal critical response time.

Jared Jardine et al. developed a hybrid game architecture. This architecture uses

a combination of client-server and peer-to-peer architectures[10]. This combination

ensures that a sufficient number of players are capable of functioning as regional servers,

thus keeping the latency low, and allowing the game to handle a great number of moves

per second.

Shun-Yun Hu et al. proposed Voronoi State Management (VSM) to maintain object

states for peer-to-peer-based virtual worlds[12]. VSM supports existing consistency

control to enable scalable, load-balanced, and fault-tolerant virtual environment (VE)

state management. VSM integrates both client-server and peer-to-peer VE designs in

a unified approach.

2.4 Load balancing approach

Radu Prodan et al. proposed a new prediction-based method for dynamic resource

provisioning and scaling in massively multi-player online games (MMOGs) in a dis-

tributed grid environment[8][9]. Their method delivers computing resource to server

dynamically and manages the resource in data center. They specified the various type

of player interaction and player population trend. This method estimates the MMOG

7

resource demand dynamically and provides computing resource to game server accord-

ing to the entity distribution in the game world. They tunes a neural network-based

predictor to achieve good accuracy consistency. This dynamic resource provisioning

method was more efficient than the static provisioning. Their method reduces the

average over-allocation from 250% to around 25%.

The dynamic resource provisioning is also used to Database-as-a-Service (DBaaS).

Jie Zhu et. al. proposed a dynamic resource allocation framework for DBaaS[24]. To

maximize resource utilization, their framework reallocates resources to tenants. But

the service level agreement (SLA) should be satisfied. Thus, they models the resource

reallocation problem as a modified unbounded knapsack problem. It introduces an

additional constraint. Their experimental result shows that the framework always

achieves higher resource utilization.

Fengyun et al. proposed a technique to balance the load over the server cluster for

MMORPG[18]. It is simple but effective, while maintains the flexibility of a cluster.

They takes a behavioural approach to balance load. And it distributes the player con-

nection over the clustered server in a round-robin fashion. It afforded the higher degree

of interactivity. Their approach is scalable while maintaining real-time requirements.

Carlos et al. proposed a load balancing scheme for distributed MMOG servers[19].

They has two goals, allocating load on server nodes proportionally and reducing the

inter-server communication overhead. They considered the upload bandwidth occu-

pation of the server as the load. And they used a greedy graph partition growing

algorithm to reduce the inter-server communication overhead.

Mejdi Eraslan et al. proposed a transport system for a distributed virtual environ-

ment with IPv6[20]. They showed the limitation of the IPv4 and proposed a network

architecture using the IPv6 to support the per-packet level QoS for the large-scale

virtual environment which needs the great bandwidth.

Herbert Jordan et al. proposed a game load management technique divided into

global and local layer[21]. This technique is divided into two layers (global and local).

8

The global layer uses peer to peer architecture to assign the responsibility of managing

game region to a data center. The local layer is done within individual data center. It

maintains the server instance for the assigned obligations. To maximize the resource

utilization, they uses two meta-heuristics based on a bin-packing problem. Their ap-

proach achieved the cost reduction in maintaining MMOG session by up to 60% while

maintaining QoS in 99%.

Huang et al. proposed a neighboring-based distributed dynamic load balance policy

for achieving the load balancing in P2P grid system[22]. Their approach migrates the

job to the neighboring site with minimal job turnaround time. Their experimental

result shows the approach improves performance.

These approaches use some middleware to achieve efficient resource usage. As

mentioned earlier, the approach in this papaer targets web-based applications. It aims

to achieve load balancing without modifying the web server. Thus, a dynamic data

reallocation method is chosen to balance the server load, with which the approach aims

to achieve enhanced player capability.

2.5 Division of virtual environment

There are a number of methods that use multiple servers and divide the virtual world

into areas. De Vleeshauwer et al. proposed dynamic microcell assignment [13][14]. In

this approach, the virtual world is divided into small cells, called microcells. These

microcells are then dynamically assigned to a set of servers to address the high, dy-

namically varying player density. This architecture is important for managing a large

number of users. Their algorithm achieved a load reduction of up to 30%.

Roman et al. investigated an architecture of a unified virtual world and proposed a

load-balancing method[23]. In this architecture, the virtual game world is not divided.

But some server divides the client processing with the rectangle region. This system

changes the size of region according to the client movement. These regions might

9

overlap with the others. Their proposed load balancer has two modes. The first mode

attempts to balance the load. The second mode resolves any overlap inefficiencies.

2.6 Web-based virtual environments

There are some web-based virtual environments, RuneScape, Fragoria, and

ELEMENTALIA[30][31][32]. In addition, some researchers have proposed applications

for web-based virtual environments. Hayer et al. proposed a tele-operated labora-

tory [15]. They designed a web-based virtual environment that they used to control

laboratory experiments. Champion conducted an online exploration of archaeologi-

cal reconstructions [16]. This exploration employed JavaScript and an XML-based

application.

2.7 Live migration of virtual machine

The data allocation method is looks like a live migration of virtual machines which is a

key technique for cloud computing. Yi Zhao et al. proposed an implementation with an

adaptive live migration of virtual machines[25]. It uses shared storage to decrease the

migration time. They introduced a COMPARE AND BALANCE that is a distributed

algorithm.

Kejiang Ye et al. focuses on the live migration mechanism[26]. In the mechanism,

the multiple virtual machines has different resource reservation method. They evalu-

ates the performance impacts of their migration framework for both a source machine

and a target machine. Furthermore, they analyzes the efficiency of parallel migration

strategy. Their experimental result cleared that the live migration of virtual machine

brings some performance overhead.

10

2.8 Conclusion of literature survey

The most of introduced research in this section employ the computing resource alloca-

tion or job migration in distributed system. And some research used middlewares to

achieve the objective.

This paper aim to achieve load balancing without modifying web servers. And the

data required by players differ for every player. Therefore, the approach in this paper

uses a dynamic data reallocation method to balance the server load and aim to achieve

enhanced player capability. This dynamic data reallocation method is performed on

CGI and data transfer are performed on the HTTP protocol. Thus, the modifying web

server is not needed.

We adopt a latency threshold to evaluate the approach. Claypool et al. discussed

the precision and latency required by different categories of online games[17]. They

proposed that the latency required by a MORPG should be 500 ms. Based on this

proposal, we aimed at adjusting the latency of our rules to 500 ms or less.

11

3 System Architecture

This section describes an overview of the web-based MORPG system, which includes

the server construction and the virtual game world construction. And this section

also describes a communication among web servers and a dynamic data reallocation

method.

3.1 System Overview

Figure 1 shows a login page of the MORPG in this research. A player enters the name

of the own avatar and password, and chooses a picture of the avatar. After that, the

player pushes the start button. Then, the page transfer to the main game screen.

Figure 2 is a game screen of the MORPG. There are two kinds of characters. Each

character name is displayed at the underfoot. The elephant and the frog are avatars

of the own players. Each avatar is operated by the own player using mouse and arrow

key. Each player explores a game world and interacts with the other characters using

the own avatar. The round shaped characters are non-player characters (NPCs). They

are operated by a program on a server.

The text box at the upper side is a chat form. To send a message to the other

players, the player inputs a message to the chat form and press the send button. The

player can communicate with the others by their message.

Figure 3 shows the relationship between the game world and the view area on a

web browser. The entire game world is divided into small blocks. Each ownership of

block is allocated to a web server. A block contains game data for characters who stays

there. The server which has the ownership of the block is called home of the block

and has a responsible to update data and to provide the data to clients and the other

servers. The rectangle with thick boarder indicates a view area on a web browser of a

player. A web browser locates the own avatar at the center of view area and displays

the game world included in the view area. Thus, the web browser retrieves the game

12

Figure 1: Login Page

data included in the view area.

3.2 Server Structure

Figure 4 shows the server structure. There are six web browsers and four web servers.

Each web browser connects to only a web server. All web servers are mutually con-

nected to all the other web servers to share the data. Each web server has two key CGIs,

getinst.cgi and getorg.cgi, and two databases, character.db and home.db. Getinst.cgi

is used to handle the request from a web browser. Getorg.cgi is used to handle the re-

quest from the other web server. Character.db stores the characters data on the block

that is managed by the server. Home.db stores which server is home of the block.

When the block data that required from the web browser does not available locally,

the server that received a request should invokes the getorg.cgi on the other web server

that is the home of the block to retrieve the block data. The invoking getorg.cgi is

called remote access.

13

Figure 2: Game Screen

3.3 Remote Access

Figure 5 illustrates a typical case of remote access. There are two web browsers and

two web servers. The server A is home of white blocks and the server B is home of

gray blocks. The web browser that operates the elephant connects to server A and the

browser that operates the frog connects to server B.

The web browser for the elephant sends a request to server A. Then, server A

retrieves the block data included in the view area of the elephant. However, the view

area of the elephant includes two gray block. Therefore, server A invokes the getorg.cgi

14

Figure 3: Game world and View area

on server B that is home of gray blocks. After retrieving the data of gray blocks, server

A replies the required data to the web browser. On the other hand, the web browser

for the frog sends a request to server B. Then, the view area of the frog includes only

gray blocks. Therefore, server B does not need any remote access.

3.4 Moving Home

Using multiple web servers, the access congestion to a web server could resolved. How-

ever, making a remote access becomes an overhead. When a web browser requires a

remote access, a web server performs as a client and sends a request to a home of block.

The communication time doubles. Thus, the communication time becomes longer de-

pending on the number of times remote access, which increases the latency. Increasing

the frequency of remote access makes higher overhead and increases the server load.

Thus, the latency of server becomes long and playability gets worse. The frequency

of remote access changes according to the block allocation and the avatar location.

15

Figure 4: Server structure

The avatar location changes every moment. Therefore, the optimal block allocation

is needed to achieve the high playability. The system in this research changes the

block allocation in progress of MORPG to reduce the frequency of remote access. This

change of block allocation is called moving home.

Figure 6 shows an example of moving home. There are two web servers and a web

browser. The server A is home of white blocks and the server B is home of gray blocks.

The web browser for the elephant connects to server A. The browser sends a request

to server A. Server A invokes the getorg.cgi on server B because the view area of the

elephant includes gray blocks. However, the other avatars does not need there gray

blocks. Then, the gray blocks included in the view area of the elephant should be

managed by server A. After moving the home of these gray blocks from server B to

server A, any remote accesses become unnecessary for server A.

As an example of above, the frequency of remote access could be reduced by moving

home. This research introduces two types of implementations for moving home. The

16

Figure 5: A Case of Remote Access

one is based on local data and section 4 describes the detail of it. The another one is

based on global data. It is described at section 5.

3.5 Software Implementation

3.5.1 Database Setting

There are two databases in this system, character.db and home.db. Character.db stores

the information of characters. This database has two kinds of tables (avatar, NPC).

Table 1 and 2 shows the table of avatar and NPC respectively. Each table contains

ID, block number, location, picture file name, size of pictures and names. The x and

y indicate a location of a character. The width and the height indicate the size of the

picture. Additionally, the avatar table contains the password and the login state of

player. In contrast, the NPC table contains the name of the function. It indicates the

17

Figure 6: A Case of Moving Home

18

id block x y pic width height name passwd login

1 36 643 263 panda0.png 32 32 test0 0000 logout
2 96 623 630 elephant0.png 32 32 test1 0000 login
3 47 279 331 frog0.png 32 32 test2 0000 login
4 79 445 522 domo0.png 32 32 test3 0000 logout

Table 1: Table of Avatar

id block x y width height pic name func

1 133 1383 886 16 16 iasl2 xpm.png npc0 trans npc s4
2 22 777 196 16 16 iasl2 xpm.png npc1 trans npc s2
3 207 1293 1335 16 16 iasl2 xpm.png npc2 trans npc 3
4 73 1386 492 16 16 iasl2 xpm.png npc3 trans npc s3

Table 2: Table of NPC

next behavior of the NPC.

Home.db stores information about which web server is a home for a block. Table

3 shows the contents of the home.db. An id field indicates a block number and a host

indicates an IP address of a web server.

3.5.2 Login.cgi

Login.cgi is invoked from the login page. It receives an avatar name, password and a

picture of the avatar. The received message is HTTP/1.1 POST method form. Figure

7 shows an example of this message.

When a player logs in at the first time, the login.cgi locates the avatar at random

position in the game world. After that, it checks the home of the block that the avatar

is in. If the home of the block is not local server, the login.cgi should invokes the other

login.cgi on the home of the block. After that, the login.cgi updates the login status

of the avatar and returns the avatar position to the web browser.

19

id host

0 192.168.114.200
1 192.168.114.200
2 192.168.114.201
3 192.168.114.201
4 192.168.114.202
5 192.168.114.203

Table 3: Home.db

Figure 7: Example of POST message

3.5.3 Getinst.cgi

Figure 8 is the process flow of getinst.cgi. This CGI receives a request from a web

browser. Then, it checks which blocks are included in the view area of the web browser.

After that, this CGI checks the home of blocks that included in the view area. This

CGI updates the NPCs information on the local block. When the home of some blocks

is the other web server, this CGI invokes the getorg.cgi on the server that is the home

of the block. If the home of the block already moves to the other server, the getinst.cgi

receives the new home of the block and invokes the getorg.cgi on the new home of the

block. The getinst.cgi repeats this invoking until the request achieves to the current

home of the block. When the moving home occurs, this CGI receives the avatars and

NPCs data on the block. And it stores these data to the local database, and updates

20

Figure 8: Process flow of Getinst.cgi

the home information in the home.db. If the avatar that managed by the web browser

exists in the local block, this CGI updates the avatar information. Otherwise, the

avatar information is updated by the getorg.cgi on the home of the block. After the

updating the avatar, getinst.cgi updates the condition of the moving home. The detail

of the condition is described in the following section. This CGI retrieves the character

information on the local block from the character.db. Finally, the getinst.cgi replies

the data to the web browser.

3.5.4 Getorg.cgi

Figure 9 is the process flow of getorg.cgi. This CGI is used to share the block data

among web servers. Getorg.cgi receives a request from getinst.cgi on the other web

server. If the home of the block already moves to the other server, getorg.cgi replies the

new home of the block to the invoker. When the current status satisfies the condition

21

Figure 9: Process flow of Getorg.cgi

of the moving home, getorg.cgi retrieves the data of all characters that includes the

logged out avatars and sends these data and the block number to the invoker. After

that, the getorg.cgi deletes the character data that in the block from the character.db

and sets the new home of the block to the home.db. When the moving home does not

occur, like getinst.cgi, this CGI updates the avatar and the NPCs information and also

updates the condition of the moving home. And it retrieves the required information

from the character.db and replies the information to the invoker.

3.5.5 Communication Protocol

There are two kinds of communication in this system. The one is the communication

between web browser and web server. The another is the communication among web

servers. Both types of communication conform to HTTP/1.1 and POST method. A

request includes an ID of character, a character name, the location, the range of view

area and block number.

22

Figure 10: JSON for characters

Web server replies the information on the JSON format. Figure 10 shows an ex-

ample of the JSON format.

This message includes the two information of NPC. Each information contains the

ID, the location, the picture file name, the size of the picture, the clickable flag and

the name of NPC. The web browser displays the characters according to this message.

23

4 Home allocation based on local data

This section describes the block allocation based on local data. Using this allocation

method, each server determines which server should manage the block independently

of each other. In this way, each server uses only local data. Thus, the sharing data

among servers is not needed. This research proposes three types of rules for the moving

home based on local data to help the decision making, LRC rule, time-based rule and

count-based rule.

4.1 LRC Rule

LRC rule is based on how many avatars are associated with the current home block.

This rule uses local-reference counter (LRC) to count the number of avatars that require

the block. Each block has a LRC. Each block is associated with its LRC. Home of a

block is moved from local to remote when a remote server sends a request for the block

and LRC value of this block is one, in other words, in case where only an avatar on

the remote server requires the block.

Figure 11 shows an example of how to use LRC rule. There are two web servers, s1

and s2. Server s1 is home of white blocks and server s2 is home of gray blocks. The web

browser for the elephant connects to server s1. The view area of the elephant includes

four blocks from (1, 1) to (2, 2). The elephant avatar is in block (1, 1), currently

home on s1. The NPC is in block (2, 1), currently home of s2. Server s1 invokes the

getorg.cgi on server s2 because the view area of the elephant includes gray blocks (2,

1) and (2, 2). However, no other avatars require the blocks (2, 1) and (2, 2). This is

indicated by the LRC values for block (2, 1) and (2, 2), both of which are 1. As a

result, server s1 becomes the home for (2, 1) and (2, 2), because server s2 does not

need to manage these blocks, and there is no longer a need for remote access.

24

Figure 11: LRC rule

25

id host start end

0 192.168.114.70 1350636437 1350636496
0 192.168.114.71 1350636448 1350636514
0 192.168.114.72 0 0
0 192.168.114.73 0 0
1 192.168.114.70 1350636027 1350636620
1 192.168.114.71 1350636102 1350636370
1 192.168.114.72 1350636427 1350636662
1 192.168.114.73 1350636012 1350636272

Table 4: Database Table for Time-based Rule

4.2 Time-based Rule

Time-based rule takes into account the amount of time an avatar spends in a block.

If an avatar stays in the same block for a long time, the home for the block moves to

the web server that requires the block information for the longest period. This rule is

based on the concept that an avatar will continue to stay on the same block if it has

already been there for a long time.

Table 4 shows an example of the database table for the time-based rule. When the

CGI receives a request, it updates the start or end field of the host that is connected

the web browser who requires the block. If the CGI receives a request at the first time,

it updates the start field with current UNIX time. After that, the CGI updates the

end field for each request. The CGI moves the home of the block to the web server

which has the largest difference between the start and the end time. If the CGI does

not receive a request from the web browser, it resets the start and end field for the

host that connected by the browser to the value 0.

Figure 12 shows one such case. Once again, there are two web servers, s1 and s2

and two web browsers. Server s1 is home of white blocks and server s2 is home of gray

blocks. The web browser for the frog connects to server s1 and that for the elephant

26

Figure 12: Time-based rule

27

connects to server s2. The NPC is in the block (2, 1), currently home on s1. The frog

moves back and forth along a straight line. The elephant moves along a circular path.

This case focuses on blocks (1, 1), (2, 1) and (3, 1). Server s1 requires its blocks for

a short period, because the frog passes through this area quickly. In contrast, server

s2 requires its blocks for a long period, because the elephant moves in a circular path

around this area. In this case, the system moves the home for these blocks from server

s2 to server s1.

4.3 Count-based Rule

Count-based rule considers the number of avatars that requires a block. Using this

rule, the home of a block is moved to the web server that serves the largest number of

avatars that require the block.

Table 5 shows an example of the database table for the count-based rule. This

database stores the number of avatars in a block for every host. If the avatar that

connected to the host 192.168.114.70 requires the block id 0, the count field of the

block id 0 for the host 192.168.114.70 is incremented. When the avatar leaves the

block, the count field is decremented. The CGI moves the home of a block to a web

server which has the largest number of the avatars who require the block.

Figure 13 shows an example. There are two web servers, s1 and s2 and three web

browsers. Server s1 is home of white blocks and server s2 is home of gray blocks. The

web browser for both the frog and the panda are connected to server s1 and that for

the elephant is connected to server s2. A NPC exists in the gray block (2, 2). This

block is included in the view area of all three web browsers. Then, server s1 makes

a remote access to obtain the NPC information on behalf of the frog and the panda.

Because there are two avatars that require the information from the gray block (2, 2)

on server s1, but only one avatar that requires this information on the server s2, the

home for block (2, 2) moves to server s1. After moving the home, server s1 does not

28

Figure 13: Count-based rule

29

id host count

0 192.168.114.70 2
0 192.168.114.71 7
0 192.168.114.72 2
0 192.168.114.73 3
1 192.168.114.70 4
1 192.168.114.71 1
1 192.168.114.72 6
1 192.168.114.73 5

Table 5: Database Table for Count-based Rule

require any remote access to obtain the NPC information, although server s2 does. As

a result, the number of remote access is reduced from 2 to 1.

4.4 Performance Evaluation

An experimental evaluation is conducted to investigate average latency and player

capacity.

4.4.1 Experimental Setting

Table 6 shows the runtime environment. In this experiment, there are four web servers.

The entire game world is 1500×1500 pixels and divided into 15×15 blocks. The update

interval is 1500 ms. This means that a web browser invokes the getinst.cgi every 1500

ms. There are 100 NPCs. The latency measurements includes the transmission delay,

database access delay and access congestion delay. As we described in the section 2, a

MORPG requires a latency of less than 500 ms [17]. Therefore, this experiment adjusts

the threshold of the latency to less than 500 ms for each rule.

30

CPU Intel(R) Xeon(TM) 2.80GHz * 2

Memory 1GB

kernel Linux kernel-2.4.31

compiler gcc version 3.3.2

WebServer Apache/1.3.33

NIC HP NC105i PCI Express Gigabit

connection 1Gbit Ethernet

Table 6: Runtime environment

4.4.2 Client Software

A client software is implemented for this evaluation. This client is a virtual client for

this MORPG. It enable to implement the several hundred of web browser request.

This client reads the avatar information and web server information from the file

at login time. Then, it invokes the login.cgi to retrieve the location, the block number

and so on. If this client gets the location of the avatar, it creates the request message

according to the avatar information. And it invokes the getinst.cgi at a regular time

interval. Then, it moves the location of the avatar.

Furthermore, this client moves the avatar with two movement patterns, random

walk pattern and dense crowd pattern. With the random walk pattern, avatars take a

random walk by choosing a random direction and advancing 10 pixels in that direction,

10 times each. They repeat this pattern for a while, occasionally also jumping a random

point. With the dense crowd pattern, ’hotspot’ is defined. It is a place where many

avatars gather. In actual games, avatars tend to gather around a town, a battle point

or some event place. Hence, the dense crowd pattern implements each of these as a

hotspot. The entire game world is divided into nine regions and each of which has a

hotspot. Each avatar randomly selects one of hotspots and moves towards it. After

spending some time at the hotspot, the avatar selects a new one and moves there.

31

 250

 300

 350

 400

 450

 500

 550

 600

 200 220 240 260 280 300 320 340

La
te

nc
y(

m
se

c)

Number of players

LRC rule

Time-based rule

Count-based rule

Figure 14: Latency of getinst.cgi with block allocation based on local data with random
walk pattern

4.4.3 Experimental Result with Random Walk Pattern

Figure 14 shows the latency of getinst.cgi for each rule with the random walk pattern.

The latency with count-based rule exceeds 500 ms when the number of avatar is 300.

It is the slowest of the three. The latency with LRC rule exceeds 500 ms when the

number of avatars reaches 320. Time-based rule has the best latency. It has 320 player

capacity, while the single-server system has 200 player capacity. Each of LRC and

count-based rule has also larger player capacity than the single-server system.

Figure 15 shows the frequency of moving home operation. The LRC rule causes the

most moving home operation, whereas the time-based rule causes the least. Further-

more, the time-based rule has the stable frequency of moving home, while the LRC

rule and the count-based rule has higher varied frequency of moving home.

Figure 16 shows the frequency of remote access. The LRC rule has more remote

accesses than the time-based rule, even though the LRC rule causes more moving

home operations. The count-based rule has the most frequent remote access. This is

32

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 200 220 240 260 280 300 320 340

F
re

qu
en

cy
 o

f m
ov

in
g

ho
m

e

Number of players

LRC rule

Time-based rule

Count-based rule

Figure 15: Frequency of moving home with random walk pattern

because that the home of the block already moved to the other web server when the

getorg.cgi receives a remote access request. When getinst.cgi requires a remote access

to obtain the information from a block and home of the block already moved to the

other web server, the getinst.cgi needs to request a remote access to a new home of

the block. This situation generates some overheads. Figure 17 shows the number of

times this situation occurs. Here, the LRC rule showed the highest frequency. The

frequency of the time-based rule is greater than that of the count-based rule, although

the time-based rule caused the least number of moving home operations.

4.4.4 Discussion of Random Walk Pattern

The time-based rule showed the best latency. However, in terms of the number of

remote accesses, the difference between the LRC rule and the time-based rule was

small. This was due to the number of the database access. Hence, the number of

database access for each rule was measured. The LRC rule made 25,118 database

33

 2000

 2500

 3000

 3500

 4000

 4500

 200 220 240 260 280 300 320 340

F
re

qu
en

cy
 o

f r
em

ot
e

ac
ce

ss

Number of players

LRC rule

Time-based rule
Count-based rule

Figure 16: Frequency of remote access with random walk pattern

accesses, count-based rule made 36,307 and time-based rule made 25,118. The time-

based rule accessed the database more often than the LRC rule, which resulted in

more congestion in the case of time-based rule. This is because the time-based rule

and the count-based rule has more complex database access pattern. Because of this

database access congestion becomes a bottleneck, there was a small difference between

the latencies of the LRC rule and the time-based rule.

The relationship between the frequency of moving home and that of remote access is

considered. The count-based rule showed the most frequent remote accesses, although

it showed more frequent moving home operation than the time-based rule. This is

because the number of the web browsers connecting to each web server was balanced.

In this case, moving home operations occur back and forth repeatedly. Therefore, the

moving home operation does not work effectively. Then, the frequency of remote access

did not change significantly, irrespective of which web server managed the block.

Finally, the relationship among the frequency of moving homes, remote accesses and

the case wherein the home of a block has already moved is discussed. The case of home

34

 100

 200

 300

 400

 500

 600

 700

 800

 900

 200 220 240 260 280 300 320 340

F
re

qu
en

cy
 o

f a
lre

ad
y

ch
an

ge
d

Number of players

LRC rule

Time-based rule
Count-based rule

Figure 17: Frequency of already moved case with random walk pattern

blocks having already moved occurred more often according to the frequency of moving

home when using LRC rule. However, for the count-based rule, the frequency did not

increase as the frequency of moving homes increased. Nevertheless, the frequency

of remote accesses when using the count-based rule was relatively high, even though

moving home operations were occurring. The reason for this is as follows. Moving

the home for a certain block may occur often if the number of requests for the block

from a server is almost the same as the other servers. All avatars take a random walk,

sometimes needing information from the block, and sometimes not. Each time the

number of requests from s1 or s2 changes, the rule may decide to move the home of

the block. This leads to frequent moving home operations, as well as frequent case in

which the home has already moved.

35

4.4.5 Experimental Result with Dense Crowd Pattern

This experiment evaluated the three rules with the dense crowd pattern. Figure 18

shows the latency of the getinst.cgi for each rule. The count-based rule has the best

latency, but the difference between each rule is small. The latency for all the rules

exceeds 500 ms when the number of avatars reaches 360.

Figure 19 shows the frequency of the moving home operations. The LRC rule has

the most frequent operations. The frequency of moving home operations using the

count-based rule decreased as the number of avatars increased, but this did not occur

when using the LRC rule.

Figure 20 shows the frequency of remote access, while the count-based rule showed

the least. The count-based rule showed fewer remote accesses as the number of avatars

increased, similar to the moving home operations.

Figure 21 shows the frequency of the case in which the home of a block had already

moved to another other web server when the remote access occurred. This occurred

most often using the time-based rule, and the least when using the count-based rule.

4.4.6 Discussion of Dense Crowd Pattern

In the case of dense crowd pattern, the difference in latency between the rules is small,

although there is a difference in the frequency of remote accesses. Here, the LRC

rule made fewer database accesses than the time-based rule and the count-based rule.

Because database access is a relatively high load for CGI tasks, this resulted in the

latencies being much the same.

The time-based rule showed the least number of moving home operations, because

the dense crowd pattern let avatars gather in one block for some time. Once the

gathered avatars settled in one place, there was less need for moving home operation.

Finally, the results of the dense crowd pattern are compared with that of the random

walk pattern. The frequency of remote access and moving home operations using the

36

 0

 100

 200

 300

 400

 500

 600

 700

 800

 200 250 300 350 400

la
te

nc
y

(m
se

c)

Number of players

LRC rule

Time-based rule

Count-based rule

Figure 18: Latency of getinst.cgi with block allocation based on local data with dense
crowd pattern

dense crowd pattern are higher than those of the random walk pattern. However, the

latency when using the dense crowd pattern is shorter than that of the random walk

pattern. This is due to the characteristics of the dense crowd pattern. The block

required by each avatar when using the random walk pattern varies. Therefore, the

CGI needs to retrieve a much larger amount of block information. In contrast, avatars

within the dense crowd pattern tend to gather around a hotspot. This means that the

CGI needs less blocks information. In this case, the cache mechanism works effectively,

because the retrieved information is limited to that of a few blocks. As a result, the

latency when using the dense crowd pattern is lower than that when using the random

walk pattern.

4.5 Conclusion of Home Allocation based on local data

This section describes the home allocation based on local data. With this allocation,

each web server determines which server should be a home of a block independently.

37

 0

 500

 1000

 1500

 2000

 2500

 3000

 200 250 300 350 400

F
re

qu
en

cy
 o

f m
ov

in
g

ho
m

e

Number of players

LRC rule

Time-based rule

Count-based rule

Figure 19: Frequency of moving home with dense crowd pattern

It means that servers do not have to share information related with moving home of

block. To determine whether the home of the block moves or not, three rules are

introduced in the system. And these rules are evaluated with two avatar movement

pattern, the random walk pattern and the dense crowd pattern.

When using the random walk pattern, the time-based rule was found to have the

shortest latency. It has 320 player capacity. However, it was only slightly better than

that of the LRC rule. This reason is the database access conflict. The time-based

rule has higher frequency of database access than the LRC rule has. Despite the

small difference in latency between the time-based rule and the LRC rule, there was

significant difference in the frequency of remote access between the rule. The frequency

of the remote access tends to increase as the frequency of the moving home operations

decreases. In addition, the frequency of situations in which the home had already

moved tended to be higher as the number of moving home operations increased.

When using the dense crowd pattern, Each rule has 360 player capacity. However,

there was only a slight difference in latency between the rules. In contrast, when using

38

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 200 250 300 350 400

F
re

qu
en

cy
 o

f r
em

ot
e

ac
ce

ss

Number of players

LRC rule

Time-based rule

Count-based rule

Figure 20: Frequency of remote access with dense crowd pattern

the random walk pattern, the frequency of the remote accesses tended to be higher as

the frequency of moving home operation increased.

When using the dense crowd pattern, the latency is less than that of the random

walk pattern. This is because the cache mechanism works effectively.

Using the home allocation based on local data, the system achieved the larger player

capacity than the single-server system. However, the latency difference among servers

is wide, it leads to the unfair situation. To solve this problem, the home allocation

based on global data is introduced. It is described in the following section.

39

 0

 500

 1000

 1500

 2000

 2500

 200 250 300 350 400

F
re

qu
en

cy
 o

f a
lre

ad
y

ch
an

ge
d

Number of players

LRC rule

Time-based rule

Count-based rule

Figure 21: Frequency of already moved case with dense crowd pattern

40

5 Home allocation based on global data

The home allocation method based on local data could achieve large player capacity

than the single-server system. However, the latency difference among servers is wide.

The wider difference of server latency is, the more unfair situation is produced. This is

because the game screen displayed on the web browser with the long latency is different

from that with the short latency, although both of the avatars related to these web

browsers are on the same region. Thus, the difference of the latency should be small.

To resolve this problem, the more balancing server load is needed. The latency depends

on the server load. A major factor of the server load is remote access and it is affected

by the block allocation. Latency for a web browser becomes longer if some remote

access is needed for the request from the browser. Thus, the home allocation that

achieves the balancing the frequency of remote access is preferred.

The home allocation based on global data collects all server data. Then, this

method obtains an optimal block allocation. The block allocation problem is dealt

with as a combinational optimization problem. We assume that a major server load is

remote access. From the view of server, there are two types of communication. Figure

22 shows these two communications. In this figure, there are three servers and two web

browsers. The server A has the ownership of the block 1 and 2 while the server B has

the ownership of the block 3 and 4. The frog connects to the server A and the panda

connects to the server C. If the frog requires the block 3 or 4, the server A sends a

request to the server B. Thus, the server A receives the information from the server B.

This is one of the communication types. On the other hand, the panda sends a request

to the server C. If the panda requires the block 1 or 2, the server C sends a request to

the server A. Thus, the server A sends the information to the server C. This is another

type of communication. For a server, the number of times of these communication is

accumulated as the total server load. We aim to minimize the sum of all server loads.

41

Figure 22: Two types of communication

5.1 Formulation

To solve the problem, it is formulated as a combinational optimization problem. The

notations in the formulation is as follows.

S : the set of servers.

A : the set of avatars.

As ⊆ A : the set of avatars login to server s ∈ S.

B : the set of blocks.

Bi ⊆ B : the set of blocks included in view area of avatar i ∈ A.

xsb : a value 1 if server s is the home of block b or 0 otherwise.

yis : a value 1 if the view area of avatar i includes a block whose home is server s; in

other words, the web browser related to avatar i needs data on server s, otherwise 0.

42

dst : the additional load value to server s on receiving block data from server t.

ust : the additional load value to server s on sending block data to server t.

ws : an excess of load over threshold T on server s.

The xsb is a decision variable. It decides which server should manage the block. If

a server s manages a block b, the value of xsb is 1, otherwise 0. The T is the threshold

for server load as negligible latency on the fairness among players. The ws is an excess

of load over threshold T on server s. If the load is less than T , this value is zero. The

objective is to minimize the sum of the value ws, s ∈ S.

The objective function minimizes the square sum of the excess amount over T

in order to maintain fairness among players. Furthermore, to highlight the difference

among each server load ws, each value of the server load is raised to power of two. This

means that this problem is dealt with as a quadratic integer programming problem.

The expression (1) is the objective function and the rests are constraints.

Minimize
∑
s∈S

w2
s (1)

Subject to

∑
s∈S

xsb = 1 b ∈ B (2)

∑
i∈As

∑
t∈S,t ̸=s

dstyit +
∑

t∈S,t̸=s

∑
i∈At

ustyis − ws ≤ T s ∈ S

(3)

yis ≤
∑
b∈Bi

xsb ≤ |B|yis i ∈ A \ As, s ∈ S (4)

43

xsb = 0 or 1 s ∈ S, b ∈ B (5)

yis = 0 or 1 i ∈ A \ As, s ∈ S (6)

ws ≥ 0 s ∈ S (7)

(1) Minimize the square sum of the amount of server load over a threshold.

(2) Each block must be managed by exactly one web server.

(3) Threshold T indicates an acceptable server load. The sum of T and ws is the

total server load on server s. Each server should keep the lesser server load than the

threshold.

(4) yis must be 1 when server s is home of a block (or blocks) on the view area of

avatar i. And yis must be 0 when server s is not home of any blocks on view area of

avatar i.

(5)..(7) are straightforward definitions.

In the expression (3), the first term indicates the total number of times that a server

receives the block information from other servers. The second term indicates the total

number of times that a server sends the block information to other servers.

5.2 Exact algorithm

To obtain an optimal block allocation, an exact algorithm is used to solve the above

formulation. And IBM ILOG CPLEX12[33] is used to solve a problem by an exact

algorithm. CPLEX12 is a multi-purpose optimization software. It solves a problem

based on a branch and bound method.

IBM CPLEX reads the problem with the lp-file. Figure 23 shows an example of

lp-file. It includes the objective functions, constraints and variables.

To evaluate the model, a simulation based experiment is performed. In this exper-

44

Figure 23: Example of lp-file format

iment, the game area consists of 10× 10 blocks and each block consists of 3× 3 cells.

These blocks are managed by five web servers. There are 50 players and each web

server manages 10 players. Thus, there are 50 avatars on the game world. The avatar

moves to a neighbor cell (up, down, right, left) or stays on the current cell, which is

random walk pattern. This movement is determined by the uniform random number

respectively at the probability of 20%. If the selected direction is out of the game area,

the avatar stays. The size of view area is 3× 3 blocks, which means that the view area

includes 9 blocks (81 cells) in maximum. The threshold of server load T is set to 50,

45

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 0 100 200 300 400 500 600 700 800 900 1000

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Simulation steps

Exact algorithm

allocation based on local data

Figure 24: Comparison of stepwise objective function value of the exact algorithm and
the data allocation based on local data.

dst and ust are set to 1.

Each problem has 705 variables (x:500, y:200, w:5) and 505 constraints. The sim-

ulation step goes forwards 1000 steps. Thus, there are 1000 problem instances.

Figure 24 shows the comparison of stepwise objective function values solved by the

exact algorithm and the allocation method based on local data. The x-axis indicates

simulation steps and the y-axis indicates the objective function value. All the values

which are obtained by the exact algorithm are less than that by the allocation based

load data. The optimal solution which is obtained by the exact algorithm has the 31%

lesser average objective function value than the allocation based on local data.

Figure 25 shows the difference between the maximum and minimum objective func-

tion value in five web servers. The x-axis indicates simulation steps and the y-axis

indicates the difference between the maximum and the minimum objective function

value. This all values for the exact algorithm are smaller than that based on local

data. The average difference is 74% lesser than that with the home allocation based

46

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800 900 1000

D
iff

er
en

ce
 b

et
w

ee
n

m
ax

im
um

 a
nd

 m
in

im
um

ob

je
ct

iv
e

fu
nc

tio
n

va
lu

e

Simulation steps

Allocation based on local data

Exact algorithm

Figure 25: Difference between maximum and minimum objective function value by the
exact algorithm and the allocation based local data

on local data.

Additionally, the experiment with the dense crowd pattern is performed. Figure 26

and 27 shows the result. This experiment also shows the result of value with the exact

algorithm is less than that based on local data.

The exact algorithm could achieve higher fairness on both the random walk pattern

and the dense crowd pattern. However, the exact algorithm took about 162 msec to

calculate a block allocation for a step. Furthermore, the calculation time varies even

for the same size problem because it depends on the branch and bound method. The

player tolerant is 500 msec for MORPG[17]. When the exact algorithm is built into

a real web-based MORPG system, the collecting data from all servers, the solving

a problem, the delivering a result to servers are needed. It is preferable that the

calculation time is short and uniform.

47

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 100 200 300 400 500 600 700 800 900 1000

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

Simulation steps

Exact algorithm

allocation based on local data

Figure 26: Comparison of server load by the exact algorithm and allocation based local
data with dense move pattern

5.3 Heuristic solution approach

The exact algorithm could obtain an optimal solution. It achieved higher fairness.

However, the exact algorithm took too much calculation time to solve a problem and

it depends on the number of players. Thus, a technique that can obtain an optimal

solution quickly is needed. Therefore, this study introduces a meta-heuristic algorithm

that is based on a tabu search algorithm. Tabu search algorithm is a well-known

meta-heuristic algorithm.

5.3.1 Algorithm Steps

The tabu search algorithm in this research takes the following steps.

1. as a fixed allocation, allocate blocks to each server which requires them solely.

2. allocate the rest of blocks randomly in order to share them among all servers.

48

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000

D
iff

er
en

ce
 b

et
w

ee
n

m
ax

im
um

 a
nd

 m
in

im
um

ob

je
ct

iv
e

fu
nc

tio
n

va
lu

e

Simulation steps

Allocation based on local data

Exact algorithm

Figure 27: Difference between maximum and minimum objective function value by the
exact algorithm and the allocation based load data with dense move pattern

3. hold the allocation as an initial trial solution and the incumbent solution.

4. calculate the objective function values for neighborhood solutions each of which

differs in one block allocation than the trial solution.

5. select a neighborhood solution which has the lowest objective function value as

the next trial solution.

6. update the incumbent solution with the trial solution if the objective function is

less than the incumbent solution.

7. repeat step 4-6 for certain times.

At this time, the block which changed for a certain period does not changed.

This algorithm reads a file with the following form.

49

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 0 100 200 300 400 500 600 700 800 900 1000

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Simulation steps

allocation based on local data
Exact algorithm

Tabu search

Figure 28: Comparison of stepwise objective function values of the exact algorithm,
the tabu search algorithm and the data allocation based on local data

� �
50

2 0 0 1 1

0 2 0 1 1

0 0 2 1 1

0 0 0 1 1

0 0 0 1 1� �
In this example, it is assumed that there are a block and five web servers. The first

line shows the threshold. Each of the following line shows the load of each server in

case that a server is a home of the block.

50

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

D
iff

er
en

ce
 b

et
w

ee
n

m
ax

im
um

 a
nd

 m
in

im
um

ob

je
ct

iv
e

fu
nc

tio
n

va
lu

e

Simulation steps

allocation based on local data

Exact algorithm

Tabu search algorithm

Figure 29: Difference between maximum and minimum objective function value by the
exact algorithm, the tabu search algorithm and the allocation based on local data

5.4 Evaluation for Tabu Search Algorithm

To evaluate the heuristic solution approach, the simulation based experiments with

the random walk pattern is performed. The experimental setting is the same as the

case in the section 5.2

Figure 28 shows the comparison among the objective function values which are

obtained by the exact algorithm, the tabu search algorithm and the allocation based

on local data for 50 players respectively. The x-axis indicates simulation steps and

the y-axis indicates the objective function values. The objective function values which

are obtained by the tabu search are almost the same as the exact algorithm. It is

0.003% different from the exact algorithm. Figure 29 shows the difference between the

maximum and minimum objective function values. In this figure, the values for the

tabu search algorithm are also the same as the exact algorithm. Thus, the tabu search

algorithm could achieve higher fairness.

As the next simulation based experiment, the number of players is changed from

51

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 50 100 150 200 250 300 350 400 450 500

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

Number of players

Tabu search algorithm

Exact algorithm

Previous our system

Figure 30: Comparison of average objective function values

50 to 500. Figure 30 shows the average objective function values for the number of

players. For each point on x-axis, both the objective function value solved by the exact

algorithm and by the tabu search are lesser than that by the allocation based on local

data. The tabu search almost overlaps the exact algorithm. When 500 players, the

value of the tabu search is 1% different from the exact algorithm. Thus, the tabu

search algorithm could obtain a near-optimal solution.

After that, the average server load per server is evaluated. A load of server s is

ws + T . Figure 31 shows the average server load which serves by one web server. This

shows that the result of the tabu search is almost the same as the exact algorithm.

Thus, the load of each server with the tabu search algorithm is also a near-optimal

solution.

In addition, fairness of the tabu search is evaluated. The wider difference leads

to unfair situation. To increase fairness, the load difference among servers should be

small. Figure 32 shows the difference between the maximum and the minimum server

52

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 lo
ad

 p
er

 s
er

ve
r

Number of players

Tabu search algorithm

Exact algorithm

Previous our system

Figure 31: Comparison of average load per server

load in five servers. The result of the tabu search almost overlaps the exact algorithm.

This result illustrates that the tabu search algorithm could achieve higher fairness for

the number of players.

Figure 33 shows the calculation time for the exact algorithm and the tabu search

algorithm. The calculation time for the exact algorithm greatly increases when 400

players. On the other hand, the calculation time of the tabu search is 25.67 msec and

29.35 msec for 50 players and 500 players. The difference between them is only slightly.

This result means that the calculation time of the tabu search algorithm is stable and

does not depend on a problem size. Thus, the tabu search algorithm could obtain a

near-optimal solution without the increasing calculation time.

53

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300 350 400 450 500

D
iff

er
en

ce
 a

m
on

g
m

ax
im

um
 a

nd
 m

in
im

um
 s

er
ve

r
lo

ad

Number of players

Tabu search algorithm

Exact algorithm

Previous our system

Figure 32: Difference between maximum and minimum server load

5.5 MORPG System with home allocation based on global

data

The advantage of the home allocation based on global data is confirmed by the simu-

lation based experiment. As the next step, the home allocation based on global data

with the heuristic solution approach is built into our web-based MORPG system.

Figure 34 shows the system architecture for the web-based MORPG system with the

home allocation based on global data. The central server collects the all data from each

web server. It solves the problem with the tabu search and obtains a near-optimal block

allocation. The central server solves a problem every 1500 msec. The near-optimal

block allocation is delivered to all web servers and all blocks are reallocated.

Figure 35 shows the latency of servers with the home allocation based on global

data. The latency exceeds 500 msec when the number of avatars is 440. This means

that this system has 420 player capacity. It is the 2.1 times of the single-server system

and about 1.3 times of the multi-server system with the home allocation based on

54

 10

 100

 1000

 10000

 100000

 50 100 150 200 250 300 350 400 450 500

C
al

cu
la

tio
n

tim
e(

m
se

c)

Number of players

Tabu search algorithm

Exact algorithm

Figure 33: Calculation time for the exact algorithm and the tabu search algorithm

local data. Figure 36 shows the frequency of remote access. It is less than the home

allocation based on local data. From these results, the home allocation based on global

data is more effective than that based on local data.

The player capacity becomes only 1.3 times larger, although the frequency of remote

access becomes 0.5 times lesser. This is because the access congestion occurs again.

With 320 players, each server hosts 80 players. But each server hosts 105 players when

the number of players is 420. The frequency of request to a server increases, although

the frequency of remote access decreases. This issue should be solved in future works.

55

Figure 34: System Architecture for MORPG system with home allocation based on
global data

 300

 350

 400

 450

 500

 550

 200 250 300 350 400 450

La
te

nc
y(

m
se

c)

Number of players

MORPG system with tabu search

Previous MORPG system

Figure 35: Latency with allocation based on global data

56

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 200 250 300 350 400 450

F
re

qu
en

cy
 o

f r
em

ot
e

ac
ce

ss

Number of players

MORPG system with tabu search

Previous MORPG system

Figure 36: Frequency of remote access with allocation based on global data

57

6 Conclusion

This research proposed a dynamic data reallocation method for web-based online game.

The access congestion to a web server is a major problem in web-based applications.

It raises the database access conflict and leads the performance degradation.

To balance server load, most of other studies adopt a job migration, a resource

provision and so on. In addition, they use a middleware to achieve their objective. On

the other hand, this study focuses on data allocation. In this study, the web server

dynamically reallocates data to balance server load. Furthermore, the dynamic data

reallocation method is performed on CGI. It does not require the modifying web server

and any middlewares.

The web-based MORPG system in this study divides the virtual game world into

small blocks and the ownership of each block is assigned to a web server. The block

data is shared among all web servers by using remote access. However, the more

frequent remote access is also an overhead. Thus, a dynamic data reallocation method

is introduced. Two types of methods are proposed, the home allocation based on local

data and that based on global data. With the home allocation based on local data, each

server independently determines which server should manage the block. To determine

when the block moves, three rules are introduced, the LRC rule, the time-based rule

and the count-based rule. The time-based rule achieves the most player capacity. It

could serves 320 players with the random walk pattern. With the dense crowd pattern,

the user capacity is 360 for three rules. However, using this method leads to the wider

latency difference.

With the home allocation based on global data, all the server data is used to

determine the block allocation. This allocation is dealt with as a combinational opti-

mization problem. It is solved by an exact algorithm and a meta-heuristic algorithm.

The simulation based experimental result shows that the exact algorithm could reduce

the server load and achieve higher fairness. The average server load is about 31%

58

lesser and the load difference between maximum and minimum is about 74% lesser

than the home allocation based on local data. However, the exact algorithm took too

much calculation time to solve a problem. In contrast, a tabu search is possible to

solve a problem quickly. It could obtain almost the same result of the exact algorithm

quickly. The average server load is 0.003% difference from the exact algorithm. And

the calculation time with the tabu search is stable and does not depend on a problem

size. Thus, the home allocation method based on global data is built into the MORPG

system. Then, it used the tabu search algorithm. It could host 420 players, it is 2.1

times of the single-server system and about 1.3 times of the home allocation based on

local data.

As the future works, the model in this study should adopt a realistic situation.

In the simulation based experiment, it is supposed that the overheads against both

sending and receiving data are the same. However, in the realistic situation, the

upload bandwidth and the download bandwidth are different. Therefore, a experiment

with the realistic situation is needed. Furthermore, the speeding up for the tabu search

algorithm is also needed. The decreasing calculation time makes a margin of time for

other process such as the database access, the communication and the updating game

data. In the MORPG system with the home allocation based on global data, a central

server is needed to solve a problem. However, the home reallocation could not perform

when the server crash. A MORPG system using the home allocation based on global

data with out a central server is required to increase the fault tolerance.

Finally, the home allocation method might be applied to other applications. Both

the allocation based on local data and that based on global data could increase the

player capacity. And the allocation based on global data could achieve higher fairness.

The concept of home allocation could be applied to other similar applications. One

of them is a live migration of virtual machine. The live migration is a technique

which migrates a virtual machine from a host machine to other host machine without

shutdown it. A virtual machine is seen as a block and a host machine is seen as a home.

59

This is the same form as the home allocation method in this study. The applying the

home allocation method to similar applications which has the same form is one of the

future works.

60

References

[1] Daniel Pittman, Chris GauthierDickey, “A Measurement Study of Virtual Popula-

tions in Massively Multiplayer Online Games, ” NetGames’07, pp.25-30, September

19-20, 2007.

[2] Ahmed Abdelkhalek, Angelos Bilas, ”Parallelization and Performance of Interactive

Multiplayer Game Servers, ” Proceedings of the 18th International Parallel and

Distributed Processing Symposium (IPDPS’04).

[3] Jeremy Brun, Farzad Safaei, Paul Boustead, ”Server Topology Considerations in

Online Games, ” The 5th workshop on Network & System Support for Games

2006-NETGAMES2006.

[4] Yi Zhang, Ling Chen, Gencai Chen, ”Globally Synchronized Dead-Reckoning with

Local Lag for Continuous Distributed Multiplayer Games, ” The 5th workshop on

Network & System Support for Games 2006-NETGAMES2006.

[5] Kuan-Ta Chen, Polly Huang, Chin-Laung Lei, “How sensitive are online games to

network quality?,“ Communication of the ACM, Vol.49, No.11, pp.34-38, (2006.

11).

[6] Wu-chang Feng, Francis Chang, Wu-chi Feng, Jonathan Walpole, “A Traffic Char-

acterization of Popular On-Line Games,“ IEEE/ACMTRANSACTIONS ON NET-

WORKING, Vol.13, No.3, pp.488-500, (2005. 6).

[7] J. Waldo, ”Scaling in Games and Virtual Worlds, ” Communications of the ACM,

Vol.51, No.8, pp.38-44, (2008. 8).

[8] Radu Prodan, Vlad Nae, “Prediction-based real-time resource provisioning for mas-

sively multi-player online games,“ Future Generation Computer Systems, 25(7),

July 2009, Pages 785-793

61

[9] Vlad Nae, Alexandru Iosup, Radu Prodan, “Dynamic Resource Provisioning in

Massively Multi-player Online Games,” IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, 05 Apr. 2010.

[10] Jared Jardine, Daniel Zappala, “A Hybrid Architecture for Massively Multi-player

Online Games, “ NetGames ’08, pp.60-65.

[11] Frank Glinka, Alexander Ploss, Sergei Gorlatch, Jens Muller-Iden, “High-Level

Development of Multi-server Online Games, “ International Journal of Computer

Games Technology, Vol.2008.

[12] Shun-Yun Hu, Shao-Chen Chang, Jehn-Ruey Jiang, “Voronoi State Management

for Peer-to-Peer Massively Multi-player Online Games, “ CCNC 2008. IEEE.

[13] Bart De Vleeshauwer, Bruno Van Den Bossche, Tom Verdickt, Fillip De Turck,

Bart Dhoedt, Piet Demeester, “Dynamic Microcell Assignment for Massively Multi-

player Online Gamine, ” NetGames’05, (2005. 10).

[14] Bruno Van Den Bossche, Tom Verdickt, Bart De Vleeshauwer, Stein Desmet, Stijn

De Mulder, Filip De Turck, Bart Dhoedt, Piet Demeester, “A Platform for Dynamic

Microcell Redeployment in Massively Multi-player Online Games, ” Proceedings of

the 2006 international workshop on Network and operating systems support for

digital audio and video

[15] Helmut Hoyer, Andreas Jochheim, Christof Rohring, Andreas Bischoff, “A

Multiuser Virtual-Reality Environment for a Tele-Operated Laboratory,” IEEE

TRANSACTIONS ON EDUCATION, VOL. 47, NO. 1, pp.121-126 (2004. 2).

[16] Erik Champion, “Online Exploration of Mayan Culture,” 5th Annual International

Workshop PRESENCE 2002, pp.117-128 (2002. 10).

62

[17] Mark Claypool, Kajal Claypool, ”LATENCY AND PLAYER ACTIONS IN ON-

LINE GAMES, ” Communications of the ACM, Vol.49, No.11, pp.40-45, (2006.

11).

[18] Fengyun Lu, Simon Parkin, Graham Morgan, “Load Balancing for Massively Mul-

tiplayer Online Games,” NetGames’06 Proceedings of 5th ACM SIGCOMM work-

shop on Network and system support for games.

[19] Carlos Eduardo Benevides Bezerra, Claudio Fernando Resin Geyer, “A load bal-

ancing scheme for massively multiplayer online games,” Journal Multimedia Tools

and Applications, Volume 45 Issue 1-3, October 2009.

[20] M. Eraslan, N.D. Georganas, J.R. Gallardo, and D. Makrakis, “A scalable net-

work architecture for distributed virtual environment with dynamic QoS over

IPv6,” Proc. 8th IEEE International Symposium on Computers and Communi-

cation (ISCC ’03), 2003.

[21] Herbert Jordan, Radu Prodan, Vlad Nae, Thomas Fahringer, “Dynamic Load

Management for MMOGs in Distributed Environments, ” CF ’10 Proceedings of

the 7th ACM international conference on Computing frontiers Pages 337-346, 2010.

[22] Po-Jung Huang, You-Fu Yu, Kuan-Chou Lai, Ching-Hsien Hsu, and Kuan-Ching

Li, “Exploiting Dynamic Distributed Load Balance by Neighbor-Matching on P2P

Grids, ” 2011 IEEE Asia -Pacific Services Computing Conference, pages. 131-138,

December 2011.

[23] Roman Chertov, Sonia Fahmy, “Optimistic Load Blancing in a Distributed Virtual

Environment,” NOSSDAV’06, 2006.

[24] Jie Zhu, Bo Gao, Zhihu Wang, Berthold Reinwald, Changjie Guo, Xiaoping Li,

Wei Sum, “A Dynamic Resource Allocation Algorithm for Database-as-a-Service,

” 2011 IEEE International Conference on Web Services, pp.564-571, 2011.

63

[25] Yi Zhao, Wenlong Huang, “Adaptive Distributed Load Balancing Algorithm based

on Live Migration of Virtual Machines in Cloud, ” 2009 Fifth International Joint

Conference on INC, IMS and IDC, pp.170-175. 2009.

[26] Kejiang Ye, Xiaohong Jiang, Dawei Huang, Jianhai Chen, Bei Wang, “Live Migra-

tion of Multiple Virtual Machines with Resource Reservation in Cloud Computing

Environments. ” 2011 IEEE 4th International Conference on Cloud Computing,

pp.267-274, 2011.

[27] SecondLife, http://secondlife.com/

[28] World of Warcraft,

http://www.worldofwarcraft.com/index.xml

[29] Meet-Me, http://www.meet-me.jp/

[30] RuneScape official site, http://www.runescape.com/

[31] fragoria official site, http://www.fragoria.com/

[32] ELEMENTALIA, http://www.elementalia.jp/

[33] IBM ILOG CPLEX Optimizer,

www-01.ibm.com/software/integration/optimization/cplex-optimizer/

Research achievement

[34] M. Kohana, S. Okamoto, M. Kamada, T. Yonekura, “A study of load distribution

technique among MORPG system, ” IEICE SIG Report, CyberWorld 11, pp.7-11,

(2008.12).

64

[35] M. Kohana, S. Okamoto, M. Kamada, T. Yonekura, ”Improving bottleneck in

Web-based MORPG, ” IEEE Pacific Rim Conference on Communications, Com-

puters and Signal Processing (PACRIM’09), pp.419-424 (2009. 8).

[36] M. Kohana, S. Okamoto, M. Kamada, T. Yonekura, ”A Method for Dynamic

Allocation of Data on the Multiple MORPG Servers, ” Forum on Information

Technology 2009, vol.1, pp.423-424 (2009. 9).

[37] M. Kohana, S. Okamoto, M. Kamada, T. Yonekura, “Dynamic Data Allocation

Scheme for Multi-Server Web-based MORPG System, ” 2010 IEEE 24th Interna-

tional Conference on Advanced Information Networking and Applications Work-

shops, pp.449 - 454, (2010.4).

[38] S. Okamoto, M. Kohana, “Load Distribution by Using Web Workers for a Real

Time Web Application, “ Proceedings of the 12th International Conference on

Information Integration and Web-based Applications and Services (iiWAS2010),

pp.590-595, (2010.11).

[39] M. Kohana, S. Okamoto, M. Kamada, T. Yonekura, “Evaluation of a Dynamic

Data Allocation Method for Web-based multi-server MORPG System, ” IEICE

TRANS. INF. &SYST., Vol.E93-D,No.12, (2010.12).

[40] M. Kohana, S. Okamoto, M. Kamada, T. Yonekura, “Reallocation Criteria on

Multi-Server Web-based MORPG System,” 2011 IEEE 25th International Confer-

ence on Advanced Information Networking and Applications, (2011.3).

[41] S. Okamoto, M. Kohana, “Load distribution by using Web Workers for a real-time

web applications, ” International Journal of Web Information System, Vol.7 iss:4,

pp.381-395, (2011).

[42] Y. Jimbo, M. Kohana, S. Okamoto, “A Twitter Service for School Event, ”

65

2011 Second International Conference on Networking and Computing, pp.266-270,

(2011.12)

[43] M. Kohana, S. Okamoto, M. Kamada, T. Yonekura, “Performance Impact of Vir-

tualization on web-based MORPG System,” Proceedings of the 13th International

Conference on Information Integration and Web-based Applications and Services

(iiWAS2011), pp.333-336, (2011.12).

[44] M. Kohana, S. Okamoto, A. Ikegami, “Optimal Data Allocation for Keeping Fair-

ness of Online Game,” 2012 IEEE 26th International Conference on Advanced

Information Networking and Applications Workshops, pp.1209-1214, (2012.3).

[45] M. Kohana, S. Okamoto, T. Yonekura and M. Kamada, “Dynamic Reallocation

Rules on Multi-Server Web-based MORPG System,” International Journal of Grid

and Utility Computing (IJGUC), 3(2/3), 136-144 (2012)

[46] M. Kaneko, S. Okamoto, M. Kohana, Y. Inayoshi, “Document Classification based

on Web search Hit Counts, ” Proceedings of the 14th International Conference on

Information Integration and Web-based Applications and Services (iiWAS2012),

(2012. 12).

[47] M. Kohana, S. Okamoto, A. Ikegami, “Optimal Data Allocation and fairness for

Online game,” International Journal of Grid and Utility Computing (conditional

acceptance).

[48] M. Kohana, S. Okamoto, A. Ikegami, “A Meta-heuristic Approach for Dynamic

Data Allocation on a Multiple Web Server System, ” IEICE TRANS. INF. &SYST.

(submitted).

66

